You can change your cookie settings at any time by following the instructions in our Cookie Policy. To find out more, you may read our Privacy Policy.
I agree
International Journal of Molecular Medicine is an international journal devoted to molecular mechanisms of human disease.
International Journal of Oncology is an international journal devoted to oncology research and cancer treatment.
Covers molecular medicine topics such as pharmacology, pathology, genetics, neuroscience, infectious diseases, molecular cardiology, and molecular surgery.
Oncology Reports is an international journal devoted to fundamental and applied research in Oncology.
Experimental and Therapeutic Medicine is an international journal devoted to laboratory and clinical medicine.
Oncology Letters is an international journal devoted to Experimental and Clinical Oncology.
Explores a wide range of biological and medical fields, including pharmacology, genetics, microbiology, neuroscience, and molecular cardiology.
International journal addressing all aspects of oncology research, from tumorigenesis and oncogenes to chemotherapy and metastasis.
Multidisciplinary open-access journal spanning biochemistry, genetics, neuroscience, environmental health, and synthetic biology.
Open-access journal combining biochemistry, pharmacology, immunology, and genetics to advance health through functional nutrition.
Publishes open-access research on using epigenetics to advance understanding and treatment of human disease.
An International Open Access Journal Devoted to General Medicine.
![]() |
![]() |
![]() |
![]() |
![]() |
|
Maia A, Schöllhorn A, Schuhmacher J and Gouttefangeas C: CAF-immune cell crosstalk and its impact in immunotherapy. Semin Immunopathol. 45:203–214. 2023. View Article : Google Scholar : | |
|
Yan CY, Zhao ML, Wei YN and Zhao XH: Mechanisms of drug resistance in breast cancer liver metastases: Dilemmas and opportunities. Mol Ther Oncolytics. 28:212–229. 2023. View Article : Google Scholar : PubMed/NCBI | |
|
Vesely MD, Zhang T and Chen L: Resistance mechanisms to Anti-PD cancer immunotherapy. Annu Rev Immunol. 40:45–74. 2022. View Article : Google Scholar : PubMed/NCBI | |
|
Fu T, Dai LJ, Wu SY, Xiao Y, Ma D, Jiang YZ and Shao ZM: Spatial architecture of the immune microenvironment orchestrates tumor immunity and therapeutic response. J Hematol Oncol. 14:982021. View Article : Google Scholar : PubMed/NCBI | |
|
Tang Y, Zang H, Wen Q and Fan S: AXL in cancer: A modulator of drug resistance and therapeutic target. J Exp Clin Cancer Res. 42:1482023. View Article : Google Scholar : PubMed/NCBI | |
|
Jiang Y, Zhang H, Wang J, Liu Y, Luo T and Hua H: Targeting extracellular matrix stiffness and mechanotransducers to improve cancer therapy. J Hematol Oncol. 15:342022. View Article : Google Scholar : PubMed/NCBI | |
|
La Rocca A, De Gregorio V, Lagreca E, Vecchione R, Netti PA and Imparato G: Colorectal cancer bioengineered microtissues as a model to replicate Tumor-ECM crosstalk and assess drug delivery systems in vitro. Int J Mol Sci. 24:56782023. View Article : Google Scholar : PubMed/NCBI | |
|
Zhang Y and Brekken RA: Direct and indirect regulation of the tumor immune microenvironment by VEGF. J Leukoc Biol. 111:1269–1286. 2022. View Article : Google Scholar : PubMed/NCBI | |
|
Dong W, Xie Y and Huang H: Prognostic value of Cancer-associated fibroblast-related gene signatures in hepatocellular carcinoma. Front Endocrinol (Lausanne). 13:8847772022. View Article : Google Scholar : PubMed/NCBI | |
|
Liu X, Liu Y, Qi Y, Huang Y, Hu F, Dong F, Shu K and Lei T: Signal pathways involved in the interaction between tumor-associated macrophages/TAMs and Glioblastoma cells. Front Oncol. 12:8220852022. View Article : Google Scholar : PubMed/NCBI | |
|
Larmonier N, Marron M, Zeng Y, Cantrell J, Romanoski A, Sepassi M, Thompson S, Chen X, Andreansky S and Katsanis E: Tumor-derived CD4(+)CD25(+) regulatory T cell suppression of dendritic cell function involves TGF-beta and IL-10. Cancer Immunol Immunother. 56:48–59. 2007. View Article : Google Scholar | |
|
Haque A, Banik NL and Ray SK: Emerging role of combination of all-trans retinoic acid and interferon-gamma as chemoimmunotherapy in the management of human glioblastoma. Neurochem Res. 32:2203–2209. 2007. View Article : Google Scholar : PubMed/NCBI | |
|
Downs-Canner SM, Meier J, Vincent BG and Serody JS: B cell function in the tumor microenvironment. Annu Rev Immunol. 40:169–193. 2022. View Article : Google Scholar : PubMed/NCBI | |
|
Rabinovich GA, Gabrilovich D and Sotomayor EM: Immunosuppressive strategies that are mediated by tumor cells. Annu Rev Immunol. 25:267–296. 2007. View Article : Google Scholar | |
|
Zulfiqar B, Mahroo A, Nasir K, Farooq RK, Jalal N, Rashid MU and Asghar K: Nanomedicine and cancer immunotherapy: Focus on indoleamine 2, 3-dioxygenase inhibitors. Onco Targets Ther. 10:463–476. 2017. View Article : Google Scholar : | |
|
Makkouk A and Weiner GJ: Cancer immunotherapy and breaking immune tolerance: new approaches to an old challenge. Cancer Res. 75:5–10. 2015. View Article : Google Scholar | |
|
Vimalraj S: A concise review of VEGF, PDGF, FGF, Notch, angiopoietin, and HGF signalling in tumor angiogenesis with a focus on alternative approaches and future directions. Int J Biol Macromol. 221:1428–1438. 2022. View Article : Google Scholar : PubMed/NCBI | |
|
Huang J, Zhang L, Wan D, Zhou L, Zheng S, Lin S and Qiao Y: Extracellular matrix and its therapeutic potential for cancer treatment. Signal Transduct Target Ther. 6:1532021. View Article : Google Scholar : PubMed/NCBI | |
|
Bigos KJ, Quiles CG, Lunj S, Smith DJ, Krause M, Troost EG, West CM, Hoskin P and Choudhury A: Tumour response to hypoxia: Understanding the hypoxic tumour microenvironment to improve treatment outcome in solid tumours. Front Oncol. 14:13313552024. View Article : Google Scholar : PubMed/NCBI | |
|
Rømer AMA, Thorseth ML and Madsen DH: Immune modulatory properties of collagen in cancer. Front Immunol. 12:7914532021. View Article : Google Scholar : PubMed/NCBI | |
|
Govaere O, Wouters J, Petz M, Vandewynckel YP, Van den Eynde K, Van den Broeck A, Verhulst S, Dollé L, Gremeaux L, Ceulemans A, et al: Laminin-332 sustains chemoresistance and quiescence as part of the human hepatic cancer stem cell niche. J Hepatol. 64:609–617. 2016. View Article : Google Scholar | |
|
Fukazawa S, Shinto E, Tsuda H, Ueno H, Shikina A, Kajiwara Y, Yamamoto J and Hase K: Laminin β3 expression as a prognostic factor and a predictive marker of chemoresistance in colorectal cancer. Jpn J Clin Oncol. 45:533–540. 2015.PubMed/NCBI | |
|
Di Martino JS, Nobre AR, Mondal C, Taha I, Farias EF, Fertig EJ, Naba A, Aguirre-Ghiso JA and Bravo-Cordero JJ: A tumor-derived type III collagen-rich ECM niche regulates tumor cell dormancy. Nat Cancer. 3:90–107. 2022. View Article : Google Scholar : PubMed/NCBI | |
|
