1
|
Song R, Ma S, Xu J, Ren X, Guo P, Liu H,
Li P, Yin F, Liu M, Wang Q, et al: A novel polypeptide encoded by
the circular RNA ZKSCAN1 suppresses HCC via degradation of mTOR.
Mol Cancer. 22:162023. View Article : Google Scholar :
|
2
|
Xie M, Sun M, Ji X, Li D, Chen X, Zhang B,
Huang W, Zhang T, Wang Y, Tian D and Xia L: Overexpression of BACH1
mediated by IGF2 facilitates hepatocellular carcinoma growth and
metastasis via IGF1R and PTK2. Theranostics. 12:1097–1116. 2022.
View Article : Google Scholar :
|
3
|
Villanueva A: Hepatocellular carcinoma. N
Engl J Med. 380:1450–1462. 2019. View Article : Google Scholar : PubMed/NCBI
|
4
|
Forner A, Reig M and Bruix J:
Hepatocellular carcinoma. Lancet. 391:1301–1314. 2018. View Article : Google Scholar : PubMed/NCBI
|
5
|
Salman S, Meyers DJ, Wicks EE, Lee SN,
Datan E, Thomas AM, Anders NM, Hwang Y, Lyu Y, Yang Y, et al: HIF
inhibitor 32-134D eradicates murine hepatocellular carcinoma in
combination with anti-PD1 therapy. J Clin Invest. 132:e1567742022.
View Article : Google Scholar : PubMed/NCBI
|
6
|
Tan XP, He Y, Yang J, Wei X, Fan YL, Zhang
GG, Zhu YD, Li ZQ, Liao HX, Qin DJ, et al: Blockade of NMT1
enzymatic activity inhibits N-myristoylation of VILIP3 protein and
suppresses liver cancer progression. Signal Transduct Target Ther.
8:142023. View Article : Google Scholar : PubMed/NCBI
|
7
|
Tang W, Chen Z, Zhang W, Cheng Y, Zhang B,
Wu F, Wang Q, Wang S, Rong D, Reiter FP, et al: The mechanisms of
sorafenib resistance in hepatocellular carcinoma: Theoretical basis
and therapeutic aspects. Signal Transduct Target Ther. 5:872020.
View Article : Google Scholar : PubMed/NCBI
|
8
|
Bushweller JH: Targeting transcription
factors in cancer-from undruggable to reality. Nat Rev Cancer.
19:611–624. 2019. View Article : Google Scholar : PubMed/NCBI
|
9
|
Lourenco C, Resetca D, Redel C, Lin P,
MacDonald AS, Ciaccio R, Kenney TMG, Wei Y, Andrews DW, Sunnerhagen
M, et al: MYC protein interactors in gene transcription and cancer.
Nat Rev Cancer. 21:579–591. 2021. View Article : Google Scholar : PubMed/NCBI
|
10
|
Li YJ, Zhang C, Martincuks A, Herrmann A
and Yu H: STAT proteins in cancer: Orchestration of metabolism. Nat
Rev Cancer. 23:115–134. 2023. View Article : Google Scholar : PubMed/NCBI
|
11
|
Li X, Han M, Zhang H, Liu F, Pan Y, Zhu J,
Liao Z, Chen X and Zhang B: Structures and biological functions of
zinc finger proteins and their roles in hepatocellular carcinoma.
Biomark Res. 10:22022. View Article : Google Scholar : PubMed/NCBI
|
12
|
Li Z, Lu X, Liu Y, Zhao J, Ma S, Yin H,
Huang S, Zhao Y and He X: Gain of LINC00624 enhances liver cancer
progression by disrupting the histone deacetylase 6/tripartite
motif containing 28/Zinc finger protein 354C corepressor complex.
Hepatology. 73:1764–1782. 2021. View Article : Google Scholar
|
13
|
Li L, Liu X, He L, Yang J, Pei F, Li W,
Liu S, Chen Z, Xie G, Xu B, et al: ZNF516 suppresses EGFR by
targeting the CtBP/LSD1/CoREST complex to chromatin. Nat Commun.
8:6912017. View Article : Google Scholar : PubMed/NCBI
|
14
|
Zhang L, Huo Q, Ge C, Zhao F, Zhou Q, Chen
X, Tian H, Chen T, Xie H, Cui Y, et al: ZNF143-mediated H3K9
trimethylation upregulates CDC6 by activating MDIG in
hepatocellular carcinoma. Cancer Res. 80:2599–2611. 2020.
