Spandidos Publications Logo
  • About
    • About Spandidos
    • Aims and Scopes
    • Abstracting and Indexing
    • Editorial Policies
    • Reprints and Permissions
    • Job Opportunities
    • Terms and Conditions
    • Contact
  • Journals
    • All Journals
    • Oncology Letters
      • Oncology Letters
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Oncology
      • International Journal of Oncology
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Molecular and Clinical Oncology
      • Molecular and Clinical Oncology
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Experimental and Therapeutic Medicine
      • Experimental and Therapeutic Medicine
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Molecular Medicine
      • International Journal of Molecular Medicine
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Biomedical Reports
      • Biomedical Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Oncology Reports
      • Oncology Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Molecular Medicine Reports
      • Molecular Medicine Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • World Academy of Sciences Journal
      • World Academy of Sciences Journal
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Functional Nutrition
      • International Journal of Functional Nutrition
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Epigenetics
      • International Journal of Epigenetics
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Medicine International
      • Medicine International
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
  • Articles
  • Information
    • Information for Authors
    • Information for Reviewers
    • Information for Librarians
    • Information for Advertisers
    • Conferences
  • Language Editing
Spandidos Publications Logo
  • About
    • About Spandidos
    • Aims and Scopes
    • Abstracting and Indexing
    • Editorial Policies
    • Reprints and Permissions
    • Job Opportunities
    • Terms and Conditions
    • Contact
  • Journals
    • All Journals
    • Biomedical Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Experimental and Therapeutic Medicine
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Epigenetics
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Functional Nutrition
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Molecular Medicine
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Oncology
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Medicine International
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Molecular and Clinical Oncology
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Molecular Medicine Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Oncology Letters
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Oncology Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • World Academy of Sciences Journal
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
  • Articles
  • Information
    • For Authors
    • For Reviewers
    • For Librarians
    • For Advertisers
    • Conferences
  • Language Editing
Login Register Submit
  • This site uses cookies
  • You can change your cookie settings at any time by following the instructions in our Cookie Policy. To find out more, you may read our Privacy Policy.

    I agree
Search articles by DOI, keyword, author or affiliation
Search
Advanced Search
presentation
International Journal of Oncology
Join Editorial Board Propose a Special Issue
Print ISSN: 1019-6439 Online ISSN: 1791-2423
Journal Cover
October-2024 Volume 65 Issue 4

Full Size Image

Cover Legend PDF

Sign up for eToc alerts
Recommend to Library

Journals

International Journal of Molecular Medicine

International Journal of Molecular Medicine

International Journal of Molecular Medicine is an international journal devoted to molecular mechanisms of human disease.

International Journal of Oncology

International Journal of Oncology

International Journal of Oncology is an international journal devoted to oncology research and cancer treatment.

Molecular Medicine Reports

Molecular Medicine Reports

Covers molecular medicine topics such as pharmacology, pathology, genetics, neuroscience, infectious diseases, molecular cardiology, and molecular surgery.

Oncology Reports

Oncology Reports

Oncology Reports is an international journal devoted to fundamental and applied research in Oncology.

Experimental and Therapeutic Medicine

Experimental and Therapeutic Medicine

Experimental and Therapeutic Medicine is an international journal devoted to laboratory and clinical medicine.

Oncology Letters

Oncology Letters

Oncology Letters is an international journal devoted to Experimental and Clinical Oncology.

Biomedical Reports

Biomedical Reports

Explores a wide range of biological and medical fields, including pharmacology, genetics, microbiology, neuroscience, and molecular cardiology.

Molecular and Clinical Oncology

Molecular and Clinical Oncology

International journal addressing all aspects of oncology research, from tumorigenesis and oncogenes to chemotherapy and metastasis.

World Academy of Sciences Journal

World Academy of Sciences Journal

Multidisciplinary open-access journal spanning biochemistry, genetics, neuroscience, environmental health, and synthetic biology.

International Journal of Functional Nutrition

International Journal of Functional Nutrition

Open-access journal combining biochemistry, pharmacology, immunology, and genetics to advance health through functional nutrition.

International Journal of Epigenetics

International Journal of Epigenetics

Publishes open-access research on using epigenetics to advance understanding and treatment of human disease.

Medicine International

Medicine International

An International Open Access Journal Devoted to General Medicine.

Journal Cover
October-2024 Volume 65 Issue 4

Full Size Image

Cover Legend PDF

Sign up for eToc alerts
Recommend to Library

  • Article
  • Citations
    • Cite This Article
    • Download Citation
    • Create Citation Alert
    • Remove Citation Alert
    • Cited By
  • Similar Articles
    • Related Articles (in Spandidos Publications)
    • Similar Articles (Google Scholar)
    • Similar Articles (PubMed)
  • Download PDF
  • Download XML
  • View XML
Review Open Access

NLRC4, inflammation and colorectal cancer (Review)

  • Authors:
    • Guojun Tong
    • Yan Shen
    • Hui Li
    • Hai Qian
    • Zhenhua Tan
  • View Affiliations / Copyright

    Affiliations: Department of Colorectal Surgery, Huzhou Central Hospital, The Affiliated Central Hospital of Huzhou University, Huzhou, Zhejiang 313003, P.R. China, Department of General Surgery, Huzhou Central Hospital, The Affiliated Central Hospital of Huzhou University, Huzhou, Zhejiang 313003, P.R. China
    Copyright: © Tong et al. This is an open access article distributed under the terms of Creative Commons Attribution License.
  • Article Number: 99
    |
    Published online on: September 4, 2024
       https://doi.org/10.3892/ijo.2024.5687
  • Expand metrics +
Metrics: Total Views: 0 (Spandidos Publications: | PMC Statistics: )
Metrics: Total PDF Downloads: 0 (Spandidos Publications: | PMC Statistics: )
Cited By (CrossRef): 0 citations Loading Articles...

