|
1
|
Santolla MF and Maggiolini M: The FGF/FGFR
system in breast cancer: Oncogenic features and therapeutic
perspectives. Cancers (Basel). 12:30292020. View Article : Google Scholar : PubMed/NCBI
|
|
2
|
Servetto A, Formisano L and Arteaga CL:
FGFR signaling and endocrine resistance in breast cancer:
Challenges for the clinical development of FGFR inhibitors. Biochim
Biophys Acta Rev Cancer. 1876:1885952021. View Article : Google Scholar : PubMed/NCBI
|
|
3
|
Braun M, Piasecka D, Tomasik B,
Mieczkowski K, Stawiski K, Zielinska A, Kopczynski J, Nejc D,
Kordek R, Sadej R and Romanska HM: Hormonal receptor status
determines prognostic significance of FGFR2 in invasive breast
carcinoma. Cancers (Basel). 12:27132020. View Article : Google Scholar : PubMed/NCBI
|
|
4
|
Mieczkowski K, Kitowska K, Braun M,
Galikowska-Bogut B, Gorska-Arcisz M, Piasecka D, Stawiski K, Zaczek
AJ, Nejc D, Kordek R, et al: FGF7/FGFR2-JunB signalling counteracts
the effect of progesterone in luminal breast cancer. Mol Oncol.
16:2823–2842. 2022. View Article : Google Scholar : PubMed/NCBI
|
|
5
|
Meric-Bernstam F, Bahleda R, Hierro C,
Sanson M, Bridgewater J, Arkenau HT, Tran B, Kelley RK, Park JO,
Javle M, et al: Futibatinib, an irreversible FGFR1-4 inhibitor, in
patients with advanced solid tumors harboring FGF/FGFR aberrations:
A phase I dose-expansion study. Cancer Discov. 12:402–415. 2022.
View Article : Google Scholar
|
|
6
|
Coombes RC, Badman PD, Lozano-Kuehne JP,
Liu X, Macpherson IR, Zubairi I, Baird RD, Rosenfeld N,
Garcia-Corbacho J, Cresti N, et al: Results of the phase IIa
RADICAL trial of the FGFR inhibitor AZD4547 in endocrine resistant
breast cancer. Nat Commun. 13:32462022. View Article : Google Scholar : PubMed/NCBI
|
|
7
|
De Luca A, Frezzetti D, Gallo M and
Normanno N: FGFR-targeted therapeutics for the treatment of breast
cancer. Expert Opin Investig Drugs. 26:303–311. 2017. View Article : Google Scholar : PubMed/NCBI
|
|
8
|
Chew NJ, Lim Kam Sian TCC, Nguyen EV, Shin
SY, Yang J, Hui MN, Deng N, McLean CA, Welm AL, Lim E, et al:
Evaluation of FGFR targeting in breast cancer through interrogation
of patient-derived models. Breast Cancer Res. 23:822021. View Article : Google Scholar : PubMed/NCBI
|
|
9
|
Ronnov-Jessen L, Petersen OW, Koteliansky
VE and Bissell MJ: The origin of the myofibroblasts in breast
cancer. Recapitulation of tumor environment in culture unravels
diversity and implicates converted fibroblasts and recruited smooth
muscle cells. J Clin Invest. 95:859–873. 1995. View Article : Google Scholar : PubMed/NCBI
|
|
10
|
Elenbaas B and Weinberg RA: Heterotypic
signaling between epithelial tumor cells and fibroblasts in
carcinoma formation. Exp Cell Res. 264:169–184. 2001. View Article : Google Scholar : PubMed/NCBI
|
|
11
|
Erez N, Truitt M, Olson P, Arron ST and
Hanahan D: Cancer-associated fibroblasts are activated in incipient
neoplasia to orchestrate tumor-promoting inflammation in an
NF-kappaB-dependent manner. Cancer Cell. 17:135–147. 2010.
View Article : Google Scholar : PubMed/NCBI
|
|
12
|
Tejada ML, Yu L, Dong J, Jung K, Meng G,
Peale FV, Frantz GD, Hall L, Liang X, Gerber HP and Ferrara N:
Tumor-driven paracrine platelet-derived growth factor receptor
alpha signaling is a key determinant of stromal cell recruitment in
a model of human lung carcinoma. Clin Cancer Res. 12:2676–2688.
2006. View Article : Google Scholar : PubMed/NCBI
|
|
13
|
Tian H, Callahan CA, DuPree KJ, Darbonne
WC, Ahn CP, Scales SJ and de Sauvage FJ: Hedgehog signaling is
restricted to the stromal compartment during pancreatic
carcinogenesis. Proc Natl Acad Sci USA. 106:4254–4259. 2009.
View Article : Google Scholar : PubMed/NCBI
|
|
14
|
Aggarwal V, Tuli HS, Varol A, Thakral F,
Yerer MB, Sak K, Varol M, Jain A, Khan MA and Sethi G: Role of
reactive oxygen species in cancer progression: Molecular mechanisms
and recent advancements. Biomolecules. 9:7352019. View Article : Google Scholar : PubMed/NCBI
|
|
15
|
Direkze NC, Hodivala-Dilke K, Jeffery R,
Hunt T, Poulsom R, Oukrif D, Alison MR and Wright NA: Bone marrow
contribution to tumor-associated myofibroblasts and fibroblasts.