View Article : Google Scholar : PubMed/NCBI
|
15
|
Wang H, Xu H, Ma F, Zhan M, Yang X, Hua S,
Li W, Li Y and Lu L: Zinc finger protein 703 induces EMT and
sorafenib resistance in hepatocellular carcinoma by transactivating
CLDN4 expression. Cell Death Dis. 11:2252020. View Article : Google Scholar : PubMed/NCBI
|
16
|
Han F, Yang B, Chen Y, Liu L, Cheng X,
Huang J, Zhou K, Zhang D, Xu E, Lai M, et al: Loss of GLTSCR1
causes congenital heart defects by regulating NPPA transcription.
Angiogenesis. 26:217–232. 2023. View Article : Google Scholar : PubMed/NCBI
|
17
|
Sun A, Sheng X, Tang J, Yu Z and Zhang J:
Integrated bioinformatics and experimental approaches identified
the role of NPPA in the proliferation and the malignant behavior of
breast cancer. J Immunol Res. 2021:78764892021. View Article : Google Scholar : PubMed/NCBI
|
18
|
Luan Y, Xie B and Wei W: REST-repressed
lncRNA NPPA-AS1 regulates cervical cancer progression by modulating
miR-302e/DKK1/Wnt/β-catenin signaling pathway. J Cell Biochem.
122:16–28. 2021. View Article : Google Scholar
|
19
|
Fang J, Jia J, Makowski M, Xu M, Wang Z,
Zhang T, Hoskins JW, Choi J, Han Y, Zhang M, et al: Functional
characterization of a multi-cancer risk locus on chr5p15.33 reveals
regulation of TERT by ZNF148. Nat Commun. 8:150342017. View Article : Google Scholar : PubMed/NCBI
|
20
|
Rhoades N, Mendoza N, Jankeel A,
Sureshchandra S, Alvarez AD, Doratt B, Heidari O, Hagan R, Brown B,
Scheibel S, et al: Altered immunity and microbial dysbiosis in aged
individuals with long-term controlled HIV infection. Front Immunol.
10:4632019. View Article : Google Scholar : PubMed/NCBI
|
21
|
Park J, Seo JW, Ahn N, Park S, Hwang J and
Nam JW: UPF1/SMG7-dependent microRNA-mediated gene regulation. Nat
Commun. 10:41812019. View Article : Google Scholar : PubMed/NCBI
|
22
|
Weinberger P, Ponny SR, Xu H, Bai S,
Smallridge R, Copland J and Sharma A: Cell cycle M-phase genes are
highly upregulated in anaplastic thyroid carcinoma. Thyroid.
27:236–252. 2017. View Article : Google Scholar
|
23
|
Raimondi F, Inoue A, Kadji FMN, Shuai N,
Gonzalez JC, Singh G, de la Vega AA, Sotillo R, Fischer B, Aoki J,
et al: Rare, functional, somatic variants in gene families linked
to cancer genes: GPCR signaling as a paradigm. Oncogene.
38:6491–6506. 2019. View Article : Google Scholar : PubMed/NCBI
|
24
|
Bolger AM, Lohse M and Usadel B:
Trimmomatic: A flexible trimmer for Illumina sequence data.
Bioinformatics. 30:2114–2120. 2014. View Article : Google Scholar : PubMed/NCBI
|
25
|
Kim D, Paggi JM, Park C, Bennett C and
Salzberg SL: Graph-based genome alignment and genotyping with
HISAT2 and HISAT-genotype. Nat Biotechnol. 37:907–915. 2019.
View Article : Google Scholar : PubMed/NCBI
|
26
|
Love MI, Huber W and Anders S: Moderated
estimation of fold change and dispersion for RNA-seq data with
DESeq2. Genome Biol. 15:5502014. View Article : Google Scholar : PubMed/NCBI
|
27
|
Wu T, Hu E, Xu S, Chen M, Guo P, Dai Z,
Feng T, Zhou L, Tang W, Zhan L, et al: clusterProfiler 4.0: A
universal enrichment tool for interpreting omics data. Innovation
(Camb). 2:1001412021.PubMed/NCBI
|
28
|
Livak KJ and Schmittgen TD: Analysis of
relative gene expression data using real-time quantitative PCR and
the 2(-Delta Delta C(T)) method. Methods. 25:402–408. 2001.
View Article : Google Scholar
|
29
|
Xu S, Hu E, Cai Y, Xie Z, Luo X, Zhan L,
Tang W, Wang Q, Liu B, Wang R, et al: Using clusterProfiler to
characterize multiomics data. Nat Protoc. Jul 17–2024.Epub ahead of
print. View Article : Google Scholar
|
30
|
Barbieri I, Tzelepis K, Pandolfini L, Shi
J, Millán-Zambrano G, Robson SC, Aspris D, Migliori V, Bannister
AJ, Han N, et al: Promoter-bound METTL3 maintains myeloid leukaemia
by m6A-dependent translation control. Nature.