Puttock EH, Tyler EJ, Manni M, Maniati E, Butterworth C, Burger Ramos M, Peerani E, Hirani P, Gauthier V, Liu Y, et al: Extracellular matrix educates an immunoregulatory tumor macrophage phenotype found in ovarian cancer metastasis. Nat Commun. 14:25142023. View Article : Google Scholar : PubMed/NCBI | |
|
Wang L, Li C, Wang J, Yang G, Lv Y, Fu B, Jian L, Ma J, Yu J, Yang Z, et al: Transformable ECM deprivation system effectively suppresses renal cell carcinoma by reversing anoikis resistance and increasing chemotherapy sensitivity. Adv Mater. 34:e22035182022. View Article : Google Scholar : PubMed/NCBI | |
|
Tie Y, Tang F, Wei YQ and Wei XW: Immunosuppressive cells in cancer: Mechanisms and potential therapeutic targets. J Hematol Oncol. 15:612022. View Article : Google Scholar : PubMed/NCBI | |
|
Liu Y, Li C, Lu Y, Liu C and Yang W: Tumor microenvironment-mediated immune tolerance in development and treatment of gastric cancer. Front Immunol. 13:10168172022. View Article : Google Scholar : PubMed/NCBI | |
|
Labani-Motlagh A, Ashja-Mahdavi M and Loskog A: The tumor microenvironment: A milieu hindering and obstructing antitumor immune responses. Front Immunol. 11:9402020. View Article : Google Scholar : PubMed/NCBI | |
|
Wang H, Tian T and Zhang J: Tumor-associated macrophages (TAMs) in colorectal cancer (CRC): From mechanism to therapy and prognosis. Int J Mol Sci. 22:84702021. View Article : Google Scholar : PubMed/NCBI | |
|
Xiao M, He J, Yin L, Chen X, Zu X and Shen Y: Tumor-associated macrophages: Critical players in drug resistance of breast cancer. Front Immunol. 12:7994282021. View Article : Google Scholar | |
|
Zaghdoudi S, Decaup E, Belhabib I, Samain R, Cassant-Sourdy S, Rochotte J, Brunel A, Schlaepfer D, Cros J, Neuzillet C, et al: FAK activity in cancer-associated fibroblasts is a prognostic marker and a druggable key metastatic player in pancreatic cancer. EMBO Mol Med. 12:e120102020. View Article : Google Scholar : PubMed/NCBI | |
|
Yin Y, Yao S, Hu Y, Feng Y, Li M, Bian Z, Zhang J, Qin Y, Qi X, Zhou L, et al: The Immune-microenvironment Confers Chemoresistance of colorectal cancer through macrophage-derived IL6. Clin Cancer Res. 23:7375–7387. 2017. View Article : Google Scholar : PubMed/NCBI | |
|
Li J, He K, Liu P and Xu LX: Iron participated in breast cancer chemoresistance by reinforcing IL-6 paracrine loop. Biochem Biophys Res Commun. 475:154–160. 2016. View Article : Google Scholar : PubMed/NCBI | |
|
Zhang H, Dai Z, Wu W, Wang Z, Zhang N, Zhang L, Zeng WJ, Liu Z and Cheng Q: Regulatory mechanisms of immune checkpoints PD-L1 and CTLA-4 in cancer. J Exp Clin Cancer Res. 40:1842021. View Article : Google Scholar : PubMed/NCBI | |
|
Chen S, Wang M, Lu T, Liu Y, Hong W, He X, Cheng Y, Liu J, Wei Y and Wei X: JMJD6 in tumor-associated macrophage regulates macrophage polarization and cancer progression via STAT3/IL-10 axis. Oncogene. 42:2737–2750. 2023. View Article : Google Scholar : PubMed/NCBI | |
|
Tang B, Zhu J, Wang Y, Chen W, Fang S, Mao W, Xu Z, Yang Y, Weng Q, Zhao Z, et al: Targeted xCT-mediated Ferroptosis and Protumoral polarization of macrophages is effective against HCC and enhances the efficacy of the Anti-PD-1/L1 response. Adv Sci (Weinh). 10:e22039732023. View Article : Google Scholar | |
|
Li Y, Shen Z, Chai Z, Zhan Y, Zhang Y, Liu Z, Liu Y, Li Z, Lin M, Zhang Z, et al: Targeting MS4A4A on tumour-associated macrophages restores CD8+ T-cell-mediated antitumour immunity. Gut. 72:2307–2320. 2023. View Article : Google Scholar : PubMed/NCBI | |
|
Tanei T, Leonard F, Liu X, Alexander JF, Saito Y, Ferrari M, Godin B and Yokoi K: Redirecting transport of nanoparticle albumin-bound paclitaxel to macrophages enhances therapeutic efficacy against liver metastases. Cancer Res. 76:429–439. 2016. View Article : Google Scholar : PubMed/NCBI | |
|
Rodell CB, Arlauckas SP, Cuccarese MF, Garris CS, Li R, Ahmed MS, Kohler RH, Pittet MJ and Weissleder R: TLR7/8-agonist-loaded nanoparticles promote the polarization of tumour-associated macrophages to enhance cancer immunotherapy. Nat Biomed Eng. 2:578–588. 2018. View Article : Google Scholar : | |
|
Andersen MN, Etzerodt A, Graversen JH, Holthof LC, Moestrup SK, Hokland M and Møller HJ: STAT3 inhibition specifically in human monocytes and macrophages by CD163-targeted corosolic acid-containing liposomes. Cancer Immunol Immunother. 68:489–502. 2019. View Article : Google Scholar : PubMed/NCBI | |
|
Candido JB, Morton JP, Bailey P, Campbell AD, Karim SA, Jamieson T, Lapienyte L, Gopinathan A, Clark W, McGhee EJ, et al: CSF1R+ macrophages sustain pancreatic tumor growth through T cell suppression and maintenance of key gene programs that define the squamous subtype. Cell Rep. 23:1448–1460. 2018. View Article : Google Scholar : PubMed/NCBI | |
|
Larionova I, Cherdyntseva N, Liu T, Patysheva M, Rakina M and Kzhyshkowska J: Interaction of tumor-associated macrophages and cancer chemotherapy. Oncoimmunology. 8:15960042019. View Article : Google Scholar : PubMed/NCBI | |
|
Xia C, Yin S, To KKW and Fu L: CD39/CD73/A2AR pathway and cancer immunotherapy. Mol Cancer. 22:442023. View Article : Google Scholar : PubMed/NCBI | |
|
Zhang L, Dou X, Zheng Z, Ye C, Lu TX, Liang HL, Wang L, Weichselbaum RR and He C: YTHDF2/m6 A/NF-κB axis controls anti-tumor immunity by regulating intratumoral Tregs. EMBO J. 42:e1131262023. View Article : Google Scholar | |
|
Wen Z, Liu T, Zhang Y, Yue Q, Meng H, He Y, Yang Y, Li M, Zheng J and Lin W: Salidroside regulates tumor microenvironment of non-small cell lung cancer via Hsp70/Stub1/Foxp3 pathway in Tregs. BMC Cancer. 23:7172023. View Article : Google Scholar : PubMed/NCBI | |
|
Shiri AM, Zhang T, Bedke T, Zazara DE, Zhao L, Lücke J, Sabihi M, Fazio A, Zhang S, Tauriello DVF, et al: IL-10 dampens antitumor immunity and promotes liver metastasis via PD-L1 induction. J Hepatol. 80:634–644. 2024. View Article : Google Scholar : PubMed/NCBI | |
|
Hume DA and MacDonald KP: Therapeutic applications of macrophage colony-stimulating factor-1 (CSF-1) and antagonists of CSF-1 receptor (CSF-1R) signaling. Blood. 119:1810–1820. 2012. View Article : Google Scholar | |
|
Lee C, Jeong H, Bae Y, Shin K, Kang S, Kim H, Oh J and Bae H: Targeting of M2-like tumor-associated macrophages with a melittin-based pro-apoptotic peptide. J Immunother Cancer. 7:1472019. View Article : Google Scholar : PubMed/NCBI | |
|
Huang H, Zepp M, Georges RB, Jarahian M, Kazemi M, Eyol E and Berger MR: The CCR5 antagonist maraviroc causes remission of pancreatic cancer liver metastasis in nude rats based on cell cycle inhibition and apoptosis induction. Cancer Lett. 474:82–93. 2020. View Article : Google Scholar : PubMed/NCBI | |
|
Aldinucci D and Casagrande N: Inhibition of the CCL5/CCR5 Axis against the Progression of Gastric Cancer. Int J Mol Sci. 19:14772018. View Article : Google Scholar : PubMed/NCBI | |
|
Hu Q, Wang R, Zhang J, Xue Q and Ding B: Tumor-associated neutrophils upregulate PANoptosis to foster an immunosuppressive microenvironment of non-small cell lung cancer. Cancer Immunol Immunother. 72:4293–4308. 2023. View Article : Google Scholar : PubMed/NCBI | |
