Spandidos Publications Logo
  • About
    • About Spandidos
    • Aims and Scopes
    • Abstracting and Indexing
    • Editorial Policies
    • Reprints and Permissions
    • Job Opportunities
    • Terms and Conditions
    • Contact
  • Journals
    • All Journals
    • Oncology Letters
      • Oncology Letters
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Oncology
      • International Journal of Oncology
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Molecular and Clinical Oncology
      • Molecular and Clinical Oncology
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Experimental and Therapeutic Medicine
      • Experimental and Therapeutic Medicine
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Molecular Medicine
      • International Journal of Molecular Medicine
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Biomedical Reports
      • Biomedical Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Oncology Reports
      • Oncology Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Molecular Medicine Reports
      • Molecular Medicine Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • World Academy of Sciences Journal
      • World Academy of Sciences Journal
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Functional Nutrition
      • International Journal of Functional Nutrition
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Epigenetics
      • International Journal of Epigenetics
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Medicine International
      • Medicine International
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
  • Articles
  • Information
    • Information for Authors
    • Information for Reviewers
    • Information for Librarians
    • Information for Advertisers
    • Conferences
  • Language Editing
Spandidos Publications Logo
  • About
    • About Spandidos
    • Aims and Scopes
    • Abstracting and Indexing
    • Editorial Policies
    • Reprints and Permissions
    • Job Opportunities
    • Terms and Conditions
    • Contact
  • Journals
    • All Journals
    • Biomedical Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Experimental and Therapeutic Medicine
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Epigenetics
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Functional Nutrition
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Molecular Medicine
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Oncology
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Medicine International
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Molecular and Clinical Oncology
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Molecular Medicine Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Oncology Letters
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Oncology Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • World Academy of Sciences Journal
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
  • Articles
  • Information
    • For Authors
    • For Reviewers
    • For Librarians
    • For Advertisers
    • Conferences
  • Language Editing
Login Register Submit
  • This site uses cookies
  • You can change your cookie settings at any time by following the instructions in our Cookie Policy. To find out more, you may read our Privacy Policy.

    I agree
Search articles by DOI, keyword, author or affiliation
Search
Advanced Search
presentation
International Journal of Oncology
Join Editorial Board Propose a Special Issue
Print ISSN: 1019-6439 Online ISSN: 1791-2423
Journal Cover
September-2024 Volume 65 Issue 3

Full Size Image

Cover Legend PDF

Sign up for eToc alerts
Recommend to Library

Journals

International Journal of Molecular Medicine

International Journal of Molecular Medicine

International Journal of Molecular Medicine is an international journal devoted to molecular mechanisms of human disease.

International Journal of Oncology

International Journal of Oncology

International Journal of Oncology is an international journal devoted to oncology research and cancer treatment.

Molecular Medicine Reports

Molecular Medicine Reports

Covers molecular medicine topics such as pharmacology, pathology, genetics, neuroscience, infectious diseases, molecular cardiology, and molecular surgery.

Oncology Reports

Oncology Reports

Oncology Reports is an international journal devoted to fundamental and applied research in Oncology.

Experimental and Therapeutic Medicine

Experimental and Therapeutic Medicine

Experimental and Therapeutic Medicine is an international journal devoted to laboratory and clinical medicine.

Oncology Letters

Oncology Letters

Oncology Letters is an international journal devoted to Experimental and Clinical Oncology.

Biomedical Reports

Biomedical Reports

Explores a wide range of biological and medical fields, including pharmacology, genetics, microbiology, neuroscience, and molecular cardiology.

Molecular and Clinical Oncology

Molecular and Clinical Oncology

International journal addressing all aspects of oncology research, from tumorigenesis and oncogenes to chemotherapy and metastasis.

World Academy of Sciences Journal

World Academy of Sciences Journal

Multidisciplinary open-access journal spanning biochemistry, genetics, neuroscience, environmental health, and synthetic biology.

International Journal of Functional Nutrition

International Journal of Functional Nutrition

Open-access journal combining biochemistry, pharmacology, immunology, and genetics to advance health through functional nutrition.

International Journal of Epigenetics

International Journal of Epigenetics

Publishes open-access research on using epigenetics to advance understanding and treatment of human disease.

Medicine International

Medicine International

An International Open Access Journal Devoted to General Medicine.

Journal Cover
September-2024 Volume 65 Issue 3

Full Size Image

Cover Legend PDF

Sign up for eToc alerts
Recommend to Library

  • Article
  • Citations
    • Cite This Article
    • Download Citation
    • Create Citation Alert
    • Remove Citation Alert
    • Cited By
  • Similar Articles
    • Related Articles (in Spandidos Publications)
    • Similar Articles (Google Scholar)
    • Similar Articles (PubMed)
  • Download PDF
  • Download XML
  • View XML
Review Open Access

Functions and mechanisms of RNA m6A regulators in breast cancer (Review)

  • Authors:
    • Yibei Yang
    • Feng Gao
    • Lanqi Ren
    • Ning Ren
    • Junjie Pan
    • Qiaoping Xu
  • View Affiliations / Copyright

    Affiliations: Department of Clinical Pharmacology, Key Laboratory of Clinical Cancer Pharmacology and Toxicology Research of Zhejiang Province, Affiliated Hangzhou First People's Hospital, Cancer Center, Westlake University School of Medicine, Hangzhou, Zhejiang 310006, P.R. China, Department of Urology, Hangzhou Hospital of Traditional Chinese Medicine, Hangzhou, Zhejiang 310000, P.R. China, Fourth Clinical Medical College of Zhejiang Chinese Medical University, Hangzhou, Zhejiang 310051, P.R. China
    Copyright: © Yang et al. This is an open access article distributed under the terms of Creative Commons Attribution License [CC BY 4.0].
  • Article Number: 86
    |
    Published online on: July 26, 2024
       https://doi.org/10.3892/ijo.2024.5674
  • Expand metrics +
Metrics: Total Views: 0 (Spandidos Publications: | PMC Statistics: )
Metrics: Total PDF Downloads: 0 (Spandidos Publications: | PMC Statistics: )
Cited By (CrossRef): 0 citations Loading Articles...