552:126–131. 2017. View Article : Google Scholar : PubMed/NCBI
|
31
|
Zhang W, Zhangyuan G, Wang F, Jin K, Shen
H, Zhang L, Yuan X, Wang J, Zhang H, Yu W, et al: The zinc finger
protein Miz1 suppresses liver tumorigenesis by restricting
hepatocyte-driven macrophage activation and inflammation. Immunity.
54:1168–1185.e8. 2021. View Article : Google Scholar : PubMed/NCBI
|
32
|
Benichou E, Seffou B, Topçu S, Renoult O,
Lenoir V, Planchais J, Bonner C, Postic C, Prip-Buus C, Pecqueur C,
et al: The transcription factor ChREBP Orchestrates liver
carcinogenesis by coordinating the PI3K/AKT signaling and cancer
metabolism. Nat Commun. 15:18792024. View Article : Google Scholar : PubMed/NCBI
|
33
|
Tan S, Wang Z, Li N, Guo X, Zhang Y, Ma H,
Peng X, Zhao Y, Li C, Gao L, et al: Transcription factor Zhx2 is a
checkpoint that programs macrophage polarization and antitumor
response. Cell Death Differ. 30:2104–2119. 2023. View Article : Google Scholar : PubMed/NCBI
|
34
|
Hashemi M, Sabouni E, Rahmanian P,
Entezari M, Mojtabavi M, Raei B, Zandieh MA, Behroozaghdam M,
Mirzaei S, Hushmandi K, et al: Deciphering STAT3 signaling
potential in hepatocellular carcinoma: Tumorigenesis, treatment
resistance, and pharmacological significance. Cell Mol Biol Lett.
28:332023. View Article : Google Scholar :
|
35
|
Saito Y, Yin D, Kubota N, Wang X, Filliol
A, Remotti H, Nair A, Fazlollahi L, Hoshida Y, Tabas I, et al: A
therapeutically targetable TAZ-TEAD2 pathway drives the growth of
hepatocellular carcinoma via ANLN and KIF23. Gastroenterology.
164:1279–1292. 2023. View Article : Google Scholar : PubMed/NCBI
|
36
|
He L, Fan X, Li Y, Chen M, Cui B, Chen G,
Dai Y, Zhou D, Hu X and Lin H: Overexpression of zinc finger
protein 384 (ZNF 384), a poor prognostic predictor, promotes cell
growth by upregulating the expression of Cyclin D1 in
hepatocellular carcinoma. Cell Death Dis. 10:4442019. View Article : Google Scholar : PubMed/NCBI
|
37
|
Jiayu F, Jiang Y, Zhou X, Zhou M, Pan J,
Ke Y, Zhen J, Huang D and Jiang W: Comprehensive analysis of
prognostic value, relationship to cell cycle, immune infiltration
and m6A modification of ZSCAN20 in hepatocellular carcinoma. Aging
(Albany NY). 14:9550–9578. 2022.PubMed/NCBI
|
38
|
Xie W, Qiao X, Shang L, Dou J, Yang X,
Qiao S and Wu Y: Knockdown of ZNF233 suppresses hepatocellular
carcinoma cell proliferation and tumorigenesis. Gene. 679:179–185.
2018. View Article : Google Scholar : PubMed/NCBI
|
39
|
Yi PS, Wu B, Deng DW, Zhang GN and Li JS:
Positive expression of ZNF689 indicates poor prognosis of
hepatocellular carcinoma. Oncol Lett. 16:5122–5130. 2018.PubMed/NCBI
|
40
|
Pomaville MM and He C: Advances in
targeting RNA modifications for anticancer therapy. Trends Cancer.
9:528–542. 2023. View Article : Google Scholar : PubMed/NCBI
|
41
|
Wan W, Ao X, Chen Q, Yu Y, Ao L, Xing W,
Guo W, Wu X, Pu C, Hu X, et al: METTL3/IGF2BP3 axis inhibits tumor
immune surveillance by upregulating N6-methyladenosine
modification of PD-L1 mRNA in breast cancer. Mol Cancer. 21:602022.
View Article : Google Scholar
|
42
|
Chen H, Pan Y, Zhou Q, Liang C, Wong CC,
Zhou Y, Huang D, Liu W, Zhai J, Gou H, et al: METTL3 inhibits
antitumor immunity by targeting m6A-BHLHE41-CXCL1/CXCR2
axis to promote colorectal cancer. Gastroenterology. 163:891–907.
