Spandidos Publications Logo
  • About
    • About Spandidos
    • Aims and Scopes
    • Abstracting and Indexing
    • Editorial Policies
    • Reprints and Permissions
    • Job Opportunities
    • Terms and Conditions
    • Contact
  • Journals
    • All Journals
    • Oncology Letters
      • Oncology Letters
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Oncology
      • International Journal of Oncology
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Molecular and Clinical Oncology
      • Molecular and Clinical Oncology
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Experimental and Therapeutic Medicine
      • Experimental and Therapeutic Medicine
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Molecular Medicine
      • International Journal of Molecular Medicine
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Biomedical Reports
      • Biomedical Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Oncology Reports
      • Oncology Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Molecular Medicine Reports
      • Molecular Medicine Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • World Academy of Sciences Journal
      • World Academy of Sciences Journal
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Functional Nutrition
      • International Journal of Functional Nutrition
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Epigenetics
      • International Journal of Epigenetics
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Medicine International
      • Medicine International
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
  • Articles
  • Information
    • Information for Authors
    • Information for Reviewers
    • Information for Librarians
    • Information for Advertisers
    • Conferences
  • Language Editing
Spandidos Publications Logo
  • About
    • About Spandidos
    • Aims and Scopes
    • Abstracting and Indexing
    • Editorial Policies
    • Reprints and Permissions
    • Job Opportunities
    • Terms and Conditions
    • Contact
  • Journals
    • All Journals
    • Biomedical Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Experimental and Therapeutic Medicine
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Epigenetics
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Functional Nutrition
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Molecular Medicine
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Oncology
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Medicine International
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Molecular and Clinical Oncology
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Molecular Medicine Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Oncology Letters
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Oncology Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • World Academy of Sciences Journal
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
  • Articles
  • Information
    • For Authors
    • For Reviewers
    • For Librarians
    • For Advertisers
    • Conferences
  • Language Editing
Login Register Submit
  • This site uses cookies
  • You can change your cookie settings at any time by following the instructions in our Cookie Policy. To find out more, you may read our Privacy Policy.

    I agree
Search articles by DOI, keyword, author or affiliation
Search
Advanced Search
presentation
International Journal of Oncology
Join Editorial Board Propose a Special Issue
Print ISSN: 1019-6439 Online ISSN: 1791-2423
Journal Cover
November-2024 Volume 65 Issue 5

Full Size Image

Cover Legend PDF

Sign up for eToc alerts
Recommend to Library

Journals

International Journal of Molecular Medicine

International Journal of Molecular Medicine

International Journal of Molecular Medicine is an international journal devoted to molecular mechanisms of human disease.

International Journal of Oncology

International Journal of Oncology

International Journal of Oncology is an international journal devoted to oncology research and cancer treatment.

Molecular Medicine Reports

Molecular Medicine Reports

Covers molecular medicine topics such as pharmacology, pathology, genetics, neuroscience, infectious diseases, molecular cardiology, and molecular surgery.

Oncology Reports

Oncology Reports

Oncology Reports is an international journal devoted to fundamental and applied research in Oncology.

Experimental and Therapeutic Medicine

Experimental and Therapeutic Medicine

Experimental and Therapeutic Medicine is an international journal devoted to laboratory and clinical medicine.

Oncology Letters

Oncology Letters

Oncology Letters is an international journal devoted to Experimental and Clinical Oncology.

Biomedical Reports

Biomedical Reports

Explores a wide range of biological and medical fields, including pharmacology, genetics, microbiology, neuroscience, and molecular cardiology.

Molecular and Clinical Oncology

Molecular and Clinical Oncology

International journal addressing all aspects of oncology research, from tumorigenesis and oncogenes to chemotherapy and metastasis.

World Academy of Sciences Journal

World Academy of Sciences Journal

Multidisciplinary open-access journal spanning biochemistry, genetics, neuroscience, environmental health, and synthetic biology.

International Journal of Functional Nutrition

International Journal of Functional Nutrition

Open-access journal combining biochemistry, pharmacology, immunology, and genetics to advance health through functional nutrition.

International Journal of Epigenetics

International Journal of Epigenetics

Publishes open-access research on using epigenetics to advance understanding and treatment of human disease.

Medicine International

Medicine International

An International Open Access Journal Devoted to General Medicine.

Journal Cover
November-2024 Volume 65 Issue 5

Full Size Image

Cover Legend PDF

Sign up for eToc alerts
Recommend to Library

  • Article
  • Citations
    • Cite This Article
    • Download Citation
    • Create Citation Alert
    • Remove Citation Alert
    • Cited By
  • Similar Articles
    • Related Articles (in Spandidos Publications)
    • Similar Articles (Google Scholar)
    • Similar Articles (PubMed)
  • Download PDF
  • Download XML
  • View XML
Review Open Access

PPM1G and its diagnostic, prognostic and therapeutic potential in HCC (Review)

  • Authors:
    • Xiaomin Zhang
    • Heyue Wang
    • Yiran Yuan
    • Jieya Zhang
    • Jize Yang
    • Lei Zhang
    • Jiefeng He
  • View Affiliations / Copyright

    Affiliations: Department of Hepatobiliary Surgery, The Third Hospital of Shanxi Medical University, Shanxi Bethune Hospital, Shanxi Academy of Medical Sciences, Tongji Shanxi Hospital, Taiyuan, Shanxi 030032, P.R. China
    Copyright: © Zhang et al. This is an open access article distributed under the terms of Creative Commons Attribution License.
  • Article Number: 109
    |
    Published online on: September 23, 2024
       https://doi.org/10.3892/ijo.2024.5697
  • Expand metrics +
Metrics: Total Views: 0 (Spandidos Publications: | PMC Statistics: )
Metrics: Total PDF Downloads: 0 (Spandidos Publications: | PMC Statistics: )
Cited By (CrossRef): 0 citations Loading Articles...