Cancer Res. 64:8492–8495. 2004. View Article : Google Scholar : PubMed/NCBI
|
|
16
|
Kidd S, Spaeth E, Watson K, Burks J, Lu H,
Klopp A, Andreeff M and Marini FC: Origins of the tumor
microenvironment: Quantitative assessment of adipose-derived and
bone marrow-derived stroma. PLoS One. 7:e305632012. View Article : Google Scholar : PubMed/NCBI
|
|
17
|
Abe R, Donnelly SC, Peng T, Bucala R and
Metz CN: Peripheral blood fibrocytes: Differentiation pathway and
migration to wound sites. J Immunol. 166:7556–7562. 2001.
View Article : Google Scholar : PubMed/NCBI
|
|
18
|
Zeisberg EM, Potenta S, Xie L, Zeisberg M
and Kalluri R: Discovery of endothelial to mesenchymal transition
as a source for carcinoma-associated fibroblasts. Cancer Res.
67:10123–10128. 2007. View Article : Google Scholar : PubMed/NCBI
|
|
19
|
Timperi E, Gueguen P, Molgora M, Magagna
I, Kieffer Y, Lopez-Lastra S, Sirven P, Baudrin LG, Baulande S,
Nicolas A, et al: Lipid-associated macrophages are induced by
cancer-associated fibroblasts and mediate immune suppression in
breast cancer. Cancer Res. 82:3291–3306. 2022. View Article : Google Scholar : PubMed/NCBI
|
|
20
|
Nurmik M, Ullmann P, Rodriguez F, Haan S
and Letellier E: In search of definitions: Cancer-associated
fibroblasts and their markers. Int J Cancer. 146:895–905. 2020.
View Article : Google Scholar
|
|
21
|
Chen X and Song E: Turning foes to
friends: Targeting cancer-associated fibroblasts. Nat Rev Drug
Discov. 18:99–115. 2019. View Article : Google Scholar
|
|
22
|
Costa A, Kieffer Y, Scholer-Dahirel A,
Pelon F, Bourachot B, Cardon M, Sirven P, Magagna I, Fuhrmann L,
Bernard C, et al: Fibroblast heterogeneity and immunosuppressive
environment in human breast cancer. Cancer Cell. 33:463–479.e410.
2018. View Article : Google Scholar : PubMed/NCBI
|
|
23
|
Glabman RA, Choyke PL and Sato N:
Cancer-associated fibroblasts: Tumorigenicity and targeting for
cancer therapy. Cancers (Basel). 14:39062022. View Article : Google Scholar : PubMed/NCBI
|
|
24
|
Paulsson J and Micke P: Prognostic
relevance of cancer-associated fibroblasts in human cancer. Semin
Cancer Biol. 25:61–68. 2014. View Article : Google Scholar : PubMed/NCBI
|
|
25
|
Marchini C, Montani M, Konstantinidou G,
Orrù R, Mannucci S, Ramadori G, Gabrielli F, Baruzzi A, Berton G,
Merigo F, et al: Mesenchymal/stromal gene expression signature
relates to basal-like breast cancers, identifies bone metastasis
and predicts resistance to therapies. PLoS One. 5:e141312010.
View Article : Google Scholar : PubMed/NCBI
|
|
26
|
Frings O, Augsten M, Tobin NP, Carlson J,
Paulsson J, Pena C, Olsson E, Veerla S, Bergh J, Ostman A and
Sonnhammer EL: Prognostic significance in breast cancer of a gene
signature capturing stromal PDGF signaling. Am J Pathol.
182:2037–2047. 2013. View Article : Google Scholar : PubMed/NCBI
|
|
27
|
Lappano R, Rigiracciolo DC, Belfiore A,
Maggiolini M and De Francesco EM: Cancer associated fibroblasts:
Role in breast cancer and potential as therapeutic targets. Expert
Opin Ther Targets. 24:559–572. 2020. View Article : Google Scholar : PubMed/NCBI
|
|
28
|
Fernández-Nogueira P, Mancino M, Fuster G,
López-Plana A, Jauregui P, Almendro V, Enreig E, Menéndez S, Rojo
F, Noguera-Castells A, et al: Tumor-associated fibroblasts promote
HER2-targeted therapy resistance through FGFR2 activation. Clin
Cancer Res. 26:1432–1448. 2020. View Article : Google Scholar
|
|
29
|
Palmieri C, Roberts-Clark D, Assadi-Sabet
A, Coope RC, O'Hare M, Sunters A, Hanby A, Slade MJ, Gomm JJ, Lam
EW and Coombes RC: Fibroblast growth factor 7, secreted by breast
fibroblasts, is an interleukin-1beta-induced paracrine growth
factor for human breast cells. J Endocrinol. 177:65–81. 2003.
View Article : Google Scholar : PubMed/NCBI
|
|
30
|
Kalluri R: The biology and function of
fibroblasts in cancer. Nat Rev Cancer. 16:582–598. 2016. View Article : Google Scholar : PubMed/NCBI
|
|
31
|
Cerliani JP, Guillardoy T, Giulianelli S,
Vaque JP, Gutkind JS, Vanzulli SI, Martins R, Zeitlin E, Lamb CA
and Lanari C: Interaction between FGFR-2, STAT5, and progesterone
receptors in breast cancer. Cancer Res. 71:3720–3731. 2011.