|
Sheng Y, Peng W, Huang Y, Cheng L, Meng Y, Kwantwi LB, Yang J, Xu J, Xiao H, Kzhyshkowska J, et al: Tumor-activated neutrophils promote metastasis in breast cancer via the G-CSF-RLN2-MMP-9 axis. J Leukoc Biol. 113:383–399. 2023. View Article : Google Scholar : PubMed/NCBI | |
|
Chan YT, Tan HY, Lu Y, Zhang C, Cheng CS, Wu J, Wang N and Feng Y: Pancreatic melatonin enhances anti-tumor immunity in pancreatic adenocarcinoma through regulating tumor-associated neutrophils infiltration and NETosis. Acta Pharm Sin B. 13:1554–1567. 2023. View Article : Google Scholar : PubMed/NCBI | |
|
Lv B, Wang Y, Ma D, Cheng W, Liu J, Yong T, Chen H and Wang C: Immunotherapy: Reshape the tumor immune microenvironment. Front Immunol. 13:8441422022. View Article : Google Scholar : PubMed/NCBI | |
|
Zhang W, Li S, Li C, Li T and Huang Y: Remodeling tumor microenvironment with natural products to overcome drug resistance. Front Immunol. 13:10519982022. View Article : Google Scholar : PubMed/NCBI | |
|
Halama N, Zoernig I, Berthel A, Kahlert C, Klupp F, Suarez-Carmona M, Suetterlin T, Brand K, Krauss J, Lasitschka F, et al: Tumoral immune cell exploitation in colorectal cancer metastases can be targeted effectively by Anti-CCR5 therapy in cancer patients. Cancer Cell. 29:587–601. 2016. View Article : Google Scholar : PubMed/NCBI | |
|
Joyce JA and Fearon DT: T cell exclusion, immune privilege, and the tumor microenvironment. Science. 348:74–80. 2015. View Article : Google Scholar : PubMed/NCBI | |
|
DeNardo DG, Brennan DJ, Rexhepaj E, Ruffell B, Shiao SL, Madden SF, Gallagher WM, Wadhwani N, Keil SD, Junaid SA, et al: Leukocyte complexity predicts breast cancer survival and functionally regulates response to chemotherapy. Cancer Discov. 1:54–67. 2011. View Article : Google Scholar : PubMed/NCBI | |
|
Baghdadi M, Wada H, Nakanishi S, Abe H, Han N, Putra WE, Endo D, Watari H, Sakuragi N, Hida Y, et al: Chemotherapy-Induced IL34 enhances immunosuppression by tumor-associated macrophages and mediates survival of Chemoresistant lung cancer cells. Cancer Res. 76:6030–6042. 2016. View Article : Google Scholar : PubMed/NCBI | |
|
Yang C, He L, He P, Liu Y, Wang W, He Y, Du Y and Gao F: Increased drug resistance in breast cancer by tumor-associated macrophages through IL-10/STAT3/bcl-2 signaling pathway. Med Oncol. 32:3522015. View Article : Google Scholar : PubMed/NCBI | |
|
Zhang R, Dong M, Tu J, Li F, Deng Q, Xu J, He X, Ding J, Xia J, Sheng D, et al: PMN-MDSCs modulated by CCL20 from cancer cells promoted breast cancer cell stemness through CXCL2-CXCR2 pathway. Signal Transduct Target Ther. 8:972023. View Article : Google Scholar : PubMed/NCBI | |
|
Mei Y, Zhu Y, Yong KSM, Hanafi ZB, Gong H, Liu Y, Teo HY, Hussain M, Song Y, Chen Q, et al: IL-37 dampens immunosuppressive functions of MDSCs via metabolic reprogramming in the tumor microenvironment. Cell Rep. 43:1138352024. View Article : Google Scholar : PubMed/NCBI | |
|
Wei C, Yang C, Wang S, Shi D, Zhang C, Lin X and Xiong B: M2 macrophages confer resistance to 5-fluorouracil in colorectal cancer through the activation of CCL22/PI3K/AKT signaling. Onco Targets Ther. 12:3051–3063. 2019. View Article : Google Scholar : PubMed/NCBI | |
|
Yu S, Li Q, Yu Y, Cui Y, Li W, Liu T and Liu F: Activated HIF1α of tumor cells promotes chemoresistance development via recruiting GDF15-producing tumor-associated macrophages in gastric cancer. Cancer Immunol Immunother. 69:1973–1987. 2020. View Article : Google Scholar : PubMed/NCBI | |
|
Kullberg M, Martinson H, Mann K and Anchordoquy TJ: Complement C3 mediated targeting of liposomes to granulocytic myeloid derived suppressor cells. Nanomedicine. 11:1355–1363. 2015. View Article : Google Scholar : PubMed/NCBI | |
|
Ostrand-Rosenberg S, Lamb TJ and Pawelec G: Here, There, and everywhere: Myeloid-derived suppressor cells in immunology. J Immunol. 210:1183–1197. 2023. View Article : Google Scholar : PubMed/NCBI | |
|
Plesca I, Müller L, Böttcher JP, Medyouf H, Wehner R and Schmitz M: Tumor-associated human dendritic cell subsets: Phenotype, functional orientation, and clinical relevance. Eur J Immunol. 52:1750–1758. 2022. View Article : Google Scholar : PubMed/NCBI | |
|
Dong Y, Chen J, Chen Y and Liu S: Targeting the STAT3 oncogenic pathway: Cancer immunotherapy and drug repurposing. Biomed Pharmacother. 167:1155132023. View Article : Google Scholar : PubMed/NCBI | |
|
Anderson NM and Simon MC: The tumor microenvironment. Curr Biol. 30:R921–R925. 2020. View Article : Google Scholar : PubMed/NCBI | |
|
Arner EN and Rathmell JC: Metabolic programming and immune suppression in the tumor microenvironment. Cancer Cell. 41:421–433. 2023. View Article : Google Scholar : PubMed/NCBI | |
|
Jing X, Yang F, Shao C, Wei K, Xie M, Shen H and Shu Y: Role of hypoxia in cancer therapy by regulating the tumor microenvironment. Mol Cancer. 18:1572019. View Article : Google Scholar : PubMed/NCBI | |
|
Wu Q, You L, Nepovimova E, Heger Z, Wu W, Kuca K and Adam V: Hypoxia-inducible factors: Master regulators of hypoxic tumor immune escape. J Hematol Oncol. 15:772022. View Article : Google Scholar : PubMed/NCBI | |
|
Lian X, Yang K, Li R, Li M, Zuo J, Zheng B, Wang W, Wang P and Zhou S: Immunometabolic rewiring in tumorigenesis and anti-tumor immunotherapy. Mol Cancer. 21:272022. View Article : Google Scholar : PubMed/NCBI | |
|
Liu Z, Zou H, Dang Q, Xu H, Liu L, Zhang Y, Lv J, Li H, Zhou Z and Han X: Biological and pharmacological roles of m6A modifications in cancer drug resistance. Mol Cancer. 21:2202022. View Article : Google Scholar | |
|
Xu H, Jiao D, Liu A and Wu K: Tumor organoids: Applications in cancer modeling and potentials in precision medicine. J Hematol Oncol. 15:582022. View Article : Google Scholar : PubMed/NCBI | |
|
Yang L, Dong Y, Li Y, Wang D, Liu S, Wang D, Gao Q, Ji S, Chen X, Lei Q, et al: IL-10 derived from M2 macrophage promotes cancer stemness via JAK1/STAT1/NF-κB/Notch1 pathway in non-small cell lung cancer. Int J Cancer. 145:1099–1110. 2019. View Article : Google Scholar : PubMed/NCBI | |
|
Yang D, Liu J, Qian H and Zhuang Q: Cancer-associated fibroblasts: From basic science to anticancer therapy. Exp Mol Med. 55:1322–1332. 2023. View Article : Google Scholar : PubMed/NCBI | |
|
Zhao Z, Mei Y, Wang Z and He W: The effect of oxidative phosphorylation on cancer drug resistance. Cancers (Basel). 15:622022. View Article : Google Scholar | |
|
Zhang H, Yue X, Chen Z, Liu C, Wu W, Zhang N, Liu Z, Yang L, Jiang Q, Cheng Q, et al: Define cancer-associated fibroblasts (CAFs) in the tumor microenvironment: New opportunities in cancer immunotherapy and advances in clinical trials. Mol Cancer. 22:1592023. View Article : Google Scholar : PubMed/NCBI | |
|
Dey P, Kimmelman AC and DePinho RA: Metabolic Codependencies in the tumor microenvironment. Cancer Discov. 11:1067–1081. 2021. View Article : Google Scholar : PubMed/NCBI | |
