1
|
Siegel RL, Miller KD, Fuchs HE and Jemal
A: Cancer statistics, 2022. CA Cancer J Clin. 72:7–33. 2022.
View Article : Google Scholar : PubMed/NCBI
|
2
|
Sung H, Ferlay J, Siegel RL, Laversanne M,
Soerjomataram I, Jemal A and Bray F: Global cancer statistics 2020:
GLOBOCAN estimates of incidence and mortality worldwide for 36
cancers in 185 countries. CA Cancer J Clin. 71:209–249. 2021.
View Article : Google Scholar : PubMed/NCBI
|
3
|
Xia C, Dong X, Li H, Cao M, Sun D, He S,
Yang F, Yan X, Zhang S, Li N and Chen W: Cancer statistics in China
and United States, 2022: Profiles, trends, and determinants. Chin
Med J (Engl). 135:584–590. 2022. View Article : Google Scholar : PubMed/NCBI
|
4
|
Walboomers JM, Jacobs MV, Manos MM, Bosch
FX, Kummer JA, Shah KV, Snijders PJ, Peto J, Meijer CJ and Muñoz N:
Human papillomavirus is a necessary cause of invasive cervical
cancer worldwide. J Pathol. 189:12–19. 1999. View Article : Google Scholar : PubMed/NCBI
|
5
|
Nakisige C, Trawin J, Mitchell-Foster S,
Payne BA, Rawat A, Mithani N, Amuge C, Pedersen H, Orem J, Smith L
and Ogilvie G: Integrated cervical cancer screening in Mayuge
District Uganda (ASPIRE Mayuge): A pragmatic sequential cluster
randomized trial protocol. BMC Public Health. 20:1422020.
View Article : Google Scholar : PubMed/NCBI
|
6
|
Kubik J, Humeniuk E, Adamczuk G,
Madej-Czerwonka B and Korga-Plewko A: Targeting energy metabolism
in cancer treatment. Int J Mol Sci. 23:55722022. View Article : Google Scholar : PubMed/NCBI
|
7
|
Cheng C, Geng F, Cheng X and Guo D: Lipid
metabolism reprogramming and its potential targets in cancer.
Cancer Commun (Lond). 38:272018.PubMed/NCBI
|
8
|
Broadfield LA, Pane AA, Talebi A, Swinnen
JV and Fendt SM: Lipid metabolism in cancer: New perspectives and
emerging mechanisms. Dev Cell. 56:1363–1393. 2021. View Article : Google Scholar : PubMed/NCBI
|
9
|
Luo X, Cheng C, Tan Z, Li N, Tang M, Yang
L and Cao Y: Emerging roles of lipid metabolism in cancer
metastasis. Mol Cancer. 16:762017. View Article : Google Scholar : PubMed/NCBI
|
10
|
Han C, Hu C, Liu T, Sun Y, Hu F, He Y,
Zhang J, Chen J, Ding J, Fan J, et al: IGF2BP3 enhances lipid
metabolism in cervical cancer by upregulating the expression of
SCD. Cell Death Dis. 15:1382024. View Article : Google Scholar : PubMed/NCBI
|
11
|
Yang Y, Han A, Wang X, Yin X, Cui M and
Lin Z: Lipid metabolism regulator human hydroxysteroid
dehydrogenase-like 2 (HSDL2) modulates cervical cancer cell
proliferation and metastasis. J Cell Mol Med. 25:4846–4859. 2021.
View Article : Google Scholar : PubMed/NCBI
|
12
|
Ping P, Li J, Lei H and Xu X: Fatty acid
metabolism: A new therapeutic target for cervical cancer. Front
Oncol. 13:11117782023. View Article : Google Scholar : PubMed/NCBI
|
13
|
Jang W, Weber JS, Bashir R, Bushby K and
Meisler MH: Aup1, a novel gene on mouse chromosome 6 and human
chromosome 2p13. Genomics. 36:366–368. 1996. View Article : Google Scholar : PubMed/NCBI
|
14
|
Robichaud S, Fairman G, Vijithakumar V,
Mak E, Cook DP, Pelletier AR, Huard S, Vanderhyden BC, Figeys D,
Lavallée-Adam M, et al: Identification of novel lipid droplet
factors that regulate lipophagy and cholesterol efflux in
macrophage foam cells. Autophagy. 17:3671–3689. 2021. View Article : Google Scholar : PubMed/NCBI
|
15
|
Chen C, Zhao W, Lu X, Ma Y, Zhang P, Wang
Z, Cui Z and Xia Q: AUP1 regulates lipid metabolism and induces
lipid accumulation to accelerate the progression of renal clear
cell carcinoma. Cancer Sci. 113:2600–2615. 2022. View Article : Google Scholar : PubMed/NCBI
|
16
|
Xhabija B and Kidder BL: KDM5B is a master
regulator of the H3K4-methylome in stem cells, development and
cancer. Semin Cancer Biol. 57:79–85. 2019. View Article : Google Scholar :
|
17
|
Jose A, Shenoy GG, Sunil Rodrigues G,
Kumar NAN, Munisamy M, Thomas L, Kolesar J, Rai G, Rao PPN and Rao
M: Histone demethylase KDM5B as a therapeutic target for cancer
therapy. Cancers (Basel). 12:21212020. View Article : Google Scholar : PubMed/NCBI
|
18
|
Zhang ZG, Zhang HS, Sun HL, Liu HY, Liu MY
and Zhou Z: KDM5B promotes breast cancer cell proliferation and
migration via AMPK-mediated lipid metabolism reprogramming. Exp
Cell Res. 379:182–190. 2019. View Article : Google Scholar : PubMed/NCBI
|
19
|
Zhou Y, An Q, Guo RX, Qiao YH, Li LX,
Zhang XY and Zhao XL: miR424-5p functions as an anti-oncogene in
cervical cancer cell growth by targeting KDM5B via the Notch
signaling pathway. Life Sci. 171:9–15. 2017. View Article : Google Scholar : PubMed/NCBI
|
20
|
Chandrashekar DS, Bashel B, Balasubramanya
SAH, Creighton CJ, Ponce-Rodriguez I, Chakravarthi BVSK and
Varambally S: UALCAN: A portal for facilitating tumor subgroup gene
expression and survival analyses. Neoplasia. 19:649–658. 2017.
