Spandidos Publications Logo
  • About
    • About Spandidos
    • Aims and Scopes
    • Abstracting and Indexing
    • Editorial Policies
    • Reprints and Permissions
    • Job Opportunities
    • Terms and Conditions
    • Contact
  • Journals
    • All Journals
    • Oncology Letters
      • Oncology Letters
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Oncology
      • International Journal of Oncology
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Molecular and Clinical Oncology
      • Molecular and Clinical Oncology
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Experimental and Therapeutic Medicine
      • Experimental and Therapeutic Medicine
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Molecular Medicine
      • International Journal of Molecular Medicine
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Biomedical Reports
      • Biomedical Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Oncology Reports
      • Oncology Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Molecular Medicine Reports
      • Molecular Medicine Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • World Academy of Sciences Journal
      • World Academy of Sciences Journal
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Functional Nutrition
      • International Journal of Functional Nutrition
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Epigenetics
      • International Journal of Epigenetics
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Medicine International
      • Medicine International
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
  • Articles
  • Information
    • Information for Authors
    • Information for Reviewers
    • Information for Librarians
    • Information for Advertisers
    • Conferences
  • Language Editing
Spandidos Publications Logo
  • About
    • About Spandidos
    • Aims and Scopes
    • Abstracting and Indexing
    • Editorial Policies
    • Reprints and Permissions
    • Job Opportunities
    • Terms and Conditions
    • Contact
  • Journals
    • All Journals
    • Biomedical Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Experimental and Therapeutic Medicine
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Epigenetics
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Functional Nutrition
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Molecular Medicine
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Oncology
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Medicine International
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Molecular and Clinical Oncology
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Molecular Medicine Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Oncology Letters
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Oncology Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • World Academy of Sciences Journal
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
  • Articles
  • Information
    • For Authors
    • For Reviewers
    • For Librarians
    • For Advertisers
    • Conferences
  • Language Editing
Login Register Submit
  • This site uses cookies
  • You can change your cookie settings at any time by following the instructions in our Cookie Policy. To find out more, you may read our Privacy Policy.

    I agree
Search articles by DOI, keyword, author or affiliation
Search
Advanced Search
presentation
International Journal of Oncology
Join Editorial Board Propose a Special Issue
Print ISSN: 1019-6439 Online ISSN: 1791-2423
Journal Cover
October-2024 Volume 65 Issue 4

Full Size Image

Cover Legend PDF

Sign up for eToc alerts
Recommend to Library

Journals

International Journal of Molecular Medicine

International Journal of Molecular Medicine

International Journal of Molecular Medicine is an international journal devoted to molecular mechanisms of human disease.

International Journal of Oncology

International Journal of Oncology

International Journal of Oncology is an international journal devoted to oncology research and cancer treatment.

Molecular Medicine Reports

Molecular Medicine Reports

Covers molecular medicine topics such as pharmacology, pathology, genetics, neuroscience, infectious diseases, molecular cardiology, and molecular surgery.

Oncology Reports

Oncology Reports

Oncology Reports is an international journal devoted to fundamental and applied research in Oncology.

Experimental and Therapeutic Medicine

Experimental and Therapeutic Medicine

Experimental and Therapeutic Medicine is an international journal devoted to laboratory and clinical medicine.

Oncology Letters

Oncology Letters

Oncology Letters is an international journal devoted to Experimental and Clinical Oncology.

Biomedical Reports

Biomedical Reports

Explores a wide range of biological and medical fields, including pharmacology, genetics, microbiology, neuroscience, and molecular cardiology.

Molecular and Clinical Oncology

Molecular and Clinical Oncology

International journal addressing all aspects of oncology research, from tumorigenesis and oncogenes to chemotherapy and metastasis.

World Academy of Sciences Journal

World Academy of Sciences Journal

Multidisciplinary open-access journal spanning biochemistry, genetics, neuroscience, environmental health, and synthetic biology.

International Journal of Functional Nutrition

International Journal of Functional Nutrition

Open-access journal combining biochemistry, pharmacology, immunology, and genetics to advance health through functional nutrition.

International Journal of Epigenetics

International Journal of Epigenetics

Publishes open-access research on using epigenetics to advance understanding and treatment of human disease.

Medicine International

Medicine International

An International Open Access Journal Devoted to General Medicine.

Journal Cover
October-2024 Volume 65 Issue 4

Full Size Image

Cover Legend PDF

Sign up for eToc alerts
Recommend to Library

  • Article
  • Citations
    • Cite This Article
    • Download Citation
    • Create Citation Alert
    • Remove Citation Alert
    • Cited By
  • Similar Articles
    • Related Articles (in Spandidos Publications)
    • Similar Articles (Google Scholar)
    • Similar Articles (PubMed)
  • Download PDF
  • Download XML
  • View XML
Article Open Access

Drug resistance and tumor immune microenvironment: An overview of current understandings (Review)

  • Authors:
    • Yan Liu
    • Jun Liang
    • Yanping Zhang
    • Qie Guo
  • View Affiliations / Copyright

    Affiliations: Department of Clinical Pharmacy, The Affiliated Hospital of Qingdao University, Qingdao, Shandong 266003, P.R. China, Department of Radiology, Qingdao Haici Hospital, Qingdao, Shandong 266000, P.R. China
    Copyright: © Liu et al. This is an open access article distributed under the terms of Creative Commons Attribution License.
  • Article Number: 96
    |
    Published online on: August 30, 2024
       https://doi.org/10.3892/ijo.2024.5684
  • Expand metrics +
Metrics: Total Views: 0 (Spandidos Publications: | PMC Statistics: )
Metrics: Total PDF Downloads: 0 (Spandidos Publications: | PMC Statistics: )
Cited By (CrossRef): 0 citations Loading Articles...

This article is mentioned in:



Abstract

The use of antitumor drugs represents a reliable strategy for cancer therapy. Unfortunately, drug resistance has become increasingly common and contributes to tumor metastasis and local recurrence. The tumor immune microenvironment (TME) consists of immune cells, cytokines and immunomodulators, and collectively they influence the response to treatment. Epigenetic changes including DNA methylation and histone modification, as well as increased drug exportation have been reported to contribute to the development of drug resistance in cancers. In the past few years, the majority of studies on tumors have only focused on the development and progression of a tumor from a mechanistic standpoint; few studies have examined whether the changes in the TME can also affect tumor growth and drug resistance. Recently, emerging evidence have raised more concerns regarding the role of TME in the development of drug resistance. In the present review, it was discussed how the suppressive TME adapts to drug resistance characterized by the cooperation of immune cells, cytokines, immunomodulators, stromal cells and extracellular matrix. Furthermore, it was reviewed how these immunological or metabolic changes alter immuno‑surveillance and thus facilitate tumor drug resistance. In addition, potential targets present in the TME for developing novel therapeutic strategies to improve individualized therapy for cancer treatment were revealed.
View Figures

Figure 1

Figure 2

Figure 3

Figure 4

Figure 5

View References

1 

Maia A, Schöllhorn A, Schuhmacher J and Gouttefangeas C: CAF-immune cell crosstalk and its impact in immunotherapy. Semin Immunopathol. 45:203–214. 2023. View Article : Google Scholar :

2 

Yan CY, Zhao ML, Wei YN and Zhao XH: Mechanisms of drug resistance in breast cancer liver metastases: Dilemmas and opportunities. Mol Ther Oncolytics. 28:212–229. 2023. View Article : Google Scholar : PubMed/NCBI

3 

Vesely MD, Zhang T and Chen L: Resistance mechanisms to Anti-PD cancer immunotherapy. Annu Rev Immunol. 40:45–74. 2022. View Article : Google Scholar : PubMed/NCBI

4 

Fu T, Dai LJ, Wu SY, Xiao Y, Ma D, Jiang YZ and Shao ZM: Spatial architecture of the immune microenvironment orchestrates tumor immunity and therapeutic response. J Hematol Oncol. 14:982021. View Article : Google Scholar : PubMed/NCBI

5 

Tang Y, Zang H, Wen Q and Fan S: AXL in cancer: A modulator of drug resistance and therapeutic target. J Exp Clin Cancer Res. 42:1482023. View Article : Google Scholar : PubMed/NCBI

6 

Jiang Y, Zhang H, Wang J, Liu Y, Luo T and Hua H: Targeting extracellular matrix stiffness and mechanotransducers to improve cancer therapy. J Hematol Oncol. 15:342022. View Article : Google Scholar : PubMed/NCBI

7 

La Rocca A, De Gregorio V, Lagreca E, Vecchione R, Netti PA and Imparato G: Colorectal cancer bioengineered microtissues as a model to replicate Tumor-ECM crosstalk and assess drug delivery systems in vitro. Int J Mol Sci. 24:56782023. View Article : Google Scholar : PubMed/NCBI

8 

Zhang Y and Brekken RA: Direct and indirect regulation of the tumor immune microenvironment by VEGF. J Leukoc Biol. 111:1269–1286. 2022. View Article : Google Scholar : PubMed/NCBI

9 

Dong W, Xie Y and Huang H: Prognostic value of Cancer-associated fibroblast-related gene signatures in hepatocellular carcinoma. Front Endocrinol (Lausanne). 13:8847772022. View Article : Google Scholar : PubMed/NCBI

10 

Liu X, Liu Y, Qi Y, Huang Y, Hu F, Dong F, Shu K and Lei T: Signal pathways involved in the interaction between tumor-associated macrophages/TAMs and Glioblastoma cells. Front Oncol. 12:8220852022. View Article : Google Scholar : PubMed/NCBI

