Melatonin and vitamin D as potential synergistic adjuvants for cancer therapy (Review)
- Authors:
- Russel J. Reiter
- Luiz Gustavo De Almeida Chuffa
- Vinícius Augusto Simão
- Virna Margarita Martín Giménez
- Natalia De Las Heras
- Demetrios A. Spandidos
- Walter Manucha
-
Affiliations: Department of Cellular and Structural Biology, UT Health, San Antonio, TX 78229, USA, Department of Structural and Functional Biology, UNESP, São Paulo State University, Institute of Bio‑sciences, Botucatu, São Paulo, CEP 18618‑689, Brazil, Center for Research in Molecular Medicine and Chronic Diseases (CiMUS), University of Santiago de Compostela, 15706 Santiago de Compostela, Spain, Department of Physiology, Faculty of Medicine, Complutense University, 28040 Madrid, Spain, Laboratory of Clinical Virology, School of Medicine, University of Crete, 71003 Heraklion, Greece, Pharmacology Area, Department of Pathology, Faculty of Medical Sciences, National University of Cuyo, 5500 Mendoza, Argentina - Published online on: October 22, 2024 https://doi.org/10.3892/ijo.2024.5702
- Article Number: 114
-
Copyright: © Reiter et al. This is an open access article distributed under the terms of Creative Commons Attribution License.
This article is mentioned in:
Abstract
Siegel RL, Miller KD, Wagle NS and Jemal A: Cancer statistics, 2023. CA Cancer J Clin. 73:17–48. 2023. View Article : Google Scholar : PubMed/NCBI | |
Zaimy MA, Saffarzadeh N, Mohammadi A, Pourghadamyari H, Izadi P, Sarli A, Moghaddam LK, Paschepari SR, Azizi H, Torkamandi S and Tavakkoly-Bazzaz J: New methods in the diagnosis of cancer and gene therapy of cancer based on nanoparticles. Cancer Gene Ther. 24:233–243. 2017. View Article : Google Scholar : PubMed/NCBI | |
Heidrich I, Deitert B, Werner S and Pantel K: Liquid biopsy for monitoring of tumor dormancy and early detection of disease recurrence in solid tumors. Cancer Metastasis Rev. 42:161–182. 2023. View Article : Google Scholar : PubMed/NCBI | |
Feinberg AP and Levchenko A: Epigenetics as a mediator of plasticity in cancer. Science. 379:eaaw38352023. View Article : Google Scholar : PubMed/NCBI | |
Biswas A and De S: Drivers of dynamic intratumor heterogeneity and phenotypic plasticity. Am J Physiol Cell Physiol. 320:C750–C760. 2021. View Article : Google Scholar : PubMed/NCBI | |
Maley CC, Aktipis A, Graham TA, Sottoriva A, Boddy AM, Janiszewska M, Silva AS, Gerlinger M, Yuan Y, Pienta KJ, et al: Classifying the evolutionary and ecological features of neoplasms. Nat Rev Cancer. 17:605–619. 2017. View Article : Google Scholar : PubMed/NCBI | |
Kim TK, Slominski RM, Pyza E, Kleszczynski K, Tuckey RC, Reiter RJ, Holick MF and Slominski AT: Evolutionary formation of melatonin and vitamin D in early life forms: Insects take centre stage. Biol Rev Camb Philos Soc. 99:1772–1790. 2024. View Article : Google Scholar : PubMed/NCBI | |
de Almeida Chuffa LG, Seiva FRF, Cucielo MS, Silveira HS, Reiter RJ and Lupi LA: Mitochondrial functions and melatonin: A tour of the reproductive cancers. Cell Mol Life Sci. 76:837–863. 2019. View Article : Google Scholar | |
Li Y, Li S, Zhou Y, Meng X, Zhang JJ, Xu DP and Li HB: Melatonin for the prevention and treatment of cancer. Oncotarget. 8:39896–39921. 2017. View Article : Google Scholar : PubMed/NCBI | |
Rafiyan M, Davoodvandi A, Reiter RJ, Mansournia MA, Rasooli Manesh SM, Arabshahi V and Asemi Z: Melatonin and cisplatin co-treatment against cancer: A mechanistic review of their synergistic effects and melatonin's protective actions. Pathol Res Pract. 253:1550312024. View Article : Google Scholar | |
Reiter RJ, Sharma R, Rosales-Corral S, Manucha W, Chuffa LGA and Zuccari DAPC: Melatonin and pathological cell interactions: mitochondrial glucose processing in cancer cells. Int J Mol Sci. 22:124942021. View Article : Google Scholar : PubMed/NCBI | |
Koll L, Gül D, Elnouaem MI, Raslan H, Ramadan OR, Knauer SK, Strieth S, Hagemann J, Stauber RH and Khamis A: Exploiting vitamin D receptor and its ligands to target squamous cell carcinomas of the head and neck. Int J Mol Sci. 24:46752023. View Article : Google Scholar : PubMed/NCBI | |
Wang W, Hu W, Xue S, Chen Q, Jiang Y, Zhang H and Zuo W: Vitamin D and lung cancer; association, prevention, and treatment. Nutr Cancer. 73:2188–2200. 2021. View Article : Google Scholar | |
You W, Liu X, Tang H, Lu B, Zhou Q, Li Y, Chen M, Zhao J, Xu Y, Wang M, et al: Vitamin D status is associated with immune checkpoint inhibitor efficacy and immune-related adverse event severity in lung cancer patients: A prospective cohort study. J Immunother. 46:236–243. 2023. View Article : Google Scholar : PubMed/NCBI | |
Hassan HT, Eliopoulos A, Maurer HR and Spandidos DA: Recombinant human GM-CSF enhances the anti-proliferative activity of vitamin D in MCF-7 human breast cancer clonogenic cells. Eur J Cancer. 28A:1588–1589. 1992. View Article : Google Scholar : PubMed/NCBI | |
Jeon SM and Shin EA: Exploring vitamin D metabolism and function in cancer. Exp Mol Med. 50:1–14. 2018. | |
Bellerba F, Serrano D, Johansson H, Pozzi C, Segata N, NabiNejad A, Piperni E, Gnagnarella P, Macis D, Aristarco V, et al: Colorectal cancer, vitamin D and microbiota: A double-blind phase II randomized trial (ColoViD) in colorectal cancer patients. Neoplasia. 34:1008422022. View Article : Google Scholar : PubMed/NCBI | |
Cucielo MS, Cesário RC, Silveira HS, Gaiotte LB, Dos Santos SAA, de Campos Zuccari DAP, Seiva FRF, Reiter RJ and de Almeida Chuffa LG: Melatonin reverses the warburg-type metabolism and reduces mitochondrial membrane potential of ovarian cancer cells independent of MT1 receptor activation. Molecules. 27:43502022. View Article : Google Scholar : PubMed/NCBI | |
Garland CF, Garland FC, Gorham ED, Lipkin M, Newmark H, Mohr SB and Holick MF: The role of vitamin D in cancer prevention. Am J Public Health. 96:252–261. 2006. View Article : Google Scholar | |
Zhang L, Wang S, Che X and Li X: Vitamin D and lung cancer risk: A comprehensive review and meta-analysis. Cell Physiol Biochem. 36:299–305. 2015. View Article : Google Scholar : PubMed/NCBI | |