View Article : Google Scholar : PubMed/NCBI
|
21
|
Lacny S, Wilson T, Clement F, Roberts DJ,
Faris P, Ghali WA and Marshall DA: Kaplan-Meier survival analysis
overestimates cumulative incidence of health-related events in
competing risk settings: A meta-analysis. J Clin Epidemiol.
93:25–35. 2018. View Article : Google Scholar
|
22
|
Hu H, Miao YR, Jia LH, Yu QY, Zhang Q and
Guo AY: AnimalTFDB 3.0: A comprehensive resource for annotation and
prediction of animal transcription factors. Nucleic Acids Res.
47(D1): D33–D38. 2019. View Article : Google Scholar :
|
23
|
Livak KJ and Schmittgen TD: Analysis of
relative gene expression data using real-time quantitative PCR and
the 2(-Delta Delta C(T)) method. Methods. 25:402–408. 2001.
View Article : Google Scholar
|
24
|
Shay G, Lynch CC and Fingleton B: Moving
targets: Emerging roles for MMPs in cancer progression and
metastasis. Matrix Biol. 44-46:200–206. 2015. View Article : Google Scholar : PubMed/NCBI
|
25
|
Sun YS, Thakur K, Hu F, Cespedes-Acuña CL,
Zhang JG and Wei ZJ: Icariside II suppresses cervical cancer cell
migration through JNK modulated matrix metalloproteinase-2/9
inhibition in vitro and in vivo. Biomed Pharmacother.
125:1100132020. View Article : Google Scholar : PubMed/NCBI
|
26
|
Xu S, Fan Y, Li D, Liu Y and Chen X:
Glycoprotein nonmetastatic melanoma protein B accelerates
tumorigenesis of cervical cancer in vitro by regulating the
Wnt/β-catenin pathway. Braz J Med Biol Res. 52:e75672018.
View Article : Google Scholar
|
27
|
Maan M, Peters JM, Dutta M and Patterson
AD: Lipid metabolism and lipophagy in cancer. Biochem Biophys Res
Commun. 504:582–589. 2018. View Article : Google Scholar : PubMed/NCBI
|
28
|
Li A, Qin Y, Zhang Y, Zhen X and Gong G:
Evaluation of oxygen consumption rates in situ. Methods Mol Biol.
2755:215–226. 2024. View Article : Google Scholar : PubMed/NCBI
|
29
|
Jung YY, Kim HM and Koo JS: Expression of
lipid metabolism-related proteins in metastatic breast cancer. PLoS
One. 10:e01372042015. View Article : Google Scholar : PubMed/NCBI
|
30
|
Snaebjornsson MT, Janaki-Raman S and
Schulze A: Greasing the wheels of the cancer machine: The role of
lipid metabolism in cancer. Cell Metab. 31:62–76. 2020. View Article : Google Scholar
|
31
|
Chang PC, Lin YC, Yen HJ, Hueng DY, Huang
SM and Li YF: Ancient ubiquitous protein 1 (AUP1) is a prognostic
biomarker connected with TP53 mutation and the inflamed
microenvironments in glioma. Cancer Cell Int. 23:622023. View Article : Google Scholar : PubMed/NCBI
|
32
|
Bai YT, Wang X, He MJ, Xie JR, Chen XJ and
Zhou G: The potential of lipid droplet-associated genes as
diagnostic and prognostic biomarkers in head and neck squamous cell
carcinoma. Comb Chem High Throughput Screen. 27:136–147. 2024.