This article is mentioned in:



Abstract

Breast cancer (BC) is a major malignant tumor in females and the incidence rate of BC has increased worldwide in recent years. N6‑methyladenosine (m6A) is a methylation modification that occurs extensively in eukaryotic RNA. The abnormal expression of m6A and related regulatory proteins can activate or inhibit certain signal pathways or oncogenes, thus affecting the proliferation, metastasis and prognosis of BC. Numerous studies have shown that m6A regulator disorder exists in BC, and this disorder can be reversed. Therefore, m6A is predicted as a potential therapeutic target for BC. However, the molecular mechanism of m6A RNA methylation regulating the occurrence and development of BC has not been comprehensively elucidated. In this review article, the functions of various m6A regulators and the specific mechanisms of certain regulators of the progress of BC were summarized. Furthermore, the dual role of RNA methylation in tumor progression was discussed, concluding that RNA methylation can not only lead to tumorigenesis but at times give rise to inhibition of tumor formation. In addition, further comprehensive analysis on mechanisms of m6A regulators in BC is conducive to screening effective potential targets and formulating targeted treatment strategies, which will provide new methods for the prevention and treatment of BC.
View Figures

Figure 1

Figure 2

Figure 3

Figure 4

Figure 5

Figure 6

Figure 7

Figure 8

View References

1 

Siegel RL, Miller KD and Jemal A: Cancer statistics, 2020. CA Cancer J Clin. 70:7–30. 2020. View Article : Google Scholar : PubMed/NCBI

2 

Patel S: Breast cancer: Lesser-known facets and hypotheses. Biomed Pharmacother. 98:499–506. 2018. View Article : Google Scholar

3 

Zhu Z, Albadawy E, Saha A, Zhang J, Harowicz MR and Mazurowski MA: Deep learning for identifying radiogenomic associations in breast cancer. Comput Biol Med. 109:85–90. 2019. View Article : Google Scholar : PubMed/NCBI

4 

Lord SJ, Bahlmann K, O'Connell DL, Kiely BE, Daniels B, Pearson SA, Beith J, Bulsara MK and Houssami N: De novo and recurrent metastatic breast cancer-A systematic review of population-level changes in survival since 1995. EClinicalMedicine. 44:1012822022. View Article : Google Scholar

5 

Dai D, Wang H, Zhu L, Jin H and Wang X: N6-methyladenosine links RNA metabolism to cancer progression. Cell Death Dis. 9:1242018. View Article : Google Scholar : PubMed/NCBI

6 

Hyun K, Jeon J, Park K and Kim J: Writing, erasing and reading histone lysine methylations. Exp Mol Med. 49:e3242017. View Article : Google Scholar : PubMed/NCBI

7 

An Y and Duan H: The role of m6A RNA methylation in cancer metabolism. Mol Cancer. 21:142022. View Article : Google Scholar : PubMed/NCBI

8 

Lin H, Wang Y, Wang P, Long F and Wang T: Mutual regulation between N6-methyladenosine (m6A) modification and circular RNAs in cancer: Impacts on therapeutic resistance. Mol Cancer. 21:1482022. View Article : Google Scholar : PubMed/NCBI

9 

Liu Z, Zou H, Dang Q, Xu H, Liu L, Zhang Y, Lv J, Li H, Zhou Z and Han X: Biological and pharmacological roles of m6A modifications in cancer drug resistance. Mol Cancer. 21:2202022. View Article : Google Scholar

10 

Deng LJ, Deng WQ, Fan SR, Chen MF, Qi M, Lyu WY, Qi Q, Tiwari AK, Chen JX, Zhang DM and Chen ZS: m6A modification: Recent advances, anticancer targeted drug discovery and beyond. Mol Cancer. 21:522022. View Article : Google Scholar : PubMed/NCBI

11 

Sung H, Ferlay J, Siegel RL, Laversanne M, Soerjomataram I, Jemal A and Bray F: Global cancer statistics 2020: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J Clin. 71:209–249. 2021. View Article : Google Scholar : PubMed/NCBI

12 

DeSantis CE, Ma J, Gaudet MM, Newman LA, Miller KD, Goding Sauer A, Jemal A and Siegel RL: Breast cancer statistics, 2019. CA Cancer J Clin. 69:438–451. 2019. View Article : Google Scholar : PubMed/NCBI

13 

Loibl S, Poortmans P, Morrow M, Denkert C and Curigliano G: Breast cancer. Lancet. 397:1750–1769. 2021. View Article : Google Scholar : PubMed/NCBI

14 

Hong R and Xu B: Breast cancer: an up-to-date review and future perspectives. Cancer Commun (Lond). 42:913–936. 2022. View Article : Google Scholar : PubMed/NCBI

15 

Golshan M, Loibl S, Wong SM, Houber JB, O'Shaughnessy J, Rugo HS, Wolmark N, McKee MD, Maag D, Sullivan DM, et al: Breast conservation after neoadjuvant chemotherapy for triple-negative breast cancer: Surgical results from the brightness randomized clinical trial. JAMA Surg. 155:e1954102020. View Article : Google Scholar : PubMed/NCBI

16 

Waks AG and Winer EP: Breast cancer treatment: A review. JAMA. 321:288–300. 2019. View Article : Google Scholar : PubMed/NCBI

17 

Jääskeläinen A, Roininen N, Karihtala P and Jukkola A: High parity predicts poor outcomes in patients with luminal B-like (HER2 negative) early breast cancer: A prospective finnish single-center study. Front Oncol. 10:14702020. View Article : Google Scholar : PubMed/NCBI

18 

Choong GM, Cullen GD and O'Sullivan CC: Evolving standards of care and new challenges in the management of HER2-positive breast cancer. CA Cancer J Clin. 70:355–374. 2020. View Article : Google Scholar : PubMed/NCBI

19 

Yu KD, Ye FG, He M, Fan L, Ma D, Mo M, Wu J, Liu GY, Di GH, Zeng XH, et al: Effect of adjuvant paclitaxel and carboplatin on survival in women with triple-negative breast cancer: A phase 3 randomized clinical trial. JAMA Oncol. 6:1390–1396. 2020. View Article : Google Scholar : PubMed/NCBI

20 

Garrido-Castro AC, Lin NU and Polyak K: Insights into molecular classifications of triple-negative breast cancer: Improving patient selection for treatment. Cancer Discov. 9:176–198. 2019. View Article : Google Scholar : PubMed/NCBI

21 

Gaudet MM, Gierach GL, Carter BD, Luo J, Milne RL, Weiderpass E, Giles GG, Tamimi RM, Eliassen AH, Rosner B, et al: Pooled analysis of nine cohorts reveals breast cancer risk factors by tumor molecular subtype. Cancer Res. 78:6011–6021. 2018. View Article : Google Scholar : PubMed/NCBI

22 

Nur U, El Reda D, Hashim D and Weiderpass E: A prospective investigation of oral contraceptive use and breast cancer mortality: Findings from the Swedish women's lifestyle and health cohort. BMC Cancer. 19:8072019. View Article : Google Scholar : PubMed/NCBI

23 

Trabert B, Sherman ME, Kannan N and Stanczyk FZ: Progesterone and breast cancer. Endocr Rev. 41:320–344. 2020. View Article : Google Scholar :

24 

Reiner AS, Sisti J, John EM, Lynch CF, Brooks JD, Mellemkjær L, Boice JD, Knight JA, Concannon P, Capanu M, et al: Breast cancer family history and contralateral breast cancer risk in young women: an update from the women's environmental cancer and radiation epidemiology study. J Clin Oncol. 36:1513–1520. 2018. View Article : Google Scholar : PubMed/NCBI

25 

Ho PJ, Ho WK, Khng AJ, Yeoh YS, Tan BK, Tan EY, Lim GH, Tan SM, Tan VKM, Yip CH, et al: Overlap of high-risk individuals predicted by family history, and genetic and non-genetic breast cancer risk prediction models: Implications for risk stratification. BMC Med. 20:1502022. View Article : Google Scholar : PubMed/NCBI

