Spandidos Publications Logo
  • About
    • About Spandidos
    • Aims and Scopes
    • Abstracting and Indexing
    • Editorial Policies
    • Reprints and Permissions
    • Job Opportunities
    • Terms and Conditions
    • Contact
  • Journals
    • All Journals
    • Oncology Letters
      • Oncology Letters
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Oncology
      • International Journal of Oncology
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Molecular and Clinical Oncology
      • Molecular and Clinical Oncology
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Experimental and Therapeutic Medicine
      • Experimental and Therapeutic Medicine
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Molecular Medicine
      • International Journal of Molecular Medicine
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Biomedical Reports
      • Biomedical Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Oncology Reports
      • Oncology Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Molecular Medicine Reports
      • Molecular Medicine Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • World Academy of Sciences Journal
      • World Academy of Sciences Journal
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Functional Nutrition
      • International Journal of Functional Nutrition
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Epigenetics
      • International Journal of Epigenetics
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Medicine International
      • Medicine International
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
  • Articles
  • Information
    • Information for Authors
    • Information for Reviewers
    • Information for Librarians
    • Information for Advertisers
    • Conferences
  • Language Editing
Spandidos Publications Logo
  • About
    • About Spandidos
    • Aims and Scopes
    • Abstracting and Indexing
    • Editorial Policies
    • Reprints and Permissions
    • Job Opportunities
    • Terms and Conditions
    • Contact
  • Journals
    • All Journals
    • Biomedical Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Experimental and Therapeutic Medicine
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Epigenetics
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Functional Nutrition
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Molecular Medicine
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Oncology
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Medicine International
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Molecular and Clinical Oncology
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Molecular Medicine Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Oncology Letters
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Oncology Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • World Academy of Sciences Journal
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
  • Articles
  • Information
    • For Authors
    • For Reviewers
    • For Librarians
    • For Advertisers
    • Conferences
  • Language Editing
Login Register Submit
  • This site uses cookies
  • You can change your cookie settings at any time by following the instructions in our Cookie Policy. To find out more, you may read our Privacy Policy.

    I agree
Search articles by DOI, keyword, author or affiliation
Search
Advanced Search
presentation
International Journal of Oncology
Join Editorial Board Propose a Special Issue
Print ISSN: 1019-6439 Online ISSN: 1791-2423
Journal Cover
October-2024 Volume 65 Issue 4

Full Size Image

Cover Legend PDF

Sign up for eToc alerts
Recommend to Library

Journals

International Journal of Molecular Medicine

International Journal of Molecular Medicine

International Journal of Molecular Medicine is an international journal devoted to molecular mechanisms of human disease.

International Journal of Oncology

International Journal of Oncology

International Journal of Oncology is an international journal devoted to oncology research and cancer treatment.

Molecular Medicine Reports

Molecular Medicine Reports

Covers molecular medicine topics such as pharmacology, pathology, genetics, neuroscience, infectious diseases, molecular cardiology, and molecular surgery.

Oncology Reports

Oncology Reports

Oncology Reports is an international journal devoted to fundamental and applied research in Oncology.

Experimental and Therapeutic Medicine

Experimental and Therapeutic Medicine

Experimental and Therapeutic Medicine is an international journal devoted to laboratory and clinical medicine.

Oncology Letters

Oncology Letters

Oncology Letters is an international journal devoted to Experimental and Clinical Oncology.

Biomedical Reports

Biomedical Reports

Explores a wide range of biological and medical fields, including pharmacology, genetics, microbiology, neuroscience, and molecular cardiology.

Molecular and Clinical Oncology

Molecular and Clinical Oncology

International journal addressing all aspects of oncology research, from tumorigenesis and oncogenes to chemotherapy and metastasis.

World Academy of Sciences Journal

World Academy of Sciences Journal

Multidisciplinary open-access journal spanning biochemistry, genetics, neuroscience, environmental health, and synthetic biology.

International Journal of Functional Nutrition

International Journal of Functional Nutrition

Open-access journal combining biochemistry, pharmacology, immunology, and genetics to advance health through functional nutrition.

International Journal of Epigenetics

International Journal of Epigenetics

Publishes open-access research on using epigenetics to advance understanding and treatment of human disease.

Medicine International

Medicine International

An International Open Access Journal Devoted to General Medicine.

Journal Cover
October-2024 Volume 65 Issue 4

Full Size Image

Cover Legend PDF

Sign up for eToc alerts
Recommend to Library

  • Article
  • Citations
    • Cite This Article
    • Download Citation
    • Create Citation Alert
    • Remove Citation Alert
    • Cited By
  • Similar Articles
    • Related Articles (in Spandidos Publications)
    • Similar Articles (Google Scholar)
    • Similar Articles (PubMed)
  • Download PDF
  • Download XML
  • View XML
Review Open Access

FGFR‑related phenotypic and functional profile of CAFs in prognostication of breast cancer (Review)

  • Authors:
    • Julia Solek
    • Marcin Braun
    • Rafal Sadej
    • Hanna M. Romanska
  • View Affiliations / Copyright

    Affiliations: Department of Pathology, Chair of Oncology, Medical University of Lodz, 92‑213 Łodz, Poland, Laboratory of Molecular Enzymology and Oncology, Intercollegiate Faculty of Biotechnology, University of Gdansk and Medical University of Gdansk, 80‑384 Gdansk, Poland
    Copyright: © Solek et al. This is an open access article distributed under the terms of Creative Commons Attribution License.
  • Article Number: 94
    |
    Published online on: August 26, 2024
       https://doi.org/10.3892/ijo.2024.5682
  • Expand metrics +
Metrics: Total Views: 0 (Spandidos Publications: | PMC Statistics: )
Metrics: Total PDF Downloads: 0 (Spandidos Publications: | PMC Statistics: )
Cited By (CrossRef): 0 citations Loading Articles...

