PPM1G and its diagnostic, prognostic and therapeutic potential in HCC (Review)
- Authors:
- Xiaomin Zhang
- Heyue Wang
- Yiran Yuan
- Jieya Zhang
- Jize Yang
- Lei Zhang
- Jiefeng He
-
Affiliations: Department of Hepatobiliary Surgery, The Third Hospital of Shanxi Medical University, Shanxi Bethune Hospital, Shanxi Academy of Medical Sciences, Tongji Shanxi Hospital, Taiyuan, Shanxi 030032, P.R. China - Published online on: September 23, 2024 https://doi.org/10.3892/ijo.2024.5697
- Article Number: 109
-
Copyright: © Zhang et al. This is an open access article distributed under the terms of Creative Commons Attribution License.
This article is mentioned in:
Abstract
Zhang X, Wang Z, Tang W, Wang X, Liu R, Bao H, Chen X, Wei Y, Wu S, Bao H, et al: Ultrasensitive and affordable assay for early detection of primary liver cancer using plasma cell-free DNA fragmentomics. Hepatology. 76:317–329. 2022. View Article : Google Scholar | |
Rumgay H, Ferlay J, de Martel C, Georges D, Ibrahim AS, Zheng R, Wei W, Lemmens VEPP and Soerjomataram I: Global, regional and national burden of primary liver cancer by subtype. Eur J Cancer. 161:108–118. 2022. View Article : Google Scholar | |
Feng M, Pan Y, Kong R and Shu S: Therapy of primary liver cancer. Innovation (Camb). 1:1000322020. | |
Sung H, Ferlay J, Siegel RL, Laversanne M, Soerjomataram I, Jemal A and Bray F: Global cancer statistics 2020: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J Clin. 71:209–249. 2021. View Article : Google Scholar : PubMed/NCBI | |
Rumgay H, Arnold M, Ferlay J, Lesi O, Cabasag CJ, Vignat J, Laversanne M, McGlynn KA and Soerjomataram I: Global burden of primary liver cancer in 2020 and predictions to 2040. J Hepatol. 77:1598–1606. 2022. View Article : Google Scholar : PubMed/NCBI | |
Stroffolini T and Stroffolini G: A historical overview on the role of hepatitis B and C viruses as aetiological factors for hepatocellular carcinoma. Cancers (Basel). 15:23882023. View Article : Google Scholar | |
Foerster F, Gairing SJ, Müller L and Galle PR: NAFLD-driven HCC: Safety and efficacy of current and emerging treatment options. J Hepatol. 76:446–457. 2022. View Article : Google Scholar | |
Huang KY, Su MG, Kao HJ, Hsieh YC, Jhong JH, Cheng KH, Huang HD and Lee TY: dbPTM 2016: 10-Year anniversary of a resource for post-translational modification of proteins. Nucleic Acids Res. 44(D1): D435–D446. 2016. View Article : Google Scholar : | |
Ebert T, Tran N, Schurgers L, Stenvinkel P and Shiels PG: Ageing-oxidative stress, PTMs and disease. Mol Aspects Med. 86:1010992022. View Article : Google Scholar | |
Zafar S, Fatima SI, Schmitz M and Zerr I: Current technologies unraveling the significance of post-translational modifications (PTMs) as crucial players in neurodegeneration. Biomolecules. 14:1182024. View Article : Google Scholar : PubMed/NCBI | |
Wang Y, Liu Z, Bian X, Zhao C, Zhang X, Liu X and Wang N: Function and regulation of ubiquitin-like SUMO system in heart. Front Cell Dev Biol. 11:12947172023. View Article : Google Scholar : PubMed/NCBI | |
Chen L, Huang L, Gu Y, Cang W, Sun P and Xiang Y: lactate-lactylation hands between metabolic reprogramming and immunosuppression. Int J Mol Sci. 23:119432022. View Article : Google Scholar : PubMed/NCBI | |