26 

Lu HM, Li S, Black MH, Lee S, Hoiness R, Wu S, Mu W, Huether R, Chen J, Sridhar S, et al: Association of breast and ovarian cancers with predisposition genes identified by large-scale sequencing. JAMA Oncol. 5:51–57. 2019. View Article : Google Scholar :

27 

Breast Cancer Association Consortium; Dorling L, Carvalho S, Allen J, González-Neira A, Luccarini C, Wahlström C, Pooley KA, Parsons MT, Fortuno C, et al: Breast cancer risk genes-association analysis in more than 113,000 women. N Engl J Med. 384:428–439. 2021. View Article : Google Scholar : PubMed/NCBI

28 

Ru W, Zhang X, Yue B, Qi A, Shen X, Huang Y, Lan X, Lei C and Chen H: Insight into m6A methylation from occurrence to functions. Open Biol. 10:2000912020. View Article : Google Scholar

29 

Li Z, Peng Y, Li J, Chen Z, Chen F, Tu J, Lin S and Wang H: N6-methyladenosine regulates glycolysis of cancer cells through PDK4. Nat Commun. 11:25782020. View Article : Google Scholar

30 

Huang H, Weng H and Chen J: m6A modification in coding and non-coding RNAs: Roles and therapeutic implications in cancer. Cancer Cell. 37:270–288. 2020. View Article : Google Scholar : PubMed/NCBI

31 

Choe J, Lin S, Zhang W, Liu Q, Wang L, Ramirez-Moya J, Du P, Kim W, Tang S, Sliz P, et al: mRNA circularization by METTL3-eIF3h enhances translation and promotes oncogenesis. Nature. 561:556–560. 2018. View Article : Google Scholar : PubMed/NCBI

32 

Dominissini D, Moshitch-Moshkovitz S, Schwartz S, Salmon-Divon M, Ungar L, Osenberg S, Cesarkas K, Jacob-Hirsch J, Amariglio N, Kupiec M, et al: Topology of the human and mouse m6A RNA methylomes revealed by m6A-seq. Nature. 485:201–206. 2012. View Article : Google Scholar : PubMed/NCBI

33 

Shi B, Liu WW, Yang K, Jiang GM and Wang H: The role, mechanism, and application of RNA methyltransferase METTL14 in gastrointestinal cancer. Mol Cancer. 21:1632022. View Article : Google Scholar : PubMed/NCBI

34 

Zaccara S, Ries RJ and Jaffrey SR: Reading, writing and erasing mRNA methylation. Nat Rev Mol Cell Biol. 20:608–624. 2019. View Article : Google Scholar : PubMed/NCBI

35 

Chen H, Wang Y, Su H, Zhang X, Chen H and Yu J: RNA N6-methyladenine modification, cellular reprogramming, and cancer stemness. Front Cell Dev Biol. 10:9352242022. View Article : Google Scholar

36 

Wang X, Feng J, Xue Y, Guan Z, Zhang D, Liu Z, Gong Z, Wang Q, Huang J, Tang C, et al: Structural basis of N(6)-adenosine methylation by the METTL3-METTL14 complex. Nature. 534:575–578. 2016. View Article : Google Scholar : PubMed/NCBI

37 

Zeng C, Huang W, Li Y and Weng H: Roles of METTL3 in cancer: mechanisms and therapeutic targeting. J Hematol Oncol. 13:1172020. View Article : Google Scholar : PubMed/NCBI

38 

Chen Y, Peng C, Chen J, Chen D, Yang B, He B, Hu W, Zhang Y, Liu H, Dai L, et al: WTAP facilitates progression of hepatocellular carcinoma via m6A-HuR-dependent epigenetic silencing of ETS1. Mol Cancer. 18:1272019. View Article : Google Scholar : PubMed/NCBI

39 

Su R, Dong L, Li Y, Gao M, He PC, Liu W, Wei J, Zhao Z, Gao L, Han L, et al: METTL16 exerts an m6A-independent function to facilitate translation and tumorigenesis. Nat Cell Biol. 24:205–216. 2022. View Article : Google Scholar : PubMed/NCBI

40 

Hu Y, Ouyang Z, Sui X, Qi M, Li M, He Y, Cao Y, Cao Q, Lu Q, Zhou S, et al: Oocyte competence is maintained by m6A methyltransferase KIAA1429-mediated RNA metabolism during mouse follicular development. Cell Death Differ. 27:2468–2483. 2020. View Article : Google Scholar : PubMed/NCBI

41 

Tan C, Xia P, Zhang H, Xu K, Liu P, Guo D and Liu Z: YY1-Targeted RBM15B promotes hepatocellular carcinoma cell proliferation and sorafenib resistance by promoting TRAM2 expression in an m6A-dependent manner. Front Oncol. 12:8730202022. View Article : Google Scholar : PubMed/NCBI

42 

Wen J, Lv R, Ma H, Shen H, He C, Wang J, Jiao F, Liu H, Yang P, Tan L, et al: Zc3h13 regulates nuclear RNA m6A methylation and mouse embryonic stem cell self-renewal. Mol Cell. 69:1028–1038.e6. 2018. View Article : Google Scholar

43 

Wang T, Kong S, Tao M and Ju S: The potential role of RNA N6-methyladenosine in Cancer progression. Mol Cancer. 19:882020. View Article : Google Scholar : PubMed/NCBI

44 

Wang L, Song C, Wang N, Li S, Liu Q, Sun Z, Wang K, Yu SC and Yang Q: NADP modulates RNA m6A methylation and adipogenesis via enhancing FTO activity. Nat Chem Biol. 16:1394–1402. 2020. View Article : Google Scholar : PubMed/NCBI

45 

Bartosovic M, Molares HC, Gregorova P, Hrossova D, Kudla G and Vanacova S: N6-methyladenosine demethylase FTO targets pre-mRNAs and regulates alternative splicing and 3'-end processing. Nucleic Acids Res. 45:11356–11370. 2017. View Article : Google Scholar : PubMed/NCBI

46 

Tang B, Yang Y, Kang M, Wang Y, Wang Y, Bi Y, He S and Shimamoto F: m6A demethylase ALKBH5 inhibits pancreatic cancer tumorigenesis by decreasing WIF-1 RNA methylation and mediating Wnt signaling. Mol Cancer. 19:32020. View Article : Google Scholar

47 

Jiang X, Liu B, Nie Z, Duan L, Xiong Q, Jin Z, Yang C and Chen Y: The role of m6A modification in the biological functions and diseases. Signal Transduct Target Ther. 6:742021. View Article : Google Scholar : PubMed/NCBI

48 

Du H, Zhao Y, He J, Zhang Y, Xi H, Liu M, Ma J and Wu L: YTHDF2 destabilizes m(6)A-containing RNA through direct recruitment of the CCR4-NOT deadenylase complex. Nat Commun. 7:126262016. View Article : Google Scholar : PubMed/NCBI