This article is mentioned in:



Abstract

While preclinical studies consistently implicate FGFR‑signalling in breast cancer (BC) progression, clinical evidence fails to support these findings. It may be that the clinical significance of FGFR ought to be analysed in the context of the stroma, activating or repressing its function. The present review aimed to provide such a context by summarizing the existing data on the prognostic and/or predictive value of selected cancer‑associated fibroblasts (CAFs)‑related factors, that either directly or indirectly may affect FGFR‑signalling. PubMed (https://pubmed.ncbi.nlm.nih.gov/) and Medline (https://www.nlm.nih.gov/medline/medline_home.html) databases were searched for the relevant literature related to the prognostic and/or predictive significance of: CAFs phenotypic markers (αSMA, S100A4/FSP‑1, PDGFR, PDPN and FAP), CAFs‑derived cognate FGFR ligands (FGF2, FGF5 and FGF17) or inducers of CAFs' paracrine activity (TGF‑β1, HDGF, PDGF, CXCL8, CCL5, CCL2, IL‑6, HH and EGF) both expressed in the tumour and circulating in the blood. A total of 68 articles were selected and thoroughly analysed. The findings consistently identified upregulation of αSMA, S100A4/FSP‑1, PDGFR, PDPN, HDGF, PDGF, CXCL8, CCL5, CCL2, IL‑6, HH and EGF as poor prognostic markers in BC, while evaluation of the prognostic value of the remaining markers varied between the studies. The data confirm an association of CAFs‑specific features with BC prognosis, suggesting that both quantitative and qualitative profiling of the stroma might be required for an assessment of the true FGFR's clinical value.
View Figures

Figure 1

Figure 2

View References

1 

Santolla MF and Maggiolini M: The FGF/FGFR system in breast cancer: Oncogenic features and therapeutic perspectives. Cancers (Basel). 12:30292020. View Article : Google Scholar : PubMed/NCBI

2 

Servetto A, Formisano L and Arteaga CL: FGFR signaling and endocrine resistance in breast cancer: Challenges for the clinical development of FGFR inhibitors. Biochim Biophys Acta Rev Cancer. 1876:1885952021. View Article : Google Scholar : PubMed/NCBI

3 

Braun M, Piasecka D, Tomasik B, Mieczkowski K, Stawiski K, Zielinska A, Kopczynski J, Nejc D, Kordek R, Sadej R and Romanska HM: Hormonal receptor status determines prognostic significance of FGFR2 in invasive breast carcinoma. Cancers (Basel). 12:27132020. View Article : Google Scholar : PubMed/NCBI

4 

Mieczkowski K, Kitowska K, Braun M, Galikowska-Bogut B, Gorska-Arcisz M, Piasecka D, Stawiski K, Zaczek AJ, Nejc D, Kordek R, et al: FGF7/FGFR2-JunB signalling counteracts the effect of progesterone in luminal breast cancer. Mol Oncol. 16:2823–2842. 2022. View Article : Google Scholar : PubMed/NCBI

5 

Meric-Bernstam F, Bahleda R, Hierro C, Sanson M, Bridgewater J, Arkenau HT, Tran B, Kelley RK, Park JO, Javle M, et al: Futibatinib, an irreversible FGFR1-4 inhibitor, in patients with advanced solid tumors harboring FGF/FGFR aberrations: A phase I dose-expansion study. Cancer Discov. 12:402–415. 2022. View Article : Google Scholar

6 

Coombes RC, Badman PD, Lozano-Kuehne JP, Liu X, Macpherson IR, Zubairi I, Baird RD, Rosenfeld N, Garcia-Corbacho J, Cresti N, et al: Results of the phase IIa RADICAL trial of the FGFR inhibitor AZD4547 in endocrine resistant breast cancer. Nat Commun. 13:32462022. View Article : Google Scholar : PubMed/NCBI

7 

De Luca A, Frezzetti D, Gallo M and Normanno N: FGFR-targeted therapeutics for the treatment of breast cancer. Expert Opin Investig Drugs. 26:303–311. 2017. View Article : Google Scholar : PubMed/NCBI

8 

Chew NJ, Lim Kam Sian TCC, Nguyen EV, Shin SY, Yang J, Hui MN, Deng N, McLean CA, Welm AL, Lim E, et al: Evaluation of FGFR targeting in breast cancer through interrogation of patient-derived models. Breast Cancer Res. 23:822021. View Article : Google Scholar : PubMed/NCBI

9 

Ronnov-Jessen L, Petersen OW, Koteliansky VE and Bissell MJ: The origin of the myofibroblasts in breast cancer. Recapitulation of tumor environment in culture unravels diversity and implicates converted fibroblasts and recruited smooth muscle cells. J Clin Invest. 95:859–873. 1995. View Article : Google Scholar : PubMed/NCBI

10 

Elenbaas B and Weinberg RA: Heterotypic signaling between epithelial tumor cells and fibroblasts in carcinoma formation. Exp Cell Res. 264:169–184. 2001. View Article : Google Scholar : PubMed/NCBI

11 

Erez N, Truitt M, Olson P, Arron ST and Hanahan D: Cancer-associated fibroblasts are activated in incipient neoplasia to orchestrate tumor-promoting inflammation in an NF-kappaB-dependent manner. Cancer Cell. 17:135–147. 2010. View Article : Google Scholar : PubMed/NCBI

12 

Tejada ML, Yu L, Dong J, Jung K, Meng G, Peale FV, Frantz GD, Hall L, Liang X, Gerber HP and Ferrara N: Tumor-driven paracrine platelet-derived growth factor receptor alpha signaling is a key determinant of stromal cell recruitment in a model of human lung carcinoma. Clin Cancer Res. 12:2676–2688. 2006. View Article : Google Scholar : PubMed/NCBI

13 

Tian H, Callahan CA, DuPree KJ, Darbonne WC, Ahn CP, Scales SJ and de Sauvage FJ: Hedgehog signaling is restricted to the stromal compartment during pancreatic carcinogenesis. Proc Natl Acad Sci USA. 106:4254–4259. 2009. View Article : Google Scholar : PubMed/NCBI

14 

Aggarwal V, Tuli HS, Varol A, Thakral F, Yerer MB, Sak K, Varol M, Jain A, Khan MA and Sethi G: Role of reactive oxygen species in cancer progression: Molecular mechanisms and recent advancements. Biomolecules. 9:7352019. View Article : Google Scholar : PubMed/NCBI

15 

Direkze NC, Hodivala-Dilke K, Jeffery R, Hunt T, Poulsom R, Oukrif D, Alison MR and Wright NA: Bone marrow contribution to tumor-associated myofibroblasts and fibroblasts. Cancer Res. 64:8492–8495. 2004. View Article : Google Scholar : PubMed/NCBI