Safabakhsh S, Panwar P, Barichello S, Sangha SS, Hanson PJ, Petegem FV and Laksman Z: The role of phosphorylation in atrial fibrillation: A focus on mass spectrometry approaches. Cardiovasc Res. 118:1205–1217. 2022. View Article : Google Scholar | |
Song W, Hu L, Ma Z, Yang L and Li J: Importance of tyrosine phosphorylation in hormone-regulated plant growth and development. Int J Mol Sci. 23:66032022. View Article : Google Scholar : PubMed/NCBI | |
Stanford SM and Bottini N: Targeting protein phosphatases in cancer immunotherapy and autoimmune disorders. Nat Rev Drug Discov. 22:273–294. 2023. View Article : Google Scholar : PubMed/NCBI | |
Gao C, Cao N and Wang Y: Metal dependent protein phosphatase PPM family in cardiac health and diseases. Cell Signal. 85:1100612021. View Article : Google Scholar : PubMed/NCBI | |
Kamada R, Kudoh F, Ito S, Tani I, Janairo JIB, Omichinski JG and Sakaguchi K: Metal-dependent Ser/Thr protein phosphatase PPM family: Evolution, structures, diseases and inhibitors. Pharmacol Ther. 215:1076222020. View Article : Google Scholar : PubMed/NCBI | |
Das AK, Helps NR, Cohen PT and Barford D: Crystal structure of the protein serine/threonine phosphatase 2C at 2.0 A resolution. EMBO J. 15:6798–6809. 1996. View Article : Google Scholar : PubMed/NCBI | |
Pan C, Tang JY, Xu YF, Xiao P, Liu HD, Wang HA, Wang WB, Meng FG, Yu X and Su JP: The catalytic role of the M2 metal ion in PP2Cα. Sci Rep. 5:85602015. View Article : Google Scholar | |
The GeneCards human gene database: Weizmann Institute of Science; [updated 30-5-2024]. Available from: www.genecards.org/Search/Keyword?queryString=PPM1G. | |
Travis SM and Welsh MJ: PP2C gamma: A human protein phosphatase with a unique acidic domain. FEBS Lett. 412:415–419. 1997. View Article : Google Scholar : PubMed/NCBI | |
Chen D, Zhao Z, Chen L, Li Q, Zou J and Liu S: PPM1G promotes the progression of hepatocellular carcinoma via phosphorylation regulation of alternative splicing protein SRSF3. Cell Death Dis. 12:7222021. View Article : Google Scholar : PubMed/NCBI | |
Mandal R, Becker S and Strebhardt K: Targeting CDK9 for anti-cancer therapeutics. Cancers (Basel). 13:31812021. View Article : Google Scholar | |
Whelan M and Pelchat M: Role of RNA polymerase II promoter-proximal pausing in viral transcription. Viruses. 14:20292022. View Article : Google Scholar : PubMed/NCBI | |
Tellier M, Zaborowska J, Neve J, Nojima T, Hester S, Fournier M, Furger A and Murphy S: CDK9 and PP2A regulate RNA polymerase II transcription termination and coupled RNA maturation. EMBO Rep. 23:e545202022. View Article : Google Scholar : PubMed/NCBI | |
Fujinaga K, Huang F and Peterlin BM: P-TEFb: The master regulator of transcription elongation. Mol Cell. 83:393–403. 2023. View Article : Google Scholar : PubMed/NCBI | |
Yamayoshi A, Fukumoto H, Hayashi R, Kishimoto K, Kobori A, Koyanagi Y, Komano JA and Murakami A: Development of 7SK snRNA mimics that inhibit HIV transcription. ChemMedChem. 16:3181–3184. 2021. View Article : Google Scholar : PubMed/NCBI | |
McNamara RP, McCann JL, Gudipaty SA and D'Orso I: Transcription factors mediate the enzymatic disassembly of promoter-bound 7SK snRNP to locally recruit P-TEFb for transcription elongation. Cell Rep. 5:1256–1268. 2013. View Article : Google Scholar : PubMed/NCBI | |
Gudipaty SA, McNamara RP, Morton EL and D'Orso I: PPM1G binds 7SK RNA and Hexim1 to block P-TEFb assembly into the 7SK snRNP and sustain transcription elongation. Mol Cell Biol. 35:3810–3828. 2015. View Article : Google Scholar : PubMed/NCBI | |