49 

Wang X, Zhao BS, Roundtree IA, Lu Z, Han D, Ma H, Weng X, Chen K, Shi H and He C: N(6)-methyladenosine modulates messenger RNA translation efficiency. Cell. 161:1388–1399. 2015. View Article : Google Scholar : PubMed/NCBI

50 

Chen Z, Zhong X, Xia M and Zhong J: The roles and mechanisms of the m6A reader protein YTHDF1 in tumor biology and human diseases. Mol Ther Nucleic Acids. 26:1270–1279. 2021. View Article : Google Scholar : PubMed/NCBI

51 

Zaccara S and Jaffrey SR: A unified model for the function of YTHDF proteins in regulating m6A-modified mRNA. Cell. 181:1582–1595.e18. 2020. View Article : Google Scholar

52 

Xiao W, Adhikari S, Dahal U, Chen YS, Hao YJ, Sun BF, Sun HY, Li A, Ping XL, Lai WY, et al: Nuclear m(6)A reader YTHDC1 regulates mRNA splicing. Mol Cell. 61:507–519. 2016. View Article : Google Scholar : PubMed/NCBI

53 

Roundtree IA, Luo GZ, Zhang Z, Wang X, Zhou T, Cui Y, Sha J, Huang X, Guerrero L, Xie P, et al: YTHDC1 mediates nuclear export of N6-methyladenosine methylated mRNAs. Elife. 6:e313112017. View Article : Google Scholar

54 

Mao Y, Dong L, Liu XM, Guo J, Ma H, Shen B and Qian SB: m6A in mRNA coding regions promotes translation via the RNA helicase-containing YTHDC2. Nat Commun. 10:53322019. View Article : Google Scholar

55 

Wu B, Su S, Patil DP, Liu H, Gan J, Jaffrey SR and Ma J: Molecular basis for the specific and multivariant recognitions of RNA substrates by human hnRNP A2/B1. Nat Commun. 9:4202018. View Article : Google Scholar : PubMed/NCBI

56 

Sun CY, Cao D, Du BB, Chen CW and Liu D: The role of Insulin-like growth factor 2 mRNA-binding proteins (IGF2BPs) as m6A readers in cancer. Int J Biol Sci. 18:2744–2758. 2022. View Article : Google Scholar :

57 

Liu T, Wei Q, Jin J, Luo Q, Liu Y, Yang Y, Cheng C, Li L, Pi J, Si Y, et al: The m6A reader YTHDF1 promotes ovarian cancer progression via augmenting EIF3C translation. Nucleic Acids Res. 48:3816–3831. 2020. View Article : Google Scholar : PubMed/NCBI

58 

Wang Y, Zhang Y, Du Y, Zhou M, Hu Y and Zhang S: Emerging roles of N6-methyladenosine (m6A) modification in breast cancer. Cell Biosci. 10:1362020. View Article : Google Scholar

59 

Li Y, Xiao J, Bai J, Tian Y, Qu Y, Chen X, Wang Q, Li X, Zhang Y and Xu J: Molecular characterization and clinical relevance of m6A regulators across 33 cancer types. Mol Cancer. 18:1372019. View Article : Google Scholar

60 

Wei M, Bai JW, Niu L, Zhang YQ, Chen HY and Zhang GJ: The complex roles and therapeutic implications of m6A modifications in breast cancer. Front Cell Dev Biol. 8:6150712021. View Article : Google Scholar

61 

Han H, Yang C, Zhang S, Cheng M, Guo S, Zhu Y, Ma J, Liang Y, Wang L, Zheng S, et al: METTL3-mediated m6A mRNA modification promotes esophageal cancer initiation and progression via Notch signaling pathway. Mol Ther Nucleic Acids. 26:333–346. 2021. View Article : Google Scholar : PubMed/NCBI

62 

Chen M, Wei L, Law CT, Tsang FH, Shen J, Cheng CL, Tsang LH, Ho DW, Chiu DK, Lee JM, et al: RNA N6-methyladenosine methyltransferase-like 3 promotes liver cancer progression through YTHDF2-dependent posttranscriptional silencing of SOCS2. Hepatology. 67:2254–2270. 2018. View Article : Google Scholar

63 

Jin H, Ying X, Que B, Wang X, Chao Y, Zhang H, Yuan Z, Qi D, Lin S, Min W, et al: N6-methyladenosine modification of ITGA6 mRNA promotes the development and progression of bladder cancer. EBioMedicine. 47:195–207. 2019. View Article : Google Scholar : PubMed/NCBI

64 

Zhang J, Bai R, Li M, Ye H, Wu C, Wang C, Li S, Tan L, Mai D, Li G, et al: Excessive miR-25-3p maturation via N6-methyladenosine stimulated by cigarette smoke promotes pancreatic cancer progression. Nat Commun. 10:18582019. View Article : Google Scholar

65 

Ma S, Chen C, Ji X, Liu J, Zhou Q, Wang G, Yuan W, Kan Q and Sun Z: The interplay between m6A RNA methylation and noncoding RNA in cancer. J Hematol Oncol. 12:1212019. View Article : Google Scholar : PubMed/NCBI

66 

Xie JW, Huang XB, Chen QY, Ma YB, Zhao YJ, Liu LC, Wang JB, Lin JX, Lu J, Cao LL, et al: m6A modification-mediated BATF2 acts as a tumor suppressor in gastric cancer through inhibition of ERK signaling. Mol Cancer. 19:1142020. View Article : Google Scholar

67 

Cui Q, Shi H, Ye P, Li L, Qu Q, Sun G, Sun G, Lu Z, Huang Y, Yang CG, et al: m6A RNA methylation regulates the self-renewal and tumorigenesis of glioblastoma stem cells. Cell Rep. 18:2622–2634. 2017. View Article : Google Scholar : PubMed/NCBI

68 

Zheng W, Dong X, Zhao Y, Wang S, Jiang H, Zhang M, Zheng X and Gu M: Multiple functions and mechanisms underlying the role of METTL3 in human cancers. Front Oncol. 9:14032019. View Article : Google Scholar

69 

Wang G, Dai Y, Li K, Cheng M, Xiong G, Wang X, Chen S, Chen Z, Chen J, Xu X, et al: Deficiency of Mettl3 in bladder cancer stem cells inhibits bladder cancer progression and angiogenesis. Front Cell Dev Biol. 9:6277062021. View Article : Google Scholar : PubMed/NCBI

70 

Shi Y, Zheng C, Jin Y, Bao B, Wang D, Hou K, Feng J, Tang S, Qu X, Liu Y, et al: Reduced expression of METTL3 promotes metastasis of triple-negative breast cancer by m6A methylation-mediated COL3A1 up-regulation. Front Oncol. 10:11262020. View Article : Google Scholar : PubMed/NCBI

71 

Wan W, Ao X, Chen Q, Yu Y, Ao L, Xing W, Guo W, Wu X, Pu C, Hu X, et al: METTL3/IGF2BP3 axis inhibits tumor immune surveillance by upregulating N6-methyladenosine modification of PD-L1 mRNA in breast cancer. Mol Cancer. 21:602022. View Article : Google Scholar

72 

Cai X, Wang X, Cao C, Gao Y, Zhang S, Yang Z, Liu Y, Zhang X, Zhang W and Ye L: HBXIP-elevated methyltransferase METTL3 promotes the progression of breast cancer via inhibiting tumor suppressor let-7g. Cancer Lett. 415:11–19. 2018. View Article : Google Scholar

73 

Ma J, Zhang J, Weng YC and Wang JC: EZH2-mediated microRNA-139-5p regulates epithelial-mesenchymal transition and lymph node metastasis of pancreatic cancer. Mol Cells. 41:868–880. 2018.PubMed/NCBI

74 

Hu S, Song Y, Zhou Y, Jiao Y and Li G: METTL3 accelerates breast cancer progression via regulating EZH2 m6A modification. J Healthc Eng. 2022:57944222022.