This article is mentioned in:



Abstract

Chronic inflammation is recognized as a major risk factor for cancer and is involved in every phase of the disease. Inflammasomes are central to the inflammatory response and play a crucial role in cancer development. The present review summarizes the role of Nod‑like receptor C4 (NLRC4) in inflammation and colorectal cancer (CRC). Reviews of the literature were conducted using Web of Science, PubMed and CNKI, with search terms including ‘NLRC4’, ‘colorectal cancer’, ‘auto‑inflammatory diseases’ and ‘prognosis’. Variants of NLRC4 can cause recessive immune dysregulation and autoinflammation or lead to ulcerative colitis as a heterozygous risk factor. Additionally, genetic mutations in inflammasome components may increase susceptibility to cancer. NLRC4 is considered a tumor suppressor in CRC. The role of NLRC4 in CRC signaling pathways is currently understood to involve five key aspects (caspase 1, NLRP3/IL‑8, IL‑1β/IL‑1, NAIP and p53). The mechanisms by which NLRC4 is involved in CRC are considered to be threefold (through pyroptosis, apoptosis, necroptosis and PANoptosis; regulating the immune response; and protecting intestinal epithelial cells to prevent CRC). However, the impact of NLRC4 mutations on CRC remains unclear. In conclusion, NLRC4 is a significant inflammasome that protects against CRC through various signaling pathways and mechanisms. The association between NLRC4 mutations and CRC warrants further investigation.
View Figures

Figure 1

Figure 2

Figure 3

Figure 4

View References

1 

Poyet JL, Srinivasula SM, Tnani M, Razmara M, Fernandes-Alnemri T and Alnemri ES: Identification of Ipaf, a human caspase-1-activating protein related to Apaf-1. J Biol Chem. 276:28309–28313. 2001. View Article : Google Scholar : PubMed/NCBI

2 

Duncan JA and Canna SW: The NLRC4 inflammasome. Immunol Rev. 281:115–123. 2018. View Article : Google Scholar :

3 

Gutierrez O, Pipaon C and Fernandez-Luna JL: Ipaf is upregulated by tumor necrosis factor-alpha in human leukemia cells. FEBS Lett. 568:79–82. 2004. View Article : Google Scholar : PubMed/NCBI

4 

Sadasivam S, Gupta S, Radha V, Batta K, Kundu TK and Swarup G: Caspase-1 activator Ipaf is a p53-inducible gene involved in apoptosis. Oncogene. 24:627–636. 2005. View Article : Google Scholar

5 

Mariathasan S, Newton K, Monack DM, Vucic D, French DM, Lee WP, Roose-Girma M, Erickson S and Dixit VM: Differential activation of the inflammasome by caspase-1 adaptors ASC and Ipaf. Nature. 430:213–218. 2004. View Article : Google Scholar : PubMed/NCBI

6 

Hu Z, Yan C, Liu P, Huang Z, Ma R, Zhang C, Wang R, Zhang Y, Martinon F, Miao D, et al: Crystal structure of NLRC4 reveals its autoinhibition mechanism. Science. 341:172–175. 2013. View Article : Google Scholar : PubMed/NCBI

7 

Wang X, Shaw DK, Hammond HL, Sutterwala FS, Rayamajhi M, Shirey KA, Perkins DJ, Bonventre JV, Velayutham TS, Evans SM, et al: The prostaglandin E2-EP3 receptor axis regulates anaplasma phagocytophilum-mediated NLRC4 inflammasome activation. PLoS Pathog. 12:e10058032016. View Article : Google Scholar : PubMed/NCBI

8 

Zhang L, Chen S, Ruan J, Wu J, Tong AB, Yin Q, Li Y, David L, Lu A, Wang WL, et al: Cryo-EM structure of the activated NAIP2-NLRC4 inflammasome reveals nucleated polymerization. Science. 350:404–409. 2015. View Article : Google Scholar : PubMed/NCBI

9 

Sellin ME, Müller AA, Felmy B, Dolowschiak T, Diard M, Tardivel A, Maslowski KM and Hardt WD: Epithelium-intrinsic NAIP/NLRC4 inflammasome drives infected enterocyte expulsion to restrict Salmonella replication in the intestinal mucosa. Cell Host Microbe. 16:237–248. 2014. View Article : Google Scholar : PubMed/NCBI

10 

Rauch I, Deets KA, Ji DX, von Moltke J, Tenthorey JL, Lee AY, Philip NH, Ayres JS, Brodsky IE, Gronert K and Vance RE: NAIP-NLRC4 inflammasomes coordinate intestinal epithelial cell expulsion with eicosanoid and IL-18 release via activation of caspase-1 and -8. Immunity. 46:649–659. 2017. View Article : Google Scholar : PubMed/NCBI

11 

Nordlander S, Pott J and Maloy KJ: NLRC4 expression in intestinal epithelial cells mediates protection against an enteric pathogen. Mucosal Immunol. 7:775–785. 2014. View Article : Google Scholar :

12 

Janowski AM, Kolb R, Zhang W and Sutterwala FS: Beneficial and detrimental roles of NLRs in carcinogenesis. Front Immunol. 4:3702013. View Article : Google Scholar : PubMed/NCBI

13 

Dupaul-Chicoine J, Yeretssian G, Doiron K, Bergstrom KSB, McIntire CR, LeBlanc PM, Meunier C, Turbide C, Gros P, Beauchemin N, et al: Control of intestinal homeostasis, colitis, and colitis-associated colorectal cancer by the inflammatory caspases. Immunity. 32:367–378. 2010. View Article : Google Scholar : PubMed/NCBI

14 

Zhiyu W, Wang N, Wang Q, Peng C, Zhang J, Liu P, Ou A, Zhong S, Cordero MD and Lin Y: The inflammasome: An emerging therapeutic oncotarget for cancer prevention. Oncotarget. 7:50766–50780. 2016. View Article : Google Scholar : PubMed/NCBI

15 

Steiner A, Reygaerts T, Pontillo A, Ceccherini I, Moecking J, Moghaddas F, Davidson S, Caroli F, Grossi A, Castro FFM, et al: Recessive NLRC4-autoinflammatory disease reveals an ulcerative colitis locus. J Clin Immunol. 42:325–335. 2022. View Article : Google Scholar :

16 

Wang J, Ye Q, Zheng W, Yu X, Luo F, Fang R, Shangguan Y, Du Z, Lee PY, Jin T and Zhou Q: Low-ratio somatic NLRC4 mutation causes late-onset autoinflammatory disease. Ann Rheum Dis. 81:1173–1178. 2022. View Article : Google Scholar : PubMed/NCBI

