1
|
Varshavsky A: The ubiquitin system, an
immense realm. Annu Rev Biochem. 81:167–176. 2012. View Article : Google Scholar : PubMed/NCBI
|
2
|
Dikic I: Proteasomal and autophagic
degradation systems. Annu Rev Biochem. 86:193–224. 2017. View Article : Google Scholar : PubMed/NCBI
|
3
|
Welchman RL, Gordon C and Mayer RJ:
Ubiquitin and ubiquitin-like proteins as multifunctional signals.
Nat Rev Mol Cell Biol. 6:599–609. 2005. View Article : Google Scholar : PubMed/NCBI
|
4
|
Scheffner M, Nuber U and Huibregtse JM:
Protein ubiquitination involving an E1-E2-E3 enzyme ubiquitin
thioester cascade. Nature. 373:81–83. 1995. View Article : Google Scholar : PubMed/NCBI
|
5
|
Bence NF, Sampat RM and Kopito RR:
Impairment of the ubiquitin-proteasome system by protein
aggregation. Science. 292:1552–1555. 2001. View Article : Google Scholar : PubMed/NCBI
|
6
|
Bulatov E, Valiullina A, Sayarova R and
Rizvanov A: Promising new therapeutic targets for regulation of
inflammation and immunity: RING-type E3 ubiquitin ligases. Immunol
Lett. 202:44–51. 2018. View Article : Google Scholar : PubMed/NCBI
|
7
|
Liu L, Zhang Y, Wong CC, Zhang J, Dong Y,
Li X, Kang W, Chan FKL, Sung JJY and Yu J: RNF6 promotes colorectal
cancer by activating the Wnt/β-catenin pathway via ubiquitination
of TLE3. Cancer Res. 78:1958–1971. 2018. View Article : Google Scholar : PubMed/NCBI
|
8
|
Zhang Z, Chen J, Tang W, Feng Q, Xu J and
Ren L: Comprehensive analysis reveals the potential regulatory
mechanism between ub-proteasome system and cell cycle in colorectal
cancer. Front Cell Dev Biol. 14(9): 6535282021. View Article : Google Scholar
|
9
|
Shen J, Li P, Shao X, Yang Y, Liu X, Feng
M, Yu Q, Hu R and Wang Z: The E3 ligase RING1 targets p53 for
degradation and promotes cancer cell proliferation and survival.
Cancer Res. 78:359–371. 2018. View Article : Google Scholar
|
10
|
Rasco DW, Lakhani NJ, Li Y, Men L, Wang H,
Ji J, Tang Y, Liang Z, Amaya A, Estkowski K, et al: A phase I study
of a novel MDM2 antagonist APG-115 in patients with advanced solid
tumors. J Clin Oncol. 37(15 Suppl): S31262019. View Article : Google Scholar
|
11
|
Stein EM, DeAngelo DJ, Chromik J,
Chatterjee M, Bauer S, Lin CC, Suarez C, de Vos F, Steeghs N,
Cassier PA, et al: Results from a first-in-human phase I study of
siremadlin (HDM201) in patients with advanced wild-type TP53 solid
tumors and acute leukemia. Clin Cancer Res. 28:870–881. 2022.
View Article : Google Scholar
|
12
|
Masuda TA, Inoue H, Sonoda H, Mine S,
Yoshikawa Y, Nakayama K, Nakayama K and Mori M: Clinical and
biological significance of S-phase kinase-associated protein 2
(Skp2) gene expression in gastric carcinoma: Modulation of
malignant phenotype by Skp2 overexpression, possibly via p27
proteolysis. Cancer Res. 62:3819–3825. 2002.PubMed/NCBI
|
13
|
Dhillon N, Aggarwal BB, Newman RA, Wolff
RA, Kunnumakkara AB, Abbruzzese JL, Ng CS, Badmaev V and Kurzrock
R: Phase II trial of curcumin in patients with advanced pancreatic
cancer. Clin Cancer Res. 14:4491–4499. 2008. View Article : Google Scholar : PubMed/NCBI
|
14
|
Nakajima H, Fujiwara H, Furuichi Y, Tanaka
K and Shimbara N: A novel small-molecule inhibitor of NF-kappaB
signaling. Biochem Biophys Res Commun. 368:1007–1013. 2008.