16 

Kidd S, Spaeth E, Watson K, Burks J, Lu H, Klopp A, Andreeff M and Marini FC: Origins of the tumor microenvironment: Quantitative assessment of adipose-derived and bone marrow-derived stroma. PLoS One. 7:e305632012. View Article : Google Scholar : PubMed/NCBI

17 

Abe R, Donnelly SC, Peng T, Bucala R and Metz CN: Peripheral blood fibrocytes: Differentiation pathway and migration to wound sites. J Immunol. 166:7556–7562. 2001. View Article : Google Scholar : PubMed/NCBI

18 

Zeisberg EM, Potenta S, Xie L, Zeisberg M and Kalluri R: Discovery of endothelial to mesenchymal transition as a source for carcinoma-associated fibroblasts. Cancer Res. 67:10123–10128. 2007. View Article : Google Scholar : PubMed/NCBI

19 

Timperi E, Gueguen P, Molgora M, Magagna I, Kieffer Y, Lopez-Lastra S, Sirven P, Baudrin LG, Baulande S, Nicolas A, et al: Lipid-associated macrophages are induced by cancer-associated fibroblasts and mediate immune suppression in breast cancer. Cancer Res. 82:3291–3306. 2022. View Article : Google Scholar : PubMed/NCBI

20 

Nurmik M, Ullmann P, Rodriguez F, Haan S and Letellier E: In search of definitions: Cancer-associated fibroblasts and their markers. Int J Cancer. 146:895–905. 2020. View Article : Google Scholar

21 

Chen X and Song E: Turning foes to friends: Targeting cancer-associated fibroblasts. Nat Rev Drug Discov. 18:99–115. 2019. View Article : Google Scholar

22 

Costa A, Kieffer Y, Scholer-Dahirel A, Pelon F, Bourachot B, Cardon M, Sirven P, Magagna I, Fuhrmann L, Bernard C, et al: Fibroblast heterogeneity and immunosuppressive environment in human breast cancer. Cancer Cell. 33:463–479.e410. 2018. View Article : Google Scholar : PubMed/NCBI

23 

Glabman RA, Choyke PL and Sato N: Cancer-associated fibroblasts: Tumorigenicity and targeting for cancer therapy. Cancers (Basel). 14:39062022. View Article : Google Scholar : PubMed/NCBI

24 

Paulsson J and Micke P: Prognostic relevance of cancer-associated fibroblasts in human cancer. Semin Cancer Biol. 25:61–68. 2014. View Article : Google Scholar : PubMed/NCBI

25 

Marchini C, Montani M, Konstantinidou G, Orrù R, Mannucci S, Ramadori G, Gabrielli F, Baruzzi A, Berton G, Merigo F, et al: Mesenchymal/stromal gene expression signature relates to basal-like breast cancers, identifies bone metastasis and predicts resistance to therapies. PLoS One. 5:e141312010. View Article : Google Scholar : PubMed/NCBI

26 

Frings O, Augsten M, Tobin NP, Carlson J, Paulsson J, Pena C, Olsson E, Veerla S, Bergh J, Ostman A and Sonnhammer EL: Prognostic significance in breast cancer of a gene signature capturing stromal PDGF signaling. Am J Pathol. 182:2037–2047. 2013. View Article : Google Scholar : PubMed/NCBI

27 

Lappano R, Rigiracciolo DC, Belfiore A, Maggiolini M and De Francesco EM: Cancer associated fibroblasts: Role in breast cancer and potential as therapeutic targets. Expert Opin Ther Targets. 24:559–572. 2020. View Article : Google Scholar : PubMed/NCBI

28 

Fernández-Nogueira P, Mancino M, Fuster G, López-Plana A, Jauregui P, Almendro V, Enreig E, Menéndez S, Rojo F, Noguera-Castells A, et al: Tumor-associated fibroblasts promote HER2-targeted therapy resistance through FGFR2 activation. Clin Cancer Res. 26:1432–1448. 2020. View Article : Google Scholar

29 

Palmieri C, Roberts-Clark D, Assadi-Sabet A, Coope RC, O'Hare M, Sunters A, Hanby A, Slade MJ, Gomm JJ, Lam EW and Coombes RC: Fibroblast growth factor 7, secreted by breast fibroblasts, is an interleukin-1beta-induced paracrine growth factor for human breast cells. J Endocrinol. 177:65–81. 2003. View Article : Google Scholar : PubMed/NCBI

30 

Kalluri R: The biology and function of fibroblasts in cancer. Nat Rev Cancer. 16:582–598. 2016. View Article : Google Scholar : PubMed/NCBI

31 

Cerliani JP, Guillardoy T, Giulianelli S, Vaque JP, Gutkind JS, Vanzulli SI, Martins R, Zeitlin E, Lamb CA and Lanari C: Interaction between FGFR-2, STAT5, and progesterone receptors in breast cancer. Cancer Res. 71:3720–3731. 2011. View Article : Google Scholar : PubMed/NCBI

32 

Mao Y, Keller ET, Garfield DH, Shen K and Wang J: Stromal cells in tumor microenvironment and breast cancer. Cancer Metastasis Rev. 32:303–315. 2013. View Article : Google Scholar

33 

Louault K, Li RR and DeClerck YA: Cancer-associated fibroblasts: Understanding their heterogeneity. Cancers (Basel). 12:31082020. View Article : Google Scholar : PubMed/NCBI

34 

Shee K, Yang W, Hinds JW, Hampsch RA, Varn FS, Traphagen NA, Patel K, Cheng C, Jenkins NP, Kettenbach AN, et al: Therapeutically targeting tumor microenvironment-mediated drug resistance in estrogen receptor-positive breast cancer. J Exp Med. 215:895–910. 2018. View Article : Google Scholar : PubMed/NCBI

35 

Clayton NS, Wilson AS, Laurent EP, Grose RP and Carter EP: Fibroblast growth factor-mediated crosstalk in cancer etiology and treatment. Dev Dyn. 246:493–501. 2017. View Article : Google Scholar : PubMed/NCBI

36 

Zhou Z, Wu B, Tang X, Ke R and Zou Q: Comprehensive analysis of fibroblast growth factor receptor (FGFR) family genes in breast cancer by integrating online databases and bioinformatics. Med Sci Monit. 26:e9235172020. View Article : Google Scholar : PubMed/NCBI