17 

Wu C, Zhao J, Wang X, Wang Y, Zhang W and Zhu G: A novel pyroptosis related genes signature for predicting prognosis and estimating tumor immune microenvironment in lung adenocarcinoma. Transl Cancer Res. 11:2647–2659. 2022. View Article : Google Scholar : PubMed/NCBI

18 

Sundaram B and Kanneganti TD: Advances in understanding activation and function of the NLRC4 inflammasome. Int J Mol Sci. 22:10482021. View Article : Google Scholar : PubMed/NCBI

19 

Jin H and Kim HJ: NLRC4, ASC and caspase-1 are inflammasome components that are mediated by P2Y2R activation in breast cancer cells. Int J Mol Sci. 21:33372020. View Article : Google Scholar

20 

Lim J, Kim MJ, Park Y, Ahn JW, Hwang SJ, Moon JS, Cho KG and Kwack K: Upregulation of the NLRC4 inflammasome contributes to poor prognosis in glioma patients. Sci Rep. 9:78952019. View Article : Google Scholar : PubMed/NCBI

21 

Sonohara F, Inokawa Y, Kanda M, Nishikawa Y, Yamada S, Fujii T, Sugimoto H, Kodera Y and Nomoto S: Association of inflammasome components in background liver with poor prognosis after curatively-resected hepatocellular carcinoma. Anticancer Res. 37:293–300. 2017. View Article : Google Scholar

22 

Janowski AM, Colegio OR, Hornick EE, McNiff JM, Martin MD, Badovinac VP, Norian LA, Zhang W, Cassel SL and Sutterwala FS: NLRC4 suppresses melanoma tumor progression independently of inflammasome activation. J Clin Invest. 126:3917–3928. 2016. View Article : Google Scholar : PubMed/NCBI

23 

Hu B, Elinav E, Huber S, Booth CJ, Strowig T, Jin C, Eisenbarth SC and Flavell RA: Inflammation-induced tumorigenesis in the colon is regulated by caspase-1 and NLRC4. Proc Natl Acad Sci USA. 107:21635–21640. 2010. View Article : Google Scholar : PubMed/NCBI

24 

Peng L, Zhu N, Wang D, Zhou Y and Liu Y: Comprehensive analysis of prognostic value and immune infiltration of NLRC4 and CASP1 in colorectal cancer. Int J Gen Med. 15:5425–5440. 2022. View Article : Google Scholar : PubMed/NCBI

25 

Abdelaziz DH, Amr K and Amer AO: Nlrc4/Ipaf/CLAN/CARD12: More than a flagellin sensor. Int J Biochem Cell Biol. 42:789–791. 2010. View Article : Google Scholar : PubMed/NCBI

26 

Sun Q and Scott MJ: Caspase-1 as a multifunctional inflammatory mediator: Noncytokine maturation roles. J Leukoc Biol. 100:961–967. 2016. View Article : Google Scholar : PubMed/NCBI

27 

Lamkanfi M, Kanneganti TD, Franchi L and Núñez G: Caspase-1 inflammasomes in infection and inflammation. J Leukoc Biol. 82:220–225. 2007. View Article : Google Scholar : PubMed/NCBI

28 

Naseer N, Zhang J, Bauer R, Constant DA, Nice TJ, Brodsky IE, Rauch I and Shin S: Salmonella enterica Serovar typhimurium induces NAIP/NLRC4- and NLRP3/ASC-independent, caspase-4-dependent inflammasome activation in human intestinal epithelial cells. Infect Immun. 90:e00663212022. View Article : Google Scholar : PubMed/NCBI

29 

Naseer N, Egan MS, Reyes Ruiz VM, Scott WP, Hunter EN, Demissie T, Rauch I, Brodsky IE and Shin S: Human NAIP/NLRC4 and NLRP3 inflammasomes detect Salmonella type III secretion system activities to restrict intracellular bacterial replication. PLoS Pathog. 18:e10097182022. View Article : Google Scholar : PubMed/NCBI

30 

Gram AM, Wright JA, Pickering RJ, Lam NL, Booty LM, Webster SJ and Bryant CE: Salmonella flagellin activates NAIP/NLRC4 and canonical NLRP3 inflammasomes in human macrophages. J Immunol. 206:631–640. 2021. View Article : Google Scholar : PubMed/NCBI

31 

Schell U, Simon S and Hilbi H: Inflammasome recognition and regulation of the Legionella flagellum. Curr Top Microbiol Immunol. 397:161–181. 2016.PubMed/NCBI

32 

Cerqueira DM, Pereira MS, Silva AL, Cunha LD and Zamboni DS: Caspase-1 but not caspase-11 is required for NLRC4-mediated pyroptosis and restriction of infection by flagellated Legionella species in mouse macrophages and in vivo. J Immunol. 195:2303–2311. 2015. View Article : Google Scholar : PubMed/NCBI

33 

Zhao Y, Yang J, Shi J, Gong YN, Lu Q, Xu H, Liu L and Shao F: The NLRC4 inflammasome receptors for bacterial flagellin and type III secretion apparatus. Nature. 477:596–600. 2011. View Article : Google Scholar : PubMed/NCBI

34 

Pereira MSF, Morgantetti GF, Massis LM, Horta CV, Hori JI and Zamboni DS: Activation of NLRC4 by flagellated bacteria triggers caspase-1-dependent and -independent responses to restrict Legionella pneumophila replication in macrophages and in vivo. J Immunol. 187:6447–6455. 2011. View Article : Google Scholar : PubMed/NCBI

35 

Luchetti G, Roncaioli JL, Chavez RA, Schubert AF, Kofoed EM, Reja R, Cheung TK, Liang Y, Webster JD, Lehoux I, et al: Shigella ubiquitin ligase IpaH7.8 targets gasdermin D for degradation to prevent pyroptosis and enable infection. Cell Host Microbe. 29:1521–1530.e10. 2021. View Article : Google Scholar : PubMed/NCBI

36 

Mitchell PS, Roncaioli JL, Turcotte EA, Goers L, Chavez RA, Lee AY, Lesser CF, Rauch I and Vance RE: NAIP-NLRC4-deficient mice are susceptible to shigellosis. Elife. 9:e590222020. View Article : Google Scholar : PubMed/NCBI