Zhao M, Wan J, Zeng K, Tong M, Lee AC, Ding J and Chen Q: The reduction in circulating melatonin level may contribute to the pathogenesis of ovarian cancer: A retrospective study. J Cancer. 7:831–836. 2016. View Article : Google Scholar : PubMed/NCBI | |
Reiter RJ, Sharma R, Ma Q, Rosales-Corral S and Manucha W: Circadian and non-circadian melatonin: Influences on glucose metabolism in cancer cells. J Curr Sci Technol. 10:85–98. 2020. | |
Cipolla-Neto J and Amaral FGD: Melatonin as a hormone: New physiological and clinical insights. Endocr Rev. 39:990–1028. 2018. View Article : Google Scholar : PubMed/NCBI | |
Claustrat B and Leston J: Melatonin: Physiological effects in humans. Neurochirurgie. 61:77–84. 2015. View Article : Google Scholar : PubMed/NCBI | |
Emet M, Ozcan H, Ozel L, Yayla M, Halici Z and Hacimuftuoglu A: A review of melatonin, its receptors and drugs. Eurasian J Med. 48:135–141. 2016. View Article : Google Scholar : PubMed/NCBI | |
Liu J, Clough SJ, Hutchinson AJ, Adamah-Biassi EB, Popovska-Gorevski M and Dubocovich ML: MT1 and MT2 melatonin receptors: A therapeutic perspective. Annu Rev Pharmacol Toxicol. 56:361–383. 2016. View Article : Google Scholar : | |
Ng KY, Leong MK, Liang H and Paxinos G: Melatonin receptors: Distribution in mammalian brain and their respective putative functions. Brain Struct Funct. 222:2921–2939. 2017. View Article : Google Scholar : PubMed/NCBI | |
Cucielo MS, Freire PP, Emílio-Silva MT, Romagnoli GG, Carvalho RF, Kaneno R, Hiruma-Lima CA, Delella FK, Reiter RJ and Chuffa LGA: Melatonin enhances cell death and suppresses the metastatic capacity of ovarian cancer cells by attenuating the signaling of multiple kinases. Pathol Res Pract. 248:1546372023. View Article : Google Scholar : PubMed/NCBI | |
Franco PIR, do Carmo Neto JR, Milhomem AC, Machado JR and Miguel MP: Antitumor effect of melatonin on breast cancer in experimental models: A systematic review. Biochim Biophys Acta Rev Cancer. 1878:1888382023. View Article : Google Scholar | |
Tamtaji OR, Mirhosseini N, Reiter RJ, Behnamfar M and Asemi Z: Melatonin and pancreatic cancer: Current knowledge and future perspectives. J Cell Physiol. 234:5372–5378. 2019. View Article : Google Scholar | |
Slominski AT, Semak I, Fischer TW, Kim TK, Kleszczyński K, Hardeland R and Reiter RJ: Metabolism of melatonin in the skin: Why is it important? Exp Dermatol. 26:563–568. 2017. View Article : Google Scholar : | |
Slominski AT, Zmijewski MA, Semak I, Kim TK, Janjetovic Z, Slominski RM and Zmijewski JW: Melatonin, mitochondria, and the skin. Cell Mol Life Sci. 74:3913–3925. 2017. View Article : Google Scholar : PubMed/NCBI | |
Kim KJ, Choi JS, Kang I, Kim KW, Jeong CH and Jeong JW: Melatonin suppresses tumor progression by reducing angiogenesis stimulated by HIF-1 in a mouse tumor model. J Pineal Res. 54:264–270. 2013. View Article : Google Scholar | |
Stehle JH, von Gall C and Korf HW: Melatonin: A clock-output, a clock-input. J Neuroendocrinol. 15:383–389. 2003. View Article : Google Scholar : PubMed/NCBI | |
Slominski RM, Reiter RJ, Schlabritz-Loutsevitch N, Ostrom RS and Slominski AT: Melatonin membrane receptors in peripheral tissues: Distribution and functions. Mol Cell Endocrinol. 351:152–166. 2012. View Article : Google Scholar : PubMed/NCBI | |
Stevens RG, Brainard GC, Blask DE, Lockley SW and Motta ME: Breast cancer and circadian disruption from electric lighting in the modern world. CA Cancer J Clin. 64:207–218. 2014. View Article : Google Scholar : PubMed/NCBI | |
Gaiotte LB, Cesário RC, Silveira HS, de Morais Oliveira DA, Cucielo MS, Romagnoli GG, Kaneno R, de Campos Zuccari AP, Reiter RJ and de Almeida Chuffa LG: Combination of melatonin with paclitaxel reduces the TLR4-mediated inflammatory pathway, PD-L1 levels, and survival of ovarian carcinoma cells. Melatonin Res. 5:34–51. 2022. View Article : Google Scholar | |
Slominski RM, Raman C, Chen JY and Slominski AT: How cancer hijacks the body's homeostasis through the neuroendocrine system. Trends Neurosci. 46:263–275. 2023. View Article : Google Scholar : PubMed/NCBI | |
Reiter RJ, Rosales-Corral SA, Tan DX, Acuna-Castroviejo D, Qin L, Yang SF and Xu K: Melatonin, a full service anti-cancer agent: Inhibition of initiation, progression and metastasis. Int J Mol Sci. 18:8432017. View Article : Google Scholar : PubMed/NCBI | |
Talib WH: Melatonin and cancer hallmarks. Molecules. 23:5182018. View Article : Google Scholar : PubMed/NCBI | |
Moloudizargari M, Moradkhani F, Hekmatirad S, Fallah M, Asghari MH and Reiter RJ: Therapeutic targets of cancer drugs: Modulation by melatonin. Life Sci. 267:1189342021. View Article : Google Scholar : PubMed/NCBI | |
Chuffa L, Carvalho R, Camargo VL, Cury S, Domeniconi R, Zuccari DA and Seiva FR: Melatonin and cancer: Exploring gene networks and functional categories. Melatonin Res. 6:431–451. 2023. View Article : Google Scholar | |
de Almeida Chuffa LG, Carvalho RF, Justulin LA, Cury SS, Seiva FRF, Jardim-Perassi BV, Zuccari DAPC and Reiter RJ: A meta-analysis of microRNA networks regulated by melatonin in cancer: Portrait of potential candidates for breast cancer treatment. J Pineal Res. 69:e126932020. View Article : Google Scholar | |
Ben-David U and Amon A: Context is everything: Aneuploidy in cancer. Nat Rev Genet. 21:44–62. 2020. View Article : Google Scholar | |
Bakhoum SF and Cantley LC: The multifaceted role of chromosomal instability in cancer and its microenvironment. Cell. 174:1347–1360. 2018. View Article : Google Scholar : PubMed/NCBI | |
El-Missiry MA and Abd El-Aziz AF: Influence of melatonin on proliferation and antioxidant system in Ehrlich ascites carcinoma cells. Cancer Lett. 151:119–125. 2000. View Article : Google Scholar : PubMed/NCBI | |
Reiter RJ, Mayo JC, Tan DX, Sainz RM, Alatorre-Jimenez M and Qin L: Melatonin as an antioxidant: Under promises but over delivers. J Pineal Res. 61:253–278. 2016. View Article : Google Scholar : PubMed/NCBI | |
Mir SM, Aliarab A, Goodarzi G, Shirzad M, Jafari SM, Qujeq D, Samavarchi Tehrani S and Asadi J: Melatonin: A smart molecule in the DNA repair system. Cell Biochem Funct. 40:4–16. 2022. View Article : Google Scholar | |