11 

Larmonier N, Marron M, Zeng Y, Cantrell J, Romanoski A, Sepassi M, Thompson S, Chen X, Andreansky S and Katsanis E: Tumor-derived CD4(+)CD25(+) regulatory T cell suppression of dendritic cell function involves TGF-beta and IL-10. Cancer Immunol Immunother. 56:48–59. 2007. View Article : Google Scholar

12 

Haque A, Banik NL and Ray SK: Emerging role of combination of all-trans retinoic acid and interferon-gamma as chemoimmunotherapy in the management of human glioblastoma. Neurochem Res. 32:2203–2209. 2007. View Article : Google Scholar : PubMed/NCBI

13 

Downs-Canner SM, Meier J, Vincent BG and Serody JS: B cell function in the tumor microenvironment. Annu Rev Immunol. 40:169–193. 2022. View Article : Google Scholar : PubMed/NCBI

14 

Rabinovich GA, Gabrilovich D and Sotomayor EM: Immunosuppressive strategies that are mediated by tumor cells. Annu Rev Immunol. 25:267–296. 2007. View Article : Google Scholar

15 

Zulfiqar B, Mahroo A, Nasir K, Farooq RK, Jalal N, Rashid MU and Asghar K: Nanomedicine and cancer immunotherapy: Focus on indoleamine 2, 3-dioxygenase inhibitors. Onco Targets Ther. 10:463–476. 2017. View Article : Google Scholar :

16 

Makkouk A and Weiner GJ: Cancer immunotherapy and breaking immune tolerance: new approaches to an old challenge. Cancer Res. 75:5–10. 2015. View Article : Google Scholar

17 

Vimalraj S: A concise review of VEGF, PDGF, FGF, Notch, angiopoietin, and HGF signalling in tumor angiogenesis with a focus on alternative approaches and future directions. Int J Biol Macromol. 221:1428–1438. 2022. View Article : Google Scholar : PubMed/NCBI

18 

Huang J, Zhang L, Wan D, Zhou L, Zheng S, Lin S and Qiao Y: Extracellular matrix and its therapeutic potential for cancer treatment. Signal Transduct Target Ther. 6:1532021. View Article : Google Scholar : PubMed/NCBI

19 

Bigos KJ, Quiles CG, Lunj S, Smith DJ, Krause M, Troost EG, West CM, Hoskin P and Choudhury A: Tumour response to hypoxia: Understanding the hypoxic tumour microenvironment to improve treatment outcome in solid tumours. Front Oncol. 14:13313552024. View Article : Google Scholar : PubMed/NCBI

20 

Rømer AMA, Thorseth ML and Madsen DH: Immune modulatory properties of collagen in cancer. Front Immunol. 12:7914532021. View Article : Google Scholar : PubMed/NCBI

21 

Govaere O, Wouters J, Petz M, Vandewynckel YP, Van den Eynde K, Van den Broeck A, Verhulst S, Dollé L, Gremeaux L, Ceulemans A, et al: Laminin-332 sustains chemoresistance and quiescence as part of the human hepatic cancer stem cell niche. J Hepatol. 64:609–617. 2016. View Article : Google Scholar

22 

Fukazawa S, Shinto E, Tsuda H, Ueno H, Shikina A, Kajiwara Y, Yamamoto J and Hase K: Laminin β3 expression as a prognostic factor and a predictive marker of chemoresistance in colorectal cancer. Jpn J Clin Oncol. 45:533–540. 2015.PubMed/NCBI

23 

Di Martino JS, Nobre AR, Mondal C, Taha I, Farias EF, Fertig EJ, Naba A, Aguirre-Ghiso JA and Bravo-Cordero JJ: A tumor-derived type III collagen-rich ECM niche regulates tumor cell dormancy. Nat Cancer. 3:90–107. 2022. View Article : Google Scholar : PubMed/NCBI

24 

Puttock EH, Tyler EJ, Manni M, Maniati E, Butterworth C, Burger Ramos M, Peerani E, Hirani P, Gauthier V, Liu Y, et al: Extracellular matrix educates an immunoregulatory tumor macrophage phenotype found in ovarian cancer metastasis. Nat Commun. 14:25142023. View Article : Google Scholar : PubMed/NCBI

25 

Wang L, Li C, Wang J, Yang G, Lv Y, Fu B, Jian L, Ma J, Yu J, Yang Z, et al: Transformable ECM deprivation system effectively suppresses renal cell carcinoma by reversing anoikis resistance and increasing chemotherapy sensitivity. Adv Mater. 34:e22035182022. View Article : Google Scholar : PubMed/NCBI

26 

Tie Y, Tang F, Wei YQ and Wei XW: Immunosuppressive cells in cancer: Mechanisms and potential therapeutic targets. J Hematol Oncol. 15:612022. View Article : Google Scholar : PubMed/NCBI

27 

Liu Y, Li C, Lu Y, Liu C and Yang W: Tumor microenvironment-mediated immune tolerance in development and treatment of gastric cancer. Front Immunol. 13:10168172022. View Article : Google Scholar : PubMed/NCBI

28 

Labani-Motlagh A, Ashja-Mahdavi M and Loskog A: The tumor microenvironment: A milieu hindering and obstructing antitumor immune responses. Front Immunol. 11:9402020. View Article : Google Scholar : PubMed/NCBI

29 

Wang H, Tian T and Zhang J: Tumor-associated macrophages (TAMs) in colorectal cancer (CRC): From mechanism to therapy and prognosis. Int J Mol Sci. 22:84702021. View Article : Google Scholar : PubMed/NCBI

30 

Xiao M, He J, Yin L, Chen X, Zu X and Shen Y: Tumor-associated macrophages: Critical players in drug resistance of breast cancer. Front Immunol. 12:7994282021. View Article : Google Scholar

31 

Zaghdoudi S, Decaup E, Belhabib I, Samain R, Cassant-Sourdy S, Rochotte J, Brunel A, Schlaepfer D, Cros J, Neuzillet C, et al: FAK activity in cancer-associated fibroblasts is a prognostic marker and a druggable key metastatic player in pancreatic cancer. EMBO Mol Med. 12:e120102020. View Article : Google Scholar : PubMed/NCBI

32 

Yin Y, Yao S, Hu Y, Feng Y, Li M, Bian Z, Zhang J, Qin Y, Qi X, Zhou L, et al: The Immune-microenvironment Confers Chemoresistance of colorectal cancer through macrophage-derived IL6. Clin Cancer Res. 23:7375–7387. 2017. View Article : Google Scholar : PubMed/NCBI

33 

Li J, He K, Liu P and Xu LX: Iron participated in breast cancer chemoresistance by reinforcing IL-6 paracrine loop. Biochem Biophys Res Commun. 475:154–160. 2016. View Article : Google Scholar : PubMed/NCBI

34 

Zhang H, Dai Z, Wu W, Wang Z, Zhang N, Zhang L, Zeng WJ, Liu Z and Cheng Q: Regulatory mechanisms of immune checkpoints PD-L1 and CTLA-4 in cancer. J Exp Clin Cancer Res. 40:1842021. View Article : Google Scholar : PubMed/NCBI

35 

Chen S, Wang M, Lu T, Liu Y, Hong W, He X, Cheng Y, Liu J, Wei Y and Wei X: JMJD6 in tumor-associated macrophage regulates macrophage polarization and cancer progression via STAT3/IL-10 axis. Oncogene. 42:2737–2750. 2023. View Article : Google Scholar : PubMed/NCBI

36 

Tang B, Zhu J, Wang Y, Chen W, Fang S, Mao W, Xu Z, Yang Y, Weng Q, Zhao Z, et al: Targeted xCT-mediated Ferroptosis and Protumoral polarization of macrophages is effective against HCC and enhances the efficacy of the Anti-PD-1/L1 response. Adv Sci (Weinh). 10:e22039732023. View Article : Google Scholar

37 

Li Y, Shen Z, Chai Z, Zhan Y, Zhang Y, Liu Z, Liu Y, Li Z, Lin M, Zhang Z, et al: Targeting MS4A4A on tumour-associated macrophages restores CD8+ T-cell-mediated antitumour immunity. Gut. 72:2307–2320. 2023. View Article : Google Scholar : PubMed/NCBI

38 

Tanei T, Leonard F, Liu X, Alexander JF, Saito Y, Ferrari M, Godin B and Yokoi K: Redirecting transport of nanoparticle albumin-bound paclitaxel to macrophages enhances therapeutic efficacy against liver metastases. Cancer Res. 76:429–439. 2016. View Article : Google Scholar : PubMed/NCBI

39 

Rodell CB, Arlauckas SP, Cuccarese MF, Garris CS, Li R, Ahmed MS, Kohler RH, Pittet MJ and Weissleder R: TLR7/8-agonist-loaded nanoparticles promote the polarization of tumour-associated macrophages to enhance cancer immunotherapy. Nat Biomed Eng. 2:578–588. 2018. View Article : Google Scholar :

40 

Andersen MN, Etzerodt A, Graversen JH, Holthof LC, Moestrup SK, Hokland M and Møller HJ: STAT3 inhibition specifically in human monocytes and macrophages by CD163-targeted corosolic acid-containing liposomes. Cancer Immunol Immunother. 68:489–502. 2019. View Article : Google Scholar : PubMed/NCBI