Gudipaty SA and D'Orso I: Functional interplay between PPM1G and the transcription elongation machinery. RNA Dis. 3:e12152016.PubMed/NCBI | |
Bagashev A and Sawaya BE: Roles and functions of HIV-1 Tat protein in the CNS: an overview. Virol J. 10:3582013. View Article : Google Scholar : PubMed/NCBI | |
Mbonye U, Wang B, Gokulrangan G, Shi W, Yang S and Karn J: Cyclin-dependent kinase 7 (CDK7)-mediated phosphorylation of the CDK9 activation loop promotes P-TEFb assembly with Tat and proviral HIV reactivation. J Biol Chem. 293:10009–10025. 2018. View Article : Google Scholar : PubMed/NCBI | |
Schulze-Gahmen U and Hurley JH: Structural mechanism for HIV-1 TAR loop recognition by Tat and the super elongation complex. Proc Natl Acad Sci USA. 115:12973–12978. 2018. View Article : Google Scholar : PubMed/NCBI | |
Hluchý M, Gajdušková P, Ruiz de Los Mozos I, Rájecký M, Kluge M, Berger BT, Slabá Z, Potěšil D, Weiß E, Ule J, et al: CDK11 regulates pre-mRNA splicing by phosphorylation of SF3B1. Nature. 609:829–834. 2022. View Article : Google Scholar : PubMed/NCBI | |
Borišek J, Casalino L, Saltalamacchia A, Mays SG, Malcovati L and Magistrato A: Atomic-level mechanism of pre-mRNA splicing in health and disease. Acc Chem Res. 54:144–154. 2021. View Article : Google Scholar | |
Ule J and Blencowe BJ: Alternative splicing regulatory networks: Functions, mechanisms, and evolution. Mol Cell. 76:329–345. 2019. View Article : Google Scholar : PubMed/NCBI | |
Murray MV, Kobayashi R and Krainer AR: The type 2C Ser/Thr phosphatase PP2Cgamma is a pre-mRNA splicing factor. Genes Dev. 13:87–97. 1999. View Article : Google Scholar : PubMed/NCBI | |
Allemand E, Hastings ML, Murray MV, Myers MP and Krainer AR: Alternative splicing regulation by interaction of phosphatase PP2Cgamma with nucleic acid-binding protein YB-1. Nat Struct Mol Biol. 14:630–638. 2007. View Article : Google Scholar : PubMed/NCBI | |
Wu S and Wagner G: Computational inference of eIF4F complex function and structure in human cancers. Proc Natl Acad Sci USA. 121:e23135891212024. View Article : Google Scholar : PubMed/NCBI | |
Jia X, He X, Huang C, Li J, Dong Z and Liu K: Protein translation: Biological processes and therapeutic strategies for human diseases. Signal Transduct Target Ther. 9:442024. View Article : Google Scholar : PubMed/NCBI | |
Thompson L, Depledge DP, Burgess HM and Mohr I: An eIF3d-dependent switch regulates HCMV replication by remodeling the infected cell translation landscape to mimic chronic ER stress. Cell Rep. 39:1107672022. View Article : Google Scholar : PubMed/NCBI | |
Liu J, Stevens PD, Eshleman NE and Gao T: Protein phosphatase PPM1G regulates protein translation and cell growth by dephosphorylating 4E binding protein 1 (4E-BP1). J Biol Chem. 288:23225–23233. 2013. View Article : Google Scholar : PubMed/NCBI | |
Gingras AC, Raught B, Gygi SP, Niedzwiecka A, Miron M, Burley SK, Polakiewicz RD, Wyslouch-Cieszynska A, Aebersold R and Sonenberg N: Hierarchical phosphorylation of the translation inhibitor 4E-BP1. Genes Dev. 15:2852–2864. 2001. View Article : Google Scholar : PubMed/NCBI | |
Takahashi S, Shibutani S and Iwata H: Nuclear-targeted 4E-BP1 is dephosphorylated, induces nuclear translocation of eIF4E, and alters mRNA translation. Exp Cell Res. 418:1132462022. View Article : Google Scholar : PubMed/NCBI | |
