Spandidos Publications Logo
  • About
    • About Spandidos
    • Aims and Scopes
    • Abstracting and Indexing
    • Editorial Policies
    • Reprints and Permissions
    • Job Opportunities
    • Terms and Conditions
    • Contact
  • Journals
    • All Journals
    • Oncology Letters
      • Oncology Letters
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
    • International Journal of Oncology
      • International Journal of Oncology
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
    • Molecular and Clinical Oncology
      • Molecular and Clinical Oncology
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
    • Experimental and Therapeutic Medicine
      • Experimental and Therapeutic Medicine
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
    • International Journal of Molecular Medicine
      • International Journal of Molecular Medicine
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
    • Biomedical Reports
      • Biomedical Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
    • Oncology Reports
      • Oncology Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
    • Molecular Medicine Reports
      • Molecular Medicine Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
    • World Academy of Sciences Journal
      • World Academy of Sciences Journal
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
    • International Journal of Functional Nutrition
      • International Journal of Functional Nutrition
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
    • International Journal of Epigenetics
      • International Journal of Epigenetics
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
    • Medicine International
      • Medicine International
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
  • Articles
  • Information
    • Information for Authors
    • Information for Reviewers
    • Information for Librarians
    • Information for Advertisers
    • Conferences
  • Language Editing
Spandidos Publications Logo
  • About
    • About Spandidos
    • Aims and Scopes
    • Abstracting and Indexing
    • Editorial Policies
    • Reprints and Permissions
    • Job Opportunities
    • Terms and Conditions
    • Contact
  • Journals
    • All Journals
    • Biomedical Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
    • Experimental and Therapeutic Medicine
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
    • International Journal of Epigenetics
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
    • International Journal of Functional Nutrition
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
    • International Journal of Molecular Medicine
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
    • International Journal of Oncology
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
    • Medicine International
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
    • Molecular and Clinical Oncology
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
    • Molecular Medicine Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
    • Oncology Letters
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
    • Oncology Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
    • World Academy of Sciences Journal
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
  • Articles
  • Information
    • For Authors
    • For Reviewers
    • For Librarians
    • For Advertisers
    • Conferences
  • Language Editing
Login Register Submit
  • This site uses cookies
  • You can change your cookie settings at any time by following the instructions in our Cookie Policy. To find out more, you may read our Privacy Policy.

    I agree
Search articles by DOI, keyword, author or affiliation
Search
Advanced Search
presentation
International Journal of Oncology
Join Editorial Board Propose a Special Issue
Print ISSN: 1019-6439 Online ISSN: 1791-2423
Journal Cover
November-2024 Volume 65 Issue 5

Full Size Image

Cover Legend PDF

Sign up for eToc alerts
Recommend to Library

Journals

International Journal of Molecular Medicine

International Journal of Molecular Medicine

International Journal of Molecular Medicine is an international journal devoted to molecular mechanisms of human disease.

International Journal of Oncology

International Journal of Oncology

International Journal of Oncology is an international journal devoted to oncology research and cancer treatment.

Molecular Medicine Reports

Molecular Medicine Reports

Covers molecular medicine topics such as pharmacology, pathology, genetics, neuroscience, infectious diseases, molecular cardiology, and molecular surgery.

Oncology Reports

Oncology Reports

Oncology Reports is an international journal devoted to fundamental and applied research in Oncology.

Experimental and Therapeutic Medicine

Experimental and Therapeutic Medicine

Experimental and Therapeutic Medicine is an international journal devoted to laboratory and clinical medicine.

Oncology Letters

Oncology Letters

Oncology Letters is an international journal devoted to Experimental and Clinical Oncology.

Biomedical Reports

Biomedical Reports

Explores a wide range of biological and medical fields, including pharmacology, genetics, microbiology, neuroscience, and molecular cardiology.

Molecular and Clinical Oncology

Molecular and Clinical Oncology

International journal addressing all aspects of oncology research, from tumorigenesis and oncogenes to chemotherapy and metastasis.

World Academy of Sciences Journal

World Academy of Sciences Journal

Multidisciplinary open-access journal spanning biochemistry, genetics, neuroscience, environmental health, and synthetic biology.

International Journal of Functional Nutrition

International Journal of Functional Nutrition

Open-access journal combining biochemistry, pharmacology, immunology, and genetics to advance health through functional nutrition.

International Journal of Epigenetics

International Journal of Epigenetics

Publishes open-access research on using epigenetics to advance understanding and treatment of human disease.

Medicine International

Medicine International

An International Open Access Journal Devoted to General Medicine.

Journal Cover
November-2024 Volume 65 Issue 5

Full Size Image

Cover Legend PDF

Sign up for eToc alerts
Recommend to Library

  • Article
  • Citations
    • Cite This Article
    • Download Citation
    • Create Citation Alert
    • Remove Citation Alert
    • Cited By
  • Similar Articles
    • Related Articles (in Spandidos Publications)
    • Similar Articles (Google Scholar)
    • Similar Articles (PubMed)
  • Download PDF
  • Download XML
  • View XML
Review Open Access

Molecular mechanisms and targeted therapy for the metastasis of prostate cancer to the bones (Review)

  • Authors:
    • Yankai Xu
    • Gang Zhang
    • Yuanyuan Liu
    • Yangyang Liu
    • Aimin Tian
    • Jizhong Che
    • Zhengchao Zhang
  • View Affiliations

    Affiliations: Department of Urology, Yantai Affiliated Hospital of Binzhou Medical University, The Second Clinical Medical College of Binzhou Medical University, Yantai, Shandong 264100, P.R. China
  • Published online on: September 12, 2024     https://doi.org/10.3892/ijo.2024.5692
  • Article Number: 104
  • Copyright: © Xu et al. This is an open access article distributed under the terms of Creative Commons Attribution License [CC BY_NC 4.0].

Metrics: Total Views: 0 (Spandidos Publications: | PMC Statistics: )
Metrics: Total PDF Downloads: 0 (Spandidos Publications: | PMC Statistics: )
Cited By (CrossRef): 0 citations Loading Articles...