75 

Li W, Xue D, Xue M, Zhao J, Liang H, Liu Y and Sun T: Fucoidan inhibits epithelial-to-mesenchymal transition via regulation of the HIF-1α pathway in mammary cancer cells under hypoxia. Oncol Lett. 18:330–338. 2019.PubMed/NCBI

76 

Zhao C, Ling X, Xia Y, Yan B and Guan Q: The m6A methyltransferase METTL3 controls epithelial-mesenchymal transition, migration and invasion of breast cancer through the MALAT1/miR-26b/HMGA2 axis. Cancer Cell Int. 21:4412021. View Article : Google Scholar : PubMed/NCBI

77 

Qian JY, Gao J, Sun X, Cao MD, Shi L, Xia TS, Zhou WB, Wang S, Ding Q and Wei JF: KIAA1429 acts as an oncogenic factor in breast cancer by regulating CDK1 in an N6-methyladenosine-independent manner. Oncogene. 38:6123–6141. 2019. View Article : Google Scholar : PubMed/NCBI

78 

Zhang X, Dai XY, Qian JY, Xu F, Wang ZW, Xia T, Zhou XJ, Li XX, Shi L, Wei JF and Ding Q: SMC1A regulated by KIAA1429 in m6A-independent manner promotes EMT progress in breast cancer. Mol Ther Nucleic Acids. 27:133–146. 2022. View Article : Google Scholar : PubMed/NCBI

79 

Zhou S, Bai ZL, Xia D, Zhao ZJ, Zhao R, Wang YY and Zhe H: FTO regulates the chemo-radiotherapy resistance of cervical squamous cell carcinoma (CSCC) by targeting β-catenin through mRNA demethylation. Mol Carcinog. 57:590–597. 2018. View Article : Google Scholar : PubMed/NCBI

80 

Liu J, Ren D, Du Z, Wang H, Zhang H and Jin Y: m6A demethylase FTO facilitates tumor progression in lung squamous cell carcinoma by regulating MZF1 expression. Biochem Biophys Res Commun. 502:456–464. 2018. View Article : Google Scholar : PubMed/NCBI

81 

Shimura T, Kandimalla R, Okugawa Y, Ohi M, Toiyama Y, He C and Goel A: Novel evidence for m6A methylation regulators as prognostic biomarkers and FTO as a potential therapeutic target in gastric cancer. Br J Cancer. 126:228–237. 2022. View Article : Google Scholar

82 

Azzam SK, Alsafar H and Sajini AA: FTO m6A demethylase in obesity and cancer: implications and underlying molecular mechanisms. Int J Mol Sci. 23:38002022. View Article : Google Scholar : PubMed/NCBI

83 

Zheng QK, Ma C, Ullah I, Hu K, Ma RJ, Zhang N and Sun ZG: Roles of N6-methyladenosine demethylase FTO in malignant tumors progression. Onco Targets Ther. 14:4837–4846. 2021. View Article : Google Scholar : PubMed/NCBI

84 

Niu Y, Lin Z, Wan A, Chen H, Liang H, Sun L, Wang Y, Li X, Xiong XF, Wei B, et al: RNA N6-methyladenosine demethylase FTO promotes breast tumor progression through inhibiting BNIP3. Mol Cancer. 18:462019. View Article : Google Scholar : PubMed/NCBI

85 

Xu Y, Ye S, Zhang N, Zheng S, Liu H, Zhou K, Wang L, Cao Y, Sun P and Wang T: The FTO/miR-181b-3p/ARL5B signaling pathway regulates cell migration and invasion in breast cancer. Cancer Commun (Lond). 40:484–500. 2020. View Article : Google Scholar : PubMed/NCBI

86 

Basu A: The interplay between apoptosis and cellular senescence: Bcl-2 family proteins as targets for cancer therapy. Pharmacol Ther. 230:1079432022. View Article : Google Scholar

87 

Gao X, Wang Y, Lu F, Chen X, Yang D, Cao Y, Zhang W, Chen J, Zheng L, Wang G, et al: Extracellular vesicles derived from oesophageal cancer containing P4HB promote muscle wasting via regulating PHGDH/Bcl-2/caspase-3 pathway. J Extracell Vesicles. 10:e120602021. View Article : Google Scholar : PubMed/NCBI

88 

Liu Y, Wang R, Zhang L, Li J, Lou K and Shi B: The lipid metabolism gene FTO influences breast cancer cell energy metabolism via the PI3K/AKT signaling pathway. Oncol Lett. 13:4685–4690. 2017. View Article : Google Scholar : PubMed/NCBI

89 

Qu J, Yan H, Hou Y, Cao W, Liu Y, Zhang E, He J and Cai Z: RNA demethylase ALKBH5 in cancer: From mechanisms to therapeutic potential. J Hematol Oncol. 15:82022. View Article : Google Scholar : PubMed/NCBI

90 

Wu L, Wu D, Ning J, Liu W and Zhang D: Changes of N6-methyladenosine modulators promote breast cancer progression. BMC Cancer. 19:3262019. View Article : Google Scholar : PubMed/NCBI

91 

Hu Y, Liu H, Xiao X, Yu Q, Deng R, Hua L, Wang J and Wang X: Bone marrow mesenchymal stem cell-derived exosomes inhibit triple-negative breast cancer cell stemness and metastasis via an ALKBH5-dependent mechanism. Cancers (Basel). 14:60592022. View Article : Google Scholar : PubMed/NCBI

92 

Fry NJ, Law BA, Ilkayeva OR, Carraway KR and Mansfield KD: N6-methyladenosine contributes to cellular phenotype in a genetically-defined model of breast cancer progression. Oncotarget. 9:31231–31243. 2018. View Article : Google Scholar : PubMed/NCBI

93 

Zhang C, Samanta D, Lu H, Bullen JW, Zhang H, Chen I, He X and Semenza GL: Hypoxia induces the breast cancer stem cell phenotype by HIF-dependent and ALKBH5-mediated m6A-demethylation of NANOG mRNA. Proc Natl Acad Sci USA. 113:E2047–E2056. 2016.