Xu K, Wang L, Feng W, Feng Y and Shu HK: Phosphatidylinositol-3 kinase-dependent translational regulation of Id1 involves the PPM1G phosphatase. Oncogene. 35:5807–5816. 2016. View Article : Google Scholar : PubMed/NCBI | |
Sultana S, Zarreen F and Chakraborty S: Insights into the roles of histone chaperones in nucleosome assembly and disassembly in virus infection. Virus Res. 297:1983952021. View Article : Google Scholar : PubMed/NCBI | |
Li S, Edwards G, Radebaugh CA, Luger K and Stargell LA: Spn1 and its dynamic interactions with Spt6, histones and nucleosomes. J Mol Biol. 434:1676302022. View Article : Google Scholar : PubMed/NCBI | |
Lian Y, Hao H, Xu J, Bo T, Liang A and Wang W: The histone chaperone Nrp1 is required for chromatin stability and nuclear division in Tetrahymena thermophila. Epigenetics Chromatin. 14:342021. View Article : Google Scholar : PubMed/NCBI | |
Kimura H, Takizawa N, Allemand E, Hori T, Iborra FJ, Nozaki N, Muraki M, Hagiwara M, Krainer AR, Fukagawa T and Okawa K: A novel histone exchange factor, protein phosphatase 2Cgamma, mediates the exchange and dephosphorylation of H2A-H2B. J Cell Biol. 175:389–400. 2006. View Article : Google Scholar : PubMed/NCBI | |
Luo Q, Wang B, Wu Z, Jiang W, Wang Y, Du K, Zhou N, Zheng L, Gan J, Shen WH, et al: NAP1-Related Protein 1 (NRP1) has multiple interaction modes for chaperoning histones H2A-H2B. Proc Natl Acad Sci USA. 117:30391–30399. 2020. View Article : Google Scholar : PubMed/NCBI | |
Farrugia M, Vassallo N and Cauchi RJ: Disruption of survival motor neuron in glia impacts survival but has no effect on neuromuscular function in Drosophila. Neuroscience. 491:32–42. 2022. View Article : Google Scholar : PubMed/NCBI | |
Riboldi GM, Faravelli I, Kuwajima T, Delestrée N, Dermentzaki G, De Planell-Saguer M, Rinchetti P, Hao LT, Beattie CC, Corti S, et al: Sumoylation regulates the assembly and activity of the SMN complex. Nat Commun. 12:50402021. View Article : Google Scholar : PubMed/NCBI | |
Musawi S, Donnio LM, Zhao Z, Magnani C, Rassinoux P, Binda O, Huang J, Jacquier A, Coudert L, Lomonte P, et al: Nucleolar reorganization after cellular stress is orchestrated by SMN shuttling between nuclear compartments. Nat Commun. 14:73842023. View Article : Google Scholar : PubMed/NCBI | |
Franco-Espin J, Gatius A, Armengol JÁ, Arumugam S, Moradi M, Sendtner M, Calderó J and Tabares L: SMN is physiologically downregulated at wild-type motor nerve terminals but aggregates together with neurofilaments in SMA mouse models. Biomolecules. 12:15242022. View Article : Google Scholar : PubMed/NCBI | |
Petri S, Grimmler M, Over S, Fischer U and Gruss OJ: Dephosphorylation of survival motor neurons (SMN) by PPM1G/PP2Cgamma governs Cajal body localization and stability of the SMN complex. J Cell Biol. 179:451–465. 2007. View Article : Google Scholar : PubMed/NCBI | |
Detering NT, Schüning T, Hensel N and Claus P: The phospho-landscape of the survival of motoneuron protein (SMN) protein: Relevance for spinal muscular atrophy (SMA). Cell Mol Life Sci. 79:4972022. View Article : Google Scholar : PubMed/NCBI | |
Husedzinovic A, Neumann B, Reymann J, Draeger-Meurer S, Chari A, Erfle H, Fischer U and Gruss OJ: The catalytically inactive tyrosine phosphatase HD-PTP/PTPN23 is a novel regulator of SMN complex localization. Mol Biol Cell. 26:161–171. 2015. View Article : Google Scholar : | |