This article is mentioned in:



Abstract

The incidence of prostate cancer (PCa) is increasing, making it one of the prevalent malignancies among men. Metastasis of PCa to the bones poses the greatest danger to patients, potentially resulting in treatment ineffectiveness and mortality. At present, the management of patients with bone metastasis focuses primarily on providing palliative care. Research has indicated that the spread of PCa to the bones occurs through the participation of numerous molecules and their respective pathways. Gaining knowledge regarding the molecular processes involved in bone metastasis may result in the development of innovative and well‑tolerated therapies, ultimately enhancing the quality of life and prognosis of patients. The present article provides the latest overview of the molecular mechanisms involved in the formation of bone metastatic tumors from PCa. Additionally, the clinical outcomes of targeted drug therapies for bone metastasis are thoroughly analyzed. Finally, the benefits and difficulties of targeted therapy for bone metastasis of PCa are discussed, aiming to offer fresh perspectives for treatment.
View Figures

Figure 1

Figure 2

Figure 3

View References

1 

Sung H, Ferlay J, Siegel RL, Laversanne M, Soerjomataram I, Jemal A and Bray F: Global cancer statistics 2020: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J Clin. 71:209–249. 2021. View Article : Google Scholar : PubMed/NCBI

2 

Xia C, Dong X, Li H, Cao M, Sun D, He S, Yang F, Yan X, Zhang S, Li N and Chen W: Cancer statistics in China and United States, 2022: Profiles, trends, and determinants. Chin Med J (Engl). 135:584–590. 2022. View Article : Google Scholar : PubMed/NCBI

3 

Salji M, Hendry J, Patel A, Ahmad I, Nixon C and Leung HY: Peri-prostatic fat volume measurement as a predictive tool for castration resistance in advanced prostate cancer. Eur Urol Focus. 4:858–866. 2018. View Article : Google Scholar

4 

Yang L, Jin M, Park SJ, Seo SY and Jeong KW: SETD1A promotes proliferation of castration-resistant prostate cancer cells via FOXM1 transcription. Cancers (Basel). 12:17362020. View Article : Google Scholar : PubMed/NCBI

5 

Chi JT, Lin PH, Tolstikov V, Oyekunle T, Chen EY, Bussberg V, Greenwood B, Sarangarajan R, Narain NR, Kiebish MA and Freedland SJ: Metabolomic effects of androgen deprivation therapy treatment for prostate cancer. Cancer Med. 9:3691–3702. 2020. View Article : Google Scholar : PubMed/NCBI

6 

Yu Z, Zou H, Wang H, Li Q and Yu D: Identification of key gene signatures associated with bone metastasis in castration-resistant prostate cancer using co-expression analysis. Front Oncol. 10:5715242021. View Article : Google Scholar : PubMed/NCBI

7 

Lee S, Mendoza TR, Burner DN, Muldong MT, Wu CCN, Arreola-Villanueva C, Zuniga A, Greenburg O, Zhu WY, Murtadha J, et al: Novel dormancy mechanism of castration resistance in bone metastatic prostate cancer organoids. Int J Mol Sci. 23:32032022. View Article : Google Scholar : PubMed/NCBI

8 

Clézardin P, Coleman R, Puppo M, Ottewell P, Bonnelye E, Paycha F, Confavreux CB and Holen I: Bone metastasis: Mechanisms, therapies, and biomarkers. Physiol Rev. 101:797–855. 2021. View Article : Google Scholar

9 

Clarke NW, Hart CA and Brown MD: Molecular mechanisms of metastasis in prostate cancer. Asian J Androl. 11:57–67. 2009. View Article : Google Scholar

10 

Talreja DB: Importance of antiresorptive therapies for patients with bone metastases from solid tumors. Cancer Manag Res. 4:287–297. 2012. View Article : Google Scholar : PubMed/NCBI

11 

Coleman RE: Clinical features of metastatic bone disease and risk of skeletal morbidity. Clin Cancer Res. 12:6243s–6249s. 2006. View Article : Google Scholar : PubMed/NCBI

12 

Nørgaard M, Jensen AØ, Jacobsen JB, Cetin K, Fryzek JP and Sørensen HT: Skeletal related events, bone metastasis and survival of prostate cancer: A population based cohort study in Denmark (1999 to 2007). J Urol. 184:162–167. 2010. View Article : Google Scholar : PubMed/NCBI

13 

Zhang X: Interactions between cancer cells and bone microenvironment promote bone metastasis in prostate cancer. Cancer Commun (Lond). 39:762019. View Article : Google Scholar : PubMed/NCBI

14 

Kang J, La Manna F, Bonollo F, Sampson N, Alberts IL, Mingels C, Afshar-Oromieh A, Thalmann GN and Karkampouna S: Tumor microenvironment mechanisms and bone metastatic disease progression of prostate cancer. Cancer Lett. 530:156–169. 2022. View Article : Google Scholar : PubMed/NCBI

15 

Singh DK, Patel VG, Oh WK and Aguirre-Ghiso JA: Prostate cancer dormancy and reactivation in bone marrow. J Clin Med. 10:26482021. View Article : Google Scholar : PubMed/NCBI

16 

Bedeschi M, Marino N, Cavassi E, Piccinini F and Tesei A: Cancer-associated fibroblast: Role in prostate cancer progression to metastatic disease and therapeutic resistance. Cells. 12:8022023. View Article : Google Scholar : PubMed/NCBI

17 

Kim JM, Lin C, Stavre Z, Greenblatt MB and Shim JH: Osteoblast-osteoclast communication and bone homeostasis. Cells. 9:20732020. View Article : Google Scholar : PubMed/NCBI

18 

Mughees M, Kaushal JB, Sharma G, Wajid S, Batra SK and Siddiqui JA: Chemokines and cytokines: Axis and allies in prostate cancer pathogenesis. Semin Cancer Biol. 86:497–512. 2022. View Article : Google Scholar : PubMed/NCBI

19 

Gartrell BA, Coleman R, Efstathiou E, Fizazi K, Logothetis CJ, Smith MR, Sonpavde G, Sartor O and Saad F: Metastatic prostate cancer and the bone: Significance and therapeutic options. Eur Urol. 68:850–858. 2015. View Article : Google Scholar : PubMed/NCBI

20 

Ban J, Fock V, Aryee DNT and Kovar H: Mechanisms, diagnosis and treatment of bone metastases. Cells. 10:29442021. View Article : Google Scholar : PubMed/NCBI

21 

Deng X, He G, Liu J, Luo F, Peng X, Tang S, Gao Z, Lin Q, Keller JM, Yang T and Keller ET: Recent advances in bone-targeted therapies of metastatic prostate cancer. Cancer Treat Rev. 40:730–738. 2014. View Article : Google Scholar : PubMed/NCBI

22 

Baci D, Bruno A, Cascini C, Gallazzi M, Mortara L, Sessa F, Pelosi G, Albini A and Noonan DM: Acetyl-L-carnitine downregulates invasion (CXCR4/CXCL12, MMP-9) and angiogenesis (VEGF, CXCL8) pathways in prostate cancer cells: Rationale for prevention and interception strategies. J Exp Clin Cancer Res. 38:4642019. View Article : Google Scholar : PubMed/NCBI

23 

Midavaine É, Côté J and Sarret P: The multifaceted roles of the chemokines CCL2 and CXCL12 in osteophilic metastatic cancers. Cancer Metastasis Rev. 40:427–445. 2021. View Article : Google Scholar : PubMed/NCBI