Galano A, Tan DX and Reiter RJ: Melatonin: A versatile protector against oxidative DNA damage. Molecules. 23:5302018. View Article : Google Scholar : PubMed/NCBI | |
Alonso-González C, González A, Menéndez-Menéndez J, Martínez-Campa C and Cos S: Melatonin as a radio-sensitizer in cancer. Biomedicines. 8:2472020. View Article : Google Scholar : PubMed/NCBI | |
Esmaely F, Mahmoudzadeh A, Cheki M and Shirazi A: The radioprotective effect of melatonin against radiation-induced DNA double-strand breaks in radiology. J Cancer Res Ther. 16(Suppl 1): S59–S63. 2020. View Article : Google Scholar | |
Farhood B, Goradel NH, Mortezaee K, Khanlarkhani N, Salehi E, Nashtaei MS, Mirtavoos-Mahyari H, Motevaseli E, Shabeeb D, Musa AE and Najafi M: Melatonin as an adjuvant in radiotherapy for radioprotection and radiosensitization. Clin Transl Oncol. 21:268–279. 2019. View Article : Google Scholar | |
Cos S, Recio J and Sánchez-Barceló EJ: Modulation of the length of the cell cycle time of MCF-7 human breast cancer cells by melatonin. Life Sci. 58:811–816. 1996. View Article : Google Scholar : PubMed/NCBI | |
Cabrera J, Negrín G, Estévez F, Loro J, Reiter RJ and Quintana J: Melatonin decreases cell proliferation and induces melanogenesis in human melanoma SK-MEL-1 cells. J Pineal Res. 49:45–54. 2010.PubMed/NCBI | |
Liu L, Zhu Y, Xu Y and Reiter RJ: Melatonin delays cell proliferation by inducing G1 and G2/M phase arrest in a human osteoblastic cell line hFOB 1.19. J Pineal Res. 50:222–231. 2011. View Article : Google Scholar | |
Martín V, Herrera F, Carrera-Gonzalez P, García-Santos G, Antolín I, Rodriguez-Blanco J and Rodriguez C: Intracellular signaling pathways involved in the cell growth inhibition of glioma cells by melatonin. Cancer Res. 66:1081–1088. 2006. View Article : Google Scholar : PubMed/NCBI | |
Targhazeh N, Reiter RJ, Rahimi M, Qujeq D, Yousefi T, Shahavi MH and Mir SM: Oncostatic activities of melatonin: Roles in cell cycle, apoptosis, and autophagy. Biochimie. 202:34–48. 2022. View Article : Google Scholar : PubMed/NCBI | |
Shen CJ, Chang CC, Chen YT, Lai CS and Hsu YC: Melatonin suppresses the growth of ovarian cancer cell lines (OVCAR-429 and PA-1) and potentiates the effect of G1 arrest by targeting CDKs. Int J Mol Sci. 17:1762016. View Article : Google Scholar : PubMed/NCBI | |
Pizarro JG, Yeste-Velasco M, Esparza JL, Verdaguer E, Pallàs M, Camins A and Folch J: The antiproliferative activity of melatonin in B65 rat dopaminergic neuroblastoma cells is related to the downregulation of cell cycle-related genes. J Pineal Res. 45:8–16. 2008. View Article : Google Scholar : PubMed/NCBI | |
Long F, Dong C, Jiang K, Xu Y, Chi X, Sun D, Gao Z, Shao S and Wang L: Melatonin enhances the anti-tumor effect of sorafenib via AKT/p27-mediated cell cycle arrest in hepatocarcinoma cell lines†. RSC Adv. 7:21342–21351. 2017. View Article : Google Scholar | |
Yun M, Kim EO, Lee D, Kim JH, Kim J, Lee H, Lee J and Kim SH: Melatonin sensitizes H1975 non-small-cell lung cancer cells harboring a T790M-targeted epidermal growth factor receptor mutation to the tyrosine kinase inhibitor gefitinib. Cell Physiol Biochem. 34:865–872. 2014. View Article : Google Scholar : PubMed/NCBI | |
Hong Y, Won J, Lee Y, Lee S, Park K, Chang KT and Hong Y: Melatonin treatment induces interplay of apoptosis, autophagy, and senescence in human colorectal cancer cells. J Pineal Res. 56:264–274. 2014. View Article : Google Scholar : PubMed/NCBI | |
Liu L, Xu Y and Reiter RJ: Melatonin inhibits the proliferation of human osteosarcoma cell line MG-63. Bone. 55:432–438. 2013. View Article : Google Scholar : PubMed/NCBI | |
Cini G, Neri B, Pacini A, Cesati V, Sassoli C, Quattrone S, D'Apolito M, Fazio A, Scapagnini G, Provenzani A and Quattrone A: Antiproliferative activity of melatonin by transcriptional inhibition of cyclin D1 expression: A molecular basis for melatonin-induced oncostatic effects. J Pineal Res. 39:12–20. 2005. View Article : Google Scholar : PubMed/NCBI | |
Ju HQ, Li H, Tian T, Lu YX, Bai L, Chen LZ, Sheng H, Mo HY, Zeng JB, Deng W, et al: Melatonin overcomes gemcitabine resistance in pancreatic ductal adenocarcinoma by abrogating nuclear factor-κB activation. J Pineal Res. 60:27–38. 2016. View Article : Google Scholar | |
Margheri M, Pacini N, Tani A, Nosi D, Squecco R, Dama A, Masala E, Francini F, Zecchi-Orlandini S and Formigli L: Combined effects of melatonin and all-trans retinoic acid and somatostatin on breast cancer cell proliferation and death: Molecular basis for the anticancer effect of these molecules. Eur J Pharmacol. 681:34–43. 2012. View Article : Google Scholar : PubMed/NCBI | |
Carbajo-Pescador S, Martín-Renedo J, García-Palomo A, Tuñón MJ, Mauriz JL and González-Gallego J: Changes in the expression of melatonin receptors induced by melatonin treatment in hepatocarcinoma HepG2 cells. J Pineal Res. 47:330–338. 2009. View Article : Google Scholar : PubMed/NCBI | |
Mediavilla MD, Cos S and Sánchez-Barceló EJ: Melatonin increases p53 and p21WAF1 expression in MCF-7 human breast cancer cells in vitro. Life Sci. 65:415–420. 1999. View Article : Google Scholar : PubMed/NCBI | |
She MH, Chen BB, Wang XM and He SS: p53-dependent antiproliferation and apoptosis of H22 cell induced by melatonin. Ai Zheng. 23:803–807. 2004.In Chinese. PubMed/NCBI | |
Kim CH and Yoo YM: Melatonin induces apoptotic cell death via p53 in LNCaP cells. Korean J Physiol Pharmacol. 14:365–369. 2010. View Article : Google Scholar | |
Hong RT, Xu JM and Mei Q: Melatonin ameliorates experimental hepatic fibrosis induced by carbon tetrachloride in rats. World J Gastroenterol. 15:1452–1458. 2009. View Article : Google Scholar : PubMed/NCBI | |
Chuffa LG, Alves MS, Martinez M, Camargo IC, Pinheiro PF, Domeniconi RF, Júnior LA and Martinez FE: Apoptosis is triggered by melatonin in an in vivo model of ovarian carcinoma. Endocr Relat Cancer. 23:65–76. 2016. View Article : Google Scholar | |
Sánchez DI, González-Fernández B, Crespo I, San-Miguel B, Álvarez M, González-Gallego J and Tuñón MJ: Melatonin modulates dysregulated circadian clocks in mice with diethylnitrosamine-induced hepatocellular carcinoma. J Pineal Res. 65:e125062018. View Article : Google Scholar : PubMed/NCBI | |