37 

Hermansson AK, Paciello I and Bernardini ML: The orchestra and its maestro: Shigella's fine-tuning of the inflammasome platforms. Curr Top Microbiol Immunol. 397:91–115. 2016.PubMed/NCBI

38 

Suzuki S, Mimuro H, Kim M, Ogawa M, Ashida H, Toyotome T, Franchi L, Suzuki M, Sanada T, Suzuki T, et al: Shigella IpaH7.8 E3 ubiquitin ligase targets glomulin and activates inflammasomes to demolish macrophages. Proc Natl Acad Sci USA. 111:E4254–E4263. 2014. View Article : Google Scholar : PubMed/NCBI

39 

Santoni K, Pericat D, Gorse L, Buyck J, Pinilla M, Prouvensier L, Bagayoko S, Hessel A, Leon-Icaza SA, Bellard E, et al: Caspase-1-driven neutrophil pyroptosis and its role in host susceptibility to Pseudomonas aeruginosa. PLoS Pathog. 18:e10103052022. View Article : Google Scholar : PubMed/NCBI

40 

Mohamed MF, Gupta K, Goldufsky JW, Roy R, Callaghan LT, Wetzel DM, Kuzel TM, Reiser J and Shafikhani SH: CrkII/Abl phosphorylation cascade is critical for NLRC4 inflammasome activity and is blocked by Pseudomonas aeruginosa ExoT. Nat Commun. 13:12952022. View Article : Google Scholar : PubMed/NCBI

41 

Graustein AD, Berrington WR, Buckingham KJ, Nguyen FK, Joudeh LL, Rosenfeld M, Bamshad MJ, Gibson RL, Hawn TR and Emond MJ: Inflammasome genetic variants, macrophage function, and clinical outcomes in cystic fibrosis. Am J Respir Cell Mol Biol. 65:157–166. 2021. View Article : Google Scholar : PubMed/NCBI

42 

Karki R, Lee E, Place D, Samir P, Mavuluri J, Sharma BR, Balakrishnan A, Malireddi RKS, Geiger R, Zhu Q, et al: IRF8 regulates transcription of Naips for NLRC4 inflammasome activation. Cell. 173:920–933.e13. 2018. View Article : Google Scholar : PubMed/NCBI

43 

Mascarenhas DPA, Cerqueira DM, Pereira MSF, Castanheira FVS, Fernandes TD, Manin GZ, Cunha LD and Zamboni DS: Inhibition of caspase-1 or gasdermin-D enable caspase-8 activation in the Naip5/NLRC4/ASC inflammasome. PLoS Pathog. 13:e10065022017. View Article : Google Scholar : PubMed/NCBI

44 

Furuoka M, Ozaki K, Sadatomi D, Mamiya S, Yonezawa T, Tanimura S and Takeda K: TNF-α induces caspase-1 activation independently of simultaneously induced NLRP3 in 3T3-L1 cells. J Cell Physiol. 231:2761–2767. 2016. View Article : Google Scholar : PubMed/NCBI

45 

Hua L, Liang S, Zhou Y, Wu X, Cai H, Liu Z, Ou Y, Chen Y, Chen X, Yan Y, et al: Artemisinin-derived artemisitene blocks ROS-mediated NLRP3 inflammasome and alleviates ulcerative colitis. Int Immunopharmacol. 113:1094312022. View Article : Google Scholar : PubMed/NCBI

46 

Taman H, Fenton CG, Anderssen E, Florholmen J and Paulssen RH: DNA hypo-methylation facilitates anti-inflammatory responses in severe ulcerative colitis. PLoS One. 16:e02489052021. View Article : Google Scholar : PubMed/NCBI

47 

Miao EA, Mao DP, Yudkovsky N, Bonneau R, Lorang CG, Warren SE, Leaf IA and Aderem A: Innate immune detection of the type III secretion apparatus through the NLRC4 inflammasome. Proc Natl Acad Sci USA. 107:3076–3080. 2010. View Article : Google Scholar : PubMed/NCBI

48 

Miao EA, Alpuche-Aranda CM, Dors M, Clark AE, Bader MW, Miller SI and Aderem A: Cytoplasmic flagellin activates caspase-1 and secretion of interleukin 1beta via Ipaf. Nat Immunol. 7:569–575. 2006. View Article : Google Scholar : PubMed/NCBI

49 

Endrizzi MG, Hadinoto V, Growney JD, Miller W and Dietrich WF: Genomic sequence analysis of the mouse Naip gene array. Genome Res. 10:1095–1102. 2000. View Article : Google Scholar : PubMed/NCBI

50 

Kofoed EM and Vance RE: Innate immune recognition of bacterial ligands by NAIPs determines inflammasome specificity. Nature. 477:592–595. 2011. View Article : Google Scholar : PubMed/NCBI

51 

Rayamajhi M, Zak DE, Chavarria-Smith J, Vance RE and Miao EA: Cutting edge: Mouse NAIP1 detects the type III secretion system needle protein. J Immunol. 191:3986–3989. 2013. View Article : Google Scholar : PubMed/NCBI

52 

Yang J, Zhao Y, Shi J and Shao F: Human NAIP and mouse NAIP1 recognize bacterial type III secretion needle protein for inflammasome activation. Proc Natl Acad Sci USA. 110:14408–14413. 2013. View Article : Google Scholar : PubMed/NCBI

53 

Kortmann J, Brubaker SW and Monack DM: Cutting edge: Inflammasome activation in primary human macrophages is dependent on flagellin. J Immunol. 195:815–819. 2015. View Article : Google Scholar : PubMed/NCBI

54 

Broz P, Newton K, Lamkanfi M, Mariathasan S, Dixit VM and Monack DM: Redundant roles for inflammasome receptors NLRP3 and NLRC4 in host defense against Salmonella. J Exp Med. 207:1745–1755. 2010. View Article : Google Scholar : PubMed/NCBI

55 

Liu Z, Zaki MH, Vogel P, Gurung P, Finlay BB, Deng W, Lamkanfi M and Kanneganti TD: Role of inflammasomes in host defense against Citrobacter rodentium infection. J Biol Chem. 287:16955–16964. 2012. View Article : Google Scholar : PubMed/NCBI

56 

Man SM, Karki R, Briard B, Burton A, Gingras S, Pelletier S and Kanneganti TD: Differential roles of caspase-1 and caspase-11 in infection and inflammation. Sci Rep. 7:451262017. View Article : Google Scholar : PubMed/NCBI