View Article : Google Scholar : PubMed/NCBI
|
|
32
|
Mao Y, Keller ET, Garfield DH, Shen K and
Wang J: Stromal cells in tumor microenvironment and breast cancer.
Cancer Metastasis Rev. 32:303–315. 2013. View Article : Google Scholar
|
|
33
|
Louault K, Li RR and DeClerck YA:
Cancer-associated fibroblasts: Understanding their heterogeneity.
Cancers (Basel). 12:31082020. View Article : Google Scholar : PubMed/NCBI
|
|
34
|
Shee K, Yang W, Hinds JW, Hampsch RA, Varn
FS, Traphagen NA, Patel K, Cheng C, Jenkins NP, Kettenbach AN, et
al: Therapeutically targeting tumor microenvironment-mediated drug
resistance in estrogen receptor-positive breast cancer. J Exp Med.
215:895–910. 2018. View Article : Google Scholar : PubMed/NCBI
|
|
35
|
Clayton NS, Wilson AS, Laurent EP, Grose
RP and Carter EP: Fibroblast growth factor-mediated crosstalk in
cancer etiology and treatment. Dev Dyn. 246:493–501. 2017.
View Article : Google Scholar : PubMed/NCBI
|
|
36
|
Zhou Z, Wu B, Tang X, Ke R and Zou Q:
Comprehensive analysis of fibroblast growth factor receptor (FGFR)
family genes in breast cancer by integrating online databases and
bioinformatics. Med Sci Monit. 26:e9235172020. View Article : Google Scholar : PubMed/NCBI
|
|
37
|
Suh J, Kim DH, Lee YH, Jang JH and Surh
YJ: Fibroblast growth factor-2, derived from cancer-associated
fibroblasts, stimulates growth and progression of human breast
cancer cells via FGFR1 signaling. Mol Carcinog. 59:1028–1040. 2020.
View Article : Google Scholar : PubMed/NCBI
|
|
38
|
Xie Y, Su N, Yang J, Tan Q, Huang S, Jin
M, Ni Z, Zhang B, Zhang D, Luo F, et al: FGF/FGFR signaling in
health and disease. Signal Transduct Target Ther. 5:1812020.
View Article : Google Scholar : PubMed/NCBI
|
|
39
|
Otranto M, Sarrazy V, Bonte F, Hinz B,
Gabbiani G and Desmouliere A: The role of the myofibroblast in
tumor stroma remodeling. Cell Adh Migr. 6:203–219. 2012. View Article : Google Scholar : PubMed/NCBI
|
|
40
|
Chakrabarti R, Lee M and Higgs HN:
Multiple roles for actin in secretory and endocytic pathways. Curr
Biol. 31:R603–R618. 2021. View Article : Google Scholar : PubMed/NCBI
|
|
41
|
Ao Z, Shah SH, Machlin LM, Parajuli R,
Miller PC, Rawal S, Williams AJ, Cote RJ, Lippman ME, Datar RH and
El-Ashry D: Identification of cancer-associated fibroblasts in
circulating blood from patients with metastatic breast cancer.
Cancer Res. 75:4681–4687. 2015. View Article : Google Scholar : PubMed/NCBI
|
|
42
|
Kim S, You D, Jeong Y, Yu J, Kim SW, Nam
SJ and Lee JE: TP53 upregulates α-smooth muscle actin expression in
tamoxifen-resistant breast cancer cells. Oncol Rep. 41:1075–1082.
2019.
|
|
43
|
Wang T, Srivastava S, Hartman M, Buhari
SA, Chan CW, Iau P, Khin LW, Wong A, Tan SH, Goh BC and Lee SC:
High expression of intratumoral stromal proteins is associated with
chemotherapy resistance in breast cancer. Oncotarget.
7:55155–55168. 2016. View Article : Google Scholar : PubMed/NCBI
|
|
44
|
Yamashita M, Ogawa T, Zhang X, Hanamura N,
Kashikura Y, Takamura M, Yoneda M and Shiraishi T: Role of stromal
myofibroblasts in invasive breast cancer: Stromal expression of
alpha-smooth muscle actin correlates with worse clinical outcome.
Breast Cancer. 19:170–176. 2012. View Article : Google Scholar
|
|
45
|
Vathiotis IA, Moutafi MK, Divakar P, Aung
TN, Qing T, Fernandez A, Yaghoobi V, El-Abed S, Wang Y, Guillaume
S, et al: Alpha-smooth muscle actin expression in the stroma
predicts resistance to trastuzumab in patients with early-stage
HER2-positive breast cancer. Clin Cancer Res. 27:6156–6163. 2021.
View Article : Google Scholar : PubMed/NCBI
|
|
46
|
Busch S, Rydén L, Stål O, Jirström K and
Landberg G: Low ERK phosphorylation in cancer-associated
fibroblasts is associated with tamoxifen resistance in
pre-menopausal breast cancer. PLoS One. 7:e456692012. View Article : Google Scholar : PubMed/NCBI
|
|
47
|
Hu G, Wang S, Xu F, Ding Q, Chen W, Zhong
K, Huang L and Xu Q: Tumor-infiltrating podoplanin+ fibroblasts
predict worse outcome in solid tumors. Cell Physiol Biochem.
51:1041–1050. 2018. View Article : Google Scholar : PubMed/NCBI
|
|
48
|
Yazhou C, Wenlv S, Weidong Z and Licun W:
Clinicopathological significance of stromal myofibroblasts in
invasive ductal carcinoma of the breast. Tumour Biol. 25:290–295.