This article is mentioned in:



Abstract

Global statistics indicate that hepatocellular carcinoma (HCC) is the sixth most common cancer and the third leading cause of cancer‑related death. Protein phosphatase Mg2+/Mn2+ dependent 1G (PPM1G, also termed PP2Cγ) is one of the 17 members of the PPM family. The enzymatic activity of PPM1G is highly reliant on Mg2+ or Mn2+ and serves as a dephosphorylation regulator for numerous key proteins. PPM1G, functioning as a phosphatase, is involved in a number of significant biological processes such as the regulation of eukaryotic gene expression, DNA damage response, cell cycle and apoptosis, cell migration ability, cell survival and embryonic nervous system development. Additionally, PPM1G serves a role in regulating various signaling pathways. In recent years, further research has increasingly highlighted PPM1G as an oncogene in HCC. A high expression level of PPM1G is closely associated with the occurrence, progression and poor prognosis of HCC, offering notable diagnostic and therapeutic value for this patient population. In the present review, the regulatory role of PPM1G in diverse biological processes and signaling pathway activation in eukaryotes is evaluated. Furthermore, its potential application as a biomarker in the diagnosis and prognosis evaluation of HCC is assessed, and future prospects for HCC treatment strategies centered on PPM1G are discussed.
View Figures

Figure 1

Figure 2

Figure 3

Figure 4

View References

1 

Zhang X, Wang Z, Tang W, Wang X, Liu R, Bao H, Chen X, Wei Y, Wu S, Bao H, et al: Ultrasensitive and affordable assay for early detection of primary liver cancer using plasma cell-free DNA fragmentomics. Hepatology. 76:317–329. 2022. View Article : Google Scholar

2 

Rumgay H, Ferlay J, de Martel C, Georges D, Ibrahim AS, Zheng R, Wei W, Lemmens VEPP and Soerjomataram I: Global, regional and national burden of primary liver cancer by subtype. Eur J Cancer. 161:108–118. 2022. View Article : Google Scholar

3 

Feng M, Pan Y, Kong R and Shu S: Therapy of primary liver cancer. Innovation (Camb). 1:1000322020.

4 

Sung H, Ferlay J, Siegel RL, Laversanne M, Soerjomataram I, Jemal A and Bray F: Global cancer statistics 2020: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J Clin. 71:209–249. 2021. View Article : Google Scholar : PubMed/NCBI

5 

Rumgay H, Arnold M, Ferlay J, Lesi O, Cabasag CJ, Vignat J, Laversanne M, McGlynn KA and Soerjomataram I: Global burden of primary liver cancer in 2020 and predictions to 2040. J Hepatol. 77:1598–1606. 2022. View Article : Google Scholar : PubMed/NCBI

6 

Stroffolini T and Stroffolini G: A historical overview on the role of hepatitis B and C viruses as aetiological factors for hepatocellular carcinoma. Cancers (Basel). 15:23882023. View Article : Google Scholar

7 

Foerster F, Gairing SJ, Müller L and Galle PR: NAFLD-driven HCC: Safety and efficacy of current and emerging treatment options. J Hepatol. 76:446–457. 2022. View Article : Google Scholar

8 

Huang KY, Su MG, Kao HJ, Hsieh YC, Jhong JH, Cheng KH, Huang HD and Lee TY: dbPTM 2016: 10-Year anniversary of a resource for post-translational modification of proteins. Nucleic Acids Res. 44(D1): D435–D446. 2016. View Article : Google Scholar :

9 

Ebert T, Tran N, Schurgers L, Stenvinkel P and Shiels PG: Ageing-oxidative stress, PTMs and disease. Mol Aspects Med. 86:1010992022. View Article : Google Scholar

10 

Zafar S, Fatima SI, Schmitz M and Zerr I: Current technologies unraveling the significance of post-translational modifications (PTMs) as crucial players in neurodegeneration. Biomolecules. 14:1182024. View Article : Google Scholar : PubMed/NCBI

11 

Wang Y, Liu Z, Bian X, Zhao C, Zhang X, Liu X and Wang N: Function and regulation of ubiquitin-like SUMO system in heart. Front Cell Dev Biol. 11:12947172023. View Article : Google Scholar : PubMed/NCBI

12 

Chen L, Huang L, Gu Y, Cang W, Sun P and Xiang Y: lactate-lactylation hands between metabolic reprogramming and immunosuppression. Int J Mol Sci. 23:119432022. View Article : Google Scholar : PubMed/NCBI

13 

Safabakhsh S, Panwar P, Barichello S, Sangha SS, Hanson PJ, Petegem FV and Laksman Z: The role of phosphorylation in atrial fibrillation: A focus on mass spectrometry approaches. Cardiovasc Res. 118:1205–1217. 2022. View Article : Google Scholar