57 

Gonçalves AV, Margolis SR, Quirino GFS, Mascarenhas DPA, Rauch I, Nichols RD, Ansaldo E, Fontana MF, Vance RE and Zamboni DS: Gasdermin-D and caspase-7 are the key caspase-1/8 substrates downstream of the NAIP5/NLRC4 inflammasome required for restriction of Legionella pneumophila. PLoS Pathog. 15:e10078862019. View Article : Google Scholar : PubMed/NCBI

58 

Canna SW, de Jesus AA, Gouni S, Brooks SR, Marrero B, Liu Y, DiMattia MA, Zaal KJ, Sanchez GA, Kim H, et al: An activating NLRC4 inflammasome mutation causes autoinflammation with recurrent macrophage activation syndrome. Nat Genet. 46:1140–1146. 2014. View Article : Google Scholar : PubMed/NCBI

59 

Romberg N, Al Moussawi K, Nelson-Williams C, Stiegler AL, Loring E, Choi M, Overton J, Meffre E, Khokha MK, Huttner AJ, et al: Mutation of NLRC4 causes a syndrome of enterocolitis and autoinflammation. Nat Genet. 46:1135–1139. 2014. View Article : Google Scholar : PubMed/NCBI

60 

Kitamura A, Sasaki Y, Abe T, Kano H and Yasutomo K: An inherited mutation in NLRC4 causes autoinflammation in human and mice. J Exp Med. 211:2385–2396. 2014. View Article : Google Scholar : PubMed/NCBI

61 

Chear CT, Nallusamy R, Canna SW, Chan KC, Baharin MF, Hishamshah M, Ghani H, Ripen AM and Mohamad SB: A novel de novo NLRC4 mutation reinforces the likely pathogenicity of specific LRR domain mutation. Clin Immunol. 211:1083282020. View Article : Google Scholar

62 

Barsalou J, Blincoe A, Fernandez I, Dal-Soglio D, Marchitto L, Selleri S, Haddad E, Benyoucef A and Touzot F: Rapamycin as an adjunctive therapy for NLRC4 associated macrophage activation syndrome. Front Immunol. 9:21622018. View Article : Google Scholar : PubMed/NCBI

63 

Wang Y, Gao W, Shi X, Ding J, Liu W, He H, Wang K and Shao F: Chemotherapy drugs induce pyroptosis through caspase-3 cleavage of a gasdermin. Nature. 547:99–103. 2017. View Article : Google Scholar : PubMed/NCBI

64 

Christgen S, Zheng M, Kesavardhana S, Karki R, Malireddi RKS, Banoth B, Place DE, Briard B, Sharma BR, Tuladhar S, et al: Identification of the PANoptosome: A molecular platform triggering pyroptosis, apoptosis, and necroptosis (PANoptosis). Front Cell Infect Microbiol. 10:2372020. View Article : Google Scholar : PubMed/NCBI

65 

Pandian N and Kanneganti TD: PANoptosis: A unique innate immune inflammatory cell death modality. J Immunol. 209:1625–1633. 2022. View Article : Google Scholar : PubMed/NCBI

66 

Pan H, Pan J, Li P and Gao J: Characterization of PANoptosis patterns predicts survival and immunotherapy response in gastric cancer. Clin Immunol. 238:1090192022. View Article : Google Scholar : PubMed/NCBI

67 

Lin JF, Hu PS, Wang YY, Tan YT, Yu K, Liao K, Wu QN, Li T, Meng Q, Lin JZ, et al: Phosphorylated NFS1 weakens oxaliplatin-based chemosensitivity of colorectal cancer by preventing PANoptosis. Signal Transduct Target Ther. 7:542022. View Article : Google Scholar : PubMed/NCBI

68 

Wang Y and Kanneganti TD: From pyroptosis, apoptosis and necroptosis to PANoptosis: A mechanistic compendium of programmed cell death pathways. Comput Struct Biotechnol J. 19:4641–4657. 2021. View Article : Google Scholar : PubMed/NCBI

69 

Place DE, Lee S and Kanneganti TD: PANoptosis in microbial infection. Curr Opin Microbiol. 59:42–49. 2021. View Article : Google Scholar

70 

Lee S, Karki R, Wang Y, Nguyen LN, Kalathur RC and Kanneganti TD: AIM2 forms a complex with pyrin and ZBP1 to drive PANoptosis and host defence. Nature. 597:415–419. 2021. View Article : Google Scholar : PubMed/NCBI

71 

Karki R, Sundaram B, Sharma BR, Lee S, Malireddi RKS, Nguyen LN, Christgen S, Zheng M, Wang Y, Samir P, et al: ADAR1 restricts ZBP1-mediated immune response and PANoptosis to promote tumorigenesis. Cell Rep. 37:1098582021. View Article : Google Scholar : PubMed/NCBI

72 

Jiang W, Deng Z, Dai X and Zhao W: PANoptosis: A new insight into oral infectious diseases. Front Immunol. 12:7896102021. View Article : Google Scholar :

73 

Zheng M and Kanneganti TD: The regulation of the ZBP1-NLRP3 inflammasome and its implications in pyroptosis, apoptosis, and necroptosis (PANoptosis). Immunol Rev. 297:26–38. 2020. View Article : Google Scholar : PubMed/NCBI

74 

Samir P, Malireddi RKS and Kanneganti TD: The PANoptosome: A deadly protein complex driving pyroptosis, apoptosis, and necroptosis (PANoptosis). Front Cell Infect Microbiol. 10:2382020. View Article : Google Scholar : PubMed/NCBI

75 

Chen H, Deng Y, Gan X, Li Y, Huang W, Lu L, Wei L, Su L, Luo J, Zou B, et al: NLRP12 collaborates with NLRP3 and NLRC4 to promote pyroptosis inducing ganglion cell death of acute glaucoma. Mol Neurodegener. 15:262020. View Article : Google Scholar : PubMed/NCBI

76 

Pistritto G, Trisciuoglio D, Ceci C, Garufi A and D'Orazi G: Apoptosis as anticancer mechanism: Function and dysfunction of its modulators and targeted therapeutic strategies. Aging (Albany NY). 8:603–619. 2016. View Article : Google Scholar : PubMed/NCBI