41 

Candido JB, Morton JP, Bailey P, Campbell AD, Karim SA, Jamieson T, Lapienyte L, Gopinathan A, Clark W, McGhee EJ, et al: CSF1R+ macrophages sustain pancreatic tumor growth through T cell suppression and maintenance of key gene programs that define the squamous subtype. Cell Rep. 23:1448–1460. 2018. View Article : Google Scholar : PubMed/NCBI

42 

Larionova I, Cherdyntseva N, Liu T, Patysheva M, Rakina M and Kzhyshkowska J: Interaction of tumor-associated macrophages and cancer chemotherapy. Oncoimmunology. 8:15960042019. View Article : Google Scholar : PubMed/NCBI

43 

Xia C, Yin S, To KKW and Fu L: CD39/CD73/A2AR pathway and cancer immunotherapy. Mol Cancer. 22:442023. View Article : Google Scholar : PubMed/NCBI

44 

Zhang L, Dou X, Zheng Z, Ye C, Lu TX, Liang HL, Wang L, Weichselbaum RR and He C: YTHDF2/m6 A/NF-κB axis controls anti-tumor immunity by regulating intratumoral Tregs. EMBO J. 42:e1131262023. View Article : Google Scholar

45 

Wen Z, Liu T, Zhang Y, Yue Q, Meng H, He Y, Yang Y, Li M, Zheng J and Lin W: Salidroside regulates tumor microenvironment of non-small cell lung cancer via Hsp70/Stub1/Foxp3 pathway in Tregs. BMC Cancer. 23:7172023. View Article : Google Scholar : PubMed/NCBI

46 

Shiri AM, Zhang T, Bedke T, Zazara DE, Zhao L, Lücke J, Sabihi M, Fazio A, Zhang S, Tauriello DVF, et al: IL-10 dampens antitumor immunity and promotes liver metastasis via PD-L1 induction. J Hepatol. 80:634–644. 2024. View Article : Google Scholar : PubMed/NCBI

47 

Hume DA and MacDonald KP: Therapeutic applications of macrophage colony-stimulating factor-1 (CSF-1) and antagonists of CSF-1 receptor (CSF-1R) signaling. Blood. 119:1810–1820. 2012. View Article : Google Scholar

48 

Lee C, Jeong H, Bae Y, Shin K, Kang S, Kim H, Oh J and Bae H: Targeting of M2-like tumor-associated macrophages with a melittin-based pro-apoptotic peptide. J Immunother Cancer. 7:1472019. View Article : Google Scholar : PubMed/NCBI

49 

Huang H, Zepp M, Georges RB, Jarahian M, Kazemi M, Eyol E and Berger MR: The CCR5 antagonist maraviroc causes remission of pancreatic cancer liver metastasis in nude rats based on cell cycle inhibition and apoptosis induction. Cancer Lett. 474:82–93. 2020. View Article : Google Scholar : PubMed/NCBI

50 

Aldinucci D and Casagrande N: Inhibition of the CCL5/CCR5 Axis against the Progression of Gastric Cancer. Int J Mol Sci. 19:14772018. View Article : Google Scholar : PubMed/NCBI

51 

Hu Q, Wang R, Zhang J, Xue Q and Ding B: Tumor-associated neutrophils upregulate PANoptosis to foster an immunosuppressive microenvironment of non-small cell lung cancer. Cancer Immunol Immunother. 72:4293–4308. 2023. View Article : Google Scholar : PubMed/NCBI

52 

Sheng Y, Peng W, Huang Y, Cheng L, Meng Y, Kwantwi LB, Yang J, Xu J, Xiao H, Kzhyshkowska J, et al: Tumor-activated neutrophils promote metastasis in breast cancer via the G-CSF-RLN2-MMP-9 axis. J Leukoc Biol. 113:383–399. 2023. View Article : Google Scholar : PubMed/NCBI

53 

Chan YT, Tan HY, Lu Y, Zhang C, Cheng CS, Wu J, Wang N and Feng Y: Pancreatic melatonin enhances anti-tumor immunity in pancreatic adenocarcinoma through regulating tumor-associated neutrophils infiltration and NETosis. Acta Pharm Sin B. 13:1554–1567. 2023. View Article : Google Scholar : PubMed/NCBI

54 

Lv B, Wang Y, Ma D, Cheng W, Liu J, Yong T, Chen H and Wang C: Immunotherapy: Reshape the tumor immune microenvironment. Front Immunol. 13:8441422022. View Article : Google Scholar : PubMed/NCBI

55 

Zhang W, Li S, Li C, Li T and Huang Y: Remodeling tumor microenvironment with natural products to overcome drug resistance. Front Immunol. 13:10519982022. View Article : Google Scholar : PubMed/NCBI

56 

Halama N, Zoernig I, Berthel A, Kahlert C, Klupp F, Suarez-Carmona M, Suetterlin T, Brand K, Krauss J, Lasitschka F, et al: Tumoral immune cell exploitation in colorectal cancer metastases can be targeted effectively by Anti-CCR5 therapy in cancer patients. Cancer Cell. 29:587–601. 2016. View Article : Google Scholar : PubMed/NCBI

57 

Joyce JA and Fearon DT: T cell exclusion, immune privilege, and the tumor microenvironment. Science. 348:74–80. 2015. View Article : Google Scholar : PubMed/NCBI

58 

DeNardo DG, Brennan DJ, Rexhepaj E, Ruffell B, Shiao SL, Madden SF, Gallagher WM, Wadhwani N, Keil SD, Junaid SA, et al: Leukocyte complexity predicts breast cancer survival and functionally regulates response to chemotherapy. Cancer Discov. 1:54–67. 2011. View Article : Google Scholar : PubMed/NCBI

59 

Baghdadi M, Wada H, Nakanishi S, Abe H, Han N, Putra WE, Endo D, Watari H, Sakuragi N, Hida Y, et al: Chemotherapy-Induced IL34 enhances immunosuppression by tumor-associated macrophages and mediates survival of Chemoresistant lung cancer cells. Cancer Res. 76:6030–6042. 2016. View Article : Google Scholar : PubMed/NCBI

60 

Yang C, He L, He P, Liu Y, Wang W, He Y, Du Y and Gao F: Increased drug resistance in breast cancer by tumor-associated macrophages through IL-10/STAT3/bcl-2 signaling pathway. Med Oncol. 32:3522015. View Article : Google Scholar : PubMed/NCBI

61 

Zhang R, Dong M, Tu J, Li F, Deng Q, Xu J, He X, Ding J, Xia J, Sheng D, et al: PMN-MDSCs modulated by CCL20 from cancer cells promoted breast cancer cell stemness through CXCL2-CXCR2 pathway. Signal Transduct Target Ther. 8:972023. View Article : Google Scholar : PubMed/NCBI

62 

Mei Y, Zhu Y, Yong KSM, Hanafi ZB, Gong H, Liu Y, Teo HY, Hussain M, Song Y, Chen Q, et al: IL-37 dampens immunosuppressive functions of MDSCs via metabolic reprogramming in the tumor microenvironment. Cell Rep. 43:1138352024. View Article : Google Scholar : PubMed/NCBI

63 

Wei C, Yang C, Wang S, Shi D, Zhang C, Lin X and Xiong B: M2 macrophages confer resistance to 5-fluorouracil in colorectal cancer through the activation of CCL22/PI3K/AKT signaling. Onco Targets Ther. 12:3051–3063. 2019. View Article : Google Scholar : PubMed/NCBI

64 

Yu S, Li Q, Yu Y, Cui Y, Li W, Liu T and Liu F: Activated HIF1α of tumor cells promotes chemoresistance development via recruiting GDF15-producing tumor-associated macrophages in gastric cancer. Cancer Immunol Immunother. 69:1973–1987. 2020. View Article : Google Scholar : PubMed/NCBI

65 

Kullberg M, Martinson H, Mann K and Anchordoquy TJ: Complement C3 mediated targeting of liposomes to granulocytic myeloid derived suppressor cells. Nanomedicine. 11:1355–1363. 2015. View Article : Google Scholar : PubMed/NCBI

66 

Ostrand-Rosenberg S, Lamb TJ and Pawelec G: Here, There, and everywhere: Myeloid-derived suppressor cells in immunology. J Immunol. 210:1183–1197. 2023. View Article : Google Scholar : PubMed/NCBI

67 

Plesca I, Müller L, Böttcher JP, Medyouf H, Wehner R and Schmitz M: Tumor-associated human dendritic cell subsets: Phenotype, functional orientation, and clinical relevance. Eur J Immunol. 52:1750–1758. 2022. View Article : Google Scholar : PubMed/NCBI

68 

Dong Y, Chen J, Chen Y and Liu S: Targeting the STAT3 oncogenic pathway: Cancer immunotherapy and drug repurposing. Biomed Pharmacother. 167:1155132023. View Article : Google Scholar : PubMed/NCBI

69 

Anderson NM and Simon MC: The tumor microenvironment. Curr Biol. 30:R921–R925. 2020. View Article : Google Scholar : PubMed/NCBI

70 

Arner EN and Rathmell JC: Metabolic programming and immune suppression in the tumor microenvironment. Cancer Cell. 41:421–433. 2023. View Article : Google Scholar : PubMed/NCBI

71 

Jing X, Yang F, Shao C, Wei K, Xie M, Shen H and Shu Y: Role of hypoxia in cancer therapy by regulating the tumor microenvironment. Mol Cancer. 18:1572019. View Article : Google Scholar : PubMed/NCBI

72 

Wu Q, You L, Nepovimova E, Heger Z, Wu W, Kuca K and Adam V: Hypoxia-inducible factors: Master regulators of hypoxic tumor immune escape. J Hematol Oncol. 15:772022. View Article : Google Scholar : PubMed/NCBI