14 

Song W, Hu L, Ma Z, Yang L and Li J: Importance of tyrosine phosphorylation in hormone-regulated plant growth and development. Int J Mol Sci. 23:66032022. View Article : Google Scholar : PubMed/NCBI

15 

Stanford SM and Bottini N: Targeting protein phosphatases in cancer immunotherapy and autoimmune disorders. Nat Rev Drug Discov. 22:273–294. 2023. View Article : Google Scholar : PubMed/NCBI

16 

Gao C, Cao N and Wang Y: Metal dependent protein phosphatase PPM family in cardiac health and diseases. Cell Signal. 85:1100612021. View Article : Google Scholar : PubMed/NCBI

17 

Kamada R, Kudoh F, Ito S, Tani I, Janairo JIB, Omichinski JG and Sakaguchi K: Metal-dependent Ser/Thr protein phosphatase PPM family: Evolution, structures, diseases and inhibitors. Pharmacol Ther. 215:1076222020. View Article : Google Scholar : PubMed/NCBI

18 

Das AK, Helps NR, Cohen PT and Barford D: Crystal structure of the protein serine/threonine phosphatase 2C at 2.0 A resolution. EMBO J. 15:6798–6809. 1996. View Article : Google Scholar : PubMed/NCBI

19 

Pan C, Tang JY, Xu YF, Xiao P, Liu HD, Wang HA, Wang WB, Meng FG, Yu X and Su JP: The catalytic role of the M2 metal ion in PP2Cα. Sci Rep. 5:85602015. View Article : Google Scholar

20 

The GeneCards human gene database: Weizmann Institute of Science; [updated 30-5-2024]. Available from: www.genecards.org/Search/Keyword?queryString=PPM1G.

21 

Travis SM and Welsh MJ: PP2C gamma: A human protein phosphatase with a unique acidic domain. FEBS Lett. 412:415–419. 1997. View Article : Google Scholar : PubMed/NCBI

22 

Chen D, Zhao Z, Chen L, Li Q, Zou J and Liu S: PPM1G promotes the progression of hepatocellular carcinoma via phosphorylation regulation of alternative splicing protein SRSF3. Cell Death Dis. 12:7222021. View Article : Google Scholar : PubMed/NCBI

23 

Mandal R, Becker S and Strebhardt K: Targeting CDK9 for anti-cancer therapeutics. Cancers (Basel). 13:31812021. View Article : Google Scholar

24 

Whelan M and Pelchat M: Role of RNA polymerase II promoter-proximal pausing in viral transcription. Viruses. 14:20292022. View Article : Google Scholar : PubMed/NCBI

25 

Tellier M, Zaborowska J, Neve J, Nojima T, Hester S, Fournier M, Furger A and Murphy S: CDK9 and PP2A regulate RNA polymerase II transcription termination and coupled RNA maturation. EMBO Rep. 23:e545202022. View Article : Google Scholar : PubMed/NCBI

26 

Fujinaga K, Huang F and Peterlin BM: P-TEFb: The master regulator of transcription elongation. Mol Cell. 83:393–403. 2023. View Article : Google Scholar : PubMed/NCBI

27 

Yamayoshi A, Fukumoto H, Hayashi R, Kishimoto K, Kobori A, Koyanagi Y, Komano JA and Murakami A: Development of 7SK snRNA mimics that inhibit HIV transcription. ChemMedChem. 16:3181–3184. 2021. View Article : Google Scholar : PubMed/NCBI

28 

McNamara RP, McCann JL, Gudipaty SA and D'Orso I: Transcription factors mediate the enzymatic disassembly of promoter-bound 7SK snRNP to locally recruit P-TEFb for transcription elongation. Cell Rep. 5:1256–1268. 2013. View Article : Google Scholar : PubMed/NCBI

29 

Gudipaty SA, McNamara RP, Morton EL and D'Orso I: PPM1G binds 7SK RNA and Hexim1 to block P-TEFb assembly into the 7SK snRNP and sustain transcription elongation. Mol Cell Biol. 35:3810–3828. 2015. View Article : Google Scholar : PubMed/NCBI

30 

Gudipaty SA and D'Orso I: Functional interplay between PPM1G and the transcription elongation machinery. RNA Dis. 3:e12152016.PubMed/NCBI

31 

Bagashev A and Sawaya BE: Roles and functions of HIV-1 Tat protein in the CNS: an overview. Virol J. 10:3582013. View Article : Google Scholar : PubMed/NCBI

32 

Mbonye U, Wang B, Gokulrangan G, Shi W, Yang S and Karn J: Cyclin-dependent kinase 7 (CDK7)-mediated phosphorylation of the CDK9 activation loop promotes P-TEFb assembly with Tat and proviral HIV reactivation. J Biol Chem. 293:10009–10025. 2018. View Article : Google Scholar : PubMed/NCBI

33 

Schulze-Gahmen U and Hurley JH: Structural mechanism for HIV-1 TAR loop recognition by Tat and the super elongation complex. Proc Natl Acad Sci USA. 115:12973–12978. 2018. View Article : Google Scholar : PubMed/NCBI