2004. View Article : Google Scholar
|
|
49
|
Bresnick AR, Weber DJ and Zimmer DB: S100
proteins in cancer. Nat Rev Cancer. 15:96–109. 2015. View Article : Google Scholar : PubMed/NCBI
|
|
50
|
D'Ambrosi N, Milani M and Apolloni S:
S100A4 in the physiology and pathology of the central and
peripheral nervous system. Cells. 10:7982021. View Article : Google Scholar : PubMed/NCBI
|
|
51
|
Liu S, Zhang H, Li Y, Zhang Y, Bian Y,
Zeng Y, Yao X, Wan J, Chen X, Li J, et al: S100A4 enhances protumor
macrophage polarization by control of PPAR-γ-dependent induction of
fatty acid oxidation. J Immunother Cancer. 9:e0025482021.
View Article : Google Scholar
|
|
52
|
Friedman G, Levi-Galibov O, David E,
Bornstein C, Giladi A, Dadiani M, Mayo A, Halperin C,
Pevsner-Fischer M, Lavon H, et al: Cancer-associated fibroblast
compositions change with breast cancer progression linking the
ratio of S100A4+ and PDPN+ CAFs clinical
outcome. Nat Cancer. 1:692–708. 2020. View Article : Google Scholar : PubMed/NCBI
|
|
53
|
Grum-Schwensen B, Klingelhofer J, Berg CH,
El-Naaman C, Grigorian M, Lukanidin E and Ambartsumian N:
Suppression of tumor development and metastasis formation in mice
lacking the S100A4(mts1) gene. Cancer Res. 65:3772–3780. 2005.
View Article : Google Scholar : PubMed/NCBI
|
|
54
|
Park CK, Jung WH and Koo JS: Expression of
cancer-associated fibroblast-related proteins differs between
invasive lobular carcinoma and invasive ductal carcinoma. Breast
Cancer Res Treat. 159:55–69. 2016. View Article : Google Scholar : PubMed/NCBI
|
|
55
|
de Silva Rudland S, Martin L, Roshanlall
C, Winstanley J, Leinster S, Platt-Higgins A, Carroll J, West C,
Barraclough R and Rudland P: Association of S100A4 and osteopontin
with specific prognostic factors and survival of patients with
minimally invasive breast cancer. Clin Cancer Res. 12:1192–1200.
2006. View Article : Google Scholar : PubMed/NCBI
|
|
56
|
Pedersen KB, Nesland JM, Fodstad O and
Maelandsmo GM: Expression of S100A4, E-cadherin, alphaand
beta-catenin in breast cancer biopsies. Br J Cancer. 87:1281–1286.
2002. View Article : Google Scholar : PubMed/NCBI
|
|
57
|
Li WL, Zhang Y, Liu BG, Du Q, Zhou CX and
Tian XS: Correlation between the expression of S100A4 and the
efficacy of TAC neoadjuvant chemotherapy in breast cancer. Exp Ther
Med. 10:1983–1989. 2015. View Article : Google Scholar : PubMed/NCBI
|
|
58
|
McKiernan E, McDermott EW, Evoy D, Crown J
and Duffy MJ: The role of S100 genes in breast cancer progression.
Tumour Biol. 32:441–450. 2011. View Article : Google Scholar
|
|
59
|
Park SY, Kim HM and Koo JS: Differential
expression of cancer-associated fibroblast-related proteins
according to molecular subtype and stromal histology in breast
cancer. Breast Cancer Res Treat. 149:727–741. 2015. View Article : Google Scholar : PubMed/NCBI
|
|
60
|
Donovan J, Shiwen X, Norman J and Abraham
D: Platelet-derived growth factor alpha and beta receptors have
overlapping functional activities towards fibroblasts. Fibrogenesis
Tissue Repair. 6:102013. View Article : Google Scholar : PubMed/NCBI
|
|
61
|
Claesson-Welsh L, Ronnstrand L and Heldin
CH: Biosynthesis and intracellular transport of the receptor for
platelet-derived growth factor. Proc Natl Acad Sci USA.
84:8796–8800. 1987. View Article : Google Scholar : PubMed/NCBI
|
|
62
|
Lavie D, Ben-Shmuel A, Erez N and
Scherz-Shouval R: Cancer-associated fibroblasts in the single-cell
era. Nat Cancer. 3:793–807. 2022. View Article : Google Scholar : PubMed/NCBI
|
|
63
|
Pietras K, Pahler J, Bergers G and Hanahan
D: Functions of paracrine PDGF signaling in the proangiogenic tumor
stroma revealed by pharmacological targeting. PLoS Med. 5:e192008.
View Article : Google Scholar : PubMed/NCBI
|
|
64
|
Paulsson J, Sjöblom T, Micke P, Pontén F,
Landberg G, Heldin CH, Bergh J, Brennan DJ, Jirström K and Ostman
A: Prognostic significance of stromal platelet-derived growth
factor beta-receptor expression in human breast cancer. Am J
Pathol. 175:334–341. 2009. View Article : Google Scholar : PubMed/NCBI
|
|
65
|
Paulsson J, Rydén L, Strell C, Frings O,
Tobin NP, Fornander T, Bergh J, Landberg G, Stål O and Östman A:
High expression of stromal PDGFRβ is associated with reduced
benefit of tamoxifen in breast cancer. J Pathol Clin Res. 3:38–43.