94 

Zhang C, Zhi WI, Lu H, Samanta D, Chen I, Gabrielson E and Semenza GL: Hypoxia-inducible factors regulate pluripotency factor expression by ZNF217- and ALKBH5-mediated modulation of RNA methylation in breast cancer cells. Oncotarget. 7:64527–64542. 2016. View Article : Google Scholar : PubMed/NCBI

95 

Zhang S, You X, Zheng Y, Shen Y, Xiong X and Sun Y: The UBE2C/CDH1/DEPTOR axis is an oncogene and tumor suppressor cascade in lung cancer cells. J Clin Invest. 133:e1624342023. View Article : Google Scholar :

96 

Wang Y, Xie Y, Niu Y, Song P, Liu Y, Burnett J, Yang Z, Sun D, Ran Y, Li Y and Sun L: Carboxypeptidase A4 negatively correlates with p53 expression and regulates the stemness of breast cancer cells. Int J Med Sci. 18:1753–1759. 2021. View Article : Google Scholar : PubMed/NCBI

97 

Chen H, Yu Y, Yang M, Huang H, Ma S, Hu J, Xi Z, Guo H, Yao G, Yang L, et al: YTHDF1 promotes breast cancer progression by facilitating FOXM1 translation in an m6A-dependent manner. Cell Biosci. 12:192022. View Article : Google Scholar : PubMed/NCBI

98 

Sun Y, Dong D, Xia Y, Hao L, Wang W and Zhao C: YTHDF1 promotes breast cancer cell growth, DNA damage repair and chemoresistance. Cell Death Dis. 13:2302022. View Article : Google Scholar : PubMed/NCBI

99 

Anita R, Paramasivam A, Priyadharsini JV and Chitra S: The m6A readers YTHDF1 and YTHDF3 aberrations associated with metastasis and predict poor prognosis in breast cancer patients. Am J Cancer Res. 10:2546–2554. 2020.PubMed/NCBI

100 

Zhong L, Liao D, Zhang M, Zeng C, Li X, Zhang R, Ma H and Kang T: YTHDF2 suppresses cell proliferation and growth via destabilizing the EGFR mRNA in hepatocellular carcinoma. Cancer Lett. 442:252–261. 2019. View Article : Google Scholar

101 

Chen YG, Chen R, Ahmad S, Verma R, Kasturi SP, Amaya L, Broughton JP, Kim J, Cadena C, Pulendran B, et al: N6-methyladenosine modification controls circular RNA immunity. Mol Cell. 76:96–109.e9. 2019. View Article : Google Scholar : PubMed/NCBI

102 

Paris J, Morgan M, Campos J, Spencer GJ, Shmakova A, Ivanova I, Mapperley C, Lawson H, Wotherspoon DA, Sepulveda C, et al: Targeting the RNA m6A reader YTHDF2 selectively compromises cancer stem cells in acute myeloid leukemia. Cell Stem Cell. 25:137–148.e6. 2019. View Article : Google Scholar

103 

Dixit D, Prager BC, Gimple RC, Poh HX, Wang Y, Wu Q, Qiu Z, Kidwell RL, Kim LJY, Xie Q, et al: The RNA m6A Reader YTHDF2 maintains oncogene expression and is a targetable dependency in glioblastoma stem cells. Cancer Discov. 11:480–499. 2021. View Article : Google Scholar :

104 

Li J, Xie H, Ying Y, Chen H, Yan H, He L, Xu M, Xu X, Liang Z, Liu B, et al: YTHDF2 mediates the mRNA degradation of the tumor suppressors to induce AKT phosphorylation in N6-methyladenosine-dependent way in prostate cancer. Mol Cancer. 19:1522020. View Article : Google Scholar : PubMed/NCBI

105 

Einstein JM, Perelis M, Chaim IA, Meena JK, Nussbacher JK, Tankka AT, Yee BA, Li H, Madrigal AA, Neill NJ, et al: Inhibition of YTHDF2 triggers proteotoxic cell death in MYC-driven breast cancer. Mol Cell. 81:3048–3064.e9. 2021. View Article : Google Scholar : PubMed/NCBI

106 

Li A, Chen YS, Ping XL, Yang X, Xiao W, Yang Y, Sun HY, Zhu Q, Baidya P, Wang X, et al: Cytoplasmic m6A reader YTHDF3 promotes mRNA translation. Cell Res. 27:444–447. 2017. View Article : Google Scholar : PubMed/NCBI

107 

Lin Y, Jin X, Nie Q, Chen M, Guo W, Chen L, Li Y, Chen X, Zhang W, Chen H, et al: YTHDF3 facilitates triple-negative breast cancer progression and metastasis by stabilizing ZEB1 mRNA in an m6A-dependent manner. Ann Transl Med. 10:832022. View Article : Google Scholar

108 

Chang G, Shi L, Ye Y, Shi H, Zeng L, Tiwary S, Huse JT, Huo L, Ma L, Ma Y, et al: YTHDF3 induces the translation of m6A-enriched gene transcripts to promote breast cancer brain metastasis. Cancer Cell. 38:857–871.e7. 2020. View Article : Google Scholar

109 

Huang H, Weng H, Sun W, Qin X, Shi H, Wu H, Zhao BS, Mesquita A, Liu C, Yuan CL, et al: Recognition of RNA N6-methyladenosine by IGF2BP proteins enhances mRNA stability and translation. Nat Cell Biol. 20:285–295. 2018. View Article : Google Scholar : PubMed/NCBI

110 

Müller S, Glaß M, Singh AK, Haase J, Bley N, Fuchs T, Lederer M, Dahl A, Huang H, Chen J, et al: IGF2BP1 promotes SRF-dependent transcription in cancer in a m6A- and miRNA-dependent manner. Nucleic Acids Res. 47:375–390. 2019. View Article : Google Scholar :

111 

Qiao YS, Zhou JH, Jin BH, Wu YQ and Zhao B: LINC00483 is regulated by IGF2BP1 and participates in the progression of breast cancer. Eur Rev Med Pharmacol Sci. 25:1379–1386. 2021.PubMed/NCBI

112 

Shi W, Tang Y, Lu J, Zhuang Y and Wang J: MIR210HG promotes breast cancer progression by IGF2BP1 mediated m6A modification. Cell Biosci. 12:382022. View Article : Google Scholar : PubMed/NCBI

113 

Shi J, Zhang Q, Yin X, Ye J, Gao S, Chen C, Yang Y, Wu B, Fu Y, Zhang H, et al: Stabilization of IGF2BP1 by USP10 promotes breast cancer metastasis via CPT1A in an m6A-dependent manner. Int J Biol Sci. 19:449–464. 2023. View Article : Google Scholar : PubMed/NCBI

114 

Zeng F, Yao M, Wang Y, Zheng W, Liu S, Hou Z, Cheng X, Sun S, Li T, Zhao H, et al: Fatty acid β-oxidation promotes breast cancer stemness and metastasis via the miRNA-328-3p-CPT1A pathway. Cancer Gene Ther. 29:383–395. 2022. View Article : Google Scholar

115 

Xiong Y, Liu Z, Li Z, Wang S, Shen N, Xin Y and Huang T: Long non-coding RNA nuclear paraspeckle assembly transcript 1 interacts with microRNA-107 to modulate breast cancer growth and metastasis by targeting carnitine palmitoyltransferase-1. Int J Oncol. 55:1125–1136. 2019.PubMed/NCBI