24 

Cioni B, Nevedomskaya E, Melis MHM, van Burgsteden J, Stelloo S, Hodel E, Spinozzi D, de Jong J, van der Poel H, de Boer JP, et al: Loss of androgen receptor signaling in prostate cancer-associated fibroblasts (CAFs) promotes CCL2- and CXCL8-mediated cancer cell migration. Mol Oncol. 12:1308–1323. 2018. View Article : Google Scholar : PubMed/NCBI

25 

Siddiqui JA, Seshacharyulu P, Muniyan S, Pothuraju R, Khan P, Vengoji R, Chaudhary S, Maurya SK, Lele SM, Jain M, et al: GDF15 promotes prostate cancer bone metastasis and colonization through osteoblastic CCL2 and RANKL activation. Bone Res. 10:62022. View Article : Google Scholar : PubMed/NCBI

26 

Li Y, He Y, Butler W, Xu L, Chang Y, Lei K, Zhang H, Zhou Y, Gao AC, Zhang Q, et al: Targeting cellular heterogeneity with CXCR2 blockade for the treatment of therapy-resistant prostate cancer. Sci Transl Med. 11:eaax04282019. View Article : Google Scholar : PubMed/NCBI

27 

Singh R, Kapur N, Mir H, Singh N, Lillard JW Jr and Singh S: CXCR6-CXCL16 axis promotes prostate cancer by mediating cytoskeleton rearrangement via Ezrin activation and αvβ3 integrin clustering. Oncotarget. 7:7343–7353. 2016. View Article : Google Scholar : PubMed/NCBI

28 

Connell B, Kopach P, Ren W, Joshi R, Naber S, Zhou M and Mathew P: Aberrant integrin αv and α5 expression in prostate adenocarcinomas and bone-metastases is consistent with a bone-colonizing phenotype. Transl Androl Urol. 9:1630–1638. 2020. View Article : Google Scholar : PubMed/NCBI

29 

Massagué J and Obenauf AC: Metastatic colonization by circulating tumour cells. Nature. 529:298–306. 2016. View Article : Google Scholar : PubMed/NCBI

30 

Quayle L, Ottewell PD and Holen I: Bone metastasis: Molecular mechanisms implicated in tumour cell dormancy in breast and prostate cancer. Curr Cancer Drug Targets. 15:469–480. 2015. View Article : Google Scholar : PubMed/NCBI

31 

Yumoto K, Eber MR, Wang J, Cackowski FC, Decker AM, Lee E, Nobre AR, Aguirre-Ghiso JA, Jung Y and Taichman RS: Axl is required for TGF-β2-induced dormancy of prostate cancer cells in the bone marrow. Sci Rep. 6:365202016. View Article : Google Scholar

32 

Kobayashi A, Okuda H, Xing F, Pandey PR, Watabe M, Hirota S, Pai SK, Liu W, Fukuda K, Chambers C, et al: Bone morphogenetic protein 7 in dormancy and metastasis of prostate cancer stem-like cells in bone. J Exp Med. 208:2641–2655. 2011. View Article : Google Scholar : PubMed/NCBI

33 

Park M, Cho YJ, Kim B, Ko YJ, Jang Y, Moon YH, Hyun H and Lim W: RANKL immunisation inhibits prostate cancer metastasis by modulating EMT through a RANKL-dependent pathway. Sci Rep. 11:121862021. View Article : Google Scholar : PubMed/NCBI

34 

Ren D, Dai Y, Yang Q, Zhang X, Guo W, Ye L, Huang S, Chen X, Lai Y, Du H, et al: Wnt5a induces and maintains prostate cancer cells dormancy in bone. J Exp Med. 216:428–449. 2019. View Article : Google Scholar :

35 

Ruppender N, Larson S, Lakely B, Kollath L, Brown L, Coleman I, Coleman R, Nguyen H, Nelson PS, Corey E, et al: Cellular adhesion promotes prostate cancer cells escape from dormancy. PLoS One. 10:e01305652015. View Article : Google Scholar : PubMed/NCBI

36 

Rojas A, Liu G, Coleman I, Nelson PS, Zhang M, Dash R, Fisher PB, Plymate SR and Wu JD: IL-6 promotes prostate tumorigenesis and progression through autocrine cross-activation of IGF-IR. Oncogene. 30:2345–2355. 2011. View Article : Google Scholar : PubMed/NCBI

37 

Danilucci TM, Santos PK, Pachane BC, Pisani GFD, Lino RLB, Casali BC, Altei WF and Selistre-de-Araujo HS: Recombinant RGD-disintegrin DisBa-01 blocks integrin αvβ3 and impairs VEGF signaling in endothelial cells. Cell Commun Signal. 17:272019. View Article : Google Scholar

38 

Hashemi M, Taheriazam A, Daneii P, Hassanpour A, Kakavand A, Rezaei S, Hejazi ES, Aboutalebi M, Gholamrezaie H, Saebfar H, et al: Targeting PI3K/Akt signaling in prostate cancer therapy. J Cell Commun Signal. 17:423–443. 2023. View Article : Google Scholar :

39 

Cooper CR and Pienta KJ: Cell adhesion and chemotaxis in prostate cancer metastasis to bone: A minireview. Prostate Cancer Prostatic Dis. 3:6–12. 2000. View Article : Google Scholar

40 

Yin JJ, Pollock CB and Kelly K: Mechanisms of cancer metastasis to the bone. Cell Res. 15:57–62. 2005. View Article : Google Scholar : PubMed/NCBI

41 

Zhang Y, Liang J, Liu P, Wang Q, Liu L and Zhao H: The RANK/RANKL/OPG system and tumor bone metastasis: Potential mechanisms and therapeutic strategies. Front Endocrinol (Lausanne). 13:10638152022. View Article : Google Scholar

42 

Wong SK, Mohamad NV, Giaze TR, Chin KY, Mohamed N and Ima-Nirwana S: Prostate cancer and bone metastases: The underlying mechanisms. Int J Mol Sci. 20:25872019. View Article : Google Scholar : PubMed/NCBI

43 

Kim SW, Kim JS, Papadopoulos J, Choi HJ, He J, Maya M, Langley RR, Fan D, Fidler IJ and Kim SJ: Consistent interactions between tumor cell IL-6 and macrophage TNF-α enhance the growth of human prostate cancer cells in the bone of nude mouse. Int Immunopharmacol. 11:862–872. 2011. View Article : Google Scholar : PubMed/NCBI