34 

Hluchý M, Gajdušková P, Ruiz de Los Mozos I, Rájecký M, Kluge M, Berger BT, Slabá Z, Potěšil D, Weiß E, Ule J, et al: CDK11 regulates pre-mRNA splicing by phosphorylation of SF3B1. Nature. 609:829–834. 2022. View Article : Google Scholar : PubMed/NCBI

35 

Borišek J, Casalino L, Saltalamacchia A, Mays SG, Malcovati L and Magistrato A: Atomic-level mechanism of pre-mRNA splicing in health and disease. Acc Chem Res. 54:144–154. 2021. View Article : Google Scholar

36 

Ule J and Blencowe BJ: Alternative splicing regulatory networks: Functions, mechanisms, and evolution. Mol Cell. 76:329–345. 2019. View Article : Google Scholar : PubMed/NCBI

37 

Murray MV, Kobayashi R and Krainer AR: The type 2C Ser/Thr phosphatase PP2Cgamma is a pre-mRNA splicing factor. Genes Dev. 13:87–97. 1999. View Article : Google Scholar : PubMed/NCBI

38 

Allemand E, Hastings ML, Murray MV, Myers MP and Krainer AR: Alternative splicing regulation by interaction of phosphatase PP2Cgamma with nucleic acid-binding protein YB-1. Nat Struct Mol Biol. 14:630–638. 2007. View Article : Google Scholar : PubMed/NCBI

39 

Wu S and Wagner G: Computational inference of eIF4F complex function and structure in human cancers. Proc Natl Acad Sci USA. 121:e23135891212024. View Article : Google Scholar : PubMed/NCBI

40 

Jia X, He X, Huang C, Li J, Dong Z and Liu K: Protein translation: Biological processes and therapeutic strategies for human diseases. Signal Transduct Target Ther. 9:442024. View Article : Google Scholar : PubMed/NCBI

41 

Thompson L, Depledge DP, Burgess HM and Mohr I: An eIF3d-dependent switch regulates HCMV replication by remodeling the infected cell translation landscape to mimic chronic ER stress. Cell Rep. 39:1107672022. View Article : Google Scholar : PubMed/NCBI

42 

Liu J, Stevens PD, Eshleman NE and Gao T: Protein phosphatase PPM1G regulates protein translation and cell growth by dephosphorylating 4E binding protein 1 (4E-BP1). J Biol Chem. 288:23225–23233. 2013. View Article : Google Scholar : PubMed/NCBI

43 

Gingras AC, Raught B, Gygi SP, Niedzwiecka A, Miron M, Burley SK, Polakiewicz RD, Wyslouch-Cieszynska A, Aebersold R and Sonenberg N: Hierarchical phosphorylation of the translation inhibitor 4E-BP1. Genes Dev. 15:2852–2864. 2001. View Article : Google Scholar : PubMed/NCBI

44 

Takahashi S, Shibutani S and Iwata H: Nuclear-targeted 4E-BP1 is dephosphorylated, induces nuclear translocation of eIF4E, and alters mRNA translation. Exp Cell Res. 418:1132462022. View Article : Google Scholar : PubMed/NCBI

45 

Xu K, Wang L, Feng W, Feng Y and Shu HK: Phosphatidylinositol-3 kinase-dependent translational regulation of Id1 involves the PPM1G phosphatase. Oncogene. 35:5807–5816. 2016. View Article : Google Scholar : PubMed/NCBI

46 

Sultana S, Zarreen F and Chakraborty S: Insights into the roles of histone chaperones in nucleosome assembly and disassembly in virus infection. Virus Res. 297:1983952021. View Article : Google Scholar : PubMed/NCBI

47 

Li S, Edwards G, Radebaugh CA, Luger K and Stargell LA: Spn1 and its dynamic interactions with Spt6, histones and nucleosomes. J Mol Biol. 434:1676302022. View Article : Google Scholar : PubMed/NCBI

48 

Lian Y, Hao H, Xu J, Bo T, Liang A and Wang W: The histone chaperone Nrp1 is required for chromatin stability and nuclear division in Tetrahymena thermophila. Epigenetics Chromatin. 14:342021. View Article : Google Scholar : PubMed/NCBI

49 

Kimura H, Takizawa N, Allemand E, Hori T, Iborra FJ, Nozaki N, Muraki M, Hagiwara M, Krainer AR, Fukagawa T and Okawa K: A novel histone exchange factor, protein phosphatase 2Cgamma, mediates the exchange and dephosphorylation of H2A-H2B. J Cell Biol. 175:389–400. 2006. View Article : Google Scholar : PubMed/NCBI

50 

Luo Q, Wang B, Wu Z, Jiang W, Wang Y, Du K, Zhou N, Zheng L, Gan J, Shen WH, et al: NAP1-Related Protein 1 (NRP1) has multiple interaction modes for chaperoning histones H2A-H2B. Proc Natl Acad Sci USA. 117:30391–30399. 2020. View Article : Google Scholar : PubMed/NCBI

51 

Farrugia M, Vassallo N and Cauchi RJ: Disruption of survival motor neuron in glia impacts survival but has no effect on neuromuscular function in Drosophila. Neuroscience. 491:32–42. 2022. View Article : Google Scholar : PubMed/NCBI

52 

Riboldi GM, Faravelli I, Kuwajima T, Delestrée N, Dermentzaki G, De Planell-Saguer M, Rinchetti P, Hao LT, Beattie CC, Corti S, et al: Sumoylation regulates the assembly and activity of the SMN complex. Nat Commun. 12:50402021. View Article : Google Scholar : PubMed/NCBI