77 

Yan J, Wan P, Choksi S and Liu ZG: Necroptosis and tumor progression. Trends Cancer. 8:21–27. 2022. View Article : Google Scholar

78 

Karki R and Kanneganti TD: Diverging inflammasome signals in tumorigenesis and potential targeting. Nat Rev Cancer. 19:197–214. 2019. View Article : Google Scholar : PubMed/NCBI

79 

Allen IC, TeKippe EM, Woodford RM, Uronis JM, Holl EK, Rogers AB, Herfarth HH, Jobin C and Ting JP: The NLRP3 inflammasome functions as a negative regulator of tumorigenesis during colitis-associated cancer. J Exp Med. 207:1045–1056. 2010. View Article : Google Scholar : PubMed/NCBI

80 

Zaki MH, Boyd KL, Vogel P, Kastan MB, Lamkanfi M and Kanneganti TD: The NLRP3 inflammasome protects against loss of epithelial integrity and mortality during experimental colitis. Immunity. 32:379–391. 2010. View Article : Google Scholar : PubMed/NCBI

81 

Zaki MH, Vogel P, Body-Malapel M, Lamkanfi M and Kanneganti TD: IL-18 production downstream of the Nlrp3 inflammasome confers protection against colorectal tumor formation. J Immunol. 185:4912–4920. 2010. View Article : Google Scholar : PubMed/NCBI

82 

Carvalho FA, Nalbantoglu I, Aitken JD, Uchiyama R, Su Y, Doho GH, Vijay-Kumar M and Gewirtz AT: Cytosolic flagellin receptor NLRC4 protects mice against mucosal and systemic challenges. Mucosal Immunol. 5:288–298. 2012. View Article : Google Scholar : PubMed/NCBI

83 

Karki R, Man SM and Kanneganti TD: Inflammasomes and cancer. Cancer Immunol Res. 5:94–99. 2017. View Article : Google Scholar : PubMed/NCBI

84 

Tenthorey JL, Chavez RA, Thompson TW, Deets KA, Vance RE and Rauch I: NLRC4 inflammasome activation is NLRP3- and phosphorylation-independent during infection and does not protect from melanoma. J Exp Med. 217:e201917362020. View Article : Google Scholar : PubMed/NCBI

85 

Ohashi K, Wang Z, Yang YM, Billet S, Tu W, Pimienta M, Cassel SL, Pandol SJ, Lu SC, Sutterwala FS, et al: NOD-like receptor C4 inflammasome regulates the growth of colon cancer liver metastasis in NAFLD. Hepatology. 70:1582–1599. 2019. View Article : Google Scholar : PubMed/NCBI

86 

Chen GY and Núñez G: Inflammasomes in intestinal inflammation and cancer. Gastroenterology. 141:1986–1999. 2011. View Article : Google Scholar : PubMed/NCBI

87 

Peng L, Youwei R and Yanghong Z: Research progress of NLRC4 and colorectal cancer. J Hubei Univ Sci Technol (Med Sci). 36:176–179. 2022. View Article : Google Scholar

88 

Bast A, Krause K, Schmidt IHE, Pudla M, Brakopp S, Hopf V, Breitbach K and Steinmetz I: Caspase-1-dependent and -independent cell death pathways in Burkholderia pseudomallei infection of macrophages. PLoS Pathog. 10:e10039862014. View Article : Google Scholar : PubMed/NCBI

89 

Freeman L, Guo H, David CN, Brickey WJ, Jha S and Ting JPY: NLR members NLRC4 and NLRP3 mediate sterile inflammasome activation in microglia and astrocytes. J Exp Med. 214:1351–1370. 2017. View Article : Google Scholar : PubMed/NCBI

90 

Guo Q, Wu Y, Hou Y, Liu Y, Liu T, Zhang H, Fan C, Guan H, Li Y, Shan Z and Teng W: Cytokine secretion and pyroptosis of thyroid follicular cells mediated by enhanced NLRP3, NLRP1, NLRC4, and AIM2 inflammasomes are associated with autoimmune thyroiditis. Front Immunol. 9:11972018. View Article : Google Scholar : PubMed/NCBI

91 

Chiarini A, Armato U, Gui L and Dal Prà I: 'Other than NLRP3' inflammasomes: Multiple roles in brain disease. Neuroscientist. 30:23–48. 2024. View Article : Google Scholar

92 

Salcedo R, Worschech A, Cardone M, Jones Y, Gyulai Z, Dai RM, Wang E, Ma W, Haines D, O'HUigin C, et al: MyD88-mediated signaling prevents development of adenocarcinomas of the colon: Role of interleukin 18. J Exp Med. 207:1625–1636. 2010. View Article : Google Scholar : PubMed/NCBI

93 

Takagi H, Kanai T, Okazawa A, Kishi Y, Sato T, Takaishi H, Inoue N, Ogata H, Iwao Y, Hoshino K, et al: Contrasting action of IL-12 and IL-18 in the development of dextran sodium sulphate colitis in mice. Scand J Gastroenterol. 38:837–844. 2003. View Article : Google Scholar : PubMed/NCBI

94 

Chen GY, Liu M, Wang F, Bertin J and Núñez G: A functional role for Nlrp6 in intestinal inflammation and tumorigenesis. J Immunol. 186:7187–7194. 2011. View Article : Google Scholar : PubMed/NCBI

95 

Wilson JE, Petrucelli AS, Chen L, Koblansky AA, Truax AD, Oyama Y, Rogers AB, Brickey WJ, Wang Y, Schneider M, et al: Inflammasome-independent role of AIM2 in suppressing colon tumorigenesis via DNA-PK and Akt. Nat Med. 21:906–913. 2015. View Article : Google Scholar : PubMed/NCBI

96 

Bakhshi S and Shamsi S: MCC950 in the treatment of NLRP3-mediated inflammatory diseases: Latest evidence and therapeutic outcomes. Int Immunopharmacol. 106:1085952022. View Article : Google Scholar : PubMed/NCBI

97 

Cai Y, Chen J, Liu J, Zhu K, Xu Z, Shen J, Wang D and Chu L: Identification of six hub genes and two key pathways in two rat renal fibrosis models based on bioinformatics and RNA-seq transcriptome analyses. Front Mol Biosci. 9:10357722022. View Article : Google Scholar : PubMed/NCBI