44 

Baldessari C, Pipitone S, Molinaro E, Cerma K, Fanelli M, Nasso C, Oltrecolli M, Pirola M, D'Agostino E, Pugliese G, et al: Bone metastases and health in prostate cancer: From pathophysiology to clinical implications. Cancers (Basel). 15:15182023. View Article : Google Scholar : PubMed/NCBI

45 

Vičić I and Belev B: The pathogenesis of bone metastasis in solid tumors: A review. Croat Med J. 62:270–282. 2021. View Article : Google Scholar

46 

Yu H, Lin L, Zhang Z, Zhang H and Hu H: Targeting NF-κB pathway for the therapy of diseases: Mechanism and clinical study. Signal Transduct Target Ther. 5:2092020. View Article : Google Scholar

47 

Verzella D, Fischietti M, Capece D, Vecchiotti D, Del Vecchio F, Cicciarelli G, Mastroiaco V, Tessitore A, Alesse E and Zazzeroni F: Targeting the NF-κB pathway in prostate cancer: A promising therapeutic approach? Curr Drug Targets. 17:311–320. 2016. View Article : Google Scholar

48 

Al-Rashidi RR, Noraldeen SAM, Kareem AK, Mahmoud AK, Kadhum WR, Ramírez-Coronel AA, Iswanto AH, Obaid RF, Jalil AT, Mustafa YF, et al: Malignant function of nuclear factor-kappaB axis in prostate cancer: Molecular interactions and regulation by non-coding RNAs. Pharmacol Res. 194:1067752023. View Article : Google Scholar : PubMed/NCBI

49 

Zhu W, Hu X, Xu J, Cheng Y, Shao Y and Peng Y: Effect of PI3K/Akt signaling pathway on the process of prostate cancer metastasis to bone. Cell Biochem Biophys. 72:171–177. 2015. View Article : Google Scholar

50 

Ziaee S and Chung LW: Induction of integrin α2 in a highly bone metastatic human prostate cancer cell line: Roles of RANKL and AR under three-dimensional suspension culture. Mol Cancer. 13:2082014. View Article : Google Scholar

51 

Yin J, Liu YN, Tillman H, Barrett B, Hewitt S, Ylaya K, Fang L, Lake R, Corey E, Morrissey C, et al: AR-regulated TWEAK-FN14 pathway promotes prostate cancer bone metastasis. Cancer Res. 74:4306–4317. 2014. View Article : Google Scholar : PubMed/NCBI

52 

Lee C, Whang YM, Campbell P, Mulcrone PL, Elefteriou F, Cho SW and Park SI: Dual targeting c-met and VEGFR2 in osteoblasts suppresses growth and osteolysis of prostate cancer bone metastasis. Cancer Lett. 414:205–213. 2018. View Article : Google Scholar

53 

Choi SY, Jeon JM, Na AY, Kwon OK, Bang IH, Ha YS, Bae EJ, Park BH, Lee EH, Kwon TG, et al: SIRT5 directly inhibits the PI3K/AKT pathway in prostate cancer cell lines. Cancer Genomics Proteomics. 19:50–59. 2022. View Article : Google Scholar :

54 

Chen JR, Zhao JT and Xie ZZ: Integrin-mediated cancer progression as a specific target in clinical therapy. Biomed Pharmacother. 155:1137452022. View Article : Google Scholar : PubMed/NCBI

55 

Hamidi H and Ivaska J: Every step of the way: Integrins in cancer progression and metastasis. Nat Rev Cancer. 18:533–548. 2018. View Article : Google Scholar : PubMed/NCBI

56 

Li M, Wang Y, Li M, Wu X, Setrerrahmane S and Xu H: Integrins as attractive targets for cancer therapeutics. Acta Pharm Sin B. 11:2726–2737. 2021. View Article : Google Scholar : PubMed/NCBI

57 

Giancotti FG and Ruoslahti E: Integrin signaling. Science. 285:1028–1032. 1999. View Article : Google Scholar : PubMed/NCBI

58 

Hynes RO: Integrins: Versatility, modulation, and signaling in cell adhesion. Cell. 69:11–25. 1992. View Article : Google Scholar : PubMed/NCBI

59 

Cooper J and Giancotti FG: Integrin signaling in cancer: Mechanotransduction, stemness, epithelial plasticity, and therapeutic resistance. Cancer Cell. 35:347–367. 2019. View Article : Google Scholar : PubMed/NCBI

60 

Jin JK, Tien PC, Cheng CJ, Song JH, Huang C, Lin SH and Gallick GE: Talin1 phosphorylation activates β1 integrins: A novel mechanism to promote prostate cancer bone metastasis. Oncogene. 34:1811–1821. 2015. View Article : Google Scholar

61 

Chen PC, Tang CH, Lin LW, Tsai CH, Chu CY, Lin TH and Huang YL: Thrombospondin-2 promotes prostate cancer bone metastasis by the up-regulation of matrix metalloproteinase-2 through down-regulating miR-376c expression. J Hematol Oncol. 10:332017. View Article : Google Scholar : PubMed/NCBI

62 

Krishnamurthy N and Kurzrock R: Targeting the Wnt/beta-catenin pathway in cancer: Update on effectors and inhibitors. Cancer Treat Rev. 62:50–60. 2018. View Article : Google Scholar

63 

Yu F, Yu C, Li F, Zuo Y, Wang Y, Yao L, Wu C, Wang C and Ye L: Wnt/β-catenin signaling in cancers and targeted therapies. Signal Transduct Target Ther. 6:3072021. View Article : Google Scholar

64 

Li Q, Ye L, Zhang X, Wang M, Lin C, Huang S, Guo W, Lai Y, Du H, Li J, et al: FZD8, a target of p53, promotes bone metastasis in prostate cancer by activating canonical Wnt/β-catenin signaling. Cancer Lett. 402:166–176. 2017. View Article : Google Scholar : PubMed/NCBI

65 

Nandana S, Tripathi M, Duan P, Chu CY, Mishra R, Liu C, Jin R, Yamashita H, Zayzafoon M, Bhowmick NA, et al: Bone metastasis of prostate cancer can be therapeutically targeted at the TBX2-WNT signaling axis. Cancer Res. 77:1331–1344. 2017. View Article : Google Scholar : PubMed/NCBI

66 

Peng S, Chen X, Huang C, Yang C, Situ M, Zhou Q, Ling Y, Huang H, Huang M, Zhang Y, et al: UBE2S as a novel ubiquitinated regulator of p16 and β-catenin to promote bone metastasis of prostate cancer. Int J Biol Sci. 18:3528–3543. 2022. View Article : Google Scholar :

67 

Tang DG: Understanding and targeting prostate cancer cell heterogeneity and plasticity. Semin Cancer Biol. 82:68–93. 2022. View Article : Google Scholar :