37 

Suh J, Kim DH, Lee YH, Jang JH and Surh YJ: Fibroblast growth factor-2, derived from cancer-associated fibroblasts, stimulates growth and progression of human breast cancer cells via FGFR1 signaling. Mol Carcinog. 59:1028–1040. 2020. View Article : Google Scholar : PubMed/NCBI

38 

Xie Y, Su N, Yang J, Tan Q, Huang S, Jin M, Ni Z, Zhang B, Zhang D, Luo F, et al: FGF/FGFR signaling in health and disease. Signal Transduct Target Ther. 5:1812020. View Article : Google Scholar : PubMed/NCBI

39 

Otranto M, Sarrazy V, Bonte F, Hinz B, Gabbiani G and Desmouliere A: The role of the myofibroblast in tumor stroma remodeling. Cell Adh Migr. 6:203–219. 2012. View Article : Google Scholar : PubMed/NCBI

40 

Chakrabarti R, Lee M and Higgs HN: Multiple roles for actin in secretory and endocytic pathways. Curr Biol. 31:R603–R618. 2021. View Article : Google Scholar : PubMed/NCBI

41 

Ao Z, Shah SH, Machlin LM, Parajuli R, Miller PC, Rawal S, Williams AJ, Cote RJ, Lippman ME, Datar RH and El-Ashry D: Identification of cancer-associated fibroblasts in circulating blood from patients with metastatic breast cancer. Cancer Res. 75:4681–4687. 2015. View Article : Google Scholar : PubMed/NCBI

42 

Kim S, You D, Jeong Y, Yu J, Kim SW, Nam SJ and Lee JE: TP53 upregulates α-smooth muscle actin expression in tamoxifen-resistant breast cancer cells. Oncol Rep. 41:1075–1082. 2019.

43 

Wang T, Srivastava S, Hartman M, Buhari SA, Chan CW, Iau P, Khin LW, Wong A, Tan SH, Goh BC and Lee SC: High expression of intratumoral stromal proteins is associated with chemotherapy resistance in breast cancer. Oncotarget. 7:55155–55168. 2016. View Article : Google Scholar : PubMed/NCBI

44 

Yamashita M, Ogawa T, Zhang X, Hanamura N, Kashikura Y, Takamura M, Yoneda M and Shiraishi T: Role of stromal myofibroblasts in invasive breast cancer: Stromal expression of alpha-smooth muscle actin correlates with worse clinical outcome. Breast Cancer. 19:170–176. 2012. View Article : Google Scholar

45 

Vathiotis IA, Moutafi MK, Divakar P, Aung TN, Qing T, Fernandez A, Yaghoobi V, El-Abed S, Wang Y, Guillaume S, et al: Alpha-smooth muscle actin expression in the stroma predicts resistance to trastuzumab in patients with early-stage HER2-positive breast cancer. Clin Cancer Res. 27:6156–6163. 2021. View Article : Google Scholar : PubMed/NCBI

46 

Busch S, Rydén L, Stål O, Jirström K and Landberg G: Low ERK phosphorylation in cancer-associated fibroblasts is associated with tamoxifen resistance in pre-menopausal breast cancer. PLoS One. 7:e456692012. View Article : Google Scholar : PubMed/NCBI

47 

Hu G, Wang S, Xu F, Ding Q, Chen W, Zhong K, Huang L and Xu Q: Tumor-infiltrating podoplanin+ fibroblasts predict worse outcome in solid tumors. Cell Physiol Biochem. 51:1041–1050. 2018. View Article : Google Scholar : PubMed/NCBI

48 

Yazhou C, Wenlv S, Weidong Z and Licun W: Clinicopathological significance of stromal myofibroblasts in invasive ductal carcinoma of the breast. Tumour Biol. 25:290–295. 2004. View Article : Google Scholar

49 

Bresnick AR, Weber DJ and Zimmer DB: S100 proteins in cancer. Nat Rev Cancer. 15:96–109. 2015. View Article : Google Scholar : PubMed/NCBI

50 

D'Ambrosi N, Milani M and Apolloni S: S100A4 in the physiology and pathology of the central and peripheral nervous system. Cells. 10:7982021. View Article : Google Scholar : PubMed/NCBI

51 

Liu S, Zhang H, Li Y, Zhang Y, Bian Y, Zeng Y, Yao X, Wan J, Chen X, Li J, et al: S100A4 enhances protumor macrophage polarization by control of PPAR-γ-dependent induction of fatty acid oxidation. J Immunother Cancer. 9:e0025482021. View Article : Google Scholar

52 

Friedman G, Levi-Galibov O, David E, Bornstein C, Giladi A, Dadiani M, Mayo A, Halperin C, Pevsner-Fischer M, Lavon H, et al: Cancer-associated fibroblast compositions change with breast cancer progression linking the ratio of S100A4+ and PDPN+ CAFs clinical outcome. Nat Cancer. 1:692–708. 2020. View Article : Google Scholar : PubMed/NCBI

53 

Grum-Schwensen B, Klingelhofer J, Berg CH, El-Naaman C, Grigorian M, Lukanidin E and Ambartsumian N: Suppression of tumor development and metastasis formation in mice lacking the S100A4(mts1) gene. Cancer Res. 65:3772–3780. 2005. View Article : Google Scholar : PubMed/NCBI

54 

Park CK, Jung WH and Koo JS: Expression of cancer-associated fibroblast-related proteins differs between invasive lobular carcinoma and invasive ductal carcinoma. Breast Cancer Res Treat. 159:55–69. 2016. View Article : Google Scholar : PubMed/NCBI

55 

de Silva Rudland S, Martin L, Roshanlall C, Winstanley J, Leinster S, Platt-Higgins A, Carroll J, West C, Barraclough R and Rudland P: Association of S100A4 and osteopontin with specific prognostic factors and survival of patients with minimally invasive breast cancer. Clin Cancer Res. 12:1192–1200. 2006. View Article : Google Scholar : PubMed/NCBI

56 

Pedersen KB, Nesland JM, Fodstad O and Maelandsmo GM: Expression of S100A4, E-cadherin, alphaand beta-catenin in breast cancer biopsies. Br J Cancer. 87:1281–1286. 2002. View Article : Google Scholar : PubMed/NCBI