98 

Di Q, Zhao X, Tang H, Li X, Xiao Y, Wu H, Wu Z, Quan J and Chen W: USP22 suppresses the NLRP3 inflammasome by degrading NLRP3 via ATG5-dependent autophagy. Autophagy. 19:873–885. 2023. View Article : Google Scholar :

99 

Kolb R, Phan L, Borcherding N, Liu Y, Yuan F, Janowski AM, Xie Q, Markan KR, Li W, Potthoff MJ, et al: Obesity-associated NLRC4 inflammasome activation drives breast cancer progression. Nat Commun. 7:130072016. View Article : Google Scholar : PubMed/NCBI

100 

Ghiringhelli F, Apetoh L, Tesniere A, Aymeric L, Ma Y, Ortiz C, Vermaelen K, Panaretakis T, Mignot G, Ullrich E, et al: Activation of the NLRP3 inflammasome in dendritic cells induces IL-1beta-dependent adaptive immunity against tumors. Nat Med. 15:1170–1178. 2009. View Article : Google Scholar : PubMed/NCBI

101 

Allam R, Maillard MH, Tardivel A, Chennupati V, Bega H, Yu CW, Velin D, Schneider P and Maslowski KM: Epithelial NAIPs protect against colonic tumorigenesis. J Exp Med. 212:369–383. 2015. View Article : Google Scholar : PubMed/NCBI

102 

Güllülü Ö, Hehlgans S, Rödel C, Fokas E and Rödel F: Tumor suppressor protein p53 and inhibitor of apoptosis proteins in colorectal cancer-A promising signaling network for therapeutic interventions. Cancers (Basel). 13:6242021. View Article : Google Scholar : PubMed/NCBI

103 

Lee C, Do HTT, Her J, Kim Y, Seo D and Rhee I: Inflammasome as a promising therapeutic target for cancer. Life Sci. 231:1165932019. View Article : Google Scholar : PubMed/NCBI

104 

Naqishbandi AM: Cytotoxic and apoptotic potential of gemini-chrysophanol nanoparticles against human colorectal cancer HCT-116 cell lines. BMC Pharmacol Toxicol. 23:562022. View Article : Google Scholar : PubMed/NCBI

105 

Moazzendizaji S, Sevbitov A, Ezzatifar F, Jalili HR, Aalii M, Hemmatzadeh M, Aslani S, Gholizadeh Navashenaq J, Safari R, Hosseinzadeh R, et al: microRNAs: Small molecules with a large impact on colorectal cancer. Biotechnol Appl Biochem. 69:1893–1908. 2022. View Article : Google Scholar

106 

Elrebehy MA, Al-Saeed S, Gamal S, El-Sayed A, Ahmed AA, Waheed O, Ismail A, El-Mahdy HAM, Sallam AM and Doghish AS: miRNAs as cornerstones in colorectal cancer pathogenesis and resistance to therapy: A spotlight on signaling pathways interplay-a review. Int J Biol Macromol. 214:583–600. 2022. View Article : Google Scholar : PubMed/NCBI

107 

Dai F, Guo M, Shao Y and Li C: Vibrio splendidus flagellin C binds tropomodulin to induce p38 MAPK-mediated p53-dependent coelomocyte apoptosis in Echinodermata. J Biol Chem. 298:1020912022. View Article : Google Scholar : PubMed/NCBI

108 

Mello SS and Attardi LD: Deciphering p53 signaling in tumor suppression. Curr Opin Cell Biol. 51:65–72. 2018. View Article : Google Scholar :

109 

Raghu D and Karunagaran D: Plumbagin downregulates Wnt signaling independent of p53 in human colorectal cancer cells. J Nat Prod. 77:1130–1134. 2014. View Article : Google Scholar : PubMed/NCBI

110 

Golubovskaya VM and Cance WG: Targeting the p53 pathway. Surg Oncol Clin N Am. 22:747–764. 2013. View Article : Google Scholar : PubMed/NCBI

111 

Stegh AH: Targeting the p53 signaling pathway in cancer therapy-the promises, challenges and perils. Expert Opin Ther Targets. 16:67–83. 2012. View Article : Google Scholar : PubMed/NCBI

112 

Morandell S and Yaffe MB: Exploiting synthetic lethal interactions between DNA damage signaling, checkpoint control, and p53 for targeted cancer therapy. Prog Mol Biol Transl Sci. 110:289–314. 2012. View Article : Google Scholar : PubMed/NCBI

113 

Golubovskaya VM and Cance WG: Focal adhesion kinase and p53 signaling in cancer cells. Int Rev Cytol. 263:103–153. 2007. View Article : Google Scholar : PubMed/NCBI

114 

El-Deiry WS: Insights into cancer therapeutic design based on p53 and TRAIL receptor signaling. Cell Death Differ. 8:1066–1075. 2001. View Article : Google Scholar : PubMed/NCBI

115 

Bates S and Vousden KH: p53 in signaling checkpoint arrest or apoptosis. Curr Opin Genet Dev. 6:12–18. 1996. View Article : Google Scholar : PubMed/NCBI

116 

Khan M, Ai M, Du K, Song J, Wang B, Lin J, Ren A, Chen C, Huang Z, Qiu W, et al: Pyroptosis relates to tumor microenvironment remodeling and prognosis: A pan-cancer perspective. Front Immunol. 13:10622252022. View Article : Google Scholar

117 

Ding J, Wang K, Liu W, She Y, Sun Q, Shi J, Sun H, Wang DC and Shao F: Pore-forming activity and structural autoinhibition of the gasdermin family. Nature. 535:111–116. 2016. View Article : Google Scholar : PubMed/NCBI

118 

Liu X, Zhang Z, Ruan J, Pan Y, Magupalli VG, Wu H and Lieberman J: Inflammasome-activated gasdermin D causes pyroptosis by forming membrane pores. Nature. 535:153–158. 2016. View Article : Google Scholar : PubMed/NCBI

119 

Broz P and Dixit VM: Inflammasomes: Mechanism of assembly, regulation and signalling. Nat Rev Immunol. 16:407–420. 2016. View Article : Google Scholar : PubMed/NCBI