2017. View Article : Google Scholar : PubMed/NCBI
|
|
66
|
Hu G, Huang L, Zhong K, Meng L, Xu F, Wang
S and Zhang T: PDGFR-β+ fibroblasts deteriorate survival
in human solid tumors: a meta-analysis. Aging (Albany NY).
13:13693–13707. 2021. View Article : Google Scholar : PubMed/NCBI
|
|
67
|
Yam C, Murthy RK, Rauch GM, Murray JL,
Walters RS, Valero V, Brewster AM, Bast RC Jr, Booser DJ, Giordano
SH, et al: A phase II study of imatinib mesylate and letrozole in
patients with hormone receptor-positive metastatic breast cancer
expressing c-kit or PDGFR-b. Invest New Drugs. 36:1103–1109. 2018.
View Article : Google Scholar : PubMed/NCBI
|
|
68
|
Wicki A, Lehembre F, Wick N, Hantusch B,
Kerjaschki D and Christofori G: Tumor invasion in the absence of
epithelial-mesenchymal transition: Podoplanin-mediated remodeling
of the actin cytoskeleton. Cancer Cell. 9:261–272. 2006. View Article : Google Scholar : PubMed/NCBI
|
|
69
|
Niemiec J, Adamczyk A, Harazin-Lechowska
A, Ambicka A, Grela-Wojewoda A, Majchrzyk K, Kruczak A,
Sas-Korczyńska B and Ryś J: Podoplanin-positive cancer-associated
stromal fibroblasts in primary tumor and synchronous lymph node
metastases of HER2-overexpressing breast carcinomas. Anticancer
Res. 38:1957–1965. 2018.PubMed/NCBI
|
|
70
|
Schoppmann SF, Berghoff A, Dinhof C,
Jakesz R, Gnant M, Dubsky P, Jesch B, Heinzl H and Birner P:
Podoplanin-expressing cancer-associated fibroblasts are associated
with poor prognosis in invasive breast cancer. Breast Cancer Res
Treat. 134:237–244. 2012. View Article : Google Scholar : PubMed/NCBI
|
|
71
|
Tanaka Y, Ohno T, Kadonaga T, Kidokoro Y,
Wakahara M, Nosaka K, Sakabe T, Suzuki Y, Nakamura H and Umekita Y:
Podoplanin expression in cancer-associated fibroblasts predicts
unfavorable prognosis in node-negative breast cancer patients with
hormone receptor-positive/HER2-negative subtype. Breast Cancer.
28:822–828. 2021. View Article : Google Scholar : PubMed/NCBI
|
|
72
|
Pula B, Jethon A, Piotrowska A,
Gomulkiewicz A, Owczarek T, Calik J, Wojnar A, Witkiewicz W, Rys J
and Ugorski M, et al: Podoplanin expression by cancer-associated
fibroblasts predicts poor outcome in invasive ductal breast
carcinoma. Histopathology. 59:1249–1260. 2011. View Article : Google Scholar : PubMed/NCBI
|
|
73
|
Pula B, Wojnar A, Werynska B, Ambicka A,
Kruczak A, Witkiewicz W, Ugorski M, Podhorska-Okolow M and Dziegiel
P: Impact of different tumour stroma assessment methods regarding
podoplanin expression on clinical outcome in patients with invasive
ductal breast carcinoma. Anticancer Res. 33:1447–1455.
2013.PubMed/NCBI
|
|
74
|
Liu R, Li H, Liu L, Yu J and Ren X:
Fibroblast activation protein: A potential therapeutic target in
cancer. Cancer Biol Ther. 13:123–129. 2012. View Article : Google Scholar : PubMed/NCBI
|
|
75
|
Sarkar M, Nguyen T, Gundre E, Ogunlusi O,
El-Sobky M, Giri B and Sarkar TR: Cancer-associated fibroblasts:
The chief architect in the tumor microenvironment. Front Cell Dev
Biol. 11:10890682023. View Article : Google Scholar : PubMed/NCBI
|
|
76
|
Lo A, Wang LCS, Scholler J, Monslow J,
Avery D, Newick K, O'Brien S, Evans RA, Bajor DJ, Clendenin C, et
al: Tumor-promoting desmoplasia is disrupted by depleting
FAP-expressing stromal cells. Cancer Res. 75:2800–2810. 2015.
View Article : Google Scholar : PubMed/NCBI
|
|
77
|
Tashireva LA, Denisov EV, Gerashchenko TS,
Pautova DN, Bulda kov MA, Zavyalova MV, Kzhysh kowska J,
Cherdyntseva NV and Perelmuter VM: Intratumoral heterogeneity of
macrophages and fibroblasts in breast cancer is associated with the
morphological diversity of tumor cells and contributes to lymph
node metastasis. Immunobiology. 222:631–640. 2017. View Article : Google Scholar
|
|
78
|
Ariga N, Sato E, Ohuchi N, Nagura H and
Ohtani H: Stromal expression of fibroblast activation
protein/seprase, a cell membrane serine proteinase and gelatinase,
is associated with longer survival in patients with invasive ductal
carcinoma of breast. Int J Cancer. 95:67–72. 2001. View Article : Google Scholar : PubMed/NCBI
|
|
79
|
Bonneau C, Eliès A, Kieffer Y, Bourachot
B, Ladoire S, Pelon F, Hequet D, Guinebretière JM, Blanchet C,
Vincent-Salomon A, et al: A subset of activated fibroblasts is
associated with distant relapse in early luminal breast cancer.