68 

Wolf I, Gratzke C and Wolf P: Prostate cancer stem cells: Clinical aspects and targeted therapies. Front Oncol. 12:9357152022. View Article : Google Scholar : PubMed/NCBI

69 

Pittet MJ, Michielin O and Migliorini D: Clinical relevance of tumour-associated macrophages. Nat Rev Clin Oncol. 19:402–421. 2022. View Article : Google Scholar : PubMed/NCBI

70 

Huang R, Wang S, Wang N, Zheng Y, Zhou J, Yang B, Wang X, Zhang J, Guo L, Wang S, et al: CCL5 derived from tumor-associated macrophages promotes prostate cancer stem cells and metastasis via activating β-catenin/STAT3 signaling. Cell Death Dis. 11:2342020. View Article : Google Scholar

71 

Zhang S, Lv C, Niu Y, Li C, Li X, Shang Y, Zhang Y, Zhang Y, Zhang Y and Zeng Y: RBM3 suppresses stemness remodeling of prostate cancer in bone microenvironment by modulating N6-methyladenosine on CTNNB1 mRNA. Cell Death Dis. 14:912023. View Article : Google Scholar : PubMed/NCBI

72 

Meng X, Vander Ark A, Daft P, Woodford E, Wang J, Madaj Z and Li X: Loss of TGF-β signaling in osteoblasts increases basic-FGF and promotes prostate cancer bone metastasis. Cancer Lett. 418:109–118. 2018. View Article : Google Scholar : PubMed/NCBI

73 

Liu X, Chen L, Fan Y, Hong Y, Yang X, Li Y, Lu J, Lv J, Pan X, Qu F, et al: IFITM3 promotes bone metastasis of prostate cancer cells by mediating activation of the TGF-β signaling pathway. Cell Death Dis. 10:5172019. View Article : Google Scholar

74 

Yan Z, Jin S, Wei Z, Huilian H, Zhanhai Y, Yue T, Juan L, Jing L, Libo Y and Xu L: Discoidin domain receptor 2 facilitates prostate cancer bone metastasis via regulating parathyroid hormone-related protein. Biochim Biophys Acta. 1842:1350–1363. 2014. View Article : Google Scholar : PubMed/NCBI

75 

Lin SR, Mokgautsi N and Liu YN: Ras and Wnt interaction contribute in prostate cancer bone metastasis. Molecules. 25:23802020. View Article : Google Scholar : PubMed/NCBI

76 

Yang Q, Lang C, Wu Z, Dai Y, He S, Guo W, Huang S, Du H, Ren D and Peng X: MAZ promotes prostate cancer bone metastasis through transcriptionally activating the KRas-dependent RalGEFs pathway. J Exp Clin Cancer Res. 38:3912019. View Article : Google Scholar : PubMed/NCBI

77 

Eswarakumar VP, Lax I and Schlessinger J: Cellular signaling by fibroblast growth factor receptors. Cytokine Growth Factor Rev. 16:139–149. 2005. View Article : Google Scholar : PubMed/NCBI

78 

Labanca E, Yang J, Shepherd PDA, Wan X, Starbuck MW, Guerra LD, Anselmino N, Bizzotto JA, Dong J, Chinnaiyan AM, et al: Fibroblast growth factor receptor 1 drives the metastatic progression of prostate cancer. Eur Urol Oncol. 5:164–175. 2022. View Article : Google Scholar

79 

Tai HC, Chang AC, Yu HJ, Huang CY, Tsai YC, Lai YW, Sun HL, Tang CH and Wang SW: Osteoblast-derived WNT-induced secreted protein 1 increases VCAM-1 expression and enhances prostate cancer metastasis by down-regulating miR-126. Oncotarget. 5:7589–7598. 2014. View Article : Google Scholar : PubMed/NCBI

80 

Chang AC, Chen PC, Lin YF, Su CM, Liu JF, Lin TH, Chuang SM and Tang CH: Osteoblast-secreted WISP-1 promotes adherence of prostate cancer cells to bone via the VCAM-1/integrin α4β1 system. Cancer Lett. 426:47–56. 2018. View Article : Google Scholar : PubMed/NCBI

81 

Liu Q, Li A, Tian Y, Wu JD, Liu Y, Li T, Chen Y, Han X and Wu K: The CXCL8-CXCR1/2 pathways in cancer. Cytokine Growth Factor Rev. 31:61–71. 2016. View Article : Google Scholar : PubMed/NCBI

82 

Hao Q, Vadgama JV and Wang P: CCL2/CCR2 signaling in cancer pathogenesis. Cell Commun Signal. 18:822020. View Article : Google Scholar : PubMed/NCBI

83 

Johnson CS and Cook LM: Osteoid cell-derived chemokines drive bone-metastatic prostate cancer. Front Oncol. 13:11005852023. View Article : Google Scholar : PubMed/NCBI

84 

Govindarajan B, Sbrissa D, Pressprich M, Kim S, Vaishampayan U, Cher ML and Chinni S: Adaptor proteins mediate CXCR4 and PI4KA crosstalk in prostate cancer cells and the significance of PI4KA in bone tumor growth. Res Sq [Preprint]: rs.3.rs-2590830. 2023.

85 

Conley-LaComb MK, Semaan L, Singareddy R, Li Y, Heath EI, Kim S, Cher ML and Chinni SR: Pharmacological targeting of CXCL12/CXCR4 signaling in prostate cancer bone metastasis. Mol Cancer. 15:682016. View Article : Google Scholar : PubMed/NCBI

86 

Zhang B, Li Y, Wu Q, Xie L, Barwick B, Fu C, Li X, Wu D, Xia S, Chen J, et al: Acetylation of KLF5 maintains EMT and tumorigenicity to cause chemoresistant bone metastasis in prostate cancer. Nat Commun. 12:17142021. View Article : Google Scholar : PubMed/NCBI

87 

Zhang Z, Karthaus WR, Lee YS, Gao VR, Wu C, Russo JW, Liu M, Mota JM, Abida W, Linton E, et al: Tumor microenvironment-derived NRG1 promotes antiandrogen resistance in prostate cancer. Cancer Cell. 38:279–296.e9. 2020. View Article : Google Scholar : PubMed/NCBI

88 

Yin C, Wang M, Wang Y, Lin Q, Lin K, Du H, Lang C, Dai Y and Peng X: BHLHE22 drives the immunosuppressive bone tumor microenvironment and associated bone metastasis in prostate cancer. J Immunother Cancer. 11:e0055322023. View Article : Google Scholar : PubMed/NCBI

89 

Kolonin MG, Sergeeva A, Staquicini DI, Smith TL, Tarleton CA, Molldrem JJ, Sidman RL, Marchiò S, Pasqualini R and Arap W: Interaction between tumor cell surface receptor RAGE and proteinase 3 mediates prostate cancer metastasis to bone. Cancer Res. 77:3144–3150. 2017. View Article : Google Scholar : PubMed/NCBI