Bizzarri M, Proietti S, Cucina A and Reiter RJ: Molecular mechanisms of the pro-apoptotic actions of melatonin in cancer: A review. Expert Opin Ther Targets. 17:1483–1496. 2013. View Article : Google Scholar : PubMed/NCBI | |
Carneiro BA and El-Deiry WS: Targeting apoptosis in cancer therapy. Nat Rev Clin Oncol. 17:395–417. 2020. View Article : Google Scholar : PubMed/NCBI | |
Rubio S, Estévez F, Cabrera J, Reiter RJ, Loro J and Quintana J: Inhibition of proliferation and induction of apoptosis by melatonin in human myeloid HL-60 cells. J Pineal Res. 42:131–138. 2007. View Article : Google Scholar : PubMed/NCBI | |
Leja-Szpak A, Jaworek J, Pierzchalski P and Reiter RJ: Melatonin induces pro-apoptotic signaling pathway in human pancreatic carcinoma cells (PANC-1). J Pineal Res. 49:248–255. 2010. View Article : Google Scholar : PubMed/NCBI | |
Xu L, Jin QD, Gong X, Liu H and Zhou RX: Anti-gastric cancer effect of melatonin and Bcl-2, Bax, p21 and p53 expression changes. Sheng Li Xue Bao. 66:723–729. 2014.In Chinese. PubMed/NCBI | |
Chuffa LGA, Reiter RJ and Lupi LA: Melatonin as a promising agent to treat ovarian cancer: Molecular mechanisms. Carcinogenesis. 38:945–952. 2017. View Article : Google Scholar : PubMed/NCBI | |
Bock FJ and Tait SWG: Mitochondria as multifaceted regulators of cell death. Nat Rev Mol Cell Biol. 21:85–100. 2020. View Article : Google Scholar | |
Tian C, Liu Y, Li Z, Zhu P and Zhao M: Mitochondria related cell death modalities and disease. Front Cell Dev Biol. 10:8323562022. View Article : Google Scholar : PubMed/NCBI | |
Bejarano I, Redondo PC, Espino J, Rosado JA, Paredes SD, Barriga C, Reiter RJ, Pariente JA and Rodríguez AB: Melatonin induces mitochondrial-mediated apoptosis in human myeloid HL-60 cells. J Pineal Res. 46:392–400. 2009. View Article : Google Scholar : PubMed/NCBI | |
Trubiani O, Recchioni R, Moroni F, Pizzicannella J, Caputi S and Di Primio R: Melatonin provokes cell death in human B-lymphoma cells by mitochondrial-dependent apoptotic pathway activation. J Pineal Res. 39:425–431. 2005. View Article : Google Scholar : PubMed/NCBI | |
Joo SS and Yoo YM: Melatonin induces apoptotic death in LNCaP cells via p38 and JNK pathways: Therapeutic implications for prostate cancer. J Pineal Res. 47:8–14. 2009. View Article : Google Scholar : PubMed/NCBI | |
Carbajo-Pescador S, Steinmetz C, Kashyap A, Lorenz S, Mauriz JL, Heise M, Galle PR, González-Gallego J and Strand S: Melatonin induces transcriptional regulation of Bim by FoxO3a in HepG2 cells. Br J Cancer. 108:442–449. 2013. View Article : Google Scholar : | |
Fan L, Sun G, Ma T, Zhong F and Wei W: Melatonin overcomes apoptosis resistance in human hepatocellular carcinoma by targeting survivin and XIAP. J Pineal Res. 55:174–183. 2013. View Article : Google Scholar : PubMed/NCBI | |
Verma P, Rishi B, George NG, Kushwaha N, Dhandha H, Kaur M, Jain A, Jain A, Chaudhry S, Singh A, et al: Recent advances and future directions in etiopathogenesis and mechanisms of reactive oxygen species in cancer treatment. Pathol Oncol Res. 29:16114152023. View Article : Google Scholar : PubMed/NCBI | |
Huang R, Chen H, Liang J, Li Y, Yang J, Luo C, Tang Y, Ding Y, Liu X, Yuan Q, et al: Dual role of reactive oxygen species and their application in cancer therapy. J Cancer. 12:5543–5561. 2021. View Article : Google Scholar : PubMed/NCBI | |
Florido J, Martinez-Ruiz L, Rodriguez-Santana C, López-Rodríguez A, Hidalgo-Gutiérrez A, Cottet-Rousselle C, Lamarche F, Schlattner U, Guerra-Librero A, Aranda-Martínez P, et al: Melatonin drives apoptosis in head and neck cancer by increasing mitochondrial ROS generated via reverse electron transport. J Pineal Res. 73:e128242022. View Article : Google Scholar : PubMed/NCBI | |
Florido J, Rodriguez-Santana C, Martinez-Ruiz L, López-Rodríguez A, Acuña-Castroviejo D, Rusanova I and Escames G: Understanding the mechanism of action of melatonin, which induces ROS production in cancer cells. Antioxidants (Basel). 11:16212022. View Article : Google Scholar : PubMed/NCBI | |
Li M, Wu C, Muhammad JS, Yan D, Tsuneyama K, Hatta H, Cui ZG and Inadera H: Melatonin sensitises shikonin-induced cancer cell death mediated by oxidative stress via inhibition of the SIRT3/SOD2-AKT pathway. Redox Biol. 36:1016322020. View Article : Google Scholar : PubMed/NCBI | |
Chen X, Hao B, Li D, Reiter RJ, Bai Y, Abay B, Chen G, Lin S, Zheng T, Ren Y, et al: Melatonin inhibits lung cancer development by reversing the Warburg effect via stimulating the SIRT3/PDH axis. J Pineal Res. 71:e127552021. View Article : Google Scholar : PubMed/NCBI | |
Reiter RJ, Sharma R, Rodriguez C, Martin V, Rosales-Corral S, Zuccari DAPC and Chuffa LGA: Part-time cancers and role of melatonin in determining their metabolic phenotype. Life Sci. 278:1195972021. View Article : Google Scholar : PubMed/NCBI | |
Park SY, Jang WJ, Yi EY, Jang JY, Jung Y, Jeong JW and Kim YJ: Melatonin suppresses tumor angiogenesis by inhibiting HIF-1alpha stabilization under hypoxia. J Pineal Res. 48:178–184. 2010. View Article : Google Scholar : PubMed/NCBI | |
Reiter RJ, Sharma R, Ma Q, Rorsales-Corral S and de Almeida Chuffa LG: Melatonin inhibits Warburg-dependent cancer by redirecting glucose oxidation to the mitochondria: A mechanistic hypothesis. Cell Mol Life Sci. 77:2527–2542. 2020. View Article : Google Scholar : PubMed/NCBI | |
Chuffa LGA, Fioruci-Fontanelli BA, Mendes LO, Ferreira Seiva FR, Martinez M, Fávaro WJ, Domeniconi RF, Pinheiro PF, Delazari Dos Santos L and Martinez FE: Melatonin attenuates the TLR4-mediated inflammatory response through MyD88- and TRIF-dependent signaling pathways in an in vivo model of ovarian cancer. BMC Cancer. 15:342015. View Article : Google Scholar : PubMed/NCBI | |
Lu JJ, Fu L, Tang Z, Zhang C, Qin L, Wang J, Yu Z, Shi D, Xiao X, Xie F, et al: Melatonin inhibits AP-2β/hTERT, NF-κB/COX-2 and Akt/ERK and activates caspase/Cyto C signaling to enhance the antitumor activity of berberine in lung cancer cells. Oncotarget. 7:2985–3001. 2016. View Article : Google Scholar | |