53 

Musawi S, Donnio LM, Zhao Z, Magnani C, Rassinoux P, Binda O, Huang J, Jacquier A, Coudert L, Lomonte P, et al: Nucleolar reorganization after cellular stress is orchestrated by SMN shuttling between nuclear compartments. Nat Commun. 14:73842023. View Article : Google Scholar : PubMed/NCBI

54 

Franco-Espin J, Gatius A, Armengol JÁ, Arumugam S, Moradi M, Sendtner M, Calderó J and Tabares L: SMN is physiologically downregulated at wild-type motor nerve terminals but aggregates together with neurofilaments in SMA mouse models. Biomolecules. 12:15242022. View Article : Google Scholar : PubMed/NCBI

55 

Petri S, Grimmler M, Over S, Fischer U and Gruss OJ: Dephosphorylation of survival motor neurons (SMN) by PPM1G/PP2Cgamma governs Cajal body localization and stability of the SMN complex. J Cell Biol. 179:451–465. 2007. View Article : Google Scholar : PubMed/NCBI

56 

Detering NT, Schüning T, Hensel N and Claus P: The phospho-landscape of the survival of motoneuron protein (SMN) protein: Relevance for spinal muscular atrophy (SMA). Cell Mol Life Sci. 79:4972022. View Article : Google Scholar : PubMed/NCBI

57 

Husedzinovic A, Neumann B, Reymann J, Draeger-Meurer S, Chari A, Erfle H, Fischer U and Gruss OJ: The catalytically inactive tyrosine phosphatase HD-PTP/PTPN23 is a novel regulator of SMN complex localization. Mol Biol Cell. 26:161–171. 2015. View Article : Google Scholar :

58 

Martinez-Salas E, Embarc-Buh A and Francisco-Velilla R: Emerging roles of Gemin5: From snRNPs assembly to translation control. Int J Mol Sci. 21:38682020. View Article : Google Scholar : PubMed/NCBI

59 

Hu Y, Hou Y, Zhou S, Wang Y, Shen C, Mu L, Su D and Zhang R: Mechanism of assembly of snRNP cores assisted by ICln and the SMN complex in fission yeast. iScience. 26:1076042023. View Article : Google Scholar : PubMed/NCBI

60 

Oksenych V and Kainov DE: DNA damage response. Biomolecules. 11:1232021. View Article : Google Scholar : PubMed/NCBI

61 

Santivasi WL and Xia F: Ionizing radiation-induced DNA damage, response, and repair. Antioxid Redox Signal. 21:251–259. 2014. View Article : Google Scholar

62 

Ciccia A and Elledge SJ: The DNA damage response: Making it safe to play with knives. Mol Cell. 40:179–204. 2010. View Article : Google Scholar : PubMed/NCBI

63 

Georgoulis A, Vorgias CE, Chrousos GP and Rogakou EP: Genome instability and γH2AX. Int J Mol Sci. 18:19792017. View Article : Google Scholar

64 

Beli P, Lukashchuk N, Wagner SA, Weinert BT, Olsen JV, Baskcomb L, Mann M, Jackson SP and Choudhary C: Proteomic investigations reveal a role for RNA processing factor THRAP3 in the DNA damage response. Mol Cell. 46:212–225. 2012. View Article : Google Scholar : PubMed/NCBI

65 

Khoronenkova SV, Dianova II, Ternette N, Kessler BM, Parsons JL and Dianov GL: ATM-dependent downregulation of USP7/HAUSP by PPM1G activates p53 response to DNA damage. Mol Cell. 45:801–813. 2012. View Article : Google Scholar : PubMed/NCBI

66 

Koo N, Sharma AK and Narayan S: Therapeutics targeting p53-MDM2 interaction to induce cancer cell death. Int J Mol Sci. 23:50052022. View Article : Google Scholar : PubMed/NCBI

67 

Williams AB and Schumacher B: p53 in the DNA-damage-repair process. Cold Spring Harb Perspect Med. 6:a0260702016. View Article : Google Scholar : PubMed/NCBI

68 

Matsuoka S, Ballif BA, Smogorzewska A, McDonald ER III, Hurov KE, Luo J, Bakalarski CE, Zhao Z, Solimini N, Lerenthal Y, et al: ATM and ATR substrate analysis reveals extensive protein networks responsive to DNA damage. Science. 316:1160–1166. 2007. View Article : Google Scholar : PubMed/NCBI

69 

Khoronenkova SV and Dianov GL: Regulation of USP7/HAUSP in response to DNA damage: Yet another role for ATM. Cell Cycle. 11:2409–2410. 2012. View Article : Google Scholar : PubMed/NCBI

70 

Chaudhary N and Maddika S: WWP2-WWP1 ubiquitin ligase complex coordinated by PPM1G maintains the balance between cellular p73 and ΔNp73 levels. Mol Cell Biol. 34:3754–3764. 2014. View Article : Google Scholar : PubMed/NCBI

71 

Chen X, Ma J, Wang ZW and Wang Z: The E3 ubiquitin ligases regulate inflammation in cardiovascular diseases. Semin Cell Dev Biol. 154:167–174. 2024. View Article : Google Scholar

72 

Wang Y, Wu Z, Wang C, Wu N, Wang C, Hu S and Shi J: The role of WWP1 and WWP2 in bone/cartilage development and diseases. Mol Cell Biochem. Jan 22–2024.Epub ahead of print.