73 

Lian X, Yang K, Li R, Li M, Zuo J, Zheng B, Wang W, Wang P and Zhou S: Immunometabolic rewiring in tumorigenesis and anti-tumor immunotherapy. Mol Cancer. 21:272022. View Article : Google Scholar : PubMed/NCBI

74 

Liu Z, Zou H, Dang Q, Xu H, Liu L, Zhang Y, Lv J, Li H, Zhou Z and Han X: Biological and pharmacological roles of m6A modifications in cancer drug resistance. Mol Cancer. 21:2202022. View Article : Google Scholar

75 

Xu H, Jiao D, Liu A and Wu K: Tumor organoids: Applications in cancer modeling and potentials in precision medicine. J Hematol Oncol. 15:582022. View Article : Google Scholar : PubMed/NCBI

76 

Yang L, Dong Y, Li Y, Wang D, Liu S, Wang D, Gao Q, Ji S, Chen X, Lei Q, et al: IL-10 derived from M2 macrophage promotes cancer stemness via JAK1/STAT1/NF-κB/Notch1 pathway in non-small cell lung cancer. Int J Cancer. 145:1099–1110. 2019. View Article : Google Scholar : PubMed/NCBI

77 

Yang D, Liu J, Qian H and Zhuang Q: Cancer-associated fibroblasts: From basic science to anticancer therapy. Exp Mol Med. 55:1322–1332. 2023. View Article : Google Scholar : PubMed/NCBI

78 

Zhao Z, Mei Y, Wang Z and He W: The effect of oxidative phosphorylation on cancer drug resistance. Cancers (Basel). 15:622022. View Article : Google Scholar

79 

Zhang H, Yue X, Chen Z, Liu C, Wu W, Zhang N, Liu Z, Yang L, Jiang Q, Cheng Q, et al: Define cancer-associated fibroblasts (CAFs) in the tumor microenvironment: New opportunities in cancer immunotherapy and advances in clinical trials. Mol Cancer. 22:1592023. View Article : Google Scholar : PubMed/NCBI

80 

Dey P, Kimmelman AC and DePinho RA: Metabolic Codependencies in the tumor microenvironment. Cancer Discov. 11:1067–1081. 2021. View Article : Google Scholar : PubMed/NCBI

81 

Seebacher NA, Krchniakova M, Stacy AE, Skoda J and Jansson PJ: Tumour microenvironment stress promotes the development of drug resistance. Antioxidants (Basel). 10:18012021. View Article : Google Scholar : PubMed/NCBI

82 

Shigeta K, Hasegawa M, Hishiki T, Naito Y, Baba Y, Mikami S, Matsumoto K, Mizuno R, Miyajima A, Kikuchi E, et al: IDH2 stabilizes HIF-1α-induced metabolic reprogramming and promotes chemoresistance in urothelial cancer. EMBO J. 42:e1106202023. View Article : Google Scholar

83 

Li YQ, Sun FZ, Li CX, Mo HN, Zhou YT, Lv D, Zhai JT, Qian HL and Ma F: RARRES2 regulates lipid metabolic reprogramming to mediate the development of brain metastasis in triple negative breast cancer. Mil Med Res. 10:342023.PubMed/NCBI

84 

Gu J, Zhou J, Chen Q, Xu X, Gao J, Li X, Shao Q, Zhou B, Zhou H, Wei S, et al: Tumor metabolite lactate promotes tumorigenesis by modulating MOESIN lactylation and enhancing TGF-β signaling in regulatory T cells. Cell Rep. 39:1109862022. View Article : Google Scholar

85 

Linares JF, Cid-Diaz T, Duran A, Osrodek M, Martinez-Ordoñez A, Reina-Campos M, Kuo HH, Elemento O, Martin ML, Cordes T, et al: The lactate-NAD+ axis activates cancer-associated fibroblasts by downregulating p62. Cell Rep. 39:1107922022. View Article : Google Scholar :

86 

Mazurkiewicz J, Simiczyjew A, Dratkiewicz E, Pietraszek-Gremplewicz K, Majkowski M, Kot M, Ziętek M, Matkowski R and Nowak D: Melanoma cells with diverse invasive potential differentially induce the activation of normal human fibroblasts. Cell Commun Signal. 20:632022. View Article : Google Scholar : PubMed/NCBI

87 

Ren J, Ding L, Zhang D, Shi G, Xu Q, Shen S, Wang Y, Wang T and Hou Y: Carcinoma-associated fibroblasts promote the stemness and chemoresistance of colorectal cancer by transferring exosomal lncRNA H19. Theranostics. 8:3932–3948. 2018. View Article : Google Scholar : PubMed/NCBI

88 

Li W, Zhou C, Yu L, Hou Z, Liu H, Kong L, Xu Y, He J, Lan J, Ou Q, et al: Tumor-derived lactate promotes resistance to bevacizumab treatment by facilitating autophagy enhancer protein RUBCNL expression through histone H3 lysine 18 lactylation (H3K18la) in colorectal cancer. Autophagy. 20:114–130. 2024. View Article : Google Scholar :

89 

Wang L, Li S, Luo H, Lu Q and Yu S: PCSK9 promotes the progression and metastasis of colon cancer cells through regulation of EMT and PI3K/AKT signaling in tumor cells and phenotypic polarization of macrophages. J Exp Clin Cancer Res. 41:3032022. View Article : Google Scholar : PubMed/NCBI

90 

Ivey JW, Bonakdar M, Kanitkar A, Davalos RV and Verbridge SS: Improving cancer therapies by targeting the physical and chemical hallmarks of the tumor microenvironment. Cancer Lett. 380:330–339. 2016. View Article : Google Scholar : PubMed/NCBI

91 

Wu P, Gao W, Su M, Nice EC, Zhang W, Lin J and Xie N: Adaptive mechanisms of tumor therapy resistance driven by tumor microenvironment. Front Cell Dev Biol. 9:6414692021. View Article : Google Scholar : PubMed/NCBI

92 

Cheng J, Yan J, Liu Y, Shi J, Wang H, Zhou H, Zhou Y, Zhang T, Zhao L, Meng X, et al: Cancer-cell-derived fumarate suppresses the anti-tumor capacity of CD8+ T cells in the tumor microenvironment. Cell Metab. 35:961–978.e10. 2023. View Article : Google Scholar

93 

Rahmanian M, Seyfoori A, Ghasemi M, Shamsi M, Kolahchi AR, Modarres HP, Sanati-Nezhad A and Majidzadeh-A K: In-vitro tumor microenvironment models containing physical and biological barriers for modelling multidrug resistance mechanisms and multidrug delivery strategies. J Control Release. 334:164–177. 2021. View Article : Google Scholar : PubMed/NCBI

94 

Tajaldini M, Poorkhani A, Amiriani T, Amiriani A, Javid H, Aref P, Ahmadi F, Sadani S and Khori V: Strategy of targeting the tumor microenvironment via inhibition of fibroblast/fibrosis remodeling new era to cancer chemo-immunotherapy resistance. Eur J Pharmacol. 957:1759912023. View Article : Google Scholar : PubMed/NCBI

95 

Lopez-Crapez E, Costa L, Tosato G, Ramos J, Mazard T, Guiramand J, Thierry A, Colinge J, Milhiet PE and Bénistant C: Mechanical signatures of human colon cancers. Sci Rep. 12:124752022. View Article : Google Scholar : PubMed/NCBI

96 

Zhao Q, Chen J, Zhang Z, Xiao C, Zeng H, Xu C, Yang X and Li Z: Modulating tumor mechanics with nanomedicine for cancer therapy. Biomater Sci. 11:4471–4489. 2023. View Article : Google Scholar : PubMed/NCBI

97 

Zanotelli MR and Reinhart-King CA: Mechanical forces in tumor angiogenesis. Adv Exp Med Biol. 1092:91–112. 2018. View Article : Google Scholar : PubMed/NCBI

98 

Nicolas-Boluda A, Silva AKA, Fournel S and Gazeau F: Physical oncology: New targets for nanomedicine. Biomaterials. 150:87–99. 2018. View Article : Google Scholar

99 

Arora I, Li S, Crowley MR, Li Y and Tollefsbol TO: Genome-wide analysis on transcriptome and methylome in prevention of mammary tumor induced by early life combined botanicals. Cells. 12:142022. View Article : Google Scholar

100 

Wang EJ, Chen IH, Kuo BY, Yu CC, Lai MT, Lin JT, Lin LY, Chen CM, Hwang T and Sheu JJ: Alterations of cytoskeleton networks in cell fate determination and cancer development. Biomolecules. 12:18622022. View Article : Google Scholar : PubMed/NCBI

101 

Geiger B, Bershadsky A, Pankov R and Yamada KM: Transmembrane crosstalk between the extracellular matrix-cytoskeleton crosstalk. Nat Rev Mol Cell Biol. 2:793–805. 2001. View Article : Google Scholar : PubMed/NCBI

102 

Park JS, Burckhardt CJ, Lazcano R, Solis LM, Isogai T, Li L, Chen CS, Gao B, Minna JD, Bachoo R, et al: Mechanical regulation of glycolysis via cytoskeleton architecture. Nature. 578:621–626. 2020. View Article : Google Scholar : PubMed/NCBI

103 

Yu S, Li Q, Wang Y, Cui Y, Yu Y, Li W, Liu F and Liu T: Tumor-derived LIF promotes chemoresistance via activating tumor-associated macrophages in gastric cancers. Exp Cell Res. 406:1127342021. View Article : Google Scholar : PubMed/NCBI