Martinez-Salas E, Embarc-Buh A and Francisco-Velilla R: Emerging roles of Gemin5: From snRNPs assembly to translation control. Int J Mol Sci. 21:38682020. View Article : Google Scholar : PubMed/NCBI | |
Hu Y, Hou Y, Zhou S, Wang Y, Shen C, Mu L, Su D and Zhang R: Mechanism of assembly of snRNP cores assisted by ICln and the SMN complex in fission yeast. iScience. 26:1076042023. View Article : Google Scholar : PubMed/NCBI | |
Oksenych V and Kainov DE: DNA damage response. Biomolecules. 11:1232021. View Article : Google Scholar : PubMed/NCBI | |
Santivasi WL and Xia F: Ionizing radiation-induced DNA damage, response, and repair. Antioxid Redox Signal. 21:251–259. 2014. View Article : Google Scholar | |
Ciccia A and Elledge SJ: The DNA damage response: Making it safe to play with knives. Mol Cell. 40:179–204. 2010. View Article : Google Scholar : PubMed/NCBI | |
Georgoulis A, Vorgias CE, Chrousos GP and Rogakou EP: Genome instability and γH2AX. Int J Mol Sci. 18:19792017. View Article : Google Scholar | |
Beli P, Lukashchuk N, Wagner SA, Weinert BT, Olsen JV, Baskcomb L, Mann M, Jackson SP and Choudhary C: Proteomic investigations reveal a role for RNA processing factor THRAP3 in the DNA damage response. Mol Cell. 46:212–225. 2012. View Article : Google Scholar : PubMed/NCBI | |
Khoronenkova SV, Dianova II, Ternette N, Kessler BM, Parsons JL and Dianov GL: ATM-dependent downregulation of USP7/HAUSP by PPM1G activates p53 response to DNA damage. Mol Cell. 45:801–813. 2012. View Article : Google Scholar : PubMed/NCBI | |
Koo N, Sharma AK and Narayan S: Therapeutics targeting p53-MDM2 interaction to induce cancer cell death. Int J Mol Sci. 23:50052022. View Article : Google Scholar : PubMed/NCBI | |
Williams AB and Schumacher B: p53 in the DNA-damage-repair process. Cold Spring Harb Perspect Med. 6:a0260702016. View Article : Google Scholar : PubMed/NCBI | |
Matsuoka S, Ballif BA, Smogorzewska A, McDonald ER III, Hurov KE, Luo J, Bakalarski CE, Zhao Z, Solimini N, Lerenthal Y, et al: ATM and ATR substrate analysis reveals extensive protein networks responsive to DNA damage. Science. 316:1160–1166. 2007. View Article : Google Scholar : PubMed/NCBI | |
Khoronenkova SV and Dianov GL: Regulation of USP7/HAUSP in response to DNA damage: Yet another role for ATM. Cell Cycle. 11:2409–2410. 2012. View Article : Google Scholar : PubMed/NCBI | |
Chaudhary N and Maddika S: WWP2-WWP1 ubiquitin ligase complex coordinated by PPM1G maintains the balance between cellular p73 and ΔNp73 levels. Mol Cell Biol. 34:3754–3764. 2014. View Article : Google Scholar : PubMed/NCBI | |
Chen X, Ma J, Wang ZW and Wang Z: The E3 ubiquitin ligases regulate inflammation in cardiovascular diseases. Semin Cell Dev Biol. 154:167–174. 2024. View Article : Google Scholar | |
Wang Y, Wu Z, Wang C, Wu N, Wang C, Hu S and Shi J: The role of WWP1 and WWP2 in bone/cartilage development and diseases. Mol Cell Biochem. Jan 22–2024.Epub ahead of print. | |
Yoon MK, Ha JH, Lee MS and Chi SW: Structure and apoptotic function of p73. BMB Rep. 48:81–90. 2015. View Article : Google Scholar : | |
Osterburg C and Dötsch V: Structural diversity of p63 and p73 isoforms. Cell Death Differ. 29:921–937. 2022. View Article : Google Scholar : PubMed/NCBI | |