73 

Yoon MK, Ha JH, Lee MS and Chi SW: Structure and apoptotic function of p73. BMB Rep. 48:81–90. 2015. View Article : Google Scholar :

74 

Osterburg C and Dötsch V: Structural diversity of p63 and p73 isoforms. Cell Death Differ. 29:921–937. 2022. View Article : Google Scholar : PubMed/NCBI

75 

Engeland K: Cell cycle regulation: p53-p21-RB signaling. Cell Death Differ. 29:946–960. 2022. View Article : Google Scholar : PubMed/NCBI

76 

Kuganesan N, Dlamini S, Tillekeratne LMV and Taylor WR: Tumor suppressor p53 promotes ferroptosis in oxidative stress conditions independent of modulation of ferroptosis by p21, CDKs, RB, and E2F. J Biol Chem. 297:1013652021. View Article : Google Scholar : PubMed/NCBI

77 

Suh EJ, Kim TY and Kim SH: PP2Cgamma-mediated S-phase accumulation induced by the proteasome-dependent degradation of p21(WAF1/CIP1). FEBS Lett. 580:6100–6104. 2006. View Article : Google Scholar : PubMed/NCBI

78 

Desvoyes B and Gutierrez C: Roles of plant retinoblastoma protein: Cell cycle and beyond. EMBO J. 39:e1058022020. View Article : Google Scholar : PubMed/NCBI

79 

Sanidas I, Morris R, Fella KA, Rumde PH, Boukhali M, Tai EC, Ting DT, Lawrence MS, Haas W and Dyson NJ: A code of mono-phosphorylation modulates the function of RB. Mol Cell. 73:985–1000.e6. 2019. View Article : Google Scholar : PubMed/NCBI

80 

Sharma SS and Pledger WJ: The non-canonical functions of p27(Kip1) in normal and tumor biology. Cell Cycle. 15:1189–1201. 2016. View Article : Google Scholar : PubMed/NCBI

81 

Deshmukh D, Xu J, Yang X, Shimelis H, Fang S and Qiu Y: Regulation of p27 (Kip1) by ubiquitin E3 ligase RNF6. Pharmaceutics. 14:8022022. View Article : Google Scholar : PubMed/NCBI

82 

Cassimere EK, Mauvais C and Denicourt C: p27Kip1 is required to mediate a G1 cell cycle arrest downstream of ATM following genotoxic stress. PLoS One. 11:e01628062016. View Article : Google Scholar : PubMed/NCBI

83 

Fujita N, Sato S, Katayama K and Tsuruo T: Akt-dependent phosphorylation of p27Kip1 promotes binding to 14-3-3 and cytoplasmic localization. J Biol Chem. 277:28706–28713. 2002. View Article : Google Scholar : PubMed/NCBI

84 

Sun C, Wang G, Wrighton KH, Lin H, Songyang Z, Feng XH and Lin X: Regulation of p27Kip1 phosphorylation and G1 cell cycle progression by protein phosphatase PPM1G. Am J Cancer Res. 6:2207–2220. 2016.

85 

Sousa B, Pereira J and Paredes J: The crosstalk between cell adhesion and cancer metabolism. Int J Mol Sci. 20:19332019. View Article : Google Scholar : PubMed/NCBI

86 

Sun Y, Zhang J and Ma L: α-Catenin. A tumor suppressor beyond adherens junctions. Cell Cycle. 13:2334–2339. 2014. View Article : Google Scholar :

87 

Lessey LR, Robinson SC, Chaudhary R and Daniel JM: Adherens junction proteins on the move-from the membrane to the nucleus in intestinal diseases. Front Cell Dev Biol. 10:9983732022. View Article : Google Scholar : PubMed/NCBI

88 

Duong CN, Brückner R, Schmitt M, Nottebaum AF, Braun LJ, Meyer Zu Brickwedde M, Ipe U, Vom Bruch H, Schöler HR, Trapani G, et al: Force-induced changes of α-catenin conformation stabilize vascular junctions independently of vinculin. J Cell Sci. 134:jcs2590122021. View Article : Google Scholar

89 

Kumar P, Tathe P, Chaudhary N and Maddika S: PPM1G forms a PPP-type phosphatase holoenzyme with B56δ that maintains adherens junction integrity. EMBO Rep. 20:e469652019. View Article : Google Scholar

90 

Foster WH, Langenbacher A, Gao C, Chen J and Wang Y: Nuclear phosphatase PPM1G in cellular survival and neural development. Dev Dyn. 242:1101–1109. 2013. View Article : Google Scholar : PubMed/NCBI

91 

Chen J, Li J, Sun H, Hu T, Wang Y, Kang G, Cao M and Li X: PPM1G promotes the progression of lung adenocarcinoma by inhibiting p38 activation via dephosphorylation of MEK6. Carcinogenesis. 44:93–104. 2023. View Article : Google Scholar

92 

Kim EK and Choi EJ: Compromised MAPK signaling in human diseases: An update. Arch Toxicol. 89:867–882. 2015. View Article : Google Scholar : PubMed/NCBI