104 

Li J, Wang S, Wang N, Zheng Y, Yang B, Wang X, Zhang J, Pan B and Wang Z: Aiduqing formula inhibits breast cancer metastasis by suppressing TAM/CXCL1-induced Treg differentiation and infiltration. Cell Commun Signal. 19:892021. View Article : Google Scholar : PubMed/NCBI

105 

Gao D, Cazares LH and Fish EN: CCL5-CCR5 interactions modulate metabolic events during tumor onset to promote tumorigenesis. BMC Cancer. 17:8342017. View Article : Google Scholar : PubMed/NCBI

106 

Yuan MX, Ji CY, Gao HQ, Sheng XY, Xie WX and Yin Q: lncRNA TUG1 regulates angiogenesis via the miR-204-5p/JAK2/STAT3 axis in hepatoblastoma. Mol Med Rep. 24:5532021. View Article : Google Scholar

107 

Nywening TM, Belt BA, Cullinan DR, Panni RZ, Han BJ, Sanford DE, Jacobs RC, Ye J, Patel AA, Gillanders WE, et al: Targeting both tumour-associated CXCR2+ neutrophils and CCR2+ macrophages disrupts myeloid recruitment and improves chemotherapeutic responses in pancreatic ductal adenocarcinoma. Gut. 67:1112–1123. 2018. View Article : Google Scholar

108 

Inoue C, Miki Y, Saito R, Hata S, Abe J, Sato I, Okada Y and Sasano H: PD-L1 induction by cancer-associated fibroblast-derived factors in lung adenocarcinoma cells. Cancers (Basel). 11:12572019. View Article : Google Scholar : PubMed/NCBI

109 

Harryvan TJ, Visser M, de Bruin L, Plug L, Griffioen L, Mulder A, van Veelen PA, van der Heden van Noort GJ, Jongsma ML, Meeuwsen MH, et al: Enhanced antigen cross-presentation in human colorectal cancer-associated fibroblasts through upregulation of the lysosomal protease cathepsin S. J Immunother Cancer. 10:e0035912022. View Article : Google Scholar : PubMed/NCBI

110 

Souza-Fonseca-Guimaraes F, Rossi GR, Dagley LF, Foroutan M, McCulloch TR, Yousef J, Park HY, Gunter JH, Beavis PA, Lin CY, et al: TGFβ and CIS inhibition overcomes NK-cell suppression to restore antitumor immunity. Cancer Immunol Res. 10:1047–1054. 2022. View Article : Google Scholar : PubMed/NCBI

111 

Francescone R, Barbosa Vendramini-Costa D, Franco-Barraza J, Wagner J, Muir A, Lau AN, Gabitova L, Pazina T, Gupta S, Luong T, et al: Netrin G1 promotes pancreatic tumorigenesis through cancer-associated fibroblast-driven nutritional support and immunosuppression. Cancer Discov. 11:446–479. 2021. View Article : Google Scholar

112 

Huang KF, Zhang GD, Huang YQ and Diao Y: Wogonin induces apoptosis and down-regulates survivin in human breast cancer MCF-7 cells by modulating PI3K-AKT pathway. Int Immunopharmacol. 12:334–41. 2012. View Article : Google Scholar

113 

Ali SR, Jordan M, Nagarajan P and Amit M: Nerve density and neuronal biomarkers in cancer. Cancers (Basel). 14:48172022. View Article : Google Scholar : PubMed/NCBI

114 

Mhaidly R and Mechta-Grigoriou F: Role of cancer-associated fibroblast subpopulations in immune infiltration, as a new means of treatment in cancer. Immunol Rev. 302:259–272. 2021. View Article : Google Scholar : PubMed/NCBI

115 

Timosenko E, Hadjinicolaou AV and Cerundolo V: Modulation of cancer-specific immune responses by amino acid degrading enzymes. Immunotherapy. 9:83–97. 2017. View Article : Google Scholar

116 

Stockmann C, Doedens A, Weidemann A, Zhang N, Takeda N, Greenberg JI, Cheresh DA and Johnson RS: Deletion of vascular endothelial growth factor in myeloid cells accelerates tumorigenesis. Nature. 456:814–818. 2008. View Article : Google Scholar : PubMed/NCBI

117 

Wang S, Liu G, Li Y and Pan Y: Metabolic reprogramming induces macrophage polarization in the tumor microenvironment. Front Immunol. 13:8400292022. View Article : Google Scholar : PubMed/NCBI

118 

Zhang M, Zhang H, Tang F, Wang Y, Mo Z, Lei X and Tang S: Doxorubicin resistance mediated by cytoplasmic macrophage colony-stimulating factor is associated with switch from apoptosis to autophagic cell death in MCF-7 breast cancer cells. Exp Biol Med (Maywood). 241:2086–2093. 2016. View Article : Google Scholar : PubMed/NCBI

119 

Mehta AK, Kadel S, Townsend MG, Oliwa M and Guerriero JL: Macrophage biology and mechanisms of immune suppression in breast cancer. Front Immunol. 12:6437712021. View Article : Google Scholar : PubMed/NCBI

120 

Li Y, Weng Y, Zhong L, Chong H, Chen S, Sun Y, Li W and Shi Q: VEGFR3 inhibition chemosensitizes lung adenocarcinoma A549 cells in the tumor-associated macrophage microenvironment through upregulation of p53 and PTEN. Oncol Rep. 38:2761–2773. 2017. View Article : Google Scholar : PubMed/NCBI

121 

Dalton HJ, Pradeep S, McGuire M, Hailemichael Y, Ma S, Lyons Y, Armaiz-Pena GN, Previs RA, Hansen JM, Rupaimoole R, et al: Macrophages facilitate resistance to Anti-VEGF therapy by Altered VEGFR expression. Clin Cancer Res. 23:7034–7046. 2017. View Article : Google Scholar : PubMed/NCBI

122 

Vahidian F, Duijf PHG, Safarzadeh E, Derakhshani A, Baghbanzadeh A and Baradaran B: Interactions between cancer stem cells, immune system and some environmental components: Friends or foes? Immunol Lett. 208:19–29. 2019. View Article : Google Scholar : PubMed/NCBI

123 

Pu Y and Ji Q: Tumor-associated macrophages regulate PD-1/PD-L1 immunosuppression. Front Immunol. 13:8745892022. View Article : Google Scholar : PubMed/NCBI

124 

Binnewies M, Pollack JL, Rudolph J, Dash S, Abushawish M, Lee T, Jahchan NS, Canaday P, Lu E, Norng M, et al: Targeting TREM2 on tumor-associated macrophages enhances immunotherapy. Cell Rep. 37:1098442021. View Article : Google Scholar : PubMed/NCBI

125 

Chen D, Zhang X, Li Z and Zhu B: Metabolic regulatory crosstalk between tumor microenvironment and tumor-associated macrophages. Theranostics. 11:1016–1030. 2021. View Article : Google Scholar : PubMed/NCBI

126 

Cassetta L and Pollard JW: A timeline of tumour-associated macrophage biology. Nat Rev Cancer. 23:238–257. 2023. View Article : Google Scholar : PubMed/NCBI

127 

Pan Y, Yu Y, Wang X and Zhang T: Tumor-associated macrophages in tumor immunity. Front Immunol. 11:5830842020. View Article : Google Scholar : PubMed/NCBI

128 

Gao J, Liang Y and Wang L: Shaping polarization of tumor-associated macrophages in cancer immunotherapy. Front Immunol. 13:8887132022. View Article : Google Scholar : PubMed/NCBI

129 

Li C, Xu X, Wei S, Jiang P, Xue L and Wang J: Tumor-associated macrophages: Potential therapeutic strategies and future prospects in cancer. J Immunother Cancer. 9:e0013412021. View Article : Google Scholar : PubMed/NCBI

130 

Basak U, Sarkar T, Mukherjee S, Chakraborty S, Dutta A, Dutta S, Nayak D, Kaushik S, Das T and Sa G: Tumor-associated macrophages: An effective player of the tumor microenvironment. Front Immunol. 14:12952572023. View Article : Google Scholar : PubMed/NCBI

131 

Munir MT, Kay MK, Kang MH, Rahman MM, Al-Harrasi A, Choudhury M, Moustaid-Moussa N, Hussain F and Rahman SM: Tumor-associated macrophages as multifaceted regulators of breast tumor growth. Int J Mol Sci. 22:65262021. View Article : Google Scholar : PubMed/NCBI

132 

Céspedes MV, Guillén MJ, López-Casas PP, Sarno F, Gallardo A, Álamo P, Cuevas C, Hidalgo M, Galmarini CM, Allavena P, et al: Lurbinectedin induces depletion of tumor-associated macrophages, an essential component of its in vivo synergism with gemcitabine, in pancreatic adenocarcinoma mouse models. Dis Model Mech. 9:1461–1471. 2016.PubMed/NCBI

133 

Ayoub M, Shinde-Jadhav S, Mansure JJ, Alvarez F, Connell T, Seuntjens J, Piccirillo CA and Kassouf W: The immune mediated role of extracellular HMGB1 in a heterotopic model of bladder cancer radioresistance. Sci Rep. 9:63482019. View Article : Google Scholar : PubMed/NCBI