Engeland K: Cell cycle regulation: p53-p21-RB signaling. Cell Death Differ. 29:946–960. 2022. View Article : Google Scholar : PubMed/NCBI | |
Kuganesan N, Dlamini S, Tillekeratne LMV and Taylor WR: Tumor suppressor p53 promotes ferroptosis in oxidative stress conditions independent of modulation of ferroptosis by p21, CDKs, RB, and E2F. J Biol Chem. 297:1013652021. View Article : Google Scholar : PubMed/NCBI | |
Suh EJ, Kim TY and Kim SH: PP2Cgamma-mediated S-phase accumulation induced by the proteasome-dependent degradation of p21(WAF1/CIP1). FEBS Lett. 580:6100–6104. 2006. View Article : Google Scholar : PubMed/NCBI | |
Desvoyes B and Gutierrez C: Roles of plant retinoblastoma protein: Cell cycle and beyond. EMBO J. 39:e1058022020. View Article : Google Scholar : PubMed/NCBI | |
Sanidas I, Morris R, Fella KA, Rumde PH, Boukhali M, Tai EC, Ting DT, Lawrence MS, Haas W and Dyson NJ: A code of mono-phosphorylation modulates the function of RB. Mol Cell. 73:985–1000.e6. 2019. View Article : Google Scholar : PubMed/NCBI | |
Sharma SS and Pledger WJ: The non-canonical functions of p27(Kip1) in normal and tumor biology. Cell Cycle. 15:1189–1201. 2016. View Article : Google Scholar : PubMed/NCBI | |
Deshmukh D, Xu J, Yang X, Shimelis H, Fang S and Qiu Y: Regulation of p27 (Kip1) by ubiquitin E3 ligase RNF6. Pharmaceutics. 14:8022022. View Article : Google Scholar : PubMed/NCBI | |
Cassimere EK, Mauvais C and Denicourt C: p27Kip1 is required to mediate a G1 cell cycle arrest downstream of ATM following genotoxic stress. PLoS One. 11:e01628062016. View Article : Google Scholar : PubMed/NCBI | |
Fujita N, Sato S, Katayama K and Tsuruo T: Akt-dependent phosphorylation of p27Kip1 promotes binding to 14-3-3 and cytoplasmic localization. J Biol Chem. 277:28706–28713. 2002. View Article : Google Scholar : PubMed/NCBI | |
Sun C, Wang G, Wrighton KH, Lin H, Songyang Z, Feng XH and Lin X: Regulation of p27Kip1 phosphorylation and G1 cell cycle progression by protein phosphatase PPM1G. Am J Cancer Res. 6:2207–2220. 2016. | |
Sousa B, Pereira J and Paredes J: The crosstalk between cell adhesion and cancer metabolism. Int J Mol Sci. 20:19332019. View Article : Google Scholar : PubMed/NCBI | |
Sun Y, Zhang J and Ma L: α-Catenin. A tumor suppressor beyond adherens junctions. Cell Cycle. 13:2334–2339. 2014. View Article : Google Scholar : | |
Lessey LR, Robinson SC, Chaudhary R and Daniel JM: Adherens junction proteins on the move-from the membrane to the nucleus in intestinal diseases. Front Cell Dev Biol. 10:9983732022. View Article : Google Scholar : PubMed/NCBI | |
Duong CN, Brückner R, Schmitt M, Nottebaum AF, Braun LJ, Meyer Zu Brickwedde M, Ipe U, Vom Bruch H, Schöler HR, Trapani G, et al: Force-induced changes of α-catenin conformation stabilize vascular junctions independently of vinculin. J Cell Sci. 134:jcs2590122021. View Article : Google Scholar | |
Kumar P, Tathe P, Chaudhary N and Maddika S: PPM1G forms a PPP-type phosphatase holoenzyme with B56δ that maintains adherens junction integrity. EMBO Rep. 20:e469652019. View Article : Google Scholar | |
Foster WH, Langenbacher A, Gao C, Chen J and Wang Y: Nuclear phosphatase PPM1G in cellular survival and neural development. Dev Dyn. 242:1101–1109. 2013. View Article : Google Scholar : PubMed/NCBI | |