120 

Kay C, Wang R, Kirkby M and Man SM: Molecular mechanisms activating the NAIP-NLRC4 inflammasome: Implications in infectious disease, autoinflammation, and cancer. Immunol Rev. 297:67–82. 2020. View Article : Google Scholar : PubMed/NCBI

121 

Man SM: Inflammasomes in the gastrointestinal tract: Infection, cancer and gut microbiota homeostasis. Nat Rev Gastroenterol Hepatol. 15:721–737. 2018. View Article : Google Scholar : PubMed/NCBI

122 

Irak K, Bayram M, Cifci S and Sener G: Serum levels of NLRC4 and MCP-2/CCL8 in patients with active Crohn's disease. PLoS One. 16:e02600342021. View Article : Google Scholar : PubMed/NCBI

123 

Fattinger SA, Geiser P, Samperio Ventayol P, Di Martino ML, Furter M, Felmy B, Bakkeren E, Hausmann A, Barthel-Scherrer M, Gül E, et al: Epithelium-autonomous NAIP/NLRC4 prevents TNF-driven inflammatory destruction of the gut epithelial barrier in Salmonella-infected mice. Mucosal Immunol. 14:615–629. 2021. View Article : Google Scholar : PubMed/NCBI

124 

Mizoguchi A: Animal models of inflammatory bowel disease. Prog Mol Biol Transl Sci. 105:263–320. 2012. View Article : Google Scholar

125 

Saleh M and Trinchieri G: Innate immune mechanisms of colitis and colitis-associated colorectal cancer. Nat Rev Immunol. 11:9–20. 2011. View Article : Google Scholar

126 

Kiesler P, Fuss IJ and Strober W: Experimental models of inflammatory bowel diseases. Cell Mol Gastroenterol Hepatol. 1:154–170. 2015. View Article : Google Scholar : PubMed/NCBI

127 

Henderson LA and Cron RQ: Macrophage activation syndrome and secondary hemophagocytic lymphohistiocytosis in childhood inflammatory disorders: Diagnosis and management. Paediatric drugs. 22:29–44. 2020. View Article : Google Scholar :

128 

Bardet J, Laverdure N, Fusaro M, Picard C, Garnier L, Viel S, Collardeau-Frachon S, De Guillebon JM, Durieu I, Casari-Thery C, et al: NLRC4 GOF mutations, a challenging diagnosis from neonatal age to adulthood. J Clin Med. 10:43692021. View Article : Google Scholar : PubMed/NCBI

129 

Volker-Touw CM, de Koning HD, Giltay JC, de Kovel CGF, van Kempen TS, Oberndorff KMEJ, Boes ML, van Steensel MAM, van Well GTJ, Blokx WAM, et al: Erythematous nodes, urticarial rash and arthralgias in a large pedigree with NLRC4-related autoinflammatory disease, expansion of the phenotype. Br J Dermatol. 176:244–248. 2017. View Article : Google Scholar

130 

Moghaddas F, Zeng P, Zhang Y, Schützle H, Brenner S, Hofmann SR, Berner R, Zhao Y, Lu B, Chen X, et al: Autoinflammatory mutation in NLRC4 reveals a leucine-rich repeat (LRR)-LRR oligomerization interface. J Allergy Clin Immunol. 142:1956–1967.e6. 2018. View Article : Google Scholar : PubMed/NCBI

131 

Trifiletti R, Lachman HM, Manusama O, Zheng D, Spalice A, Chiurazzi P, Schornagel A, Serban AM, van Wijck R, Cunningham JL, et al: Identification of ultra-rare genetic variants in pediatric acute onset neuropsychiatric syndrome (PANS) by exome and whole genome sequencing. Sci Rep. 12:111062022. View Article : Google Scholar : PubMed/NCBI

132 

Eeckhout E, Asaoka T, Van Gorp H, Demon D, Girard-Guyonvarc'h C, Andries V, Vereecke L, Gabay C, Lamkanfi M, van Loo G and Wullaert A: The autoinflammation-associated NLRC4V341A mutation increases microbiota-independent IL-18 production but does not recapitulate human autoinflammatory symptoms in mice. Front Immunol. 14:12726392023. View Article : Google Scholar

Related Articles

  • Abstract
  • View
  • Download
  • Twitter
Copy and paste a formatted citation
Spandidos Publications style
Tong G, Shen Y, Li H, Qian H and Tan Z: NLRC4, inflammation and colorectal cancer (Review). Int J Oncol 65: 99, 2024.
APA
Tong, G., Shen, Y., Li, H., Qian, H., & Tan, Z. (2024). NLRC4, inflammation and colorectal cancer (Review). International Journal of Oncology, 65, 99. https://doi.org/10.3892/ijo.2024.5687
MLA
Tong, G., Shen, Y., Li, H., Qian, H., Tan, Z."NLRC4, inflammation and colorectal cancer (Review)". International Journal of Oncology 65.4 (2024): 99.
Chicago
Tong, G., Shen, Y., Li, H., Qian, H., Tan, Z."NLRC4, inflammation and colorectal cancer (Review)". International Journal of Oncology 65, no. 4 (2024): 99. https://doi.org/10.3892/ijo.2024.5687
Copy and paste a formatted citation
x
Spandidos Publications style
Tong G, Shen Y, Li H, Qian H and Tan Z: NLRC4, inflammation and colorectal cancer (Review). Int J Oncol 65: 99, 2024.
APA
Tong, G., Shen, Y., Li, H., Qian, H., & Tan, Z. (2024). NLRC4, inflammation and colorectal cancer (Review). International Journal of Oncology, 65, 99. https://doi.org/10.3892/ijo.2024.5687
MLA
Tong, G., Shen, Y., Li, H., Qian, H., Tan, Z."NLRC4, inflammation and colorectal cancer (Review)". International Journal of Oncology 65.4 (2024): 99.
Chicago
Tong, G., Shen, Y., Li, H., Qian, H., Tan, Z."NLRC4, inflammation and colorectal cancer (Review)". International Journal of Oncology 65, no. 4 (2024): 99. https://doi.org/10.3892/ijo.2024.5687
Follow us
  • Twitter
  • LinkedIn
  • Facebook
About
  • Spandidos Publications
  • Careers
  • Cookie Policy
  • Privacy Policy
How can we help?
  • Help
  • Live Chat
  • Contact
  • Email to our Support Team