90 

Zhao Z, Li E, Luo L, Zhao S, Liu L, Wang J, Kang R and Luo J: A PSCA/PGRN-NF-κB-integrin-α4 axis promotes prostate cancer cell adhesion to bone marrow endothelium and enhances metastatic potential. Mol Cancer Res. 18:501–513. 2020. View Article : Google Scholar

91 

Geng X, Chang B and Shan J: Role and correlation of exosomes and integrins in bone metastasis of prostate cancer. Andrologia. 54:e145502022. View Article : Google Scholar : PubMed/NCBI

92 

Borel M, Lollo G, Magne D, Buchet R, Brizuela L and Mebarek S: Prostate cancer-derived exosomes promote osteoblast differentiation and activity through phospholipase D2. Biochim Biophys Acta Mol Basis Dis. 1866:1659192020. View Article : Google Scholar : PubMed/NCBI

93 

Urabe F, Kosaka N, Yamamoto Y, Ito K, Otsuka K, Soekmadji C, Egawa S, Kimura T and Ochiya T: Metastatic prostate cancer-derived extracellular vesicles facilitate osteoclastogenesis by transferring the CDCP1 protein. J Extracell Vesicles. 12:e123122023. View Article : Google Scholar : PubMed/NCBI

94 

Yu G, Shen P, Lee YC, Pan J, Song JH, Pan T, Lin SC, Liang X, Wang G, Panaretakis T, et al: Multiple pathways coordinating reprogramming of endothelial cells into osteoblasts by BMP4. iScience. 24:1023882021. View Article : Google Scholar : PubMed/NCBI

95 

Lee YC, Lin SC, Yu G, Zhu M, Song JH, Rivera K, Pappin DJ, Logothetis CJ, Panaretakis T, Wang G, et al: Prostate tumor-induced stromal reprogramming generates tenascin C that promotes prostate cancer metastasis through YAP/TAZ inhibition. Oncogene. 41:757–769. 2022. View Article : Google Scholar :

96 

Wang H, Zhang M, Lu W and Yuan C: Prostate cancer cell-derived spondin 2 boosts osteogenic factor levels in osteoblasts via the PI3K/AKT/mTOR pathway. Oncol Rep. 49:232023. View Article : Google Scholar

97 

Fizazi K, Carducci M, Smith M, Damião R, Brown J, Karsh L, Milecki P, Shore N, Rader M, Wang H, et al: Denosumab versus zoledronic acid for treatment of bone metastases in men with castration-resistant prostate cancer: A randomised, double-blind study. Lancet. 377:813–822. 2011. View Article : Google Scholar : PubMed/NCBI

98 

Henry D, Vadhan-Raj S, Hirsh V, von Moos R, Hungria V, Costa L, Woll PJ, Scagliotti G, Smith G, Feng A, et al: Delaying skeletal-related events in a randomized phase 3 study of denosumab versus zoledronic acid in patients with advanced cancer: An analysis of data from patients with solid tumors. Support Care Cancer. 22:679–687. 2014. View Article : Google Scholar

99 

Shenderov E, Boudadi K, Fu W, Wang H, Sullivan R, Jordan A, Dowling D, Harb R, Schonhoft J, Jendrisak A, et al: Nivolumab plus ipilimumab, with or without enzalutamide, in AR-V7-expressing metastatic castration-resistant prostate cancer: A phase-2 nonrandomized clinical trial. Prostate. 81:326–338. 2021. View Article : Google Scholar : PubMed/NCBI

100 

Subudhi SK, Siddiqui BA, Aparicio AM, Yadav SS, Basu S, Chen H, Jindal S, Tidwell RSS, Varma A, Logothetis CJ, et al: Combined CTLA-4 and PD-L1 blockade in patients with chemotherapy-naïve metastatic castration-resistant prostate cancer is associated with increased myeloid and neutrophil immune subsets in the bone microenvironment. J Immunother Cancer. 9:e0029192021. View Article : Google Scholar

101 

McNeel DG, Eickhoff JC, Wargowski E, Johnson LE, Kyriakopoulos CE, Emamekhoo H, Lang JM, Brennan MJ and Liu G: Phase 2 trial of T-cell activation using MVI-816 and pembrolizumab in patients with metastatic, castration-resistant prostate cancer (mCRPC). J Immunother Cancer. 10:e0041982022. View Article : Google Scholar : PubMed/NCBI

102 

Kantoff PW, Higano CS, Shore ND, Berger ER, Small EJ, Penson DF, Redfern CH, Ferrari AC, Dreicer R, Sims RB, et al: Sipuleucel-T immunotherapy for castration-resistant prostate cancer. N Engl J Med. 363:411–422. 2010. View Article : Google Scholar : PubMed/NCBI

103 

Su P, Zhang M and Kang X: Targeting c-Met in the treatment of urologic neoplasms: Current status and challenges. Front Oncol. 13:10710302023. View Article : Google Scholar : PubMed/NCBI

104 

Azad AA, Beardsley EK, Hotte SJ, Ellard SL, Klotz L, Chin J, Kollmannsberger C, Mukherjee SD and Chi KN: A randomized phase II efficacy and safety study of vandetanib (ZD6474) in combination with bicalutamide versus bicalutamide alone in patients with chemotherapy naïve castration-resistant prostate cancer. Invest New Drugs. 32:746–752. 2014. View Article : Google Scholar : PubMed/NCBI

105 

Maroto P, Porta C, Capdevila J, Apolo AB, Viteri S, Rodriguez-Antona C, Martin L and Castellano D: Cabozantinib for the treatment of solid tumors: A systematic review. Ther Adv Med Oncol. 14:175883592211071122022. View Article : Google Scholar : PubMed/NCBI

106 

Smith M, De Bono J, Sternberg C, Le Moulec S, Oudard S, De Giorgi U, Krainer M, Bergman A, Hoelzer W, De Wit R, et al: Phase III Study of cabozantinib in previously treated metastatic castration-resistant prostate cancer: COMET-1. J Clin Oncol. 34:3005–3013. 2016. View Article : Google Scholar : PubMed/NCBI

107 

Sadaghiani MS, Sheikhbahaei S, Werner RA, Pienta KJ, Pomper MG, Gorin MA, Solnes LB and Rowe SP: 177 Lu-PSMA radioligand therapy effectiveness in metastatic castration-resistant prostate cancer: An updated systematic review and meta-analysis. Prostate. 82:826–835. 2022. View Article : Google Scholar : PubMed/NCBI