Chen J, Li J, Sun H, Hu T, Wang Y, Kang G, Cao M and Li X: PPM1G promotes the progression of lung adenocarcinoma by inhibiting p38 activation via dephosphorylation of MEK6. Carcinogenesis. 44:93–104. 2023. View Article : Google Scholar | |
Kim EK and Choi EJ: Compromised MAPK signaling in human diseases: An update. Arch Toxicol. 89:867–882. 2015. View Article : Google Scholar : PubMed/NCBI | |
Di Rocco A, Camero S, Benedetti A, Lozanoska-Ochser B, Megiorni F, Marchese C, Stramucci L, Ciccarelli C, Bouché M, Bossi G, et al: Anti-oncogenic and pro-myogenic action of the MKK6/p38/AKT axis induced by targeting MEK/ERK in embryonal rhabdomyosarcoma. Oncol Rep. 48:1512022. View Article : Google Scholar : | |
Martínez-Limón A, Joaquin M, Caballero M, Posas F and de Nadal E: The p38 pathway: From biology to cancer therapy. Int J Mol Sci. 21:19132020. View Article : Google Scholar : | |
Ming Z, Lim SY and Rizos H: Genetic alterations in the INK4a/ARF locus: Effects on melanoma development and progression. Biomolecules. 10:14472020. View Article : Google Scholar : PubMed/NCBI | |
Hyder U, McCann JL, Wang J, Fung V, Bayo J and D'Orso I: The ARF tumor suppressor targets PPM1G/PP2Cγ to counteract NF-κB transcription tuning cell survival and the inflammatory response. Proc Natl Acad Sci USA. 117:32594–32605. 2020. View Article : Google Scholar | |
Roschger C and Cabrele C: The Id-protein family in developmental and cancer-associated pathways. Cell Commun Signal. 15:72017. View Article : Google Scholar : PubMed/NCBI | |
Xiong DL, Li Q, Wang H, Jin WL, Fan XM and Ma YY: High expression of PPM1G is associated with the progression and poor prognosis of hepatocellular carcinoma. Cancer Biomark. 34:13–22. 2022. View Article : Google Scholar | |
Hu W, Ma SL, Qiong L, Du Y, Gong LP, Pan YH, Sun LP, Wen JY, Chen JN, Guan XY and Shao CK: PPM1G promotes cell proliferation via modulating mutant GOF p53 protein expression in hepatocellular carcinoma. iScience. 27:1091162024. View Article : Google Scholar : PubMed/NCBI | |
Liu X, Zeng J, Li H, Li F, Jiang B, Zhao M, Liu Z, Li R and Ma T: A risk model based on sorafenib-response target genes predicts the prognosis of patients with HCC. J Oncol. 2022:72577382022.PubMed/NCBI | |
Li W, Liu J, Zhang D, Gu L and Zhao H: The prognostic significance and potential mechanism of ferroptosis-related genes in hepatocellular carcinoma. Front Genet. 13:8446242022. View Article : Google Scholar : PubMed/NCBI | |
Yang H, Huo J and Li X: Identification and validation of a five-gene prognostic signature for hepatocellular carcinoma. World J Surg Oncol. 19:902021. View Article : Google Scholar : PubMed/NCBI | |
Li W, Lu J, Ma Z, Zhao J and Liu J: An integrated model based on a six-gene signature predicts overall survival in patients with hepatocellular carcinoma. Front Genet. 10:13232020. View Article : Google Scholar : PubMed/NCBI | |
Zhang BH, Yang J, Jiang L, Lyu T, Kong LX, Tan YF, Li B, Zhu YF, Xi AY, Xu X, et al: Development and validation of a 14-gene signature for prognosis prediction in hepatocellular carcinoma. Genomics. 112:2763–2771. 2020. View Article : Google Scholar : PubMed/NCBI | |
Jia R and Zheng ZM: Oncogenic SRSF3 in health and diseases. Int J Biol Sci. 19:3057–3076. 2023. View Article : Google Scholar : | |