View Article : Google Scholar : PubMed/NCBI
|
15
|
Brenke JK, Popowicz GM, Schorpp K,
Rothenaigner I, Roesner M, Meininger I, Kalinski C, Ringelstetter
L, R'kyek O, Jürjens G, et al: Targeting TRAF6 E3 ligase activity
with a small-molecule inhibitor combats autoimmunity. J Biol Chem.
293:13191–13203. 2018. View Article : Google Scholar : PubMed/NCBI
|
16
|
Shukla S, Ying W, Gray F, Yao Y, Simes ML,
Zhao Q, Miao H, Cho HJ, González-Alonso P, Winkler A, et al:
Small-molecule inhibitors targeting Polycomb repressive complex 1
RING domain. Nat Chem Biol. 17:784–793. 2021. View Article : Google Scholar : PubMed/NCBI
|
17
|
Kirisako T, Kamei K, Murata S, Kato M,
Fukumoto H, Kanie M, Sano S, Tokunaga F, Tanaka K and Iwai K: A
ubiquitin ligase complex assembles linear polyubiquitin chains.
EMBO J. 25:4877–4887. 2006. View Article : Google Scholar : PubMed/NCBI
|
18
|
Tokunaga F, Nakagawa T, Nakahara M, Saeki
Y, Taniguchi M, Sakata S, Tanaka K, Nakano H and Iwai K: SHARPIN is
a component of the NF-κB-activating linear ubiquitin chain assembly
complex. Nature. 471:633–636. 2011. View Article : Google Scholar : PubMed/NCBI
|
19
|
Ikeda F, Deribe YL, Skånland SS, Stieglitz
B, Grabbe C, Franz-Wachtel M, van Wijk SJ, Goswami P, Nagy V,
Terzic J, et al: SHARPIN forms a linear ubiquitin ligase complex
regulating NF-κB activity and apoptosis. Nature. 471:637–641. 2011.
View Article : Google Scholar : PubMed/NCBI
|
20
|
Haas TL, Emmerich CH, Gerlach B, Schmukle
AC, Cordier SM, Rieser E, Feltham R, Vince J, Warnken U, Wenger T,
et al: Recruitment of the linear ubiquitin chain assembly complex
stabilizes the TNF-R1 signaling complex and is required for
TNF-mediated gene induction. Mol Cell. 36:831–844. 2009. View Article : Google Scholar : PubMed/NCBI
|
21
|
Davoli T, Xu AW, Mengwasser KE, Sack LM,
Yoon JC, Park PJ and Elledge SJ: Cumulative haploinsufficiency and
triplosensitivity drive aneuploidy patterns and shape the cancer
genome. Cell. 155:948–962. 2013. View Article : Google Scholar : PubMed/NCBI
|
22
|
Saito T, Niida A, Uchi R, Hirata H,
Komatsu H, Sakimura S, Hayashi S, Nambara S, Kuroda Y, Ito S, et
al: A temporal shift of the evolutionary principle shaping
intratumor heterogeneity in colorectal cancer. Nat Commun.
9:28842018. View Article : Google Scholar : PubMed/NCBI
|
23
|
Uchi R, Takahashi Y, Niida A, Shimamura T,
Hirata H, Sugimachi K, Sawada G, Iwaya T, Kurashige J, Shinden Y,
et al: Integrated multiregional analysis proposing a new model of
colorectal cancer evolution. PLoS Genet. 12:e10057782016.
View Article : Google Scholar : PubMed/NCBI
|
24
|
Kouyama Y, Masuda T, Fujii A, Ogawa Y,
Sato K, Tobo T, Wakiyama H, Yoshikawa Y, Noda M, Tsuruda Y, et al:
Oncogenic splicing abnormalities induced by DEAD-Box Helicase 56
amplification in colorectal cancer. Cancer Sci. 110:3132–3144.
2019. View Article : Google Scholar : PubMed/NCBI
|
25
|
Sato K, Masuda T, Hu Q, Tobo T, Gillaspie
S, Niida A, Thornton M, Kuroda Y, Eguchi H, Nakagawa T, et al:
Novel oncogene 5MP1 reprograms c-Myc translation initiation to
drive malignant phenotypes in colorectal cancer. EBioMedicine.