93 

Di Rocco A, Camero S, Benedetti A, Lozanoska-Ochser B, Megiorni F, Marchese C, Stramucci L, Ciccarelli C, Bouché M, Bossi G, et al: Anti-oncogenic and pro-myogenic action of the MKK6/p38/AKT axis induced by targeting MEK/ERK in embryonal rhabdomyosarcoma. Oncol Rep. 48:1512022. View Article : Google Scholar :

94 

Martínez-Limón A, Joaquin M, Caballero M, Posas F and de Nadal E: The p38 pathway: From biology to cancer therapy. Int J Mol Sci. 21:19132020. View Article : Google Scholar :

95 

Ming Z, Lim SY and Rizos H: Genetic alterations in the INK4a/ARF locus: Effects on melanoma development and progression. Biomolecules. 10:14472020. View Article : Google Scholar : PubMed/NCBI

96 

Hyder U, McCann JL, Wang J, Fung V, Bayo J and D'Orso I: The ARF tumor suppressor targets PPM1G/PP2Cγ to counteract NF-κB transcription tuning cell survival and the inflammatory response. Proc Natl Acad Sci USA. 117:32594–32605. 2020. View Article : Google Scholar

97 

Roschger C and Cabrele C: The Id-protein family in developmental and cancer-associated pathways. Cell Commun Signal. 15:72017. View Article : Google Scholar : PubMed/NCBI

98 

Xiong DL, Li Q, Wang H, Jin WL, Fan XM and Ma YY: High expression of PPM1G is associated with the progression and poor prognosis of hepatocellular carcinoma. Cancer Biomark. 34:13–22. 2022. View Article : Google Scholar

99 

Hu W, Ma SL, Qiong L, Du Y, Gong LP, Pan YH, Sun LP, Wen JY, Chen JN, Guan XY and Shao CK: PPM1G promotes cell proliferation via modulating mutant GOF p53 protein expression in hepatocellular carcinoma. iScience. 27:1091162024. View Article : Google Scholar : PubMed/NCBI

100 

Liu X, Zeng J, Li H, Li F, Jiang B, Zhao M, Liu Z, Li R and Ma T: A risk model based on sorafenib-response target genes predicts the prognosis of patients with HCC. J Oncol. 2022:72577382022.PubMed/NCBI

101 

Li W, Liu J, Zhang D, Gu L and Zhao H: The prognostic significance and potential mechanism of ferroptosis-related genes in hepatocellular carcinoma. Front Genet. 13:8446242022. View Article : Google Scholar : PubMed/NCBI

102 

Yang H, Huo J and Li X: Identification and validation of a five-gene prognostic signature for hepatocellular carcinoma. World J Surg Oncol. 19:902021. View Article : Google Scholar : PubMed/NCBI

103 

Li W, Lu J, Ma Z, Zhao J and Liu J: An integrated model based on a six-gene signature predicts overall survival in patients with hepatocellular carcinoma. Front Genet. 10:13232020. View Article : Google Scholar : PubMed/NCBI

104 

Zhang BH, Yang J, Jiang L, Lyu T, Kong LX, Tan YF, Li B, Zhu YF, Xi AY, Xu X, et al: Development and validation of a 14-gene signature for prognosis prediction in hepatocellular carcinoma. Genomics. 112:2763–2771. 2020. View Article : Google Scholar : PubMed/NCBI

105 

Jia R and Zheng ZM: Oncogenic SRSF3 in health and diseases. Int J Biol Sci. 19:3057–3076. 2023. View Article : Google Scholar :

106 

Sen S, Langiewicz M, Jumaa H and Webster NJG: Deletion of serine/arginine-rich splicing factor 3 in hepatocytes predisposes to hepatocellular carcinoma in mice. Hepatology. 61:171–183. 2015. View Article : Google Scholar

107 

Wen C, Tian Z, Li L, Chen T, Chen H, Dai J, Liang Z, Ma S and Liu X: SRSF3 and HNRNPH1 regulate radiation-induced alternative splicing of protein arginine methyltransferase 5 in hepatocellular carcinoma. Int J Mol Sci. 23:148322022. View Article : Google Scholar : PubMed/NCBI

108 

Hong B, van den Heuvel AP, Prabhu VV, Zhang S and El-Deiry WS: Targeting tumor suppressor p53 for cancer therapy: Strategies, challenges and opportunities. Curr Drug Targets. 15:80–89. 2014. View Article : Google Scholar : PubMed/NCBI

109 

Zhang C, Liu J, Xu D, Zhang T, Hu W and Feng Z: Gain-of-function mutant p53 in cancer progression and therapy. J Mol Cell Biol. 12:674–687. 2020. View Article : Google Scholar : PubMed/NCBI

110 

Zhao M, Wang T, Gleber-Netto FO, Chen Z, McGrail DJ, Gomez JA, Ju W, Gadhikar MA, Ma W, Shen L, et al: Mutant p53 gains oncogenic functions through a chromosomal instability-induced cytosolic DNA response. Nat Commun. 15:1802024. View Article : Google Scholar : PubMed/NCBI

111 

Roehlen N, Crouchet E and Baumert TF: Liver fibrosis: Mechanistic concepts and therapeutic perspectives. Cells. 9:8752020. View Article : Google Scholar : PubMed/NCBI