108 

Kim YJ and Kim YI: Therapeutic responses and survival effects of 177Lu-PSMA-617 radioligand therapy in metastatic castrate-resistant prostate cancer: A meta-analysis. Clin Nucl Med. 43:728–734. 2018. View Article : Google Scholar : PubMed/NCBI

109 

Thang SP, Violet J, Sandhu S, Iravani A, Akhurst T, Kong G, Ravi Kumar A, Murphy DG, Williams SG, Hicks RJ and Hofman MS: Poor outcomes for patients with metastatic castration-resistant prostate cancer with low prostate-specific membrane antigen (PSMA) expression deemed ineligible for 177Lu-labelled PSMA radioligand therapy. Eur Urol Oncol. 2:670–676. 2019. View Article : Google Scholar : PubMed/NCBI

110 

Ma J, Li L, Liao T, Gong W and Zhang C: Efficacy and safety of 225Ac-PSMA-617-targeted alpha therapy in metastatic castration-resistant prostate cancer: A systematic review and meta-analysis. Front Oncol. 12:7966572022. View Article : Google Scholar

111 

Ballal S, Yadav MP, Sahoo RK, Tripathi M, Dwivedi SN and Bal C: 225 Ac-PSMA-617-targeted alpha therapy for the treatment of metastatic castration-resistant prostate cancer: A systematic review and meta-analysis. Prostate. 81:580–591. 2021. View Article : Google Scholar : PubMed/NCBI

112 

Gao X, Li L, Cai X, Huang Q, Xiao J and Cheng Y: Targeting nanoparticles for diagnosis and therapy of bone tumors: Opportunities and challenges. Biomaterials. 265:1204042021. View Article : Google Scholar

113 

Chen G, Arns S and Young RN: Determination of the rat in vivo pharmacokinetic profile of a bone-targeting dual-action pro-drug for treatment of osteoporosis. Bioconjug Chem. 26:1095–1103. 2015. View Article : Google Scholar : PubMed/NCBI

114 

Bighetti-Trevisan RL, Sousa LO, Castilho RM and Almeida LO: Cancer stem cells: Powerful targets to improve current anticancer therapeutics. Stem Cells Int. 2019:96180652019. View Article : Google Scholar : PubMed/NCBI

115 

Garcia-Mayea Y, Mir C, Masson F, Paciucci R and LLeonart ME: Insights into new mechanisms and models of cancer stem cell multidrug resistance. Semin Cancer Biol. 60:166–180. 2020. View Article : Google Scholar

116 

Riganti C, Contino M, Guglielmo S, Perrone MG, Salaroglio IC, Milosevic V, Giampietro R, Leonetti F, Rolando B, Lazzarato L, et al: Design, biological evaluation, and molecular modeling of tetrahydroisoquinoline derivatives: Discovery of a potent p-glycoprotein ligand overcoming multidrug resistance in cancer stem cells. J Med Chem. 62:974–986. 2019. View Article : Google Scholar

117 

Cho Y and Kim YK: Cancer stem cells as a potential target to overcome multidrug resistance. Front Oncol. 10:7642020. View Article : Google Scholar : PubMed/NCBI

118 

Wang X, Ma Z, Xiao Z, Liu H, Dou Z, Feng X and Shi H: Chk1 knockdown confers radiosensitization in prostate cancer stem cells. Oncol Rep. 28:2247–2254. 2012. View Article : Google Scholar : PubMed/NCBI

119 

Mei W, Lin X, Kapoor A, Gu Y, Zhao K and Tang D: The contributions of prostate cancer stem cells in prostate cancer initiation and metastasis. Cancers (Basel). 11:4342019. View Article : Google Scholar : PubMed/NCBI

120 

Domanska UM, Timmer-Bosscha H, Nagengast WB, Oude Munnink TH, Kruizinga RC, Ananias HJ, Kliphuis NM, Huls G, De Vries EG, de Jong IJ and Walenkamp AM: CXCR4 inhibition with AMD3100 sensitizes prostate cancer to docetaxel chemotherapy. Neoplasia. 14:709–718. 2012. View Article : Google Scholar : PubMed/NCBI

121 

Ni J, Cozzi P, Beretov J, Duan W, Bucci J, Graham P and Li Y: Epithelial cell adhesion molecule (EpCAM) is involved in prostate cancer chemotherapy/radiotherapy response in vivo. BMC Cancer. 18:10922018. View Article : Google Scholar : PubMed/NCBI

122 

Yao L and Zhang X: Interaction between prostate cancer stem cells and bone microenvironment regulates prostate cancer bone metastasis and treatment resistance. J Cancer. 13:2757–2767. 2022. View Article : Google Scholar : PubMed/NCBI

123 

Klaff R, Varenhorst E, Berglund A, Hedlund PO, Sjöberg F and Sandblom G; SPCG-5 Study Group: Clinical presentation and predictors of survival related to extent of bone metastasis in 900 prostate cancer patients. Scand J Urol. 50:352–359. 2016. View Article : Google Scholar : PubMed/NCBI

124 

Fizazi K, Massard C, Smith M, Rader M, Brown J, Milecki P, Shore N, Oudard S, Karsh L, Carducci M, et al: Bone-related parameters are the main prognostic factors for overall survival in men with bone metastases from castration-resistant prostate cancer. Eur Urol. 68:42–50. 2015. View Article : Google Scholar

125 

Zhang J, Sun J, Bakht S and Hassan W: Recent development and future prospects of molecular targeted therapy in prostate cancer. Curr Mol Pharmacol. 15:159–169. 2022.

126 

Liang XW, Liu B, Chen JC, Cao Z, Chu FR, Lin X, Wang SZ and Wu JC: Characteristics and molecular mechanism of drug-tolerant cells in cancer: A review. Front Oncol. 13:11774662023. View Article : Google Scholar : PubMed/NCBI

127 

Cai C, He HH, Gao S, Chen S, Yu Z, Gao Y, Chen S, Chen MW, Zhang J, Ahmed M, et al: Lysine-specific demethylase 1 has dual functions as a major regulator of androgen receptor transcriptional activity. Cell Rep. 9:1618–1627. 2014. View Article : Google Scholar : PubMed/NCBI

128 

Yatim A, Benne C, Sobhian B, Laurent-Chabalier S, Deas O, Judde JG, Lelievre JD, Levy Y and Benkirane M: NOTCH1 nuclear interactome reveals key regulators of its transcriptional activity and oncogenic function. Mol Cell. 48:445–458. 2012. View Article : Google Scholar : PubMed/NCBI

129 

Wissmann M, Yin N, Müller JM, Greschik H, Fodor BD, Jenuwein T, Vogler C, Schneider R, Günther T, Buettner R, et al: Cooperative demethylation by JMJD2C and LSD1 promotes androgen receptor-dependent gene expression. Nat Cell Biol. 9:347–353. 2007. View Article : Google Scholar : PubMed/NCBI