134 

Hong L, Wang X, Zheng L, Wang S and Zhu G: Tumor-associated macrophages promote cisplatin resistance in ovarian cancer cells by enhancing WTAP-mediated N6-methyladenosine RNA methylation via the CXCL16/CXCR6 axis. Cancer Chemother Pharmacol. 92:71–81. 2023. View Article : Google Scholar : PubMed/NCBI

135 

Kobayashi H, Gieniec KA, Lannagan TRM, Wang T, Asai N, Mizutani Y, Iida T, Ando R, Thomas EM, Sakai A, et al: The origin and contribution of cancer-associated fibroblasts in colorectal carcinogenesis. Gastroenterology. 162:890–906. 2022. View Article : Google Scholar

136 

Hosomi S, Grootjans J, Huang YH, Kaser A and Blumberg RS: New insights into the regulation of natural-killer group 2 Member D (NKG2D) and NKG2D-ligands: Endoplasmic reticulum stress and CEA-related cell adhesion molecule 1. Front Immunol. 9:13242018. View Article : Google Scholar : PubMed/NCBI

137 

Comito G, Iscaro A, Bacci M, Morandi A, Ippolito L, Parri M, Montagnani I, Raspollini MR, Serni S, Simeoni L, et al: Lactate modulates CD4+ T-cell polarization and induces an immunosuppressive environment, which sustains prostate carcinoma progression via TLR8/miR21 axis. Oncogene. 38:3681–3695. 2019. View Article : Google Scholar : PubMed/NCBI

138 

Liang L, Li W, Li X, Jin X, Liao Q, Li Y and Zhou Y: 'Reverse Warburg effect' of cancer associated fibroblasts (Review). Int J Oncol. 60:672022. View Article : Google Scholar

139 

Zhao Q, Huang L, Qin G, Qiao Y, Ren F, Shen C, Wang S, Liu S, Lian J, Wang D, et al: Cancer-associated fibroblasts induce monocytic myeloid-derived suppressor cell generation via IL-6/exosomal miR-21-activated STAT3 signaling to promote cisplatin resistance in esophageal squamous cell carcinoma. Cancer Lett. 518:35–48. 2021. View Article : Google Scholar : PubMed/NCBI

140 

Xiang H, Ramil CP, Hai J, Zhang C, Wang H, Watkins AA, Afshar R, Georgiev P, Sze MA, Song XS, et al: Cancer-associated fibroblasts promote immunosuppression by inducing ROS-generating monocytic MDSCs in lung squamous cell carcinoma. Cancer Immunol Res. 8:436–450. 2020. View Article : Google Scholar : PubMed/NCBI

141 

Lin SC, Liao YC, Chen PM, Yang YY, Wang YH, Tung SL, Chuang CM, Sung YW, Jang TH, Chuang SE, et al: Periostin promotes ovarian cancer metastasis by enhancing M2 macrophages and cancer-associated fibroblasts via integrin-mediated NF-κB and TGF-β2 signaling. J Biomed Sci. 29:1092022. View Article : Google Scholar

142 

Chen X, Zhang W, Yang W, Zhou M and Liu F: Acquired resistance for immune checkpoint inhibitors in cancer immunotherapy: Challenges and prospects. Aging (Albany NY). 14:1048–1064. 2022. View Article : Google Scholar : PubMed/NCBI

143 

Baik AH: Hypoxia signaling and oxygen metabolism in cardio-oncology. J Mol Cell Cardiol. 165:64–75. 2022. View Article : Google Scholar : PubMed/NCBI

144 

Dzobo K, Senthebane DA and Dandara C: The tumor microenvironment in tumorigenesis and therapy resistance revisited. Cancers (Basel). 15:3762023. View Article : Google Scholar : PubMed/NCBI

145 

Harris B, Saleem S, Cook N and Searle E: Targeting hypoxia in solid and haematological malignancies. J Exp Clin Cancer Res. 41:3182022. View Article : Google Scholar : PubMed/NCBI

146 

Zhang H, Deng T, Liu R, Ning T, Yang H, Liu D, Zhang Q, Lin D, Ge S, Bai M, et al: CAF secreted miR-522 suppresses ferroptosis and promotes acquired chemo-resistance in gastric cancer. Mol Cancer. 19:432020. View Article : Google Scholar : PubMed/NCBI

147 

Hu JL, Wang W, Lan XL, Zeng ZC, Liang YS, Yan YR, Song FY, Wang FF, Zhu XH, Liao WJ, et al: CAFs secreted exosomes promote metastasis and chemotherapy resistance by enhancing cell stemness and epithelial-mesenchymal transition in colorectal cancer. Mol Cancer. 18:912019. View Article : Google Scholar : PubMed/NCBI

148 

Liu T, Han C, Fang P, Ma Z, Wang X, Chen H, Wang S, Meng F, Wang C, Zhang E, et al: Cancer-associated fibroblast-specific lncRNA LINC01614 enhances glutamine uptake in lung adenocarcinoma. J Hematol Oncol. 15:1412022. View Article : Google Scholar : PubMed/NCBI

149 

Patil N, Allgayer H and Leupold JH: MicroRNAs in the tumor microenvironment. Adv Exp Med Biol. 1277:1–31. 2020. View Article : Google Scholar : PubMed/NCBI

150 

Zhu S, Mao J, Zhang X, Wang P, Zhou Y, Tong J, Peng H, Yang B and Fu Q: CAF-derived exosomal lncRNA FAL1 promotes chemoresistance to oxaliplatin by regulating autophagy in colorectal cancer. Dig Liver Dis. 56:330–342. 2024. View Article : Google Scholar

151 

Meng Q, Deng Y, Lu Y, Wu C and Tang S: Tumor-derived miRNAs as tumor microenvironment regulators for synergistic therapeutic options. J Cancer Res Clin Oncol. 149:423–439. 2023. View Article : Google Scholar

152 

Zhang P, Wang Q, Lu W, Zhang F, Wu D and Sun J: NNT-AS1 in CAFs-derived exosomes promotes progression and glucose metabolism through miR-889-3p/HIF-1α in pancreatic adenocarcinoma. Sci Rep. 14:69792024. View Article : Google Scholar

153 

Wang WZ, Cao X, Bian L, Gao Y, Yu M, Li YT, Xu JG, Wang YH, Yang HF, You DY, et al: Analysis of mRNA-miRNA interaction network reveals the role of CAFs-derived exosomes in the immune regulation of oral squamous cell carcinoma. BMC Cancer. 23:5912023. View Article : Google Scholar : PubMed/NCBI

154 

Miaomiao S, Xiaoqian W, Yuwei S, Chao C, Chenbo Y, Yinghao L, Yichen H, Jiao S and Kuisheng C: Cancer-associated fibroblast-derived exosome microRNA-21 promotes angiogenesis in multiple myeloma. Sci Rep. 13:96712023. View Article : Google Scholar : PubMed/NCBI

155 

Zhang Z, Shang J, Yang Q, Dai Z, Liang Y, Lai C, Feng T, Zhong D, Zou H, Sun L, et al: Exosomes derived from human adipose mesenchymal stem cells ameliorate hepatic fibrosis by inhibiting PI3K/Akt/mTOR pathway and remodeling choline metabolism. J Nanobiotechnology. 21:292023. View Article : Google Scholar : PubMed/NCBI

156 

Zhang Y, Yin C, Wei C, Xia S, Qiao Z, Zhang XW, Yu B, Zhou J and Wang R: Exosomal miR-625-3p secreted by cancer-associated fibroblasts in colorectal cancer promotes EMT and chemotherapeutic resistance by blocking the CELF2/WWOX pathway. Pharmacol Res. 186:1065342022. View Article : Google Scholar : PubMed/NCBI

157 

Huang H, Wang Z, Zhang Y, Pradhan RN, Ganguly D, Chandra R, Murimwa G, Wright S, Gu X, Maddipati R, et al: Mesothelial cell-derived antigen-presenting cancer-associated fibroblasts induce expansion of regulatory T cells in pancreatic cancer. Cancer Cell. 40:656–673.e7. 2022. View Article : Google Scholar :

158 

Cheng Y, Li H, Deng Y, Tai Y, Zeng K, Zhang Y, Liu W, Zhang Q and Yang Y: Cancer-associated fibroblasts induce PDL1+ neutrophils through the IL6-STAT3 pathway that foster immune suppression in hepatocellular carcinoma. Cell Death Dis. 9:4222018. View Article : Google Scholar : PubMed/NCBI

159 

Song M, He J, Pan QZ, Yang J, Zhao J, Zhang YJ, Huang Y, Tang Y, Wang Q, He J, et al: Cancer-associated fibroblast-mediated cellular crosstalk supports hepatocellular carcinoma progression. Hepatology. 73:1717–1735. 2021. View Article : Google Scholar : PubMed/NCBI

160 

Najafi M, Farhood B and Mortezaee K: Extracellular matrix (ECM) stiffness and degradation as cancer drivers. J Cell Biochem. 120:2782–2790. 2019. View Article : Google Scholar

161 

Henke E, Nandigama R and Ergün S: Extracellular matrix in the tumor microenvironment and its impact on cancer therapy. Front Mol Biosci. 6:1602020. View Article : Google Scholar : PubMed/NCBI

162 

Timperi E, Gueguen P, Molgora M, Magagna I, Kieffer Y, Lopez-Lastra S, Sirven P, Baudrin LG, Baulande S, Nicolas A, et al: Lipid-associated macrophages are induced by cancer-associated fibroblasts and mediate immune suppression in breast cancer. Cancer Res. 82:3291–3306. 2022. View Article : Google Scholar : PubMed/NCBI