44:387–402. 2019. View Article : Google Scholar : PubMed/NCBI
|
26
|
Kobayashi Y, Masuda T, Fujii A, Shimizu D,
Sato K, Kitagawa A, Tobo T, Ozato Y, Saito H, Kuramitsu S, et al:
Mitotic checkpoint regulator RAE1 promotes tumor growth in
colorectal cancer. Cancer Sci. 112:3173–3189. 2021. View Article : Google Scholar : PubMed/NCBI
|
27
|
Sampson C, Wang Q, Otkur W, Zhao H, Lu Y,
Liu X and Piao HL: The roles of E3 ubiquitin ligases in cancer
progression and targeted therapy. Clin Transl Med. 13:e12042023.
View Article : Google Scholar : PubMed/NCBI
|
28
|
Hashiguchi Y, Muro K, Saito Y, Ito Y,
Ajioka Y, Hamaguchi T, Hasegawa K, Hotta K, Ishida H, Ishiguro M,
et al: Japanese society for cancer of the colon and rectum (JSCCR)
guidelines 2019 for the treatment of colorectal cancer. Int J Clin
Oncol. 25:1–42. 2020. View Article : Google Scholar :
|
29
|
Masuda TA, Inoue H, Nishida K, Sonoda H,
Yoshikawa Y, Kakeji Y, Utsunomiya T and Mori M: Cyclin-dependent
kinase 1 gene expression is associated with poor prognosis in
gastric carcinoma. Clin Cancer Res. 9:5693–5698. 2003.PubMed/NCBI
|
30
|
Wittwer CT, Ririe KM, Andrew RV, David DA,
Gundry RA and Balis UJ: The LightCycler: A microvolume multisample
fluorimeter with rapid temperature control. Biotechniques.
22:176–181. 1997. View Article : Google Scholar : PubMed/NCBI
|
31
|
Yguerabide J and Ceballos A: Quantitative
fluorescence method for continuous measurement of DNA hybridization
kinetics using a fluorescent intercalator. Anal Biochem.
228:208–220. 1995. View Article : Google Scholar : PubMed/NCBI
|
32
|
Ueda M, Iguchi T, Nambara S, Saito T,
Komatsu H, Sakimura S, Hirata H, Uchi R, Takano Y, Shinden Y, et
al: Overexpression of transcription termination factor 1 is
associated with a poor prognosis in patients with colorectal
cancer. Ann Surg Oncol. 22(Suppl 3): S1490–S1498. 2015. View Article : Google Scholar : PubMed/NCBI
|
33
|
Sanjana NE, Shalem O and Zhang F: Improved
vectors and genome-wide libraries for CRISPR screening. Nat
Methods. 11:783–784. 2014. View Article : Google Scholar : PubMed/NCBI
|
34
|
Shalem O, Sanjana NE, Hartenian E, Shi X,
Scott DA, Mikkelson T, Heckl D, Ebert BL, Root DE, Doench JG and
Zhang F: Genome-scale CRISPR-Cas9 knockout screening in human
cells. Science. 343:84–87. 2014. View Article : Google Scholar :
|
35
|
Hirata H, Sugimachi K, Komatsu H, Ueda M,
Masuda T, Uchi R, Sakimura S, Nambara S, Saito T, Shinden Y, et al:
Decreased expression of fructose-1,6-bisphosphatase associates with
glucose metabolism and tumor progression in hepatocellular
carcinoma. Cancer Res. 76:3265–3276. 2016. View Article : Google Scholar : PubMed/NCBI
|
36
|
Trapnell C, Roberts A, Goff L, Pertea G,
Kim D, Kelley DR, Pimentel H, Salzberg SL, Rinn JL and Pachter L:
Differential gene and transcript expression analysis of RNA-seq
experiments with TopHat and Cufflinks. Nat Protoc. 7:562–578. 2012.