Sen S, Langiewicz M, Jumaa H and Webster NJG: Deletion of serine/arginine-rich splicing factor 3 in hepatocytes predisposes to hepatocellular carcinoma in mice. Hepatology. 61:171–183. 2015. View Article : Google Scholar | |
Wen C, Tian Z, Li L, Chen T, Chen H, Dai J, Liang Z, Ma S and Liu X: SRSF3 and HNRNPH1 regulate radiation-induced alternative splicing of protein arginine methyltransferase 5 in hepatocellular carcinoma. Int J Mol Sci. 23:148322022. View Article : Google Scholar : PubMed/NCBI | |
Hong B, van den Heuvel AP, Prabhu VV, Zhang S and El-Deiry WS: Targeting tumor suppressor p53 for cancer therapy: Strategies, challenges and opportunities. Curr Drug Targets. 15:80–89. 2014. View Article : Google Scholar : PubMed/NCBI | |
Zhang C, Liu J, Xu D, Zhang T, Hu W and Feng Z: Gain-of-function mutant p53 in cancer progression and therapy. J Mol Cell Biol. 12:674–687. 2020. View Article : Google Scholar : PubMed/NCBI | |
Zhao M, Wang T, Gleber-Netto FO, Chen Z, McGrail DJ, Gomez JA, Ju W, Gadhikar MA, Ma W, Shen L, et al: Mutant p53 gains oncogenic functions through a chromosomal instability-induced cytosolic DNA response. Nat Commun. 15:1802024. View Article : Google Scholar : PubMed/NCBI | |
Roehlen N, Crouchet E and Baumert TF: Liver fibrosis: Mechanistic concepts and therapeutic perspectives. Cells. 9:8752020. View Article : Google Scholar : PubMed/NCBI | |
Ge MX, Liu HT, Zhang N, Niu WX, Lu ZN, Bao YY, Huang R, Yu DK, Shao RG and He HW: Costunolide represses hepatic fibrosis through WW domain-containing protein 2-mediated Notch3 degradation. Br J Pharmacol. 177:372–387. 2020. View Article : Google Scholar | |
Reig M, Forner A, Rimola J, Ferrer-Fàbrega J, Burrel M, Garcia-Criado Á, Kelley RK, Galle PR, Mazzaferro V, Salem R, et al: BCLC strategy for prognosis prediction and treatment recommendation: The 2022 update. J Hepatol. 76:681–693. 2022. View Article : Google Scholar : | |
Guan Y, Yao W, Yi K, Zheng C, Lv S, Tao Y, Hei Z and Li M: Nanotheranostics for the management of hepatic ischemia-reperfusion injury. Small. 17:e20077272021. View Article : Google Scholar : PubMed/NCBI | |
Peng D, Huang Z, Yang H, Luo Y and Wu Z: PPM1G regulates hepatic ischemia/reperfusion injury through STING-mediated inflammatory pathways in macrophages. Immun Inflamm Dis. 12:e11892024. View Article : Google Scholar | |
Yu K, Tian H and Deng H: PPM1G restricts innate immune signaling mediated by STING and MAVS and is hijacked by KSHV for immune evasion. Sci Adv. 6:eabd02762020. View Article : Google Scholar : PubMed/NCBI | |
Ho SY, Chang CM, Liao HN, Chou WH, Guo CL, Yen Y, Nakamura Y and Chang WC: Current trends in neoantigen-based cancer vaccines. Pharmaceuticals (Basel). 16:3922023. View Article : Google Scholar : PubMed/NCBI | |
Fu J, Chen F, Lin Y, Gao J, Chen A and Yang J: Discovery and characterization of tumor antigens in hepatocellular carcinoma for mRNA vaccine development. J Cancer Res Clin Oncol. 149:4047–4061. 2023. View Article : Google Scholar | |
Wang B, Pei J, Xu S, Liu J and Yu J: Recent advances in mRNA cancer vaccines: Meeting challenges and embracing opportunities. Front Immunol. 14:12466822023. View Article : Google Scholar : PubMed/NCBI | |
Lu TL, Li CL, Gong YQ, Hou FT and Chen CW: Identification of tumor antigens and immune subtypes of hepatocellular carcinoma for mRNA vaccine development. World J Gastrointest Oncol. 15:1717–1738. 2023. View Article : Google Scholar : PubMed/NCBI |