116 

Wang Z, Tong D, Han C, Zhao Z, Wang X, Jiang T, Li Q, Liu S, Chen L, Chen Y, et al: Blockade of miR-3614 maturation by IGF2BP3 increases TRIM25 expression and promotes breast cancer cell proliferation. EBioMedicine. 41:357–369. 2019. View Article : Google Scholar : PubMed/NCBI

117 

Wang CQ, Tang CH, Wang Y, Huang BF, Hu GN, Wang Q and Shao JK: Upregulated WTAP expression appears to both promote breast cancer growth and inhibit lymph node metastasis. Sci Rep. 12:10232022. View Article : Google Scholar : PubMed/NCBI

118 

Ou B, Liu Y, Yang X, Xu X, Yan Y and Zhang J: C5aR1-positive neutrophils promote breast cancer glycolysis through WTAP-dependent m6A methylation of ENO1. Cell Death Dis. 12:7372021. View Article : Google Scholar : PubMed/NCBI

119 

Huang T, Cao L, Feng N, Xu B, Dong Y and Wang M: N6-methyladenosine (m6A)-mediated lncRNA DLGAP1-AS1enhances breast canceradriamycin resistance through miR-299-3p/WTAP feedback loop. Bioengineered. 12:10935–10944. 2021. View Article : Google Scholar : PubMed/NCBI

120 

Fan Y, Li X, Sun H, Gao Z, Zhu Z and Yuan K: Role of WTAP in cancer: From mechanisms to the therapeutic potential. Biomolecules. 12:12242022. View Article : Google Scholar : PubMed/NCBI

121 

Howley BV and Howe PH: TGF-beta signaling in cancer: Post-transcriptional regulation of EMT via hnRNP E1. Cytokine. 118:19–26. 2019. View Article : Google Scholar

122 

Howley BV, Mohanty B, Dalton A, Grelet S, Karam J, Dincman T and Howe PH: The ubiquitin E3 ligase ARIH1 regulates hnRNP E1 protein stability, EMT and breast cancer progression. Oncogene. 41:1679–1690. 2022. View Article : Google Scholar : PubMed/NCBI

123 

Loh TJ, Moon H, Cho S, Jang H, Liu YC, Tai H, Jung DW, Williams DR, Kim HR, Shin MG, et al: CD44 alternative splicing and hnRNP A1 expression are associated with the metastasis of breast cancer. Oncol Rep. 34:1231–1238. 2015. View Article : Google Scholar : PubMed/NCBI

124 

Wu Y, Zhao W, Liu Y, Tan X, Li X, Zou Q, Xiao Z, Xu H, Wang Y and Yang X: Function of HNRNPC in breast cancer cells by controlling the dsRNA-induced interferon response. EMBO J. 37:e990172018. View Article : Google Scholar : PubMed/NCBI

125 

Duijf PHG, Nanayakkara D, Nones K, Srihari S, Kalimutho M and Khanna KK: Mechanisms of genomic instability in breast cancer. Trends Mol Med. 25:595–611. 2019. View Article : Google Scholar : PubMed/NCBI

126 

Hong J, Xu K and Lee JH: Biological roles of the RNA m6A modification and its implications in cancer. Exp Mol Med. 54:1822–1832. 2022. View Article : Google Scholar : PubMed/NCBI

127 

Xiang Y, Laurent B, Hsu CH, Nachtergaele S, Lu Z, Sheng W, Xu C, Chen H, Ouyang J, Wang S, et al: RNA m6A methylation regulates the ultraviolet-induced DNA damage response. Nature. 543:573–576. 2017. View Article : Google Scholar : PubMed/NCBI

128 

Zhang C, Chen L, Peng D, Jiang A, He Y, Zeng Y, Xie C, Zhou H, Luo X, Liu H, et al: METTL3 and N6-methyladenosine promote homologous recombination-mediated repair of DSBs by modulating DNA-RNA hybrid accumulation. Mol Cell. 79:425–442.e7. 2020. View Article : Google Scholar : PubMed/NCBI

129 

D'Alessandro G, Whelan DR, Howard SM, Vitelli V, Renaudin X, Adamowicz M, Iannelli F, Jones-Weinert CW, Lee M, Matti V, et al: BRCA2 controls DNA:RNA hybrid level at DSBs by mediating RNase H2 recruitment. Nat Commun. 9:53762018. View Article : Google Scholar : PubMed/NCBI

130 

Abakir A, Giles TC, Cristini A, Foster JM, Dai N, Starczak M, Rubio-Roldan A, Li M, Eleftheriou M, Crutchley J, et al: N6-methyladenosine regulates the stability of RNA: DNA hybrids in human cells. Nat Genet. 52:48–55. 2020. View Article : Google Scholar

131 

Wei J, Yin Y, Zhou J, Chen H, Peng J, Yang J and Tang Y: METTL3 potentiates resistance to cisplatin through m6A modification of TFAP2C in seminoma. J Cell Mol Med. 24:11366–11380. 2020. View Article : Google Scholar : PubMed/NCBI

132 

Yang Z, Yang S, Cui YH, Wei J, Shah P, Park G, Cui X, He C and He YY: METTL14 facilitates global genome repair and suppresses skin tumorigenesis. Proc Natl Acad Sci USA. 118:e20259481182021. View Article : Google Scholar : PubMed/NCBI

133 

Miranda-Gonçalves V, Lobo J, Guimarães-Teixeira C, Barros-Silva D, Guimarães R, Cantante M, Braga I, Maurício J, Oing C, Honecker F, et al: The component of the m6A writer complex VIRMA is implicated in aggressive tumor phenotype, DNA damage response and cisplatin resistance in germ cell tumors. J Exp Clin Cancer Res. 40:2682021. View Article : Google Scholar

134 

Qu F, Tsegay PS and Liu Y: N6-methyladenosine, DNA repair, and genome stability. Front Mol Biosci. 8:6458232021. View Article : Google Scholar

135 

Ji HL, Hong J, Zhang Z, de la Peña Avalos B, Proietti CJ, Deamicis AR, Guzmán GP, Lam HM, Garcia J, Roudier MP, et al: Regulation of telomere homeostasis and genomic stability in cancer by N6-adenosine methylation (m6A). Sci Adv. 7:eabg70732021. View Article : Google Scholar

136 

Maciejowski J and de Lange T: Telomeres in cancer: Tumour suppression and genome instability. Nat Rev Mol Cell Biol. 18:175–186. 2017. View Article : Google Scholar : PubMed/NCBI

137 

Batra RN, Lifshitz A, Vidakovic AT, Chin SF, Sati-Batra A, Sammut SJ, Provenzano E, Ali HR, Dariush A, Bruna A, et al: DNA methylation landscapes of 1538 breast cancers reveal a replication-linked clock, epigenomic instability and cis-regulation. Nat Commun. 12:54062021. View Article : Google Scholar : PubMed/NCBI