130 

Lynch JT, Harris WJ and Somervaille TC: LSD1 inhibition: A therapeutic strategy in cancer? Expert Opin Ther Targets. 16:1239–1249. 2012. View Article : Google Scholar : PubMed/NCBI

131 

Maes T, Mascaró C, Ortega A, Lunardi S, Ciceri F, Somervaille TC and Buesa C: KDM1 histone lysine demethylases as targets for treatments of oncological and neurodegenerative disease. Epigenomics. 7:609–626. 2015. View Article : Google Scholar : PubMed/NCBI

132 

Liang Y, Ahmed M, Guo H, Soares F, Hua JT, Gao S, Lu C, Poon C, Han W, Langstein J, et al: LSD1-mediated epigenetic reprogramming drives CENPE expression and prostate cancer progression. Cancer Res. 77:5479–5490. 2017. View Article : Google Scholar : PubMed/NCBI

133 

Lu X, Fong KW, Gritsina G, Wang F, Baca SC, Brea LT, Berchuck JE, Spisak S, Ross J, Morrissey C, et al: HOXB13 suppresses de novo lipogenesis through HDAC3-mediated epigenetic reprogramming in prostate cancer. Nat Genet. 54:670–683. 2022. View Article : Google Scholar : PubMed/NCBI

134 

Meacham CE and Morrison SJ: Tumour heterogeneity and cancer cell plasticity. Nature. 501:328–337. 2013. View Article : Google Scholar : PubMed/NCBI

135 

Tanay A and Regev A: Scaling single-cell genomics from phenomenology to mechanism. Nature. 541:331–338. 2017. View Article : Google Scholar : PubMed/NCBI

136 

Apostolopoulos V, Thalhammer T, Tzakos AG and Stojanovska L: Targeting antigens to dendritic cell receptors for vaccine development. J Drug Deliv. 2013:8697182013. View Article : Google Scholar : PubMed/NCBI

137 

Kwon ED, Drake CG, Scher HI, Fizazi K, Bossi A, van den Eertwegh AJ, Krainer M, Houede N, Santos R, Mahammedi H, et al: Ipilimumab versus placebo after radiotherapy in patients with metastatic castration-resistant prostate cancer that had progressed after docetaxel chemotherapy (CA184-043): A multicentre, randomised, double-blind, phase 3 trial. Lancet Oncol. 15:700–712. 2014. View Article : Google Scholar : PubMed/NCBI

138 

Fizazi K, Drake CG, Beer TM, Kwon ED, Scher HI, Gerritsen WR, Bossi A, den Eertwegh AJMV, Krainer M, Houede N, et al: Final analysis of the ipilimumab versus placebo following radiotherapy phase III trial in postdocetaxel metastatic castration-resistant prostate cancer identifies an excess of long-term survivors. Eur Urol. 78:822–830. 2020. View Article : Google Scholar : PubMed/NCBI

139 

Hillerdal V, Ramachandran M, Leja J and Essand M: Systemic treatment with CAR-engineered T cells against PSCA delays subcutaneous tumor growth and prolongs survival of mice. BMC Cancer. 14:302014. View Article : Google Scholar : PubMed/NCBI

140 

Zhou JE, Yu J, Wang Y, Wang H, Wang J, Wang Y, Yu L and Yan Z: ShRNA-mediated silencing of PD-1 augments the efficacy of chimeric antigen receptor T cells on subcutaneous prostate and leukemia xenograft. Biomed Pharmacother. 137:1113392021. View Article : Google Scholar : PubMed/NCBI

141 

Wang D, Shao Y, Zhang X, Lu G and Liu B: IL-23 and PSMA-targeted duo-CAR T cells in prostate cancer eradication in a preclinical model. J Transl Med. 18:232020. View Article : Google Scholar : PubMed/NCBI

Related Articles

  • Abstract
  • View
  • Download
  • Twitter
Copy and paste a formatted citation
Spandidos Publications style
Xu Y, Zhang G, Liu Y, Liu Y, Tian A, Che J and Zhang Z: Molecular mechanisms and targeted therapy for the metastasis of prostate cancer to the bones (Review). Int J Oncol 65: 104, 2024.
APA
Xu, Y., Zhang, G., Liu, Y., Liu, Y., Tian, A., Che, J., & Zhang, Z. (2024). Molecular mechanisms and targeted therapy for the metastasis of prostate cancer to the bones (Review). International Journal of Oncology, 65, 104. https://doi.org/10.3892/ijo.2024.5692
MLA
Xu, Y., Zhang, G., Liu, Y., Liu, Y., Tian, A., Che, J., Zhang, Z."Molecular mechanisms and targeted therapy for the metastasis of prostate cancer to the bones (Review)". International Journal of Oncology 65.5 (2024): 104.
Chicago
Xu, Y., Zhang, G., Liu, Y., Liu, Y., Tian, A., Che, J., Zhang, Z."Molecular mechanisms and targeted therapy for the metastasis of prostate cancer to the bones (Review)". International Journal of Oncology 65, no. 5 (2024): 104. https://doi.org/10.3892/ijo.2024.5692
Copy and paste a formatted citation
x
Spandidos Publications style
Xu Y, Zhang G, Liu Y, Liu Y, Tian A, Che J and Zhang Z: Molecular mechanisms and targeted therapy for the metastasis of prostate cancer to the bones (Review). Int J Oncol 65: 104, 2024.
APA
Xu, Y., Zhang, G., Liu, Y., Liu, Y., Tian, A., Che, J., & Zhang, Z. (2024). Molecular mechanisms and targeted therapy for the metastasis of prostate cancer to the bones (Review). International Journal of Oncology, 65, 104. https://doi.org/10.3892/ijo.2024.5692
MLA
Xu, Y., Zhang, G., Liu, Y., Liu, Y., Tian, A., Che, J., Zhang, Z."Molecular mechanisms and targeted therapy for the metastasis of prostate cancer to the bones (Review)". International Journal of Oncology 65.5 (2024): 104.
Chicago
Xu, Y., Zhang, G., Liu, Y., Liu, Y., Tian, A., Che, J., Zhang, Z."Molecular mechanisms and targeted therapy for the metastasis of prostate cancer to the bones (Review)". International Journal of Oncology 65, no. 5 (2024): 104. https://doi.org/10.3892/ijo.2024.5692
Follow us
  • Twitter
  • LinkedIn
  • Facebook
About
  • Spandidos Publications
  • Careers
  • Cookie Policy
  • Privacy Policy
How can we help?
  • Help
  • Live Chat
  • Contact
  • Email to our Support Team