Wang J, Xiao X, Zhang Y, Shi D, Chen W, Fu L, Liu L, Xie F, Kang T, Huang W and Deng W: Simultaneous modulation of COX-2, p300, Akt, and Apaf-1 signaling by melatonin to inhibit proliferation and induce apoptosis in breast cancer cells. J Pineal Res. 53:77–90. 2012. View Article : Google Scholar : PubMed/NCBI | |
Pikarsky E, Porat RM, Stein I, Abramovitch R, Amit S, Kasem S, Gutkovich-Pyest E, Urieli-Shoval S, Galun E and Ben-Neriah Y: NF-kappaB functions as a tumour promoter in inflammation-associated cancer. Nature. 431:461–466. 2004. View Article : Google Scholar : PubMed/NCBI | |
Chuang JI, Mohan N, Meltz ML and Reiter RJ: Effect of melatonin on NF-kappa-B DNA-binding activity in the rat spleen. Cell Biol Int. 20:687–692. 1996. View Article : Google Scholar : PubMed/NCBI | |
Niranjan R, Nath C and Shukla R: The mechanism of action of MPTP-induced neuroinflammation and its modulation by melatonin in rat astrocytoma cells, C6. Free Radic Res. 44:1304–1316. 2010. View Article : Google Scholar : PubMed/NCBI | |
Schito L: Hypoxia-dependent angiogenesis and lymphangiogenesis in cancer. Adv Exp Med Biol. 1136:71–85. 2019. View Article : Google Scholar : PubMed/NCBI | |
Colombo J, Maciel JMW, Ferreira LC, DA Silva RF and Zuccari DAP: Effects of melatonin on HIF-1α and VEGF expression and on the invasive properties of hepatocarcinoma cells. Oncol Lett. 12:231–237. 2016. View Article : Google Scholar : PubMed/NCBI | |
Jardim-Perassi BV, Arbab AS, Ferreira LC, Borin TF, Varma NR, Iskander AS, Shankar A, Ali MM and de Campos Zuccari DA: Effect of melatonin on tumor growth and angiogenesis in xenograft model of breast cancer. PLoS One. 9:e853112014. View Article : Google Scholar : PubMed/NCBI | |
Zonta YR, Martinez M, Camargo ICC, Domeniconi RF, Lupi Júnior LAL, Pinheiro PFF, Reiter RJ, Martinez FE and Chuffa LGA: Melatonin reduces angiogenesis in serous papillary ovarian carcinoma of ethanol-preferring rats. Int J Mol Sci. 18:7632017. View Article : Google Scholar : PubMed/NCBI | |
Ma Q, Reiter RJ and Chen Y: Role of melatonin in controlling angiogenesis under physiological and pathological conditions. Angiogenesis. 23:91–104. 2020. View Article : Google Scholar | |
Sulekha Suresh D and Guruvayoorappan C: Molecular principles of tissue invasion and metastasis. Am J Physiol Cell Physiol. 324:C971–C991. 2023. View Article : Google Scholar : PubMed/NCBI | |
Gupta GP and Massagué J: Cancer metastasis: Building a framework. Cell. 127:679–695. 2006. View Article : Google Scholar : PubMed/NCBI | |
Tang H, Shi X, Zhu P, Guo W, Li J, Yan B and Zhang S: Melatonin inhibits gallbladder cancer cell migration and invasion via ERK-mediated induction of epithelial-to-mesenchymal transition. Oncol Lett. 22:6092021. View Article : Google Scholar : PubMed/NCBI | |
Wang X, Wang B, Xie J, Hou D, Zhang H and Huang H: Melatonin inhibits epithelial-to-mesenchymal transition in gastric cancer cells via attenuation of IL-1β/NF-κB/MMP2/MMP9 signaling. Int J Mol Med. 42:2221–2228. 2018.PubMed/NCBI | |
Wang X, Wang B, Zhan W, Kang L, Zhang S, Chen C, Hou D, You R and Huang H: Melatonin inhibits lung metastasis of gastric cancer in vivo. Biomed Pharmacother. 117:1090182019. View Article : Google Scholar : PubMed/NCBI | |
Zhou Q, Gui S, Zhou Q and Wang Y: Melatonin inhibits the migration of human lung adenocarcinoma A549 cell lines involving JNK/MAPK pathway. PLoS One. 9:e1011322014. View Article : Google Scholar : PubMed/NCBI | |
Cos S, Fernández R, Güézmes A and Sánchez-Barceló EJ: Influence of melatonin on invasive and metastatic properties of MCF-7 human breast cancer cells. Cancer Res. 58:4383–4390. 1998.PubMed/NCBI | |
Tai HC, Wang SW, Swain S, Lin LW, Tsai HC, Liu SC, Wu HC, Guo JH, Liu CL, Lai YW, et al: Melatonin suppresses the metastatic potential of osteoblastic prostate cancers by inhibiting integrin α2 β1 expression. J Pineal Res. 72:e127932022. View Article : Google Scholar | |
Xu CS, Wang ZF, Huang XD, Dai LM, Cao CJ and Li ZQ: Involvement of ROS-alpha v beta 3 integrin-FAK/Pyk2 in the inhibitory effect of melatonin on U251 glioma cell migration and invasion under hypoxia. J Transl Med. 13:952015. View Article : Google Scholar : PubMed/NCBI | |
Najafi M, Farhood B and Mortezaee K: Extracellular matrix (ECM) stiffness and degradation as cancer drivers. J Cell Biochem. 120:2782–2790. 2019. View Article : Google Scholar | |
Nguyen BT, Lin CY, Chang TK, Fong YC, Thadevoos LA, Lai CY, Huang YL, Tsai CH, Ko CY, Liu JF, et al: Melatonin inhibits chondrosarcoma cell proliferation and metastasis by enhancing miR-520f-3p production and suppressing MMP7 expression. J Pineal Res. 75:e128722023. View Article : Google Scholar : PubMed/NCBI | |
Liu D, Shi K, Fu M and Chen F: Melatonin indirectly decreases gastric cancer cell proliferation and invasion via effects on cancer-associated fibroblasts. Life Sci. 277:1194972021. View Article : Google Scholar : PubMed/NCBI | |
Ordoñez R, Carbajo-Pescador S, Prieto-Dominguez N, García-Palomo A, González-Gallego J and Mauriz JL: Inhibition of matrix metalloproteinase-9 and nuclear factor kappa B contribute to melatonin prevention of motility and invasiveness in HepG2 liver cancer cells. J Pineal Res. 56:20–30. 2014. View Article : Google Scholar | |
Akbarzadeh M, Movassaghpour AA, Ghanbari H, Kheirandish M, Fathi Maroufi N, Rahbarghazi R, Nouri M and Samadi N: The potential therapeutic effect of melatonin on human ovarian cancer by inhibition of invasion and migration of cancer stem cells. Sci Rep. 7:170622017. View Article : Google Scholar : PubMed/NCBI | |
Lin YW, Lee LM, Lee WJ, Chu CY, Tan P, Yang YC, Chen WY, Yang SF, Hsiao M and Chien MH: Melatonin inhibits MMP-9 transactivation and renal cell carcinoma metastasis by suppressing Akt-MAPKs pathway and NF-κB DNA-binding activity. J Pineal Res. 60:277–290. 2016. View Article : Google Scholar : PubMed/NCBI | |
Doğanlar O, Doğanlar ZB, Delen E and Doğan A: The role of melatonin in angio-miR-associated inhibition of tumorigenesis and invasion in human glioblastoma tumour spheroids. Tissue Cell. 73:1016172021. View Article : Google Scholar | |