Breast Cancer Res. 22:762020. View Article : Google Scholar : PubMed/NCBI
|
|
80
|
Biernacka A, Dobaczewski M and
Frangogiannis NG: TGF-β signaling in fibrosis. Growth Factors.
29:196–202. 2011. View Article : Google Scholar : PubMed/NCBI
|
|
81
|
Shi X, Young CD, Zhou H and Wang X:
Transforming growth factor-β signaling in fibrotic diseases and
cancer-associated fibroblasts. Biomolecules. 10:16662020.
View Article : Google Scholar
|
|
82
|
Casey TM, Eneman J, Crocker A, White J,
Tessitore J, Stanley M, Harlow S, Bunn JY, Weaver D, Muss H and
Plaut K: Cancer associated fibroblasts stimulated by transforming
growth factor beta1 (TGF-beta 1) increase invasion rate of tumor
cells: A population study. Breast Cancer Res Treat. 110:39–49.
2008. View Article : Google Scholar
|
|
83
|
Koumoundourou D, Kassimatis T, Zolota V,
Tzorakoeleftherakis E, Ravazoula P, Vassiliou V, Kardamakis D and
Varakis J: Prognostic significance of TGFbeta-1 and pSmad2/3 in
breast cancer patients with T1-2,N0 tumours. Anticancer Res.
27:2613–2620. 2007.PubMed/NCBI
|
|
84
|
Liu N, Qi D, Jiang J, Zhang J and Yu C:
Significance of combined TGF-β1 and survivin expression on the
prognosis of patients with triple-negative breast cancer. Oncol
Lett. 23:1932022. View Article : Google Scholar
|
|
85
|
Nakamura H, Kambe H, Egawa T, Kimura Y,
Ito H, Hayashi E, Yamamoto H, Sato J and Kishimoto S: Partial
purification and characterization of human hepatoma-derived growth
factor. Clin Chim Acta. 183:273–284. 1989. View Article : Google Scholar : PubMed/NCBI
|
|
86
|
Enomoto H, Nakamura H, Liu W and
Nishiguchi S: Hepatoma-derived growth factor: Its possible
involvement in the progression of hepatocellular carcinoma. Int J
Mol Sci. 16:14086–14097. 2015. View Article : Google Scholar : PubMed/NCBI
|
|
87
|
Chen X, Yun J, Fei F, Yi J, Tian R, Li S
and Gan X: Prognostic value of nuclear hepatoma-derived growth
factor (HDGF) localization in patients with breast cancer. Pathol
Res Pract. 208:437–443. 2012. View Article : Google Scholar : PubMed/NCBI
|
|
88
|
Qiu L, Ma Y, Chen X, Zhou L, Zhang H,
Zhong G, Zhang L and Tang J: Heparin-binding growth factor (HDGF)
drives radioresistance in breast cancer by activating the STAT3
signaling pathway. J Transl Med. 19:3442021. View Article : Google Scholar : PubMed/NCBI
|
|
89
|
Anderberg C and Pietras K: On the origin
of cancer-associated fibroblasts. Cell Cycle. 8:1461–1462. 2009.
View Article : Google Scholar : PubMed/NCBI
|
|
90
|
Kuzet SE and Gaggioli C: Fibroblast
activation in cancer: When seed fertilizes soil. Cell Tissue Res.
365:607–619. 2016. View Article : Google Scholar : PubMed/NCBI
|
|
91
|
Jansson S, Aaltonen K, Bendahl PO, Falck
AK, Karlsson M, Pietras K and Rydén L: The PDGF pathway in breast
cancer is linked to tumour aggressiveness, triple-negative subtype
and early recurrence. Breast Cancer Res Treat. 169:231–241. 2018.
View Article : Google Scholar : PubMed/NCBI
|
|
92
|
Seymour L, Dajee D and Bezwoda WR: Tissue
platelet derived-growth factor (PDGF) predicts for shortened
survival and treatment failure in advanced breast cancer. Breast
Cancer Res Treat. 26:247–252. 1993. View Article : Google Scholar : PubMed/NCBI
|
|
93
|
Liubomirski Y, Lerrer S, Meshel T,
Rubinstein-Achiasaf L, Morein D, Wiemann S, Körner C and Ben-Baruch
A: Tumor-stroma-inflammation networks promote pro-metastatic
chemokines and aggressiveness characteristics in triple-negative
breast cancer. Front Immunol. 10:7572019. View Article : Google Scholar : PubMed/NCBI
|
|
94
|
Lin S, Sun L, Lyu X, Ai X, Du D, Su N, Li
H, Zhang L, Yu J and Yuan S: Lactate-activated macrophages induced
aerobic glycolysis and epithelial-mesenchymal transition in breast
cancer by regulation of CCL5-CCR5 axis: A positive metabolic
feedback loop. Oncotarget. 8:110426–110443. 2017. View Article : Google Scholar
|
|
95
|
Qian BZ, Li J, Zhang H, Kitamura T, Zhang
J, Campion LR, Kaiser EA, Snyder LA and Pollard JW: CCL2 recruits
inflammatory monocytes to facilitate breast-tumour metastasis.