163 

Li D, Xia L, Huang P, Wang Z, Guo Q, Huang C, Leng W and Qin S: Cancer-associated fibroblast-secreted IGFBP7 promotes gastric cancer by enhancing tumor associated macrophage infiltration via FGF2/FGFR1/PI3K/AKT axis. Cell Death Discov. 9:172023. View Article : Google Scholar : PubMed/NCBI

164 

Ueshima E, Fujimori M, Kodama H, Felsen D, Chen J, Durack JC, Solomon SB, Coleman JA and Srimathveeravalli G: Macrophage-secreted TGF-β1 contributes to fibroblast activation and ureteral stricture after ablation injury. Am J Physiol Renal Physiol. 317:F52–F64. 2019. View Article : Google Scholar

165 

Deng Y, Cheng J, Fu B, Liu W, Chen G, Zhang Q and Yang Y: Hepatic carcinoma-associated fibroblasts enhance immune suppression by facilitating the generation of myeloid-derived suppressor cells. Oncogene. 36:1090–1101. 2017. View Article : Google Scholar

166 

Zhou Y, Tang W, Zhuo H, Zhu D, Rong D, Sun J and Song J: Cancer-associated fibroblast exosomes promote chemoresistance to cisplatin in hepatocellular carcinoma through circZFR targeting signal transducers and activators of transcription (STAT3)/nuclear factor-kappa B (NF-κB) pathway. Bioengineered. 13:4786–4797. 2022. View Article : Google Scholar : PubMed/NCBI

167 

Chen Y, McAndrews KM and Kalluri R: Clinical and therapeutic relevance of cancer-associated fibroblasts. Nat Rev Clin Oncol. 18:792–804. 2021. View Article : Google Scholar : PubMed/NCBI

168 

Chen Y, Hu M, Wang S, Wang Q, Lu H, Wang F, Wang L, Peng D and Chen W: Nano-delivery of salvianolic acid B induces the quiescence of tumor-associated fibroblasts via interfering with TGF-β1/Smad signaling to facilitate chemo- and immunotherapy in desmoplastic tumor. Int J Pharm. 623:1219532022. View Article : Google Scholar

169 

Xiang H, Ramil CP, Hai J, Zhang C, Wang H, Watkins AA, Afshar R, Georgiev P, Sze MA, Song XS, et al: Cancer-associated fibroblasts promote immunosuppression by inducing ROS-generating monocytic MDSCs in lung squamous cell carcinoma. Cancer Immunol Res. 8:436–450. 2020. View Article : Google Scholar : PubMed/NCBI

170 

Bai XF, Liu J, Li O, Zheng P and Liu Y: Antigenic drift as a mechanism for tumor evasion of destruction by cytolytic T lymphocytes. J Clin Invest. 111:1487–1496. 2003. View Article : Google Scholar : PubMed/NCBI

171 

Cheng C, Qu QX, Shen Y, Lv YT, Zhu YB, Zhang XG and Huang JA: Overexpression of B7-H4 in tumor infiltrated dendritic cells. J Immunoassay Immunochem. 32:353–364. 2011. View Article : Google Scholar : PubMed/NCBI

172 

Blank C, Kuball J, Voelkl S, Wiendl H, Becker B, Walter B, Majdic O, Gajewski TF, Theobald M, Andreesen R, et al: Blockade of PD-L1 (B7-H1) augments human tumor-specific T cell responses in vitro. Int J Cancer. 119:317–327. 2006. View Article : Google Scholar : PubMed/NCBI

173 

Zheng Y, Tang L, Mabardi L, Kumari S and Irvine DJ: Enhancing adoptive cell therapy of cancer through targeted delivery of small-molecule immunomodulators to internalizing or noninternalizing receptors. ACS Nano. 11:3089–3100. 2017. View Article : Google Scholar : PubMed/NCBI

174 

Farhood B, Najafi M and Mortezaee K: CD8+ cytotoxic T lymphocytes in cancer immunotherapy: A review. J Cell Physiol. 234:8509–8521. 2019. View Article : Google Scholar

175 

Inoue T, Adachi K, Kawana K, Taguchi A, Nagamatsu T, Fujimoto A, Tomio K, Yamashita A, Eguchi S, Nishida H, et al: Cancer-associated fibroblast suppresses killing activity of natural killer cells through downregulation of poliovirus receptor (PVR/CD155), a ligand of activating NK receptor. Int J Oncol. 49:1297–1304. 2016. View Article : Google Scholar : PubMed/NCBI

176 

Van den Eynde A, Gehrcken L, Verhezen T, Lau HW, Hermans C, Lambrechts H, Flieswasser T, Quatannens D, Roex G, Zwaenepoel K, et al: IL-15-secreting CAR natural killer cells directed toward the pan-cancer target CD70 eliminate both cancer cells and cancer-associated fibroblasts. J Hematol Oncol. 17:82024. View Article : Google Scholar : PubMed/NCBI

177 

Wu F, Yang J, Liu J, Wang Y, Mu J, Zeng Q, Deng S and Zhou H: Signaling pathways in cancer-associated fibroblasts and targeted therapy for cancer. Signal Transduct Target Ther. 6:2182021. View Article : Google Scholar : PubMed/NCBI

178 

Yu W, Lei Q, Yang L, Qin G, Liu S, Wang D, Ping Y and Zhang Y: Contradictory roles of lipid metabolism in immune response within the tumor microenvironment. J Hematol Oncol. 14:1872021. View Article : Google Scholar : PubMed/NCBI

179 

Kennel KB, Bozlar M, De Valk AF and Greten FR: Cancer-associated fibroblasts in inflammation and antitumor immunity. Clin Cancer Res. 29:1009–1016. 2023. View Article : Google Scholar :

180 

Li X, Sun Z, Peng G, Xiao Y, Guo J, Wu B, Li X, Zhou W, Li J, Li Z, et al: Single-cell RNA sequencing reveals a pro-invasive cancer-associated fibroblast subgroup associated with poor clinical outcomes in patients with gastric cancer. Theranostics. 12:620–638. 2022. View Article : Google Scholar : PubMed/NCBI

181 

Galbo PM Jr, Zang X and Zheng D: Molecular features of Cancer-associated fibroblast subtypes and their implication on cancer pathogenesis, prognosis, and immunotherapy resistance. Clin Cancer Res. 27:2636–2647. 2021. View Article : Google Scholar : PubMed/NCBI

182 

Glabman RA, Choyke PL and Sato N: Cancer-associated fibroblasts: Tumorigenicity and targeting for cancer therapy. Cancers (Basel). 14:39062022. View Article : Google Scholar : PubMed/NCBI

183 

Bhattacharjee S, Hamberger F, Ravichandra A, Miller M, Nair A, Affo S, Filliol A, Chin L, Savage TM, Yin D, et al: Tumor restriction by type I collagen opposes tumor-promoting effects of cancer-associated fibroblasts. J Clin Invest. 131:e1469872021. View Article : Google Scholar : PubMed/NCBI

184 

Dong D, Yao Y, Song J, Sun L and Zhang G: Cancer-associated fibroblasts regulate bladder cancer invasion and metabolic phenotypes through autophagy. Dis Markers. 2021:66452202021. View Article : Google Scholar : PubMed/NCBI

185 

Strickaert A, Corbet C, Spinette SA, Craciun L, Dom G, Andry G, Larsimont D, Wattiez R, Dumont JE, Feron O, et al: Reprogramming of energy metabolism: Increased expression and roles of pyruvate carboxylase in papillary thyroid cancer. Thyroid. 29:845–857. 2019. View Article : Google Scholar : PubMed/NCBI

186 

Zhu Y, Li X, Wang L, Hong X and Yang J: Metabolic reprogramming and crosstalk of cancer-related fibroblasts and immune cells in the tumor microenvironment. Front Endocrinol (Lausanne). 13:9882952022. View Article : Google Scholar : PubMed/NCBI

187 

Xia H, Green DR and Zou W: Autophagy in tumour immunity and therapy. Nat Rev Cancer. 21:281–297. 2021. View Article : Google Scholar : PubMed/NCBI

188 

Liu L, Liu S, Luo H, Chen C, Zhang X, He L and Tu G: GPR30-mediated HMGB1 upregulation in CAFs induces autophagy and tamoxifen resistance in ERα-positive breast cancer cells. Aging (Albany NY). 13:16178–16197. 2021. View Article : Google Scholar : PubMed/NCBI

189 

Zeng Z, Hu P, Tang X, Zhang H, Du Y, Wen S and Liu M: Dectection and analysis of miRNA expression in breast cancer-associated fibroblasts. Xi Bao Yu Fen Zi Mian Yi Xue Za Zhi. 30:1071–1075. 2014.In Chinese. PubMed/NCBI

190 

Izumi D, Toden S, Ureta E, Ishimoto T, Baba H and Goel A: TIAM1 promotes chemoresistance and tumor invasiveness in colorectal cancer. Cell Death Dis. 10:2672019. View Article : Google Scholar : PubMed/NCBI

191 

Nywening TM, Wang-Gillam A, Sanford DE, Belt BA, Panni RZ, Cusworth BM, Toriola AT, Nieman RK, Worley LA, Yano M, et al: Targeting tumour-associated macrophages with CCR2 inhibition in combination with FOLFIRINOX in patients with borderline resectable and locally advanced pancreatic cancer: A single-centre, open-label, dose-finding, non-randomised, phase 1b trial. Lancet Oncol. 17:651–662. 2016. View Article : Google Scholar : PubMed/NCBI