112 

Ge MX, Liu HT, Zhang N, Niu WX, Lu ZN, Bao YY, Huang R, Yu DK, Shao RG and He HW: Costunolide represses hepatic fibrosis through WW domain-containing protein 2-mediated Notch3 degradation. Br J Pharmacol. 177:372–387. 2020. View Article : Google Scholar

113 

Reig M, Forner A, Rimola J, Ferrer-Fàbrega J, Burrel M, Garcia-Criado Á, Kelley RK, Galle PR, Mazzaferro V, Salem R, et al: BCLC strategy for prognosis prediction and treatment recommendation: The 2022 update. J Hepatol. 76:681–693. 2022. View Article : Google Scholar :

114 

Guan Y, Yao W, Yi K, Zheng C, Lv S, Tao Y, Hei Z and Li M: Nanotheranostics for the management of hepatic ischemia-reperfusion injury. Small. 17:e20077272021. View Article : Google Scholar : PubMed/NCBI

115 

Peng D, Huang Z, Yang H, Luo Y and Wu Z: PPM1G regulates hepatic ischemia/reperfusion injury through STING-mediated inflammatory pathways in macrophages. Immun Inflamm Dis. 12:e11892024. View Article : Google Scholar

116 

Yu K, Tian H and Deng H: PPM1G restricts innate immune signaling mediated by STING and MAVS and is hijacked by KSHV for immune evasion. Sci Adv. 6:eabd02762020. View Article : Google Scholar : PubMed/NCBI

117 

Ho SY, Chang CM, Liao HN, Chou WH, Guo CL, Yen Y, Nakamura Y and Chang WC: Current trends in neoantigen-based cancer vaccines. Pharmaceuticals (Basel). 16:3922023. View Article : Google Scholar : PubMed/NCBI

118 

Fu J, Chen F, Lin Y, Gao J, Chen A and Yang J: Discovery and characterization of tumor antigens in hepatocellular carcinoma for mRNA vaccine development. J Cancer Res Clin Oncol. 149:4047–4061. 2023. View Article : Google Scholar

119 

Wang B, Pei J, Xu S, Liu J and Yu J: Recent advances in mRNA cancer vaccines: Meeting challenges and embracing opportunities. Front Immunol. 14:12466822023. View Article : Google Scholar : PubMed/NCBI

120 

Lu TL, Li CL, Gong YQ, Hou FT and Chen CW: Identification of tumor antigens and immune subtypes of hepatocellular carcinoma for mRNA vaccine development. World J Gastrointest Oncol. 15:1717–1738. 2023. View Article : Google Scholar : PubMed/NCBI

Related Articles

  • Abstract
  • View
  • Download
  • Twitter
Copy and paste a formatted citation
Spandidos Publications style
Zhang X, Wang H, Yuan Y, Zhang J, Yang J, Zhang L and He J: PPM1G and its diagnostic, prognostic and therapeutic potential in HCC (Review). Int J Oncol 65: 109, 2024.
APA
Zhang, X., Wang, H., Yuan, Y., Zhang, J., Yang, J., Zhang, L., & He, J. (2024). PPM1G and its diagnostic, prognostic and therapeutic potential in HCC (Review). International Journal of Oncology, 65, 109. https://doi.org/10.3892/ijo.2024.5697
MLA
Zhang, X., Wang, H., Yuan, Y., Zhang, J., Yang, J., Zhang, L., He, J."PPM1G and its diagnostic, prognostic and therapeutic potential in HCC (Review)". International Journal of Oncology 65.5 (2024): 109.
Chicago
Zhang, X., Wang, H., Yuan, Y., Zhang, J., Yang, J., Zhang, L., He, J."PPM1G and its diagnostic, prognostic and therapeutic potential in HCC (Review)". International Journal of Oncology 65, no. 5 (2024): 109. https://doi.org/10.3892/ijo.2024.5697
Copy and paste a formatted citation
x
Spandidos Publications style
Zhang X, Wang H, Yuan Y, Zhang J, Yang J, Zhang L and He J: PPM1G and its diagnostic, prognostic and therapeutic potential in HCC (Review). Int J Oncol 65: 109, 2024.
APA
Zhang, X., Wang, H., Yuan, Y., Zhang, J., Yang, J., Zhang, L., & He, J. (2024). PPM1G and its diagnostic, prognostic and therapeutic potential in HCC (Review). International Journal of Oncology, 65, 109. https://doi.org/10.3892/ijo.2024.5697
MLA
Zhang, X., Wang, H., Yuan, Y., Zhang, J., Yang, J., Zhang, L., He, J."PPM1G and its diagnostic, prognostic and therapeutic potential in HCC (Review)". International Journal of Oncology 65.5 (2024): 109.
Chicago
Zhang, X., Wang, H., Yuan, Y., Zhang, J., Yang, J., Zhang, L., He, J."PPM1G and its diagnostic, prognostic and therapeutic potential in HCC (Review)". International Journal of Oncology 65, no. 5 (2024): 109. https://doi.org/10.3892/ijo.2024.5697
Follow us
  • Twitter
  • LinkedIn
  • Facebook
About
  • Spandidos Publications
  • Careers
  • Cookie Policy
  • Privacy Policy
How can we help?
  • Help
  • Live Chat
  • Contact
  • Email to our Support Team