57 

Li WL, Zhang Y, Liu BG, Du Q, Zhou CX and Tian XS: Correlation between the expression of S100A4 and the efficacy of TAC neoadjuvant chemotherapy in breast cancer. Exp Ther Med. 10:1983–1989. 2015. View Article : Google Scholar : PubMed/NCBI

58 

McKiernan E, McDermott EW, Evoy D, Crown J and Duffy MJ: The role of S100 genes in breast cancer progression. Tumour Biol. 32:441–450. 2011. View Article : Google Scholar

59 

Park SY, Kim HM and Koo JS: Differential expression of cancer-associated fibroblast-related proteins according to molecular subtype and stromal histology in breast cancer. Breast Cancer Res Treat. 149:727–741. 2015. View Article : Google Scholar : PubMed/NCBI

60 

Donovan J, Shiwen X, Norman J and Abraham D: Platelet-derived growth factor alpha and beta receptors have overlapping functional activities towards fibroblasts. Fibrogenesis Tissue Repair. 6:102013. View Article : Google Scholar : PubMed/NCBI

61 

Claesson-Welsh L, Ronnstrand L and Heldin CH: Biosynthesis and intracellular transport of the receptor for platelet-derived growth factor. Proc Natl Acad Sci USA. 84:8796–8800. 1987. View Article : Google Scholar : PubMed/NCBI

62 

Lavie D, Ben-Shmuel A, Erez N and Scherz-Shouval R: Cancer-associated fibroblasts in the single-cell era. Nat Cancer. 3:793–807. 2022. View Article : Google Scholar : PubMed/NCBI

63 

Pietras K, Pahler J, Bergers G and Hanahan D: Functions of paracrine PDGF signaling in the proangiogenic tumor stroma revealed by pharmacological targeting. PLoS Med. 5:e192008. View Article : Google Scholar : PubMed/NCBI

64 

Paulsson J, Sjöblom T, Micke P, Pontén F, Landberg G, Heldin CH, Bergh J, Brennan DJ, Jirström K and Ostman A: Prognostic significance of stromal platelet-derived growth factor beta-receptor expression in human breast cancer. Am J Pathol. 175:334–341. 2009. View Article : Google Scholar : PubMed/NCBI

65 

Paulsson J, Rydén L, Strell C, Frings O, Tobin NP, Fornander T, Bergh J, Landberg G, Stål O and Östman A: High expression of stromal PDGFRβ is associated with reduced benefit of tamoxifen in breast cancer. J Pathol Clin Res. 3:38–43. 2017. View Article : Google Scholar : PubMed/NCBI

66 

Hu G, Huang L, Zhong K, Meng L, Xu F, Wang S and Zhang T: PDGFR-β+ fibroblasts deteriorate survival in human solid tumors: a meta-analysis. Aging (Albany NY). 13:13693–13707. 2021. View Article : Google Scholar : PubMed/NCBI

67 

Yam C, Murthy RK, Rauch GM, Murray JL, Walters RS, Valero V, Brewster AM, Bast RC Jr, Booser DJ, Giordano SH, et al: A phase II study of imatinib mesylate and letrozole in patients with hormone receptor-positive metastatic breast cancer expressing c-kit or PDGFR-b. Invest New Drugs. 36:1103–1109. 2018. View Article : Google Scholar : PubMed/NCBI

68 

Wicki A, Lehembre F, Wick N, Hantusch B, Kerjaschki D and Christofori G: Tumor invasion in the absence of epithelial-mesenchymal transition: Podoplanin-mediated remodeling of the actin cytoskeleton. Cancer Cell. 9:261–272. 2006. View Article : Google Scholar : PubMed/NCBI

69 

Niemiec J, Adamczyk A, Harazin-Lechowska A, Ambicka A, Grela-Wojewoda A, Majchrzyk K, Kruczak A, Sas-Korczyńska B and Ryś J: Podoplanin-positive cancer-associated stromal fibroblasts in primary tumor and synchronous lymph node metastases of HER2-overexpressing breast carcinomas. Anticancer Res. 38:1957–1965. 2018.PubMed/NCBI

70 

Schoppmann SF, Berghoff A, Dinhof C, Jakesz R, Gnant M, Dubsky P, Jesch B, Heinzl H and Birner P: Podoplanin-expressing cancer-associated fibroblasts are associated with poor prognosis in invasive breast cancer. Breast Cancer Res Treat. 134:237–244. 2012. View Article : Google Scholar : PubMed/NCBI

71 

Tanaka Y, Ohno T, Kadonaga T, Kidokoro Y, Wakahara M, Nosaka K, Sakabe T, Suzuki Y, Nakamura H and Umekita Y: Podoplanin expression in cancer-associated fibroblasts predicts unfavorable prognosis in node-negative breast cancer patients with hormone receptor-positive/HER2-negative subtype. Breast Cancer. 28:822–828. 2021. View Article : Google Scholar : PubMed/NCBI

72 

Pula B, Jethon A, Piotrowska A, Gomulkiewicz A, Owczarek T, Calik J, Wojnar A, Witkiewicz W, Rys J and Ugorski M, et al: Podoplanin expression by cancer-associated fibroblasts predicts poor outcome in invasive ductal breast carcinoma. Histopathology. 59:1249–1260. 2011. View Article : Google Scholar : PubMed/NCBI

73 

Pula B, Wojnar A, Werynska B, Ambicka A, Kruczak A, Witkiewicz W, Ugorski M, Podhorska-Okolow M and Dziegiel P: Impact of different tumour stroma assessment methods regarding podoplanin expression on clinical outcome in patients with invasive ductal breast carcinoma. Anticancer Res. 33:1447–1455. 2013.PubMed/NCBI

74 

Liu R, Li H, Liu L, Yu J and Ren X: Fibroblast activation protein: A potential therapeutic target in cancer. Cancer Biol Ther. 13:123–129. 2012. View Article : Google Scholar : PubMed/NCBI

75 

Sarkar M, Nguyen T, Gundre E, Ogunlusi O, El-Sobky M, Giri B and Sarkar TR: Cancer-associated fibroblasts: The chief architect in the tumor microenvironment. Front Cell Dev Biol. 11:10890682023. View Article : Google Scholar : PubMed/NCBI