Chen YT, Yang CC, Shao PL, Huang CR and Yip HK: Melatonin-mediated downregulation of ZNF746 suppresses bladder tumorigenesis mainly through inhibiting the AKT-MMP-9 signaling pathway. J Pineal Res. 66:e125362019. View Article : Google Scholar | |
Mills E, Wu P, Seely D and Guyatt G: Melatonin in the treatment of cancer: A systematic review of randomized controlled trials and meta-analysis. J Pineal Res. 39:360–366. 2005. View Article : Google Scholar : PubMed/NCBI | |
Seely D, Wu P, Fritz H, Kennedy DA, Tsui T, Seely AJ and Mills E: Melatonin as adjuvant cancer care with and without chemotherapy: A systematic review and meta-analysis of randomized trials. Integr Cancer Ther. 11:293–303. 2012. View Article : Google Scholar | |
Favero G, Moretti E, Bonomini F, Reiter RJ, Rodella LF and Rezzani R: Promising antineoplastic actions of melatonin. Front Pharmacol. 9:10862018. View Article : Google Scholar : PubMed/NCBI | |
Oz E, Erbaş D, Sürücü HS and Düzgün E: Prevention of doxorubicin-induced cardiotoxicity by melatonin. Mol Cell Biochem. 282:31–37. 2006. View Article : Google Scholar | |
Lissoni P, Barni S, Mandalà M, Ardizzoia A, Paolorossi F, Vaghi M, Longarini R, Malugani F and Tancini G: Decreased toxicity and increased efficacy of cancer chemotherapy using the pineal hormone melatonin in metastatic solid tumour patients with poor clinical status. Eur J Cancer. 35:1688–1692. 1999. View Article : Google Scholar | |
Talib WH, Alsayed AR, Abuawad A, Daoud S and Mahmod AI: Melatonin in cancer treatment: Current knowledge and future opportunities. Molecules. 26:25062021. View Article : Google Scholar : PubMed/NCBI | |
Bouillon R, Manousaki D, Rosen C, Trajanoska K, Rivadeneira F and Richards JB: The health effects of vitamin D supplementation: Evidence from human studies. Nat Rev Endocrinol. 18:96–110. 2022. View Article : Google Scholar | |
Carlberg C: Vitamin D in the context of evolution. Nutrients. 14:30182022. View Article : Google Scholar : PubMed/NCBI | |
Holick MF, Mazzei L, García Menéndez S, Martín Giménez VM, Al Anouti F and Manucha W: Genomic or non-genomic? A question about the pleiotropic roles of vitamin D in inflammatory-based diseases. Nutrients. 15:7672023. View Article : Google Scholar : PubMed/NCBI | |
Khazai N, Judd SE and Tangpricha V: Calcium and vitamin D: Skeletal and extraskeletal health. Curr Rheumatol Rep. 10:110–117. 2008. View Article : Google Scholar : PubMed/NCBI | |
Martín Giménez VM, Lahore H, Ferder L, Holick MF and Manucha W: The little-explored therapeutic potential of nanoformulations of 1,25-dihydroxyvitamin D3 and its active analogs in prevalent inflammatory and oxidative disorders. Nanomedicine (Lond). 16:2327–2330. 2021. View Article : Google Scholar | |
Mazzaferro S, Goldsmith D, Larsson TE, Massy ZA and Cozzolino M: Vitamin D metabolites and/or analogs: Which D for which patient? Curr Vasc Pharmacol. 12:339–349. 2014. View Article : Google Scholar | |
Ysmail-Dahlouk L, Nouari W and Aribi M: 1,25-Dihydroxyvitamin D3 down-modulates the production of proinflammatory cytokines and nitric oxide and enhances the phosphorylation of monocyte-expressed STAT6 at the recent-onset type 1 diabetes. Immunol Lett. 179:122–130. 2016. View Article : Google Scholar : PubMed/NCBI | |
Slominski AT, Kim TK, Shehabi HZ, Tang EK, Benson HA, Semak I, Lin Z, Yates CR, Wang J, Li W and Tuckey RC: In vivo production of novel vitamin D2 hydroxy-derivatives by human placentas, epidermal keratinocytes, Caco-2 colon cells and the adrenal gland. Mol Cell Endocrinol. 383:181–192. 2014. View Article : Google Scholar : PubMed/NCBI | |
Christakos S, Dhawan P, Verstuyf A, Verlinden L and Carmeliet G: Vitamin D: Metabolism, molecular mechanism of action, and pleiotropic effects. Physiol Rev. 96:365–408. 2016. View Article : Google Scholar : | |
Jones G, Strugnell SA and DeLuca HF: Current understanding of the molecular actions of vitamin D. Physiol Rev. 78:1193–1231. 1998. View Article : Google Scholar : PubMed/NCBI | |
van den Heuvel EG, Lips P, Schoonmade LJ, Lanham-New SA and van Schoor NM: Comparison of the effect of daily vitamin D2 and vitamin D3 supplementation on serum 25-hydroxyvitamin D concentration (total 25(OH)D, 25(OH)D2, and 25(OH) D3) and importance of body mass index: A systematic review and meta-analysis. Adv Nutr. 15:1001332024. View Article : Google Scholar | |
Haussler MR, Haussler CA, Jurutka PW, Thompson PD, Hsieh JC, Remus LS, Selznick SH and Whitfield GK: The vitamin D hormone and its nuclear receptor: Molecular actions and disease states. J Endocrinol. 154(Suppl 1): S57–S73. 1997.PubMed/NCBI | |
Norlin M and Wikvall K: Enzymatic activation in vitamin D signaling-past, present and future. Arch Biochem Biophys. 742:1096392023. View Article : Google Scholar | |
Araya Z, Hosseinpour F, Bodin K and Wikvall K: Metabolism of 25-hydroxyvitamin D3 by microsomal and mitochondrial vitamin D3 25-hydroxylases (CYP2D25 and CYP27A1): A novel reaction by CYP27A1. Biochim Biophys Acta. 1632:40–47. 2003. View Article : Google Scholar : PubMed/NCBI | |
Kaseda R, Hosojima M, Sato H and Saito A: Role of megalin and cubilin in the metabolism of vitamin D(3). Ther Apher Dial. 15(Suppl 1): S14–S17. 2011. View Article : Google Scholar | |
Slominski AT, Kim TK, Shehabi HZ, Semak I, Tang EK, Nguyen MN, Benson HA, Korik E, Janjetovic Z, Chen J, et al: In vivo evidence for a novel pathway of vitamin D3 metabolism initiated by P450scc and modified by CYP27B1. FASEB J. 26:3901–3915. 2012. View Article : Google Scholar : PubMed/NCBI | |
Slominski AT, Kim TK, Janjetovic Z, Slominski RM, Li W, Jetten AM, Indra AK, Mason RS and Tuckey RC: Biological effects of CYP11A1-derived vitamin D and lumisterol metabolites in the skin. J Invest Dermatol. 144:2145–2161. 2024. View Article : Google Scholar : PubMed/NCBI | |
Qayyum S, Slominski RM, Raman C and Slominski AT: Novel CYP11A1-derived vitamin D and lumisterol biometabolites for the management of COVID-19. Nutrients. 14:47792022. View Article : Google Scholar : PubMed/NCBI | |
Slominski AT, Kim TK, Li W, Postlethwaite A, Tieu EW, Tang EKY and Tuckey RC: Detection of novel CYP11A1-derived secosteroids in the human epidermis and serum and pig adrenal gland. Sci Rep. 5:148752015. View Article : Google Scholar : PubMed/NCBI | |