138 

Lippert TH, Ruoff HJ and Volm M: Intrinsic and acquired drug resistance in malignant tumors. The main reason for therapeutic failure. Arzneimittelforschung. 58:261–264. 2008.PubMed/NCBI

139 

Taketo K, Konno M, Asai A, Koseki J, Toratani M, Satoh T, Doki Y, Mori M, Ishii H and Ogawa K: The epitranscriptome m6A writer METTL3 promotes chemo- and radioresistance in pancreatic cancer cells. Int J Oncol. 52:621–629. 2018.PubMed/NCBI

140 

Liu X, Gonzalez G, Dai X, Miao W, Yuan J, Huang M, Bade D, Li L, Sun Y and Wang Y: Adenylate kinase 4 modulates the resistance of breast cancer cells to tamoxifen through an m6A-based epitranscriptomic mechanism. Mol Ther. 28:2593–2604. 2020. View Article : Google Scholar : PubMed/NCBI

141 

Petri BJ, Piell KM, South Whitt GC, Wilt AE and Klinge CM, Lehman NL, Clem BF, Nystoriak MA, Wysoczynski M and Klinge CM: HNRNPA2B1 regulates tamoxifen- and fulvestrant-sensitivity and hallmarks of endocrine resistance in breast cancer cells. Cancer Lett. 518:152–168. 2021. View Article : Google Scholar : PubMed/NCBI

142 

Liu X, Yuan J, Zhang X, Li L, Dai X, Chen Q and Wang Y: ATF3 modulates the resistance of breast cancer cells to tamoxifen through an N6-methyladenosine-based epitranscriptomic mechanism. Chem Res Toxicol. 34:1814–1821. 2021. View Article : Google Scholar : PubMed/NCBI

143 

Pan X, Hong X, Li S, Meng P and Xiao F: METTL3 promotes adriamycin resistance in MCF-7 breast cancer cells by accelerating pri-microRNA-221-3p maturation in a m6A-dependent manner. Exp Mol Med. 53:91–102. 2021. View Article : Google Scholar : PubMed/NCBI

144 

Li E, Xia M, Du Y, Long F, Pan F, He L, Hu Z and Guo Z: METTL3 promotes homologous recombination repair and modulates chemotherapeutic response by regulating the EGF/Rad51 axis. bioRxiv. 2021.

145 

Li S, Jiang F, Chen F, Deng Y and Pan X: Effect of m6A methyltransferase METTL3-mediated MALAT1/E2F1/AGR2 axis on adriamycin resistance in breast cancer. J Biochem Mol Toxicol. 36:e229222022. View Article : Google Scholar

146 

Wu Y, Wang Z, Han L, Guo Z, Yan B, Guo L, Zhao H, Wei M, Hou N, Ye J, et al: PRMT5 regulates RNA m6A demethylation for doxorubicin sensitivity in breast cancer. Mol Ther. 30:2603–2617. 2022. View Article : Google Scholar : PubMed/NCBI

147 

Wang Y, Cheng Z, Xu J, Lai M, Liu L, Zuo M and Dang L: Fat mass and obesity-associated protein (FTO) mediates signal transducer and activator of transcription 3 (STAT3)-drived resistance of breast cancer to doxorubicin. Bioengineered. 21:1874–1889. 2021. View Article : Google Scholar

148 

Liu X, Li P, Huang Y, Li H, Liu X, Du Y, Lin X, Chen D, Liu H and Zhou Y: M6A demethylase ALKBH5 regulates FOXO1 mRNA stability and chemoresistance in triple-negative breast cancer. Redox Biol. 69:1029932024. View Article : Google Scholar

149 

Ou B, Liu Y, Gao Z, Xu J, Yan Y, Li Y and Zhang J: Senescent neutrophils-derived exosomal piRNA-17560 promotes chemoresistance and EMT of breast cancer via FTO-mediated m6A demethylation. Cell Death Dis. 13:9052022. View Article : Google Scholar : PubMed/NCBI

150 

Zhuang H, Yu B, Tao D, Xu X, Xu Y, Wang J, Jiao Y and Wang L: The role of m6A methylation in therapy resistance in cancer. Mol Cancer. 22:912023. View Article : Google Scholar : PubMed/NCBI

151 

Wang Y, Zhang L, Sun XL, Lu YC, Chen S, Pei DS and Zhang LS: NRP1 contributes to stemness and potentiates radioresistance via WTAP-mediated m6A methylation of Bcl-2 mRNA in breast cancer. Apoptosis. 28:233–246. 2023. View Article : Google Scholar

Related Articles

  • Abstract
  • View
  • Download
  • Twitter
Copy and paste a formatted citation
Spandidos Publications style
Yang Y, Gao F, Ren L, Ren N, Pan J and Xu Q: Functions and mechanisms of RNA m<sup>6</sup>A regulators in breast cancer (Review). Int J Oncol 65: 86, 2024.
APA
Yang, Y., Gao, F., Ren, L., Ren, N., Pan, J., & Xu, Q. (2024). Functions and mechanisms of RNA m<sup>6</sup>A regulators in breast cancer (Review). International Journal of Oncology, 65, 86. https://doi.org/10.3892/ijo.2024.5674
MLA
Yang, Y., Gao, F., Ren, L., Ren, N., Pan, J., Xu, Q."Functions and mechanisms of RNA m<sup>6</sup>A regulators in breast cancer (Review)". International Journal of Oncology 65.3 (2024): 86.
Chicago
Yang, Y., Gao, F., Ren, L., Ren, N., Pan, J., Xu, Q."Functions and mechanisms of RNA m<sup>6</sup>A regulators in breast cancer (Review)". International Journal of Oncology 65, no. 3 (2024): 86. https://doi.org/10.3892/ijo.2024.5674
Copy and paste a formatted citation
x
Spandidos Publications style
Yang Y, Gao F, Ren L, Ren N, Pan J and Xu Q: Functions and mechanisms of RNA m<sup>6</sup>A regulators in breast cancer (Review). Int J Oncol 65: 86, 2024.
APA
Yang, Y., Gao, F., Ren, L., Ren, N., Pan, J., & Xu, Q. (2024). Functions and mechanisms of RNA m<sup>6</sup>A regulators in breast cancer (Review). International Journal of Oncology, 65, 86. https://doi.org/10.3892/ijo.2024.5674
MLA
Yang, Y., Gao, F., Ren, L., Ren, N., Pan, J., Xu, Q."Functions and mechanisms of RNA m<sup>6</sup>A regulators in breast cancer (Review)". International Journal of Oncology 65.3 (2024): 86.
Chicago
Yang, Y., Gao, F., Ren, L., Ren, N., Pan, J., Xu, Q."Functions and mechanisms of RNA m<sup>6</sup>A regulators in breast cancer (Review)". International Journal of Oncology 65, no. 3 (2024): 86. https://doi.org/10.3892/ijo.2024.5674
Follow us
  • Twitter
  • LinkedIn
  • Facebook
About
  • Spandidos Publications
  • Careers
  • Cookie Policy
  • Privacy Policy
How can we help?
  • Help
  • Live Chat
  • Contact
  • Email to our Support Team