76 

Lo A, Wang LCS, Scholler J, Monslow J, Avery D, Newick K, O'Brien S, Evans RA, Bajor DJ, Clendenin C, et al: Tumor-promoting desmoplasia is disrupted by depleting FAP-expressing stromal cells. Cancer Res. 75:2800–2810. 2015. View Article : Google Scholar : PubMed/NCBI

77 

Tashireva LA, Denisov EV, Gerashchenko TS, Pautova DN, Bulda kov MA, Zavyalova MV, Kzhysh kowska J, Cherdyntseva NV and Perelmuter VM: Intratumoral heterogeneity of macrophages and fibroblasts in breast cancer is associated with the morphological diversity of tumor cells and contributes to lymph node metastasis. Immunobiology. 222:631–640. 2017. View Article : Google Scholar

78 

Ariga N, Sato E, Ohuchi N, Nagura H and Ohtani H: Stromal expression of fibroblast activation protein/seprase, a cell membrane serine proteinase and gelatinase, is associated with longer survival in patients with invasive ductal carcinoma of breast. Int J Cancer. 95:67–72. 2001. View Article : Google Scholar : PubMed/NCBI

79 

Bonneau C, Eliès A, Kieffer Y, Bourachot B, Ladoire S, Pelon F, Hequet D, Guinebretière JM, Blanchet C, Vincent-Salomon A, et al: A subset of activated fibroblasts is associated with distant relapse in early luminal breast cancer. Breast Cancer Res. 22:762020. View Article : Google Scholar : PubMed/NCBI

80 

Biernacka A, Dobaczewski M and Frangogiannis NG: TGF-β signaling in fibrosis. Growth Factors. 29:196–202. 2011. View Article : Google Scholar : PubMed/NCBI

81 

Shi X, Young CD, Zhou H and Wang X: Transforming growth factor-β signaling in fibrotic diseases and cancer-associated fibroblasts. Biomolecules. 10:16662020. View Article : Google Scholar

82 

Casey TM, Eneman J, Crocker A, White J, Tessitore J, Stanley M, Harlow S, Bunn JY, Weaver D, Muss H and Plaut K: Cancer associated fibroblasts stimulated by transforming growth factor beta1 (TGF-beta 1) increase invasion rate of tumor cells: A population study. Breast Cancer Res Treat. 110:39–49. 2008. View Article : Google Scholar

83 

Koumoundourou D, Kassimatis T, Zolota V, Tzorakoeleftherakis E, Ravazoula P, Vassiliou V, Kardamakis D and Varakis J: Prognostic significance of TGFbeta-1 and pSmad2/3 in breast cancer patients with T1-2,N0 tumours. Anticancer Res. 27:2613–2620. 2007.PubMed/NCBI

84 

Liu N, Qi D, Jiang J, Zhang J and Yu C: Significance of combined TGF-β1 and survivin expression on the prognosis of patients with triple-negative breast cancer. Oncol Lett. 23:1932022. View Article : Google Scholar

85 

Nakamura H, Kambe H, Egawa T, Kimura Y, Ito H, Hayashi E, Yamamoto H, Sato J and Kishimoto S: Partial purification and characterization of human hepatoma-derived growth factor. Clin Chim Acta. 183:273–284. 1989. View Article : Google Scholar : PubMed/NCBI

86 

Enomoto H, Nakamura H, Liu W and Nishiguchi S: Hepatoma-derived growth factor: Its possible involvement in the progression of hepatocellular carcinoma. Int J Mol Sci. 16:14086–14097. 2015. View Article : Google Scholar : PubMed/NCBI

87 

Chen X, Yun J, Fei F, Yi J, Tian R, Li S and Gan X: Prognostic value of nuclear hepatoma-derived growth factor (HDGF) localization in patients with breast cancer. Pathol Res Pract. 208:437–443. 2012. View Article : Google Scholar : PubMed/NCBI

88 

Qiu L, Ma Y, Chen X, Zhou L, Zhang H, Zhong G, Zhang L and Tang J: Heparin-binding growth factor (HDGF) drives radioresistance in breast cancer by activating the STAT3 signaling pathway. J Transl Med. 19:3442021. View Article : Google Scholar : PubMed/NCBI

89 

Anderberg C and Pietras K: On the origin of cancer-associated fibroblasts. Cell Cycle. 8:1461–1462. 2009. View Article : Google Scholar : PubMed/NCBI

90 

Kuzet SE and Gaggioli C: Fibroblast activation in cancer: When seed fertilizes soil. Cell Tissue Res. 365:607–619. 2016. View Article : Google Scholar : PubMed/NCBI

91 

Jansson S, Aaltonen K, Bendahl PO, Falck AK, Karlsson M, Pietras K and Rydén L: The PDGF pathway in breast cancer is linked to tumour aggressiveness, triple-negative subtype and early recurrence. Breast Cancer Res Treat. 169:231–241. 2018. View Article : Google Scholar : PubMed/NCBI

92 

Seymour L, Dajee D and Bezwoda WR: Tissue platelet derived-growth factor (PDGF) predicts for shortened survival and treatment failure in advanced breast cancer. Breast Cancer Res Treat. 26:247–252. 1993. View Article : Google Scholar : PubMed/NCBI

93 

Liubomirski Y, Lerrer S, Meshel T, Rubinstein-Achiasaf L, Morein D, Wiemann S, Körner C and Ben-Baruch A: Tumor-stroma-inflammation networks promote pro-metastatic chemokines and aggressiveness characteristics in triple-negative breast cancer. Front Immunol. 10:7572019. View Article : Google Scholar : PubMed/NCBI

94 

Lin S, Sun L, Lyu X, Ai X, Du D, Su N, Li H, Zhang L, Yu J and Yuan S: Lactate-activated macrophages induced aerobic glycolysis and epithelial-mesenchymal transition in breast cancer by regulation of CCL5-CCR5 axis: A positive metabolic feedback loop. Oncotarget. 8:110426–110443. 2017. View Article : Google Scholar

95 

Qian BZ, Li J, Zhang H, Kitamura T, Zhang J, Campion LR, Kaiser EA, Snyder LA and Pollard JW: CCL2 recruits inflammatory monocytes to facilitate breast-tumour metastasis. Nature. 475:222–225. 2011. View Article : Google Scholar : PubMed/NCBI