|
Seebacher NA, Krchniakova M, Stacy AE, Skoda J and Jansson PJ: Tumour microenvironment stress promotes the development of drug resistance. Antioxidants (Basel). 10:18012021. View Article : Google Scholar : PubMed/NCBI | |
|
Shigeta K, Hasegawa M, Hishiki T, Naito Y, Baba Y, Mikami S, Matsumoto K, Mizuno R, Miyajima A, Kikuchi E, et al: IDH2 stabilizes HIF-1α-induced metabolic reprogramming and promotes chemoresistance in urothelial cancer. EMBO J. 42:e1106202023. View Article : Google Scholar | |
|
Li YQ, Sun FZ, Li CX, Mo HN, Zhou YT, Lv D, Zhai JT, Qian HL and Ma F: RARRES2 regulates lipid metabolic reprogramming to mediate the development of brain metastasis in triple negative breast cancer. Mil Med Res. 10:342023.PubMed/NCBI | |
|
Gu J, Zhou J, Chen Q, Xu X, Gao J, Li X, Shao Q, Zhou B, Zhou H, Wei S, et al: Tumor metabolite lactate promotes tumorigenesis by modulating MOESIN lactylation and enhancing TGF-β signaling in regulatory T cells. Cell Rep. 39:1109862022. View Article : Google Scholar | |
|
Linares JF, Cid-Diaz T, Duran A, Osrodek M, Martinez-Ordoñez A, Reina-Campos M, Kuo HH, Elemento O, Martin ML, Cordes T, et al: The lactate-NAD+ axis activates cancer-associated fibroblasts by downregulating p62. Cell Rep. 39:1107922022. View Article : Google Scholar : | |
|
Mazurkiewicz J, Simiczyjew A, Dratkiewicz E, Pietraszek-Gremplewicz K, Majkowski M, Kot M, Ziętek M, Matkowski R and Nowak D: Melanoma cells with diverse invasive potential differentially induce the activation of normal human fibroblasts. Cell Commun Signal. 20:632022. View Article : Google Scholar : PubMed/NCBI | |
|
Ren J, Ding L, Zhang D, Shi G, Xu Q, Shen S, Wang Y, Wang T and Hou Y: Carcinoma-associated fibroblasts promote the stemness and chemoresistance of colorectal cancer by transferring exosomal lncRNA H19. Theranostics. 8:3932–3948. 2018. View Article : Google Scholar : PubMed/NCBI | |
|
Li W, Zhou C, Yu L, Hou Z, Liu H, Kong L, Xu Y, He J, Lan J, Ou Q, et al: Tumor-derived lactate promotes resistance to bevacizumab treatment by facilitating autophagy enhancer protein RUBCNL expression through histone H3 lysine 18 lactylation (H3K18la) in colorectal cancer. Autophagy. 20:114–130. 2024. View Article : Google Scholar : | |
|
Wang L, Li S, Luo H, Lu Q and Yu S: PCSK9 promotes the progression and metastasis of colon cancer cells through regulation of EMT and PI3K/AKT signaling in tumor cells and phenotypic polarization of macrophages. J Exp Clin Cancer Res. 41:3032022. View Article : Google Scholar : PubMed/NCBI | |
|
Ivey JW, Bonakdar M, Kanitkar A, Davalos RV and Verbridge SS: Improving cancer therapies by targeting the physical and chemical hallmarks of the tumor microenvironment. Cancer Lett. 380:330–339. 2016. View Article : Google Scholar : PubMed/NCBI | |
|
Wu P, Gao W, Su M, Nice EC, Zhang W, Lin J and Xie N: Adaptive mechanisms of tumor therapy resistance driven by tumor microenvironment. Front Cell Dev Biol. 9:6414692021. View Article : Google Scholar : PubMed/NCBI | |
|
Cheng J, Yan J, Liu Y, Shi J, Wang H, Zhou H, Zhou Y, Zhang T, Zhao L, Meng X, et al: Cancer-cell-derived fumarate suppresses the anti-tumor capacity of CD8+ T cells in the tumor microenvironment. Cell Metab. 35:961–978.e10. 2023. View Article : Google Scholar | |
|
Rahmanian M, Seyfoori A, Ghasemi M, Shamsi M, Kolahchi AR, Modarres HP, Sanati-Nezhad A and Majidzadeh-A K: In-vitro tumor microenvironment models containing physical and biological barriers for modelling multidrug resistance mechanisms and multidrug delivery strategies. J Control Release. 334:164–177. 2021. View Article : Google Scholar : PubMed/NCBI | |
|
Tajaldini M, Poorkhani A, Amiriani T, Amiriani A, Javid H, Aref P, Ahmadi F, Sadani S and Khori V: Strategy of targeting the tumor microenvironment via inhibition of fibroblast/fibrosis remodeling new era to cancer chemo-immunotherapy resistance. Eur J Pharmacol. 957:1759912023. View Article : Google Scholar : PubMed/NCBI | |
|
Lopez-Crapez E, Costa L, Tosato G, Ramos J, Mazard T, Guiramand J, Thierry A, Colinge J, Milhiet PE and Bénistant C: Mechanical signatures of human colon cancers. Sci Rep. 12:124752022. View Article : Google Scholar : PubMed/NCBI | |
|
Zhao Q, Chen J, Zhang Z, Xiao C, Zeng H, Xu C, Yang X and Li Z: Modulating tumor mechanics with nanomedicine for cancer therapy. Biomater Sci. 11:4471–4489. 2023. View Article : Google Scholar : PubMed/NCBI | |
|
Zanotelli MR and Reinhart-King CA: Mechanical forces in tumor angiogenesis. Adv Exp Med Biol. 1092:91–112. 2018. View Article : Google Scholar : PubMed/NCBI | |
|
Nicolas-Boluda A, Silva AKA, Fournel S and Gazeau F: Physical oncology: New targets for nanomedicine. Biomaterials. 150:87–99. 2018. View Article : Google Scholar | |
|
Arora I, Li S, Crowley MR, Li Y and Tollefsbol TO: Genome-wide analysis on transcriptome and methylome in prevention of mammary tumor induced by early life combined botanicals. Cells. 12:142022. View Article : Google Scholar | |
|
Wang EJ, Chen IH, Kuo BY, Yu CC, Lai MT, Lin JT, Lin LY, Chen CM, Hwang T and Sheu JJ: Alterations of cytoskeleton networks in cell fate determination and cancer development. Biomolecules. 12:18622022. View Article : Google Scholar : PubMed/NCBI | |
|
Geiger B, Bershadsky A, Pankov R and Yamada KM: Transmembrane crosstalk between the extracellular matrix-cytoskeleton crosstalk. Nat Rev Mol Cell Biol. 2:793–805. 2001. View Article : Google Scholar : PubMed/NCBI | |
|
Park JS, Burckhardt CJ, Lazcano R, Solis LM, Isogai T, Li L, Chen CS, Gao B, Minna JD, Bachoo R, et al: Mechanical regulation of glycolysis via cytoskeleton architecture. Nature. 578:621–626. 2020. View Article : Google Scholar : PubMed/NCBI | |
|
Yu S, Li Q, Wang Y, Cui Y, Yu Y, Li W, Liu F and Liu T: Tumor-derived LIF promotes chemoresistance via activating tumor-associated macrophages in gastric cancers. Exp Cell Res. 406:1127342021. View Article : Google Scholar : PubMed/NCBI | |
|
Li J, Wang S, Wang N, Zheng Y, Yang B, Wang X, Zhang J, Pan B and Wang Z: Aiduqing formula inhibits breast cancer metastasis by suppressing TAM/CXCL1-induced Treg differentiation and infiltration. Cell Commun Signal. 19:892021. View Article : Google Scholar : PubMed/NCBI | |
|
Gao D, Cazares LH and Fish EN: CCL5-CCR5 interactions modulate metabolic events during tumor onset to promote tumorigenesis. BMC Cancer. 17:8342017. View Article : Google Scholar : PubMed/NCBI | |
|
Yuan MX, Ji CY, Gao HQ, Sheng XY, Xie WX and Yin Q: lncRNA TUG1 regulates angiogenesis via the miR-204-5p/JAK2/STAT3 axis in hepatoblastoma. Mol Med Rep. 24:5532021. View Article : Google Scholar | |
|
Nywening TM, Belt BA, Cullinan DR, Panni RZ, Han BJ, Sanford DE, Jacobs RC, Ye J, Patel AA, Gillanders WE, et al: Targeting both tumour-associated CXCR2+ neutrophils and CCR2+ macrophages disrupts myeloid recruitment and improves chemotherapeutic responses in pancreatic ductal adenocarcinoma. Gut. 67:1112–1123. 2018. View Article : Google Scholar | |