Nature. 475:222–225. 2011. View Article : Google Scholar : PubMed/NCBI
|
|
96
|
Zhou B, Sun C, Li N, Shan W, Lu H, Guo L,
Guo E, Xia M, Weng D, Meng L, et al: Cisplatin-induced CCL5
secretion from CAFs promotes cisplatin-resistance in ovarian cancer
via regulation of the STAT3 and PI3K/Akt signaling pathways. Int J
Oncol. 48:2087–2097. 2016. View Article : Google Scholar : PubMed/NCBI
|
|
97
|
Yao M, Yu E, Staggs V, Fan F and Cheng N:
Elevated expression of chemokine C-C ligand 2 in stroma is
associated with recurrent basal-like breast cancers. Mod Pathol.
29:810–823. 2016. View Article : Google Scholar : PubMed/NCBI
|
|
98
|
Heiskala M, Leidenius M, Joensuu K and
Heikkilä P: High expression of CCL2 in tumor cells and abundant
infiltration with CD14 positive macrophages predict early relapse
in breast cancer. Virchows Arch. 474:3–12. 2019. View Article : Google Scholar
|
|
99
|
Yamaguchi M, Takagi K, Narita K, Miki Y,
Onodera Y, Miyashita M, Sasano H and Suzuki T: Stromal CCL5
promotes breast cancer progression by interacting with CCR3 in
tumor cells. Int J Mol Sci. 22:19182021. View Article : Google Scholar : PubMed/NCBI
|
|
100
|
Yaal-Hahoshen N, Shina S, Leider-Trejo L,
Barnea I, Shabtai EL, Azenshtein E, Greenberg I, Keydar I and
Ben-Baruch A: The chemokine CCL5 as a potential prognostic factor
predicting disease progression in stage II breast cancer patients.
Clin Cancer Res. 12:4474–4480. 2006. View Article : Google Scholar : PubMed/NCBI
|
|
101
|
Liu S, Dontu G, Mantle ID, Patel S, Ahn
NS, Jackson KW, Suri P and Wicha MS: Hedgehog signaling and Bmi-1
regulate self-renewal of normal and malignant human mammary stem
cells. Cancer Res. 66:6063–6071. 2006. View Article : Google Scholar : PubMed/NCBI
|
|
102
|
Arnold KM, Pohlig RT and Sims-Mourtada J:
Co-activation of Hedgehog and Wnt signaling pathways is associated
with poor outcomes in triple negative breast cancer. Oncol Lett.
14:5285–5292. 2017.PubMed/NCBI
|
|
103
|
Beenken A and Mohammadi M: The FGF family:
Biology, pathophysiology and therapy. Nat Rev Drug Discov.
8:235–253. 2009. View Article : Google Scholar : PubMed/NCBI
|
|
104
|
Babina IS and Turner NC: Advances and
challenges in targeting FGFR signalling in cancer. Nat Rev Cancer.
17:318–332. 2017. View Article : Google Scholar : PubMed/NCBI
|
|
105
|
Colomer R, Aparicio J, Montero S, Guzmán
C, Larrodera L and Cortés-Funes H: Low levels of basic fibroblast
growth factor (bFGF) are associated with a poor prognosis in human
breast carcinoma. Br J Cancer. 76:1215–1220. 1997. View Article : Google Scholar : PubMed/NCBI
|
|
106
|
Linderholm BK, Lindh B, Beckman L,
Erlanson M, Edin K, Travelin B, Bergh J, Grankvist K and Henriksson
R: Prognostic correlation of basic fibroblast growth factor and
vascular endothelial growth factor in 1307 primary breast cancers.
Clin Breast Cancer. 4:340–347. 2003. View Article : Google Scholar
|
|
107
|
Surowiak P, Murawa D, Materna V,
Maciejczyk A, Pudelko M, Ciesla S, Breborowicz J, Murawa P, Zabel
M, Dietel M and Lage H: Occurence of stromal myofibroblasts in the
invasive ductal breast cancer tissue is an unfavourable prognostic
factor. Anticancer Res. 27:2917–2924. 2007.PubMed/NCBI
|
|
108
|
Yiangou C, Gomm JJ, Coope RC, Law M,
Luqmani YA, Shousha S, Coombes RC and Johnston CL: Fibroblast
growth factor 2 in breast cancer: Occurrence and prognostic
significance. Br J Cancer. 75:28–33. 1997. View Article : Google Scholar : PubMed/NCBI
|
|
109
|
Granato AM, Nanni O, Falcini F, Folli S,
Mosconi G, De Paola F, Medri L, Amadori D and Volpi A: Basic
fibroblast growth factor and vascular endothelial growth factor
serum levels in breast cancer patients and healthy women: Useful as
diagnostic tools? Breast Cancer Res. 6:R38–R45. 2004. View Article : Google Scholar :
|
|
110
|
Faridi A, Rudlowski C, Biesterfeld S,
Schuh S, Rath W and Schröder W: Long-term follow-up and prognostic
significance of angiogenic basic fibroblast growth factor (bFGF)
expression in patients with breast cancer. Pathol Res Pract.