96 

Zhou B, Sun C, Li N, Shan W, Lu H, Guo L, Guo E, Xia M, Weng D, Meng L, et al: Cisplatin-induced CCL5 secretion from CAFs promotes cisplatin-resistance in ovarian cancer via regulation of the STAT3 and PI3K/Akt signaling pathways. Int J Oncol. 48:2087–2097. 2016. View Article : Google Scholar : PubMed/NCBI

97 

Yao M, Yu E, Staggs V, Fan F and Cheng N: Elevated expression of chemokine C-C ligand 2 in stroma is associated with recurrent basal-like breast cancers. Mod Pathol. 29:810–823. 2016. View Article : Google Scholar : PubMed/NCBI

98 

Heiskala M, Leidenius M, Joensuu K and Heikkilä P: High expression of CCL2 in tumor cells and abundant infiltration with CD14 positive macrophages predict early relapse in breast cancer. Virchows Arch. 474:3–12. 2019. View Article : Google Scholar

99 

Yamaguchi M, Takagi K, Narita K, Miki Y, Onodera Y, Miyashita M, Sasano H and Suzuki T: Stromal CCL5 promotes breast cancer progression by interacting with CCR3 in tumor cells. Int J Mol Sci. 22:19182021. View Article : Google Scholar : PubMed/NCBI

100 

Yaal-Hahoshen N, Shina S, Leider-Trejo L, Barnea I, Shabtai EL, Azenshtein E, Greenberg I, Keydar I and Ben-Baruch A: The chemokine CCL5 as a potential prognostic factor predicting disease progression in stage II breast cancer patients. Clin Cancer Res. 12:4474–4480. 2006. View Article : Google Scholar : PubMed/NCBI

101 

Liu S, Dontu G, Mantle ID, Patel S, Ahn NS, Jackson KW, Suri P and Wicha MS: Hedgehog signaling and Bmi-1 regulate self-renewal of normal and malignant human mammary stem cells. Cancer Res. 66:6063–6071. 2006. View Article : Google Scholar : PubMed/NCBI

102 

Arnold KM, Pohlig RT and Sims-Mourtada J: Co-activation of Hedgehog and Wnt signaling pathways is associated with poor outcomes in triple negative breast cancer. Oncol Lett. 14:5285–5292. 2017.PubMed/NCBI

103 

Beenken A and Mohammadi M: The FGF family: Biology, pathophysiology and therapy. Nat Rev Drug Discov. 8:235–253. 2009. View Article : Google Scholar : PubMed/NCBI

104 

Babina IS and Turner NC: Advances and challenges in targeting FGFR signalling in cancer. Nat Rev Cancer. 17:318–332. 2017. View Article : Google Scholar : PubMed/NCBI

105 

Colomer R, Aparicio J, Montero S, Guzmán C, Larrodera L and Cortés-Funes H: Low levels of basic fibroblast growth factor (bFGF) are associated with a poor prognosis in human breast carcinoma. Br J Cancer. 76:1215–1220. 1997. View Article : Google Scholar : PubMed/NCBI

106 

Linderholm BK, Lindh B, Beckman L, Erlanson M, Edin K, Travelin B, Bergh J, Grankvist K and Henriksson R: Prognostic correlation of basic fibroblast growth factor and vascular endothelial growth factor in 1307 primary breast cancers. Clin Breast Cancer. 4:340–347. 2003. View Article : Google Scholar

107 

Surowiak P, Murawa D, Materna V, Maciejczyk A, Pudelko M, Ciesla S, Breborowicz J, Murawa P, Zabel M, Dietel M and Lage H: Occurence of stromal myofibroblasts in the invasive ductal breast cancer tissue is an unfavourable prognostic factor. Anticancer Res. 27:2917–2924. 2007.PubMed/NCBI

108 

Yiangou C, Gomm JJ, Coope RC, Law M, Luqmani YA, Shousha S, Coombes RC and Johnston CL: Fibroblast growth factor 2 in breast cancer: Occurrence and prognostic significance. Br J Cancer. 75:28–33. 1997. View Article : Google Scholar : PubMed/NCBI

109 

Granato AM, Nanni O, Falcini F, Folli S, Mosconi G, De Paola F, Medri L, Amadori D and Volpi A: Basic fibroblast growth factor and vascular endothelial growth factor serum levels in breast cancer patients and healthy women: Useful as diagnostic tools? Breast Cancer Res. 6:R38–R45. 2004. View Article : Google Scholar :

110 

Faridi A, Rudlowski C, Biesterfeld S, Schuh S, Rath W and Schröder W: Long-term follow-up and prognostic significance of angiogenic basic fibroblast growth factor (bFGF) expression in patients with breast cancer. Pathol Res Pract. 198:1–5. 2002. View Article : Google Scholar : PubMed/NCBI

111 

Smith K, Fox SB, Whitehouse R, Taylor M, Greenall M, Clarke J and Harris AL: Upregulation of basic fibroblast growth factor in breast carcinoma and its relationship to vascular density, oestrogen receptor, epidermal growth factor receptor and survival. Ann Oncol. 10:707–713. 1999. View Article : Google Scholar : PubMed/NCBI

112 

Meijer D, Sieuwerts AM, Look MP, van Agthoven T, Foekens JA and Dorssers LCJ: Fibroblast growth factor receptor 4 predicts failure on tamoxifen therapy in patients with recurrent breast cancer. Endocr Relat Cancer. 15:101–111. 2008. View Article : Google Scholar : PubMed/NCBI

113 

Ivanović V, Demajo M, Krtolica K, Krajnović M, Konstantinović M, Baltić V, Prtenjak G, Stojiljković B, Breberina M, Nesković-Konstantinović Z, et al: Elevated plasma TGF-beta1 levels correlate with decreased survival of metastatic breast cancer patients. Clin Chim Acta. 371:191–193. 2006. View Article : Google Scholar

114 

El-Abd E, El-Tahan R, Fahmy L, Zaki S, Faid W, Sobhi A, Kandil K and El-Kwisky F: Serum metastasin mRNA is an important survival predictor in breast cancer. Br J Biomed Sci. 65:90–94. 2008. View Article : Google Scholar : PubMed/NCBI