|
Inoue C, Miki Y, Saito R, Hata S, Abe J, Sato I, Okada Y and Sasano H: PD-L1 induction by cancer-associated fibroblast-derived factors in lung adenocarcinoma cells. Cancers (Basel). 11:12572019. View Article : Google Scholar : PubMed/NCBI | |
|
Harryvan TJ, Visser M, de Bruin L, Plug L, Griffioen L, Mulder A, van Veelen PA, van der Heden van Noort GJ, Jongsma ML, Meeuwsen MH, et al: Enhanced antigen cross-presentation in human colorectal cancer-associated fibroblasts through upregulation of the lysosomal protease cathepsin S. J Immunother Cancer. 10:e0035912022. View Article : Google Scholar : PubMed/NCBI | |
|
Souza-Fonseca-Guimaraes F, Rossi GR, Dagley LF, Foroutan M, McCulloch TR, Yousef J, Park HY, Gunter JH, Beavis PA, Lin CY, et al: TGFβ and CIS inhibition overcomes NK-cell suppression to restore antitumor immunity. Cancer Immunol Res. 10:1047–1054. 2022. View Article : Google Scholar : PubMed/NCBI | |
|
Francescone R, Barbosa Vendramini-Costa D, Franco-Barraza J, Wagner J, Muir A, Lau AN, Gabitova L, Pazina T, Gupta S, Luong T, et al: Netrin G1 promotes pancreatic tumorigenesis through cancer-associated fibroblast-driven nutritional support and immunosuppression. Cancer Discov. 11:446–479. 2021. View Article : Google Scholar | |
|
Huang KF, Zhang GD, Huang YQ and Diao Y: Wogonin induces apoptosis and down-regulates survivin in human breast cancer MCF-7 cells by modulating PI3K-AKT pathway. Int Immunopharmacol. 12:334–41. 2012. View Article : Google Scholar | |
|
Ali SR, Jordan M, Nagarajan P and Amit M: Nerve density and neuronal biomarkers in cancer. Cancers (Basel). 14:48172022. View Article : Google Scholar : PubMed/NCBI | |
|
Mhaidly R and Mechta-Grigoriou F: Role of cancer-associated fibroblast subpopulations in immune infiltration, as a new means of treatment in cancer. Immunol Rev. 302:259–272. 2021. View Article : Google Scholar : PubMed/NCBI | |
|
Timosenko E, Hadjinicolaou AV and Cerundolo V: Modulation of cancer-specific immune responses by amino acid degrading enzymes. Immunotherapy. 9:83–97. 2017. View Article : Google Scholar | |
|
Stockmann C, Doedens A, Weidemann A, Zhang N, Takeda N, Greenberg JI, Cheresh DA and Johnson RS: Deletion of vascular endothelial growth factor in myeloid cells accelerates tumorigenesis. Nature. 456:814–818. 2008. View Article : Google Scholar : PubMed/NCBI | |
|
Wang S, Liu G, Li Y and Pan Y: Metabolic reprogramming induces macrophage polarization in the tumor microenvironment. Front Immunol. 13:8400292022. View Article : Google Scholar : PubMed/NCBI | |
|
Zhang M, Zhang H, Tang F, Wang Y, Mo Z, Lei X and Tang S: Doxorubicin resistance mediated by cytoplasmic macrophage colony-stimulating factor is associated with switch from apoptosis to autophagic cell death in MCF-7 breast cancer cells. Exp Biol Med (Maywood). 241:2086–2093. 2016. View Article : Google Scholar : PubMed/NCBI | |
|
Mehta AK, Kadel S, Townsend MG, Oliwa M and Guerriero JL: Macrophage biology and mechanisms of immune suppression in breast cancer. Front Immunol. 12:6437712021. View Article : Google Scholar : PubMed/NCBI | |
|
Li Y, Weng Y, Zhong L, Chong H, Chen S, Sun Y, Li W and Shi Q: VEGFR3 inhibition chemosensitizes lung adenocarcinoma A549 cells in the tumor-associated macrophage microenvironment through upregulation of p53 and PTEN. Oncol Rep. 38:2761–2773. 2017. View Article : Google Scholar : PubMed/NCBI | |
|
Dalton HJ, Pradeep S, McGuire M, Hailemichael Y, Ma S, Lyons Y, Armaiz-Pena GN, Previs RA, Hansen JM, Rupaimoole R, et al: Macrophages facilitate resistance to Anti-VEGF therapy by Altered VEGFR expression. Clin Cancer Res. 23:7034–7046. 2017. View Article : Google Scholar : PubMed/NCBI | |
|
Vahidian F, Duijf PHG, Safarzadeh E, Derakhshani A, Baghbanzadeh A and Baradaran B: Interactions between cancer stem cells, immune system and some environmental components: Friends or foes? Immunol Lett. 208:19–29. 2019. View Article : Google Scholar : PubMed/NCBI | |
|
Pu Y and Ji Q: Tumor-associated macrophages regulate PD-1/PD-L1 immunosuppression. Front Immunol. 13:8745892022. View Article : Google Scholar : PubMed/NCBI | |
|
Binnewies M, Pollack JL, Rudolph J, Dash S, Abushawish M, Lee T, Jahchan NS, Canaday P, Lu E, Norng M, et al: Targeting TREM2 on tumor-associated macrophages enhances immunotherapy. Cell Rep. 37:1098442021. View Article : Google Scholar : PubMed/NCBI | |
|
Chen D, Zhang X, Li Z and Zhu B: Metabolic regulatory crosstalk between tumor microenvironment and tumor-associated macrophages. Theranostics. 11:1016–1030. 2021. View Article : Google Scholar : PubMed/NCBI | |
|
Cassetta L and Pollard JW: A timeline of tumour-associated macrophage biology. Nat Rev Cancer. 23:238–257. 2023. View Article : Google Scholar : PubMed/NCBI | |
|
Pan Y, Yu Y, Wang X and Zhang T: Tumor-associated macrophages in tumor immunity. Front Immunol. 11:5830842020. View Article : Google Scholar : PubMed/NCBI | |
|
Gao J, Liang Y and Wang L: Shaping polarization of tumor-associated macrophages in cancer immunotherapy. Front Immunol. 13:8887132022. View Article : Google Scholar : PubMed/NCBI | |
|
Li C, Xu X, Wei S, Jiang P, Xue L and Wang J: Tumor-associated macrophages: Potential therapeutic strategies and future prospects in cancer. J Immunother Cancer. 9:e0013412021. View Article : Google Scholar : PubMed/NCBI | |
|
Basak U, Sarkar T, Mukherjee S, Chakraborty S, Dutta A, Dutta S, Nayak D, Kaushik S, Das T and Sa G: Tumor-associated macrophages: An effective player of the tumor microenvironment. Front Immunol. 14:12952572023. View Article : Google Scholar : PubMed/NCBI | |
|
Munir MT, Kay MK, Kang MH, Rahman MM, Al-Harrasi A, Choudhury M, Moustaid-Moussa N, Hussain F and Rahman SM: Tumor-associated macrophages as multifaceted regulators of breast tumor growth. Int J Mol Sci. 22:65262021. View Article : Google Scholar : PubMed/NCBI | |
|
Céspedes MV, Guillén MJ, López-Casas PP, Sarno F, Gallardo A, Álamo P, Cuevas C, Hidalgo M, Galmarini CM, Allavena P, et al: Lurbinectedin induces depletion of tumor-associated macrophages, an essential component of its in vivo synergism with gemcitabine, in pancreatic adenocarcinoma mouse models. Dis Model Mech. 9:1461–1471. 2016.PubMed/NCBI | |
|
Ayoub M, Shinde-Jadhav S, Mansure JJ, Alvarez F, Connell T, Seuntjens J, Piccirillo CA and Kassouf W: The immune mediated role of extracellular HMGB1 in a heterotopic model of bladder cancer radioresistance. Sci Rep. 9:63482019. View Article : Google Scholar : PubMed/NCBI | |
|
Hong L, Wang X, Zheng L, Wang S and Zhu G: Tumor-associated macrophages promote cisplatin resistance in ovarian cancer cells by enhancing WTAP-mediated N6-methyladenosine RNA methylation via the CXCL16/CXCR6 axis. Cancer Chemother Pharmacol. 92:71–81. 2023. View Article : Google Scholar : PubMed/NCBI | |
|