198:1–5. 2002. View Article : Google Scholar : PubMed/NCBI
|
|
111
|
Smith K, Fox SB, Whitehouse R, Taylor M,
Greenall M, Clarke J and Harris AL: Upregulation of basic
fibroblast growth factor in breast carcinoma and its relationship
to vascular density, oestrogen receptor, epidermal growth factor
receptor and survival. Ann Oncol. 10:707–713. 1999. View Article : Google Scholar : PubMed/NCBI
|
|
112
|
Meijer D, Sieuwerts AM, Look MP, van
Agthoven T, Foekens JA and Dorssers LCJ: Fibroblast growth factor
receptor 4 predicts failure on tamoxifen therapy in patients with
recurrent breast cancer. Endocr Relat Cancer. 15:101–111. 2008.
View Article : Google Scholar : PubMed/NCBI
|
|
113
|
Ivanović V, Demajo M, Krtolica K,
Krajnović M, Konstantinović M, Baltić V, Prtenjak G, Stojiljković
B, Breberina M, Nesković-Konstantinović Z, et al: Elevated plasma
TGF-beta1 levels correlate with decreased survival of metastatic
breast cancer patients. Clin Chim Acta. 371:191–193. 2006.
View Article : Google Scholar
|
|
114
|
El-Abd E, El-Tahan R, Fahmy L, Zaki S,
Faid W, Sobhi A, Kandil K and El-Kwisky F: Serum metastasin mRNA is
an important survival predictor in breast cancer. Br J Biomed Sci.
65:90–94. 2008. View Article : Google Scholar : PubMed/NCBI
|
|
115
|
Tripsianis G, Papadopoulou E, Romanidis K,
Katotomichelakis M, Anagnostopoulos K, Kontomanolis E, Botaitis S,
Tentes I and Kortsaris A: Overall survival and clinicopathological
characteristics of patients with breast cancer in relation to the
expression pattern of HER-2, IL-6, TNF-α and TGF-b1. Asian Pac J
Cancer Prev. 14:6813–6820. 2013. View Article : Google Scholar
|
|
116
|
Zhu X, Xu M, Zhao X, Shen F, Ruan C and
Zhao Y: The detection of plasma soluble podoplanin of patients with
breast cancer and its clinical signification. Cancer Manag Res.
12:13207–13214. 2020. View Article : Google Scholar :
|
|
117
|
Tripsianis G, Papadopoulou E,
Anagnostopoulos K, Botaitis S, Katotomichelakis M, Romanidis K,
Kontomanolis E, Tentes I and Kortsaris A: Coexpression of IL-6 and
TNF-α: Prognostic significance on breast cancer outcome. Neoplasma.
61:205–212. 2014. View Article : Google Scholar
|
|
118
|
Cai S, Zheng J, Song H, Wu H and Cai W:
Relationship between serum TGF-β 1, MMP-9 and IL-1β and
pathological features and prognosis in breast cancer. Front Genet.
13:10953382023. View Article : Google Scholar
|
|
119
|
Al-Ashkar N and Zetoune AB: S100A14 serum
level and its correlation with prognostic factors in breast cancer.
J Egypt Natl Canc Inst. 32:372020. View Article : Google Scholar : PubMed/NCBI
|
|
120
|
Yahia S, Tahari Z, Medjdoub A, Tahari FZ,
Bessaih N, Messatfa M, Deblaoui F, Raiah M, Ouldcadi H, Seddiki S
and Sahraoui T: Expression profile of interleukin-6,
4-hydroxy-2-nonenal, and hypoxia-inducible factor 1-α in women with
breast cancer and their association with clinicopathological
parameters. Contemp Oncol (Pozn). 27:14–21. 2023.
|
|
121
|
Panis C, Herrera AC, Victorino VJ, Aranome
AM and Cecchini R: Screening of circulating TGF-β levels and its
clinicopathological significance in human breast cancer. Anticancer
Res. 33:737–742. 2013.PubMed/NCBI
|
|
122
|
Milovanović J, Todorović-Raković N and
Radulovic M: Interleukin-6 and interleukin-8 serum levels in
prognosis of hormone-dependent breast cancer. Cytokine. 118:93–98.
2019. View Article : Google Scholar
|
|
123
|
Wang RX, Ji P, Gong Y, Shao ZM and Chen S:
Value of CXCL8-CXCR1/2 axis in neoadjuvant chemotherapy for
triple-negative breast cancer patients: A retrospective pilot
study. Breast Cancer Res Treat. 181:561–570. 2020. View Article : Google Scholar : PubMed/NCBI
|
|
124
|
Paccagnella M, Abbona A, Michelotti A,
Geuna E, Ruatta F, Landucci E, Denaro N, Vanella P, Lo Nigro C,
Galizia D, et al: Circulating cytokines in metastatic breast cancer
patients select different prognostic groups and patients who might
benefit from treatment beyond progression. Vaccines (Basel).
10:782022. View Article : Google Scholar : PubMed/NCBI
|
|
125
|
Denys H, Derycke L, Hendrix A, Westbroek
W, Gheldof A, Narine K, Pauwels P, Gespach C, Bracke M and De Wever
O: Differential impact of TGF-beta and EGF on fibroblast
differentiation and invasion reciprocally promotes colon cancer
cell invasion. Cancer Lett. 266:263–274. 2008. View Article : Google Scholar : PubMed/NCBI
|
|
126
|
Kjær IM, Olsen DA, Brandslund I, Bechmann
T, Jakobsen EH, Bogh SB and Madsen JS: Prognostic impact of serum
levels of EGFR and EGFR ligands in early-stage breast cancer. Sci
Rep. 10:165582020. View Article : Google Scholar : PubMed/NCBI
|