2022. View Article : Google Scholar : PubMed/NCBI
|
43
|
Wang L, Yang Q, Zhou Q, Fang F, Lei K, Liu
Z, Zheng G, Zhu L, Huo J, Li X, et al:
METTL3-m6A-EGFR-axis drives lenvatinib resistance in
hepatocellular carcinoma. Cancer Lett. 559:2161222023. View Article : Google Scholar
|
44
|
Chen J, Lin X, He J, Liu D, He L, Zhang M,
Luan H, Hu Y, Tao C and Wang Q: Artemisitene suppresses rheumatoid
arthritis progression via modulating METTL3-mediated
N6-methyladenosine modification of ICAM2 mRNA in fibroblast-like
synoviocytes. Clin Transl Med. 12:e11482022. View Article : Google Scholar
|
45
|
Liu T, Yang S, Sui J, Xu SY, Cheng YP,
Shen B, Zhang Y, Zhang XM, Yin LH, Pu YP and Liang GY: Dysregulated
N6-methyladenosine methylation writer METTL3 contributes to the
proliferation and migration of gastric cancer. J Cell Physiol.
235:548–562. 2020. View Article : Google Scholar
|
46
|
Wang Q, Geng W, Guo H, Wang Z, Xu K, Chen
C and Wang S: Emerging role of RNA methyltransferase METTL3 in
gastrointestinal cancer. J Hematol Oncol. 13:572020. View Article : Google Scholar : PubMed/NCBI
|
47
|
Sin SQ, Mohan CD, Goh RMW, You M, Nayak
SC, Chen L, Sethi G, Rangappa KS and Wang L: Hypoxia signaling in
hepatocellular carcinoma: Challenges and therapeutic opportunities.
Cancer Metastasis Rev. 42:741–764. 2023. View Article : Google Scholar
|
48
|
Han D, Yang P, Qin B, Ji G, Wu Y, Yu L and
Zhang H: Upregulation of Nogo-B by hypoxia inducible factor-1 and
activator protein-1 in hepatocellular carcinoma. Cancer Sci.
112:2728–2738. 2021. View Article : Google Scholar : PubMed/NCBI
|
49
|
Chen Z, Han F, Du Y, Shi H and Zhou W:
Hypoxic microenvironment in cancer: Molecular mechanisms and
therapeutic interventions. Signal Transduct Target Ther. 8:702023.
View Article : Google Scholar : PubMed/NCBI
|
50
|
Li Q, Ni Y, Zhang L, Jiang R, Xu J, Yang
H, Hu Y, Qiu J, Pu L, Tang J and Wang X: HIF-1α-induced expression
of m6A reader YTHDF1 drives hypoxia-induced autophagy and
malignancy of hepatocellular carcinoma by promoting ATG2A and ATG14
translation. Signal Transduct Target Ther. 6:762021. View Article : Google Scholar
|
51
|
Zhang MS, Cui JD, Lee D, Yuen VW, Chiu DK,
Goh CC, Cheu JW, Tse AP, Bao MH, Wong BPY, et al: Hypoxia-induced
macropinocytosis represents a metabolic route for liver cancer. Nat
Commun. 13:9542022. View Article : Google Scholar : PubMed/NCBI
|
52
|
Cheu JWS, Chiu DKC, Kwan KKL, Yang C, Yuen
VWH, Goh CC, Chui NNQ, Shen W, Law CT, Li Q, et al:
Hypoxia-inducible factor orchestrates adenosine metabolism to
promote liver cancer development. Sci Adv. 9:eade51112023.
View Article : Google Scholar : PubMed/NCBI
|
53
|
Gao Z, Wang D, Yang J, Li M, Ling C, Lv D,
Cao Y, Chen Z, Shi C, Shen H and Tang Y: Iron deficiency in
hepatocellular carcinoma cells induced sorafenib resistance by
upregulating HIF-1α to inhibit apoptosis. Biomed Pharmacother.
163:1147502023. View Article : Google Scholar
|
54
|
Zhong C, Niu Y, Liu W, Yuan Y, Li K, Shi
Y, Qiu Z, Li K, Lin Z, Huang Z, et al: S100A9 derived from
chemoembolization-induced hypoxia governs mitochondrial function in
hepatocellular carcinoma progression. Adv Sci (Weinh).
9:e22022062022. View Article : Google Scholar : PubMed/NCBI
|
55
|
Zheng J, Kim SJ, Saeidi S, Kim SH, Fang X,
Lee YH, Guillen-Quispe YN, Ngo HKC, Kim DH, Kim D and Surh YJ:
Overactivated NRF2 induces pseudohypoxia in hepatocellular
carcinoma by stabilizing HIF-1α. Free Radic Biol Med. 194:347–356.
2023. View Article : Google Scholar
|