Kobayashi H, Gieniec KA, Lannagan TRM, Wang T, Asai N, Mizutani Y, Iida T, Ando R, Thomas EM, Sakai A, et al: The origin and contribution of cancer-associated fibroblasts in colorectal carcinogenesis. Gastroenterology. 162:890–906. 2022. View Article : Google Scholar | |
|
Hosomi S, Grootjans J, Huang YH, Kaser A and Blumberg RS: New insights into the regulation of natural-killer group 2 Member D (NKG2D) and NKG2D-ligands: Endoplasmic reticulum stress and CEA-related cell adhesion molecule 1. Front Immunol. 9:13242018. View Article : Google Scholar : PubMed/NCBI | |
|
Comito G, Iscaro A, Bacci M, Morandi A, Ippolito L, Parri M, Montagnani I, Raspollini MR, Serni S, Simeoni L, et al: Lactate modulates CD4+ T-cell polarization and induces an immunosuppressive environment, which sustains prostate carcinoma progression via TLR8/miR21 axis. Oncogene. 38:3681–3695. 2019. View Article : Google Scholar : PubMed/NCBI | |
|
Liang L, Li W, Li X, Jin X, Liao Q, Li Y and Zhou Y: 'Reverse Warburg effect' of cancer associated fibroblasts (Review). Int J Oncol. 60:672022. View Article : Google Scholar | |
|
Zhao Q, Huang L, Qin G, Qiao Y, Ren F, Shen C, Wang S, Liu S, Lian J, Wang D, et al: Cancer-associated fibroblasts induce monocytic myeloid-derived suppressor cell generation via IL-6/exosomal miR-21-activated STAT3 signaling to promote cisplatin resistance in esophageal squamous cell carcinoma. Cancer Lett. 518:35–48. 2021. View Article : Google Scholar : PubMed/NCBI | |
|
Xiang H, Ramil CP, Hai J, Zhang C, Wang H, Watkins AA, Afshar R, Georgiev P, Sze MA, Song XS, et al: Cancer-associated fibroblasts promote immunosuppression by inducing ROS-generating monocytic MDSCs in lung squamous cell carcinoma. Cancer Immunol Res. 8:436–450. 2020. View Article : Google Scholar : PubMed/NCBI | |
|
Lin SC, Liao YC, Chen PM, Yang YY, Wang YH, Tung SL, Chuang CM, Sung YW, Jang TH, Chuang SE, et al: Periostin promotes ovarian cancer metastasis by enhancing M2 macrophages and cancer-associated fibroblasts via integrin-mediated NF-κB and TGF-β2 signaling. J Biomed Sci. 29:1092022. View Article : Google Scholar | |
|
Chen X, Zhang W, Yang W, Zhou M and Liu F: Acquired resistance for immune checkpoint inhibitors in cancer immunotherapy: Challenges and prospects. Aging (Albany NY). 14:1048–1064. 2022. View Article : Google Scholar : PubMed/NCBI | |
|
Baik AH: Hypoxia signaling and oxygen metabolism in cardio-oncology. J Mol Cell Cardiol. 165:64–75. 2022. View Article : Google Scholar : PubMed/NCBI | |
|
Dzobo K, Senthebane DA and Dandara C: The tumor microenvironment in tumorigenesis and therapy resistance revisited. Cancers (Basel). 15:3762023. View Article : Google Scholar : PubMed/NCBI | |
|
Harris B, Saleem S, Cook N and Searle E: Targeting hypoxia in solid and haematological malignancies. J Exp Clin Cancer Res. 41:3182022. View Article : Google Scholar : PubMed/NCBI | |
|
Zhang H, Deng T, Liu R, Ning T, Yang H, Liu D, Zhang Q, Lin D, Ge S, Bai M, et al: CAF secreted miR-522 suppresses ferroptosis and promotes acquired chemo-resistance in gastric cancer. Mol Cancer. 19:432020. View Article : Google Scholar : PubMed/NCBI | |
|
Hu JL, Wang W, Lan XL, Zeng ZC, Liang YS, Yan YR, Song FY, Wang FF, Zhu XH, Liao WJ, et al: CAFs secreted exosomes promote metastasis and chemotherapy resistance by enhancing cell stemness and epithelial-mesenchymal transition in colorectal cancer. Mol Cancer. 18:912019. View Article : Google Scholar : PubMed/NCBI | |
|
Liu T, Han C, Fang P, Ma Z, Wang X, Chen H, Wang S, Meng F, Wang C, Zhang E, et al: Cancer-associated fibroblast-specific lncRNA LINC01614 enhances glutamine uptake in lung adenocarcinoma. J Hematol Oncol. 15:1412022. View Article : Google Scholar : PubMed/NCBI | |
|
Patil N, Allgayer H and Leupold JH: MicroRNAs in the tumor microenvironment. Adv Exp Med Biol. 1277:1–31. 2020. View Article : Google Scholar : PubMed/NCBI | |
|
Zhu S, Mao J, Zhang X, Wang P, Zhou Y, Tong J, Peng H, Yang B and Fu Q: CAF-derived exosomal lncRNA FAL1 promotes chemoresistance to oxaliplatin by regulating autophagy in colorectal cancer. Dig Liver Dis. 56:330–342. 2024. View Article : Google Scholar | |
|
Meng Q, Deng Y, Lu Y, Wu C and Tang S: Tumor-derived miRNAs as tumor microenvironment regulators for synergistic therapeutic options. J Cancer Res Clin Oncol. 149:423–439. 2023. View Article : Google Scholar | |
|
Zhang P, Wang Q, Lu W, Zhang F, Wu D and Sun J: NNT-AS1 in CAFs-derived exosomes promotes progression and glucose metabolism through miR-889-3p/HIF-1α in pancreatic adenocarcinoma. Sci Rep. 14:69792024. View Article : Google Scholar | |
|
Wang WZ, Cao X, Bian L, Gao Y, Yu M, Li YT, Xu JG, Wang YH, Yang HF, You DY, et al: Analysis of mRNA-miRNA interaction network reveals the role of CAFs-derived exosomes in the immune regulation of oral squamous cell carcinoma. BMC Cancer. 23:5912023. View Article : Google Scholar : PubMed/NCBI | |
|
Miaomiao S, Xiaoqian W, Yuwei S, Chao C, Chenbo Y, Yinghao L, Yichen H, Jiao S and Kuisheng C: Cancer-associated fibroblast-derived exosome microRNA-21 promotes angiogenesis in multiple myeloma. Sci Rep. 13:96712023. View Article : Google Scholar : PubMed/NCBI | |
|
Zhang Z, Shang J, Yang Q, Dai Z, Liang Y, Lai C, Feng T, Zhong D, Zou H, Sun L, et al: Exosomes derived from human adipose mesenchymal stem cells ameliorate hepatic fibrosis by inhibiting PI3K/Akt/mTOR pathway and remodeling choline metabolism. J Nanobiotechnology. 21:292023. View Article : Google Scholar : PubMed/NCBI | |
|
Zhang Y, Yin C, Wei C, Xia S, Qiao Z, Zhang XW, Yu B, Zhou J and Wang R: Exosomal miR-625-3p secreted by cancer-associated fibroblasts in colorectal cancer promotes EMT and chemotherapeutic resistance by blocking the CELF2/WWOX pathway. Pharmacol Res. 186:1065342022. View Article : Google Scholar : PubMed/NCBI | |
|
Huang H, Wang Z, Zhang Y, Pradhan RN, Ganguly D, Chandra R, Murimwa G, Wright S, Gu X, Maddipati R, et al: Mesothelial cell-derived antigen-presenting cancer-associated fibroblasts induce expansion of regulatory T cells in pancreatic cancer. Cancer Cell. 40:656–673.e7. 2022. View Article : Google Scholar : | |
|
Cheng Y, Li H, Deng Y, Tai Y, Zeng K, Zhang Y, Liu W, Zhang Q and Yang Y: Cancer-associated fibroblasts induce PDL1+ neutrophils through the IL6-STAT3 pathway that foster immune suppression in hepatocellular carcinoma. Cell Death Dis. 9:4222018. View Article : Google Scholar : PubMed/NCBI | |
|
Song M, He J, Pan QZ, Yang J, Zhao J, Zhang YJ, Huang Y, Tang Y, Wang Q, He J, et al: Cancer-associated fibroblast-mediated cellular crosstalk supports hepatocellular carcinoma progression. Hepatology. 73:1717–1735. 2021. View Article : Google Scholar : PubMed/NCBI | |
|
Najafi M, Farhood B and Mortezaee K: Extracellular matrix (ECM) stiffness and degradation as cancer drivers. J Cell Biochem. 120:2782–2790. 2019. View Article : Google Scholar | |
|
Henke E, Nandigama R and Ergün S: Extracellular matrix in the tumor microenvironment and its impact on cancer therapy. Front Mol Biosci. 6:1602020. View Article : Google Scholar : PubMed/NCBI | |