192 

Ma J, Song X, Xu X and Mou Y: Cancer-associated fibroblasts promote the Chemo-resistance in gastric cancer through secreting IL-11 targeting JAK/STAT3/Bcl2 pathway. Cancer Res Treat. 51:194–210. 2019. View Article : Google Scholar

193 

Wei L, Lin Q, Lu Y, Li G, Huang L, Fu Z, Chen R and Zhou Q: Cancer-associated fibroblasts-mediated ATF4 expression promotes malignancy and gemcitabine resistance in pancreatic cancer via the TGF-β1/SMAD2/3 pathway and ABCC1 transactivation. Cell Death Dis. 12:3342021. View Article : Google Scholar

194 

Li Z, Chan K, Qi Y, Lu L, Ning F, Wu M, Wang H, Wang Y, Cai S and Du J: Participation of CCL1 in Snail-positive fibroblasts in colorectal cancer contribute to 5-Fluorouracil/Paclitaxel Chemoresistance. Cancer Res Treat. 50:894–907. 2018. View Article : Google Scholar :

195 

Saw PE, Chen J and Song E: Targeting CAFs to overcome anticancer therapeutic resistance. Trends Cancer. 8:527–555. 2022. View Article : Google Scholar : PubMed/NCBI

196 

Singh SK, Mishra MK, Eltoum IA, Bae S, Lillard JW Jr and Singh R: CCR5/CCL5 axis interaction promotes migratory and invasiveness of pancreatic cancer cells. Sci Rep. 8:13232018. View Article : Google Scholar : PubMed/NCBI

197 

Lee C, Lee H, Cho H, Kim S, Choi I, Hwang YS, Jeong H, Jang H, Pak S, Hwang DS, et al: Combination of anti-PD-L1 antibody with peptide MEL-dKLA targeting M2 tumor-associated macrophages suppresses breast cancer metastasis. Cancer Commun (Lond). 42:345–349. 2022. View Article : Google Scholar : PubMed/NCBI

198 

Siewe N and Friedman A: Cancer therapy with immune checkpoint inhibitor and CSF-1 blockade: A mathematical model. J Theor Biol. 556:1112972023. View Article : Google Scholar

199 

Rodell CB, Ahmed MS, Garris CS, Pittet MJ and Weissleder R: Development of Adamantane-conjugated TLR7/8 agonists for supramolecular delivery and cancer immunotherapy. Theranostics. 9:8426–8436. 2019. View Article : Google Scholar : PubMed/NCBI

200 

Chen YJ, Li GN, Li XJ, Wei LX, Fu MJ, Cheng ZL, Yang Z, Zhu GQ, Wang XD, Zhang C, et al: Targeting IRG1 reverses the immunosuppressive function of tumor-associated macrophages and enhances cancer immunotherapy. Sci Adv. 9:eadg06542023. View Article : Google Scholar : PubMed/NCBI

201 

Yuan D, Hu J, Ju X, Putz EM, Zheng S, Koda S, Sun G, Deng X, Xu Z, Nie W, et al: NMDAR antagonists suppress tumor progression by regulating tumor-associated macrophages. Proc Natl Acad Sci USA. 120:e23021261202023. View Article : Google Scholar : PubMed/NCBI

202 

Li M, Yang Y, Xiong L, Jiang P, Wang J and Li C: Metabolism, metabolites, and macrophages in cancer. J Hematol Oncol. 16:802023. View Article : Google Scholar : PubMed/NCBI

203 

Khalaf K, Hana D, Chou JT, Singh C, Mackiewicz A and Kaczmarek M: Aspects of the tumor microenvironment involved in immune resistance and drug resistance. Front Immunol. 12:6563642021. View Article : Google Scholar : PubMed/NCBI

204 

Begum A, McMillan RH, Chang YT, Penchev VR, Rajeshkumar NV, Maitra A, Goggins MG, Eshelman JR, Wolfgang CL, Rasheed ZA, et al: Direct interactions with cancer-associated fibroblasts lead to enhanced pancreatic cancer stem cell function. Pancreas. 48:329–334. 2019. View Article : Google Scholar : PubMed/NCBI

205 

Ko YC, Lai TY, Hsu SC, Wang FH, Su SY, Chen YL, Tsai ML, Wu CC, Hsiao JR, Chang JY, et al: Index of Cancer-associated fibroblasts is superior to the epithelial-mesenchymal transition score in prognosis prediction. Cancers (Basel). 12:17182020. View Article : Google Scholar : PubMed/NCBI

206 

Liu Y, Xun Z, Ma K, Liang S, Li X, Zhou S, Sun L, Liu Y, Du Y, Guo X, et al: Identification of a tumour immune barrier in the HCC microenvironment that determines the efficacy of immunotherapy. J Hepatol. 78:770–782. 2023. View Article : Google Scholar : PubMed/NCBI

207 

Yamamoto Y, Kasashima H, Fukui Y, Tsujio G, Yashiro M and Maeda K: The heterogeneity of cancer-associated fibroblast subpopulations: Their origins, biomarkers, and roles in the tumor microenvironment. Cancer Sci. 114:16–24. 2023. View Article : Google Scholar

208 

Qu X, Liu B, Wang L, Liu L, Zhao W, Liu C, Ding J, Zhao S, Xu B, Yu H, et al: Loss of cancer-associated fibroblast-derived exosomal DACT3-AS1 promotes malignant transformation and ferroptosis-mediated oxaliplatin resistance in gastric cancer. Drug Resist Updat. 68:1009362023. View Article : Google Scholar : PubMed/NCBI

209 

Loeffler M, Krüger JA, Niethammer AG and Reisfeld RA: Targeting tumor-associated fibroblasts improves cancer chemotherapy by increasing intratumoral drug uptake. J Clin Invest. 116:1955–1962. 2006. View Article : Google Scholar : PubMed/NCBI

210 

Denkert C, von Minckwitz G, Darb-Esfahani S, Lederer B, Heppner BI, Weber KE, Budczies J, Huober J, Klauschen F, Furlanetto J, et al: Tumour-infiltrating lymphocytes and prognosis in different subtypes of breast cancer: A pooled analysis of 3771 patients treated with neoadjuvant therapy. Lancet Oncol. 19:40–50. 2018. View Article : Google Scholar

211 

Memon D, Schoenfeld AJ, Ye D, Fromm G, Rizvi H, Zhang X, Keddar MR, Mathew D, Yoo KJ, Qiu J, et al: Clinical and molecular features of acquired resistance to immunotherapy in non-small cell lung cancer. Cancer Cell. 42:209–224.e9. 2024. View Article : Google Scholar : PubMed/NCBI

212 

Zhu L, Meng D, Wang X and Chen X: Ferroptosis-driven Nanotherapeutics to reverse drug resistance in tumor microenvironment. ACS Appl Bio Mater. 5:2481–2506. 2022. View Article : Google Scholar : PubMed/NCBI

213 

Zhu Y, Wang A, Zhang S, Kim J, Xia J, Zhang F, Wang D, Wang Q and Wang J: Paclitaxel-loaded ginsenoside Rg3 liposomes for drug-resistant cancer therapy by dual targeting of the tumor microenvironment and cancer cells. J Adv Res. 49:159–173. 2023. View Article : Google Scholar :

Related Articles

  • Abstract
  • View
  • Download
  • Twitter
Copy and paste a formatted citation
Spandidos Publications style
Liu Y, Liang J, Zhang Y and Guo Q: Drug resistance and tumor immune microenvironment: An overview of current understandings (Review). Int J Oncol 65: 96, 2024.
APA
Liu, Y., Liang, J., Zhang, Y., & Guo, Q. (2024). Drug resistance and tumor immune microenvironment: An overview of current understandings (Review). International Journal of Oncology, 65, 96. https://doi.org/10.3892/ijo.2024.5684
MLA
Liu, Y., Liang, J., Zhang, Y., Guo, Q."Drug resistance and tumor immune microenvironment: An overview of current understandings (Review)". International Journal of Oncology 65.4 (2024): 96.
Chicago
Liu, Y., Liang, J., Zhang, Y., Guo, Q."Drug resistance and tumor immune microenvironment: An overview of current understandings (Review)". International Journal of Oncology 65, no. 4 (2024): 96. https://doi.org/10.3892/ijo.2024.5684
Copy and paste a formatted citation
x
Spandidos Publications style
Liu Y, Liang J, Zhang Y and Guo Q: Drug resistance and tumor immune microenvironment: An overview of current understandings (Review). Int J Oncol 65: 96, 2024.
APA
Liu, Y., Liang, J., Zhang, Y., & Guo, Q. (2024). Drug resistance and tumor immune microenvironment: An overview of current understandings (Review). International Journal of Oncology, 65, 96. https://doi.org/10.3892/ijo.2024.5684
MLA
Liu, Y., Liang, J., Zhang, Y., Guo, Q."Drug resistance and tumor immune microenvironment: An overview of current understandings (Review)". International Journal of Oncology 65.4 (2024): 96.
Chicago
Liu, Y., Liang, J., Zhang, Y., Guo, Q."Drug resistance and tumor immune microenvironment: An overview of current understandings (Review)". International Journal of Oncology 65, no. 4 (2024): 96. https://doi.org/10.3892/ijo.2024.5684
Follow us
  • Twitter
  • LinkedIn
  • Facebook
About
  • Spandidos Publications
  • Careers
  • Cookie Policy
  • Privacy Policy
How can we help?
  • Help
  • Live Chat
  • Contact
  • Email to our Support Team