115 

Tripsianis G, Papadopoulou E, Romanidis K, Katotomichelakis M, Anagnostopoulos K, Kontomanolis E, Botaitis S, Tentes I and Kortsaris A: Overall survival and clinicopathological characteristics of patients with breast cancer in relation to the expression pattern of HER-2, IL-6, TNF-α and TGF-b1. Asian Pac J Cancer Prev. 14:6813–6820. 2013. View Article : Google Scholar

116 

Zhu X, Xu M, Zhao X, Shen F, Ruan C and Zhao Y: The detection of plasma soluble podoplanin of patients with breast cancer and its clinical signification. Cancer Manag Res. 12:13207–13214. 2020. View Article : Google Scholar :

117 

Tripsianis G, Papadopoulou E, Anagnostopoulos K, Botaitis S, Katotomichelakis M, Romanidis K, Kontomanolis E, Tentes I and Kortsaris A: Coexpression of IL-6 and TNF-α: Prognostic significance on breast cancer outcome. Neoplasma. 61:205–212. 2014. View Article : Google Scholar

118 

Cai S, Zheng J, Song H, Wu H and Cai W: Relationship between serum TGF-β 1, MMP-9 and IL-1β and pathological features and prognosis in breast cancer. Front Genet. 13:10953382023. View Article : Google Scholar

119 

Al-Ashkar N and Zetoune AB: S100A14 serum level and its correlation with prognostic factors in breast cancer. J Egypt Natl Canc Inst. 32:372020. View Article : Google Scholar : PubMed/NCBI

120 

Yahia S, Tahari Z, Medjdoub A, Tahari FZ, Bessaih N, Messatfa M, Deblaoui F, Raiah M, Ouldcadi H, Seddiki S and Sahraoui T: Expression profile of interleukin-6, 4-hydroxy-2-nonenal, and hypoxia-inducible factor 1-α in women with breast cancer and their association with clinicopathological parameters. Contemp Oncol (Pozn). 27:14–21. 2023.

121 

Panis C, Herrera AC, Victorino VJ, Aranome AM and Cecchini R: Screening of circulating TGF-β levels and its clinicopathological significance in human breast cancer. Anticancer Res. 33:737–742. 2013.PubMed/NCBI

122 

Milovanović J, Todorović-Raković N and Radulovic M: Interleukin-6 and interleukin-8 serum levels in prognosis of hormone-dependent breast cancer. Cytokine. 118:93–98. 2019. View Article : Google Scholar

123 

Wang RX, Ji P, Gong Y, Shao ZM and Chen S: Value of CXCL8-CXCR1/2 axis in neoadjuvant chemotherapy for triple-negative breast cancer patients: A retrospective pilot study. Breast Cancer Res Treat. 181:561–570. 2020. View Article : Google Scholar : PubMed/NCBI

124 

Paccagnella M, Abbona A, Michelotti A, Geuna E, Ruatta F, Landucci E, Denaro N, Vanella P, Lo Nigro C, Galizia D, et al: Circulating cytokines in metastatic breast cancer patients select different prognostic groups and patients who might benefit from treatment beyond progression. Vaccines (Basel). 10:782022. View Article : Google Scholar : PubMed/NCBI

125 

Denys H, Derycke L, Hendrix A, Westbroek W, Gheldof A, Narine K, Pauwels P, Gespach C, Bracke M and De Wever O: Differential impact of TGF-beta and EGF on fibroblast differentiation and invasion reciprocally promotes colon cancer cell invasion. Cancer Lett. 266:263–274. 2008. View Article : Google Scholar : PubMed/NCBI

126 

Kjær IM, Olsen DA, Brandslund I, Bechmann T, Jakobsen EH, Bogh SB and Madsen JS: Prognostic impact of serum levels of EGFR and EGFR ligands in early-stage breast cancer. Sci Rep. 10:165582020. View Article : Google Scholar : PubMed/NCBI

Related Articles

  • Abstract
  • View
  • Download
  • Twitter
Copy and paste a formatted citation
Spandidos Publications style
Solek J, Braun M, Sadej R and Romanska HM: FGFR‑related phenotypic and functional profile of CAFs in prognostication of breast cancer (Review). Int J Oncol 65: 94, 2024.
APA
Solek, J., Braun, M., Sadej, R., & Romanska, H.M. (2024). FGFR‑related phenotypic and functional profile of CAFs in prognostication of breast cancer (Review). International Journal of Oncology, 65, 94. https://doi.org/10.3892/ijo.2024.5682
MLA
Solek, J., Braun, M., Sadej, R., Romanska, H. M."FGFR‑related phenotypic and functional profile of CAFs in prognostication of breast cancer (Review)". International Journal of Oncology 65.4 (2024): 94.
Chicago
Solek, J., Braun, M., Sadej, R., Romanska, H. M."FGFR‑related phenotypic and functional profile of CAFs in prognostication of breast cancer (Review)". International Journal of Oncology 65, no. 4 (2024): 94. https://doi.org/10.3892/ijo.2024.5682
Copy and paste a formatted citation
x
Spandidos Publications style
Solek J, Braun M, Sadej R and Romanska HM: FGFR‑related phenotypic and functional profile of CAFs in prognostication of breast cancer (Review). Int J Oncol 65: 94, 2024.
APA
Solek, J., Braun, M., Sadej, R., & Romanska, H.M. (2024). FGFR‑related phenotypic and functional profile of CAFs in prognostication of breast cancer (Review). International Journal of Oncology, 65, 94. https://doi.org/10.3892/ijo.2024.5682
MLA
Solek, J., Braun, M., Sadej, R., Romanska, H. M."FGFR‑related phenotypic and functional profile of CAFs in prognostication of breast cancer (Review)". International Journal of Oncology 65.4 (2024): 94.
Chicago
Solek, J., Braun, M., Sadej, R., Romanska, H. M."FGFR‑related phenotypic and functional profile of CAFs in prognostication of breast cancer (Review)". International Journal of Oncology 65, no. 4 (2024): 94. https://doi.org/10.3892/ijo.2024.5682
Follow us
  • Twitter
  • LinkedIn
  • Facebook
About
  • Spandidos Publications
  • Careers
  • Cookie Policy
  • Privacy Policy
How can we help?
  • Help
  • Live Chat
  • Contact
  • Email to our Support Team