|
Timperi E, Gueguen P, Molgora M, Magagna I, Kieffer Y, Lopez-Lastra S, Sirven P, Baudrin LG, Baulande S, Nicolas A, et al: Lipid-associated macrophages are induced by cancer-associated fibroblasts and mediate immune suppression in breast cancer. Cancer Res. 82:3291–3306. 2022. View Article : Google Scholar : PubMed/NCBI | |
|
Li D, Xia L, Huang P, Wang Z, Guo Q, Huang C, Leng W and Qin S: Cancer-associated fibroblast-secreted IGFBP7 promotes gastric cancer by enhancing tumor associated macrophage infiltration via FGF2/FGFR1/PI3K/AKT axis. Cell Death Discov. 9:172023. View Article : Google Scholar : PubMed/NCBI | |
|
Ueshima E, Fujimori M, Kodama H, Felsen D, Chen J, Durack JC, Solomon SB, Coleman JA and Srimathveeravalli G: Macrophage-secreted TGF-β1 contributes to fibroblast activation and ureteral stricture after ablation injury. Am J Physiol Renal Physiol. 317:F52–F64. 2019. View Article : Google Scholar | |
|
Deng Y, Cheng J, Fu B, Liu W, Chen G, Zhang Q and Yang Y: Hepatic carcinoma-associated fibroblasts enhance immune suppression by facilitating the generation of myeloid-derived suppressor cells. Oncogene. 36:1090–1101. 2017. View Article : Google Scholar | |
|
Zhou Y, Tang W, Zhuo H, Zhu D, Rong D, Sun J and Song J: Cancer-associated fibroblast exosomes promote chemoresistance to cisplatin in hepatocellular carcinoma through circZFR targeting signal transducers and activators of transcription (STAT3)/nuclear factor-kappa B (NF-κB) pathway. Bioengineered. 13:4786–4797. 2022. View Article : Google Scholar : PubMed/NCBI | |
|
Chen Y, McAndrews KM and Kalluri R: Clinical and therapeutic relevance of cancer-associated fibroblasts. Nat Rev Clin Oncol. 18:792–804. 2021. View Article : Google Scholar : PubMed/NCBI | |
|
Chen Y, Hu M, Wang S, Wang Q, Lu H, Wang F, Wang L, Peng D and Chen W: Nano-delivery of salvianolic acid B induces the quiescence of tumor-associated fibroblasts via interfering with TGF-β1/Smad signaling to facilitate chemo- and immunotherapy in desmoplastic tumor. Int J Pharm. 623:1219532022. View Article : Google Scholar | |
|
Xiang H, Ramil CP, Hai J, Zhang C, Wang H, Watkins AA, Afshar R, Georgiev P, Sze MA, Song XS, et al: Cancer-associated fibroblasts promote immunosuppression by inducing ROS-generating monocytic MDSCs in lung squamous cell carcinoma. Cancer Immunol Res. 8:436–450. 2020. View Article : Google Scholar : PubMed/NCBI | |
|
Bai XF, Liu J, Li O, Zheng P and Liu Y: Antigenic drift as a mechanism for tumor evasion of destruction by cytolytic T lymphocytes. J Clin Invest. 111:1487–1496. 2003. View Article : Google Scholar : PubMed/NCBI | |
|
Cheng C, Qu QX, Shen Y, Lv YT, Zhu YB, Zhang XG and Huang JA: Overexpression of B7-H4 in tumor infiltrated dendritic cells. J Immunoassay Immunochem. 32:353–364. 2011. View Article : Google Scholar : PubMed/NCBI | |
|
Blank C, Kuball J, Voelkl S, Wiendl H, Becker B, Walter B, Majdic O, Gajewski TF, Theobald M, Andreesen R, et al: Blockade of PD-L1 (B7-H1) augments human tumor-specific T cell responses in vitro. Int J Cancer. 119:317–327. 2006. View Article : Google Scholar : PubMed/NCBI | |
|
Zheng Y, Tang L, Mabardi L, Kumari S and Irvine DJ: Enhancing adoptive cell therapy of cancer through targeted delivery of small-molecule immunomodulators to internalizing or noninternalizing receptors. ACS Nano. 11:3089–3100. 2017. View Article : Google Scholar : PubMed/NCBI | |
|
Farhood B, Najafi M and Mortezaee K: CD8+ cytotoxic T lymphocytes in cancer immunotherapy: A review. J Cell Physiol. 234:8509–8521. 2019. View Article : Google Scholar | |
|
Inoue T, Adachi K, Kawana K, Taguchi A, Nagamatsu T, Fujimoto A, Tomio K, Yamashita A, Eguchi S, Nishida H, et al: Cancer-associated fibroblast suppresses killing activity of natural killer cells through downregulation of poliovirus receptor (PVR/CD155), a ligand of activating NK receptor. Int J Oncol. 49:1297–1304. 2016. View Article : Google Scholar : PubMed/NCBI | |
|
Van den Eynde A, Gehrcken L, Verhezen T, Lau HW, Hermans C, Lambrechts H, Flieswasser T, Quatannens D, Roex G, Zwaenepoel K, et al: IL-15-secreting CAR natural killer cells directed toward the pan-cancer target CD70 eliminate both cancer cells and cancer-associated fibroblasts. J Hematol Oncol. 17:82024. View Article : Google Scholar : PubMed/NCBI | |
|
Wu F, Yang J, Liu J, Wang Y, Mu J, Zeng Q, Deng S and Zhou H: Signaling pathways in cancer-associated fibroblasts and targeted therapy for cancer. Signal Transduct Target Ther. 6:2182021. View Article : Google Scholar : PubMed/NCBI | |
|
Yu W, Lei Q, Yang L, Qin G, Liu S, Wang D, Ping Y and Zhang Y: Contradictory roles of lipid metabolism in immune response within the tumor microenvironment. J Hematol Oncol. 14:1872021. View Article : Google Scholar : PubMed/NCBI | |
|
Kennel KB, Bozlar M, De Valk AF and Greten FR: Cancer-associated fibroblasts in inflammation and antitumor immunity. Clin Cancer Res. 29:1009–1016. 2023. View Article : Google Scholar : | |
|
Li X, Sun Z, Peng G, Xiao Y, Guo J, Wu B, Li X, Zhou W, Li J, Li Z, et al: Single-cell RNA sequencing reveals a pro-invasive cancer-associated fibroblast subgroup associated with poor clinical outcomes in patients with gastric cancer. Theranostics. 12:620–638. 2022. View Article : Google Scholar : PubMed/NCBI | |
|
Galbo PM Jr, Zang X and Zheng D: Molecular features of Cancer-associated fibroblast subtypes and their implication on cancer pathogenesis, prognosis, and immunotherapy resistance. Clin Cancer Res. 27:2636–2647. 2021. View Article : Google Scholar : PubMed/NCBI | |
|
Glabman RA, Choyke PL and Sato N: Cancer-associated fibroblasts: Tumorigenicity and targeting for cancer therapy. Cancers (Basel). 14:39062022. View Article : Google Scholar : PubMed/NCBI | |
|
Bhattacharjee S, Hamberger F, Ravichandra A, Miller M, Nair A, Affo S, Filliol A, Chin L, Savage TM, Yin D, et al: Tumor restriction by type I collagen opposes tumor-promoting effects of cancer-associated fibroblasts. J Clin Invest. 131:e1469872021. View Article : Google Scholar : PubMed/NCBI | |
|
Dong D, Yao Y, Song J, Sun L and Zhang G: Cancer-associated fibroblasts regulate bladder cancer invasion and metabolic phenotypes through autophagy. Dis Markers. 2021:66452202021. View Article : Google Scholar : PubMed/NCBI | |
|
Strickaert A, Corbet C, Spinette SA, Craciun L, Dom G, Andry G, Larsimont D, Wattiez R, Dumont JE, Feron O, et al: Reprogramming of energy metabolism: Increased expression and roles of pyruvate carboxylase in papillary thyroid cancer. Thyroid. 29:845–857. 2019. View Article : Google Scholar : PubMed/NCBI | |
|
Zhu Y, Li X, Wang L, Hong X and Yang J: Metabolic reprogramming and crosstalk of cancer-related fibroblasts and immune cells in the tumor microenvironment. Front Endocrinol (Lausanne). 13:9882952022. View Article : Google Scholar : PubMed/NCBI | |
|
Xia H, Green DR and Zou W: Autophagy in tumour immunity and therapy. Nat Rev Cancer. 21:281–297. 2021. View Article : Google Scholar : PubMed/NCBI | |