View Article : Google Scholar : PubMed/NCBI
|
37
|
Dobin A, Davis CA, Schlesinger F, Drenkow
J, Zaleski C, Jha S, Batut P, Chaisson M and Gingeras TR: STAR:
ultrafast universal RNA-seq aligner. Bioinformatics. 29:15–21.
2013. View Article : Google Scholar
|
38
|
Love MI, Huber W and Anders S: Moderated
estimation of fold change and dispersion for RNA-seq data with
DESeq2. Genome Biol. 15:5502014. View Article : Google Scholar : PubMed/NCBI
|
39
|
Kojima Y, Mii S, Hayashi S, Hirose H,
Ishikawa M, Akiyama M, Enomoto A and Shimamura T: Single-cell
colocalization analysis using a deep generative model. bioRxiv:
2022.2004.2010.487815. 2022.
|
40
|
Subramanian A, Tamayo P, Mootha VK,
Mukherjee S, Ebert BL, Gillette MA, Paulovich A, Pomeroy SL, Golub
TR, Lander ES and Mesirov JP: Gene set enrichment analysis: A
knowledge-based approach for interpreting genome-wide expression
profiles. Proc Natl Acad Sci USA. 102:15545–15550. 2005. View Article : Google Scholar : PubMed/NCBI
|
41
|
Yang H, Yu S, Wang W, Li X, Hou Y, Liu Z,
Shi Y, Mu K, Niu G, Xu J, et al: SHARPIN facilitates p53
degradation in breast cancer cells. Neoplasia. 19:84–92. 2017.
View Article : Google Scholar : PubMed/NCBI
|
42
|
De Melo J, Lin X, He L, Wei F, Major P and
Tang D: SIPL1-facilitated PTEN ubiquitination contributes to its
association with PTEN. Cell Signal. 26:2749–2756. 2014. View Article : Google Scholar : PubMed/NCBI
|
43
|
Zhuang T, Yu S, Zhang L, Yang H, Li X, Hou
Y, Liu Z, Shi Y, Wang W, Yu N, et al: SHARPIN stabilizes estrogen
receptor α and promotes breast cancer cell proliferation.
Oncotarget. 8:77137–77151. 2017. View Article : Google Scholar : PubMed/NCBI
|
44
|
Zeng C, Xiong D, Zhang K and Yao J:
Shank-associated RH domain interactor signaling in tumorigenesis.
Oncol Lett. 20:2579–2586. 2020. View Article : Google Scholar : PubMed/NCBI
|
45
|
Zeng C, Lin J, Zhang K, Ou H, Shen K, Liu
Q, Wei Z, Dong X, Zeng X, Zeng L, et al: SHARPIN promotes cell
proliferation of cholangiocarcinoma and inhibits ferroptosis via
p53/SLC7A11/GPX4 signaling. Cancer Sci. 113:3766–3775. 2022.
View Article : Google Scholar : PubMed/NCBI
|
46
|
Zhang Y, Huang H, Zhou H, Du T, Zeng L,
Cao Y, Chen J, Lai Y, Li J, Wang G and Guo Z: Activation of nuclear
factor κB pathway and downstream targets survivin and livin by
SHARPIN contributes to the progression and metastasis of prostate
cancer. Cancer. 120:3208–3218. 2014. View Article : Google Scholar : PubMed/NCBI
|
47
|
Tanaka Y, Tateishi K, Nakatsuka T, Kudo Y,
Takahashi R, Miyabayashi K, Yamamoto K, Asaoka Y, Ijichi H,
Tateishi R, et al: Sharpin promotes hepatocellular carcinoma
progression via transactivation of Versican expression.
Oncogenesis. 5:e2772016. View Article : Google Scholar : PubMed/NCBI
|
48
|
Xu C, Fan CD and Wang X: Regulation of
Mdm2 protein stability and the p53 response by NEDD4-1 E3 ligase.
Oncogene. 34:281–289. 2015. View Article : Google Scholar
|
49
|
Kandoth C, McLellan MD, Vandin F, Ye K,
Niu B, Lu C, Xie M, Zhang Q, McMichael JF, Wyczalkowski MA, et al:
Mutational landscape and significance across 12 major cancer types.
Nature. 502:333–339. 2013. View Article : Google Scholar : PubMed/NCBI
|