Slominski AT, Li W, Kim TK, Semak I, Wang J, Zjawiony JK and Tuckey RC: Novel activities of CYP11A1 and their potential physiological significance. J Steroid Biochem Mol Biol. 151:25–37. 2015. View Article : Google Scholar | |
McLeod JF and Cooke NE: The vitamin D-binding protein, alpha-fetoprotein, albumin multigene family: Detection of transcripts in multiple tissues. J Biol Chem. 264:21760–21769. 1989. View Article : Google Scholar : PubMed/NCBI | |
Girgis CM and Brennan-Speranza TC: Vitamin D and skeletal muscle: Current concepts from preclinical studies. JBMR Plus. 5:e105752021. View Article : Google Scholar : PubMed/NCBI | |
Park CY and Han SN: The role of vitamin D in adipose tissue biology: Adipocyte differentiation, energy metabolism, and inflammation. J Lipid Atheroscler. 10:130–144. 2021. View Article : Google Scholar : PubMed/NCBI | |
Sempos CT, Heijboer AC, Bikle DD, Bollerslev J, Bouillon R, Brannon PM, DeLuca HF, Jones G, Munns CF, Bilezikian JP, et al: Vitamin D assays and the definition of hypovitaminosis D: Results from the first international conference on controversies in vitamin D. Br J Clin Pharmacol. 84:2194–2207. 2018. View Article : Google Scholar : PubMed/NCBI | |
Bouillon R, Schuit F, Antonio L and Rastinejad F: Vitamin D binding protein: A historic overview. Front Endocrinol (Lausanne). 10:9102020. View Article : Google Scholar : PubMed/NCBI | |
Deeb KK, Trump DL and Johnson CS: Vitamin D signalling pathways in cancer: Potential for anticancer therapeutics. Nat Rev Cancer. 7:684–700. 2007. View Article : Google Scholar : PubMed/NCBI | |
Nezbedova P and Brtko J: 1alpha,25-dihydroxyvitamin D3 inducible transcription factor and its role in the vitamin D action. Endocr Regul. 38:29–38. 2004.PubMed/NCBI | |
Falzone L, Gattuso G, Candido S, Tomaselli A, Fagone S, Spandidos DA and Libra M: Vitamin D and microRNAs: Role in the pathogenesis and prognosis of breast cancer (Review). Int J Epigenetics. 3:52023. View Article : Google Scholar | |
Fleet JC, DeSmet M, Johnson R and Li Y: Vitamin D and cancer: A review of molecular mechanisms. Biochem J. 441:61–76. 2012. View Article : Google Scholar | |
Slominski AT, Chaiprasongsuk A, Janjetovic Z, Kim TK, Stefan J, Slominski RM, Hanumanthu VS, Raman C, Qayyum S, Song Y, et al: Photoprotective properties of vitamin D and lumisterol hydroxyderivatives. Cell Biochem Biophys. 78:165–180. 2020. View Article : Google Scholar : PubMed/NCBI | |
Slominski AT, Kim TK, Janjetovic Z, Brożyna AA, Żmijewski MA, Xu H, Sutter TR, Tuckey RC, Jetten AM and Crossman DK: Differential and overlapping effects of 20,23(OH)2D3 and 1,25(OH)2D3 on gene expression in human epidermal keratinocytes: Identification of AhR as an alternative receptor for 20,23(OH)2D3. Int J Mol Sci. 19:30722018. View Article : Google Scholar | |
Slominski AT, Kim TK, Qayyum S, Song Y, Janjetovic Z, Oak ASW, Slominski RM, Raman C, Stefan J, Mier-Aguilar CA, et al: Vitamin D and lumisterol derivatives can act on liver X receptors (LXRs). Sci Rep. 11:80022021. View Article : Google Scholar : PubMed/NCBI | |
Slominski AT, Kim TK, Slominski RM, Song Y, Janjetovic Z, Podgorska E, Reddy SB, Song Y, Raman C, Tang EKY, et al: Metabolic activation of tachysterol3 to biologically active hydroxyderivatives that act on VDR, AhR, LXRs, and PPARγ receptors. Faseb J. 36:e224512022. View Article : Google Scholar | |
Song Y, Slominski RM, Qayyum S, Kim TK, Janjetovic Z, Raman C, Tuckey RC, Song Y and Slominski AT: Molecular and structural basis of interactions of vitamin D3 hydroxyderivatives with aryl hydrocarbon receptor (AhR): An integrated experimental and computational study. Int J Biol Macromol. 209:1111–1123. 2022. View Article : Google Scholar : PubMed/NCBI | |
Escriva H, Bertrand S and Laudet V: The evolution of the nuclear receptor superfamily. Essays Biochem. 40:11–26. 2004. View Article : Google Scholar : PubMed/NCBI | |
Gil Á, Plaza-Diaz J and Mesa MD: Vitamin D: Classic and novel actions. Ann Nutr Metab. 72:87–95. 2018. View Article : Google Scholar : PubMed/NCBI | |
Flach KD and Zwart W: The first decade of estrogen receptor cistromics in breast cancer. J Endocrinol. 229:R43–R56. 2016. View Article : Google Scholar : PubMed/NCBI | |
Meyer MB and Pike JW: Corepressors (NCoR and SMRT) as well as coactivators are recruited to positively regulated 1α,25-dihydroxyvitamin D3-responsive genes. J Steroid Biochem Mol Biol. 136:120–124. 2013. View Article : Google Scholar | |
Negri M, Gentile A, de Angelis C, Montò T, Patalano R, Colao A, Pivonello R and Pivonello C: Vitamin D-induced molecular mechanisms to potentiate cancer therapy and to reverse drug-resistance in cancer cells. Nutrients. 12:17982020. View Article : Google Scholar : PubMed/NCBI | |
Starska-Kowarska K: Role of vitamin D in head and neck cancer-immune function, anti-tumour effect, and its impact on patient prognosis. Nutrients. 15:25922023. View Article : Google Scholar : PubMed/NCBI | |
Bhoora S and Punchoo R: Policing cancer: Vitamin D arrests the cell cycle. Int J Mol Sci. 21:92962020. View Article : Google Scholar : PubMed/NCBI | |
Shariev A, Painter N, Reeve VE, Haass NK, Rybchyn MS, Ince FA, Mason RS and Dixon KM: PTEN: A novel target for vitamin D in melanoma. J Steroid Biochem Mol Biol. 218:1060592022. View Article : Google Scholar : PubMed/NCBI | |
Varghese JE, Shanmugam V, Rengarajan RL, Meyyazhagan A, Arumugam VA, Al-Misned FA and El-Serehy HA: Role of vitamin D3 on apoptosis and inflammatory-associated gene 528 in colorectal cancer: An in vitro approach. J King Saud Univ Sci. 32:2786–2789. 2020. View Article : Google Scholar | |
Seraphin G, Rieger S, Hewison M, Capobianco E and Lisse TS: The impact of vitamin D on cancer: A mini review. J Steroid Biochem Mol Biol. 231:1063082023. View Article : Google Scholar : PubMed/NCBI | |
Samuel S and Sitrin MD: Vitamin D's role in cell proliferation and differentiation. Nutr Rev. 66(Suppl 2): S116–S124. 2008. View Article : Google Scholar : PubMed/NCBI | |
Fernández-Barral A, Bustamante-Madrid P, Ferrer-Mayorga G, Barbáchano A, Larriba MJ and Muñoz A: Vitamin D effects on cell differentiation and stemness in cancer. Cancers (Basel). 12:24132020. View Article : Google Scholar : PubMed/NCBI | |