|
Liu L, Liu S, Luo H, Chen C, Zhang X, He L and Tu G: GPR30-mediated HMGB1 upregulation in CAFs induces autophagy and tamoxifen resistance in ERα-positive breast cancer cells. Aging (Albany NY). 13:16178–16197. 2021. View Article : Google Scholar : PubMed/NCBI | |
|
Zeng Z, Hu P, Tang X, Zhang H, Du Y, Wen S and Liu M: Dectection and analysis of miRNA expression in breast cancer-associated fibroblasts. Xi Bao Yu Fen Zi Mian Yi Xue Za Zhi. 30:1071–1075. 2014.In Chinese. PubMed/NCBI | |
|
Izumi D, Toden S, Ureta E, Ishimoto T, Baba H and Goel A: TIAM1 promotes chemoresistance and tumor invasiveness in colorectal cancer. Cell Death Dis. 10:2672019. View Article : Google Scholar : PubMed/NCBI | |
|
Nywening TM, Wang-Gillam A, Sanford DE, Belt BA, Panni RZ, Cusworth BM, Toriola AT, Nieman RK, Worley LA, Yano M, et al: Targeting tumour-associated macrophages with CCR2 inhibition in combination with FOLFIRINOX in patients with borderline resectable and locally advanced pancreatic cancer: A single-centre, open-label, dose-finding, non-randomised, phase 1b trial. Lancet Oncol. 17:651–662. 2016. View Article : Google Scholar : PubMed/NCBI | |
|
Ma J, Song X, Xu X and Mou Y: Cancer-associated fibroblasts promote the Chemo-resistance in gastric cancer through secreting IL-11 targeting JAK/STAT3/Bcl2 pathway. Cancer Res Treat. 51:194–210. 2019. View Article : Google Scholar | |
|
Wei L, Lin Q, Lu Y, Li G, Huang L, Fu Z, Chen R and Zhou Q: Cancer-associated fibroblasts-mediated ATF4 expression promotes malignancy and gemcitabine resistance in pancreatic cancer via the TGF-β1/SMAD2/3 pathway and ABCC1 transactivation. Cell Death Dis. 12:3342021. View Article : Google Scholar | |
|
Li Z, Chan K, Qi Y, Lu L, Ning F, Wu M, Wang H, Wang Y, Cai S and Du J: Participation of CCL1 in Snail-positive fibroblasts in colorectal cancer contribute to 5-Fluorouracil/Paclitaxel Chemoresistance. Cancer Res Treat. 50:894–907. 2018. View Article : Google Scholar : | |
|
Saw PE, Chen J and Song E: Targeting CAFs to overcome anticancer therapeutic resistance. Trends Cancer. 8:527–555. 2022. View Article : Google Scholar : PubMed/NCBI | |
|
Singh SK, Mishra MK, Eltoum IA, Bae S, Lillard JW Jr and Singh R: CCR5/CCL5 axis interaction promotes migratory and invasiveness of pancreatic cancer cells. Sci Rep. 8:13232018. View Article : Google Scholar : PubMed/NCBI | |
|
Lee C, Lee H, Cho H, Kim S, Choi I, Hwang YS, Jeong H, Jang H, Pak S, Hwang DS, et al: Combination of anti-PD-L1 antibody with peptide MEL-dKLA targeting M2 tumor-associated macrophages suppresses breast cancer metastasis. Cancer Commun (Lond). 42:345–349. 2022. View Article : Google Scholar : PubMed/NCBI | |
|
Siewe N and Friedman A: Cancer therapy with immune checkpoint inhibitor and CSF-1 blockade: A mathematical model. J Theor Biol. 556:1112972023. View Article : Google Scholar | |
|
Rodell CB, Ahmed MS, Garris CS, Pittet MJ and Weissleder R: Development of Adamantane-conjugated TLR7/8 agonists for supramolecular delivery and cancer immunotherapy. Theranostics. 9:8426–8436. 2019. View Article : Google Scholar : PubMed/NCBI | |
|
Chen YJ, Li GN, Li XJ, Wei LX, Fu MJ, Cheng ZL, Yang Z, Zhu GQ, Wang XD, Zhang C, et al: Targeting IRG1 reverses the immunosuppressive function of tumor-associated macrophages and enhances cancer immunotherapy. Sci Adv. 9:eadg06542023. View Article : Google Scholar : PubMed/NCBI | |
|
Yuan D, Hu J, Ju X, Putz EM, Zheng S, Koda S, Sun G, Deng X, Xu Z, Nie W, et al: NMDAR antagonists suppress tumor progression by regulating tumor-associated macrophages. Proc Natl Acad Sci USA. 120:e23021261202023. View Article : Google Scholar : PubMed/NCBI | |
|
Li M, Yang Y, Xiong L, Jiang P, Wang J and Li C: Metabolism, metabolites, and macrophages in cancer. J Hematol Oncol. 16:802023. View Article : Google Scholar : PubMed/NCBI | |
|
Khalaf K, Hana D, Chou JT, Singh C, Mackiewicz A and Kaczmarek M: Aspects of the tumor microenvironment involved in immune resistance and drug resistance. Front Immunol. 12:6563642021. View Article : Google Scholar : PubMed/NCBI | |
|
Begum A, McMillan RH, Chang YT, Penchev VR, Rajeshkumar NV, Maitra A, Goggins MG, Eshelman JR, Wolfgang CL, Rasheed ZA, et al: Direct interactions with cancer-associated fibroblasts lead to enhanced pancreatic cancer stem cell function. Pancreas. 48:329–334. 2019. View Article : Google Scholar : PubMed/NCBI | |
|
Ko YC, Lai TY, Hsu SC, Wang FH, Su SY, Chen YL, Tsai ML, Wu CC, Hsiao JR, Chang JY, et al: Index of Cancer-associated fibroblasts is superior to the epithelial-mesenchymal transition score in prognosis prediction. Cancers (Basel). 12:17182020. View Article : Google Scholar : PubMed/NCBI | |
|
Liu Y, Xun Z, Ma K, Liang S, Li X, Zhou S, Sun L, Liu Y, Du Y, Guo X, et al: Identification of a tumour immune barrier in the HCC microenvironment that determines the efficacy of immunotherapy. J Hepatol. 78:770–782. 2023. View Article : Google Scholar : PubMed/NCBI | |
|
Yamamoto Y, Kasashima H, Fukui Y, Tsujio G, Yashiro M and Maeda K: The heterogeneity of cancer-associated fibroblast subpopulations: Their origins, biomarkers, and roles in the tumor microenvironment. Cancer Sci. 114:16–24. 2023. View Article : Google Scholar | |
|
Qu X, Liu B, Wang L, Liu L, Zhao W, Liu C, Ding J, Zhao S, Xu B, Yu H, et al: Loss of cancer-associated fibroblast-derived exosomal DACT3-AS1 promotes malignant transformation and ferroptosis-mediated oxaliplatin resistance in gastric cancer. Drug Resist Updat. 68:1009362023. View Article : Google Scholar : PubMed/NCBI | |
|
Loeffler M, Krüger JA, Niethammer AG and Reisfeld RA: Targeting tumor-associated fibroblasts improves cancer chemotherapy by increasing intratumoral drug uptake. J Clin Invest. 116:1955–1962. 2006. View Article : Google Scholar : PubMed/NCBI | |
|
Denkert C, von Minckwitz G, Darb-Esfahani S, Lederer B, Heppner BI, Weber KE, Budczies J, Huober J, Klauschen F, Furlanetto J, et al: Tumour-infiltrating lymphocytes and prognosis in different subtypes of breast cancer: A pooled analysis of 3771 patients treated with neoadjuvant therapy. Lancet Oncol. 19:40–50. 2018. View Article : Google Scholar | |
|
Memon D, Schoenfeld AJ, Ye D, Fromm G, Rizvi H, Zhang X, Keddar MR, Mathew D, Yoo KJ, Qiu J, et al: Clinical and molecular features of acquired resistance to immunotherapy in non-small cell lung cancer. Cancer Cell. 42:209–224.e9. 2024. View Article : Google Scholar : PubMed/NCBI | |
|
Zhu L, Meng D, Wang X and Chen X: Ferroptosis-driven Nanotherapeutics to reverse drug resistance in tumor microenvironment. ACS Appl Bio Mater. 5:2481–2506. 2022. View Article : Google Scholar : PubMed/NCBI | |
|
Zhu Y, Wang A, Zhang S, Kim J, Xia J, Zhang F, Wang D, Wang Q and Wang J: Paclitaxel-loaded ginsenoside Rg3 liposomes for drug-resistant cancer therapy by dual targeting of the tumor microenvironment and cancer cells. J Adv Res. 49:159–173. 2023. View Article : Google Scholar : |