View Article : Google Scholar
|
33
|
Liu J, Zhang P, Yang F, Jiang K, Sun S,
Xia Z, Yao G and Tang J: Integrating single-cell analysis and
machine learning to create glycosylation-based gene signature for
prognostic prediction of uveal melanoma. Front Endocrinol
(Lausanne). 14:11630462023. View Article : Google Scholar : PubMed/NCBI
|
34
|
Novikov NM, Zolotaryova SY, Gautreau AM
and Denisov EV: Mutational drivers of cancer cell migration and
invasion. Br J Cancer. 124:102–114. 2021. View Article : Google Scholar :
|
35
|
Zheng HC, Xue H and Zhang CY: REG4
promotes the proliferation and anti-apoptosis of cancer. Front Cell
Dev Biol. 10:10121932022. View Article : Google Scholar : PubMed/NCBI
|
36
|
Li Z, He H, Ren X, Chen Y, Liu W, Pu R,
Fang L, Shi Y, Liu D, Zhao J, et al: APOBEC3A suppresses cervical
cancer via apoptosis. J Cancer. 14:3429–3443. 2023. View Article : Google Scholar : PubMed/NCBI
|
37
|
Pascual G, Majem B and Benitah SA:
Targeting lipid metabolism in cancer metastasis. Biochim Biophys
Acta Rev Cancer. 1879:1890512024. View Article : Google Scholar
|
38
|
Bacci M, Lorito N, Smiriglia A and Morandi
A: Fat and furious: Lipid metabolism in antitumoral therapy
response and resistance. Trends Cancer. 7:198–213. 2021. View Article : Google Scholar
|
39
|
Wang Z, Wang Y, Li Z, Xue W, Hu S and Kong
X: Lipid metabolism as a target for cancer drug resistance:
Progress and prospects. Front Pharmacol. 14:12743352023. View Article : Google Scholar : PubMed/NCBI
|
40
|
Li Y, Maimaitirexiati G, Wang J, Zhang J,
Tian P, Zhou C, Ren J, Wang L, Zhao J, Wang H, et al: Long
non-coding RNA Linc00657 up-regulates Skp2 to promote the
progression of cervical cancer through lipid reprogramming and
regulation of immune microenvironment. Cytokine. 176:1565102024.
View Article : Google Scholar : PubMed/NCBI
|
41
|
Blank HM, Papoulas O, Maitra N, Garge R,
Kennedy BK, Schilling B, Marcotte EM and Polymenis M: Abundances of
transcripts, proteins, and metabolites in the cell cycle of budding
yeast reveal coordinate control of lipid metabolism. Mol Biol Cell.
31:1069–1084. 2020. View Article : Google Scholar : PubMed/NCBI
|
42
|
Schlaepfer IR and Joshi M: CPT1A-mediated
fat oxidation, mechanisms, and therapeutic potential.
Endocrinology. 161:bqz0462020. View Article : Google Scholar : PubMed/NCBI
|
43
|
Alpy F and Tomasetto C: Give lipids a
START: The StAR-related lipid transfer (START) domain in mammals. J
Cell Sci. 118:2791–2801. 2005. View Article : Google Scholar : PubMed/NCBI
|
44
|
Kakiyama G, Minoiwa K, Bai-Kamara N,
Hashiguchi T, Pandak WM and Rodriguez-Agudo D: StarD5 levels of
expression correlate with onset and progression of steatosis and
liver fibrosis. Am J Physiol Gastrointest Liver Physiol.
326:G747–G761. 2024. View Article : Google Scholar : PubMed/NCBI
|
45
|
Zhang J, Song Y, Shi Q and Fu L: Research
progress on FASN and MGLL in the regulation of abnormal lipid
metabolism and the relationship between tumor invasion and
metastasis. Front Med. 15:649–656. 2021. View Article : Google Scholar : PubMed/NCBI
|
46
|
Klemm EJ, Spooner E and Ploegh HL: Dual
role of ancient ubiquitous protein 1 (AUP1) in lipid droplet
accumulation and endoplasmic reticulum (ER) protein quality
control. J Biol Chem. 286:37602–37614. 2011. View Article : Google Scholar : PubMed/NCBI
|
47
|
Fu YD, Huang MJ, Guo JW, You YZ, Liu HM,
Huang LH and Yu B: Targeting histone demethylase KDM5B for cancer
treatment. Eur J Med Chem. 208:1127602020. View Article : Google Scholar : PubMed/NCBI
|
48
|
Jiao Y, Li YZ, Zhang YH, Cui W, Li Q, Xie
KL, Yu Y and Yu YH: Lysine demethylase KDM5B down-regulates
SIRT3-mediated mitochondrial glucose and lipid metabolism in
diabetic neuropathy. Diabet Med. 40:e149642023. View Article : Google Scholar
|
49
|
Backe MB, Jin C, Andreone L, Sankar A,
Agger K, Helin K, Madsen AN, Poulsen SS, Bysani M, Bacos K, et al:
The lysine demethylase KDM5B regulates islet function and glucose
homeostasis. J Diabetes Res. 2019:54510382019. View Article : Google Scholar : PubMed/NCBI
|