Bajbouj K, Al-Ali A, Shafarin J, Sahnoon L, Sawan A, Shehada A, Elkhalifa W, Saber-Ayad M, Muhammad JS, Elmoselhi AB, et al: Vitamin D exerts significant antitumor effects by suppressing vasculogenic mimicry in breast cancer cells. Front Oncol. 12:9183402022. View Article : Google Scholar : PubMed/NCBI | |
Kalkunte S, Brard L, Granai CO and Swamy N: Inhibition of angiogenesis by vitamin D-binding protein: Characterization of anti-endothelial activity of DBP-maf. Angiogenesis. 8:349–360. 2005. View Article : Google Scholar | |
Liu W, Zhang L, Xu HJ, Li Y, Hu CM, Yang JY and Sun MY: The anti-inflammatory effects of vitamin D in tumorigenesis. Int J Mol Sci. 19:27362018. View Article : Google Scholar : PubMed/NCBI | |
El-Sharkawy A and Malki A: Vitamin D signaling in inflammation and cancer: Molecular mechanisms and therapeutic implications. Molecules. 25:32192020. View Article : Google Scholar : PubMed/NCBI | |
Liu J, Shen J, Mu C, Liu Y, He D, Luo H, Wu W, Zheng X, Liu Y, Chen S, et al: High-dose vitamin D metabolite delivery inhibits breast cancer metastasis. Bioeng Transl Med. 7:e102632021. View Article : Google Scholar | |
Zhuravel E, Efanova O, Shestakova T, Glushko N, Mezhuev O, Soldatkina M and Pogrebnoy P: Administration of vitamin D3 improves antimetastatic efficacy of cancer vaccine therapy of Lewis lung carcinoma. Exp Oncol. 32:33–39. 2010.PubMed/NCBI | |
Zmijewski MA: Vitamin D and human health. Int J Mol Sci. 20:1452019. View Article : Google Scholar : PubMed/NCBI | |
Hii CS and Ferrante A: The non-genomic actions of vitamin D. Nutrients. 8:1352016. View Article : Google Scholar : PubMed/NCBI | |
Levin ER: Rapid signaling by steroid receptors. Am J Physiol Regul Integr Comp Physiol. 295:R1425–R1430. 2008. View Article : Google Scholar : PubMed/NCBI | |
Doroudi M, Schwartz Z and Boyan BD: Membrane-mediated actions of 1,25-dihydroxy vitamin D3: A review of the roles of phospholipase A2 activating protein and Ca(2+)/calmodulin-dependent protein kinase II. J Steroid Biochem Mol Biol. 147:81–84. 2015. View Article : Google Scholar | |
Sirajudeen S, Shah I and Al Menhali A: A Narrative role of vitamin d and its receptor: With current evidence on the gastric tissues. Int J Mol Sci. 20:38322019. View Article : Google Scholar : PubMed/NCBI | |
Lajdova I, Spustova V, Oksa A, Kaderjakova Z, Chorvat D Jr, Morvova M Jr, Sikurova L and Marcek Chorvatova A: The impact of vitamin D3 supplementation on mechanisms of cell calcium signaling in chronic kidney disease. Biomed Res Int. 2015:8076732015. View Article : Google Scholar : PubMed/NCBI | |
Sergeev IN: Calcium signaling in cancer and vitamin D. J Steroid Biochem Mol Biol. 97:145–151. 2005. View Article : Google Scholar : PubMed/NCBI | |
Norman AW: Minireview: Vitamin D receptor: New assignments for an already busy receptor. Endocrinology. 147:5542–5548. 2006. View Article : Google Scholar : PubMed/NCBI | |
Mantell DJ, Owens PE, Bundred NJ, Mawer EB and Canfield AE: 1 alpha,25-dihydroxyvitamin D(3) inhibits angiogenesis in vitro and in vivo. Circ Res. 87:214–220. 2000. View Article : Google Scholar : PubMed/NCBI | |
Jamali N, Sorenson CM and Sheibani N: Vitamin D and regulation of vascular cell function. Am J Physiol Heart Circ Physiol. 314:H753–H765. 2018. View Article : Google Scholar : PubMed/NCBI | |
Wu X, Hu W, Lu L, Zhao Y, Zhou Y, Xiao Z, Zhang L, Zhang H, Li X, Li W, et al: Repurposing vitamin D for treatment of human malignancies via targeting tumor microenvironment. Acta Pharm Sin B. 9:203–219. 2019. View Article : Google Scholar : PubMed/NCBI | |
Santos JM, Khan ZS, Munir MT, Tarafdar K, Rahman SM and Hussain F: Vitamin D3 decreases glycolysis and invasiveness, and increases cellular stiffness in breast cancer cells. J Nutr Biochem. 53:111–120. 2018. View Article : Google Scholar | |
Corachán A, Ferrero H, Escrig J, Monleon J, Faus A, Cervelló I and Pellicer A: Long-term vitamin D treatment decreases human uterine leiomyoma size in a xenograft animal model. Fertil Steril. 113:205–216.e4. 2020. View Article : Google Scholar | |
Karkeni E, Morin SO, Bou Tayeh B, Goubard A, Josselin E, Castellano R, Fauriat C, Guittard G, Olive D and Nunès JA: Vitamin D controls tumor growth and CD8+ T cell infiltration in breast cancer. Front Immunol. 10:13072019. View Article : Google Scholar : PubMed/NCBI | |
Veeresh PKM, Basavaraju CG, Dallavalasa S, Anantharaju PG, Natraj SM, Sukocheva OA and Madhunapantula SV: Vitamin D3 inhibits the viability of breast cancer cells in vitro and ehrlich ascites carcinomas in mice by promoting apoptosis and cell cycle arrest and by impeding tumor angiogenesis. Cancers (Basel). 15:48332023. View Article : Google Scholar : PubMed/NCBI | |
Welsh J: Vitamin D and breast cancer: Insights from animal models. Am J Clin Nutr. 80(Suppl 6): 1721S–1724S. 2004. View Article : Google Scholar : PubMed/NCBI | |
Li J, Luco AL, Camirand A, St-Arnaud R and Kremer R: Vitamin D regulates CXCL12/CXCR4 and epithelial-to-mesenchymal transition in a model of breast cancer metastasis to lung. Endocrinology. 162:bqab0492021. View Article : Google Scholar : PubMed/NCBI | |
Reid C, Flores-Villalva S, Remot A, Kennedy E, O'Farrelly C and Meade KG: Long-term in vivo vitamin D3 supplementation modulates bovine IL-1 and chemokine responses. Sci Rep. 13:108462023. View Article : Google Scholar | |
Muñoz A and Grant WB: Vitamin D and cancer: An historical overview of the epidemiology and mechanisms. Nutrients. 14:14482022. View Article : Google Scholar : PubMed/NCBI | |
Chandler PD, Chen WY, Ajala ON, Hazra A, Cook N, Bubes V, Lee IM, Giovannucci EL, Willett W, Buring JE, et al: Effect of vitamin D3 supplements on development of advanced cancer: A secondary analysis of the VITAL randomized clinical trial. JAMA Netw Open. 3:e20258502020. View Article : Google Scholar : PubMed/NCBI | |
Keum N, Lee DH, Greenwood DC, Manson JE and Giovannucci E: Vitamin D supplementation and total cancer incidence and mortality: A meta-analysis of randomized controlled trials. Ann Oncol. 30:733–743. 2019. View Article : Google Scholar : PubMed/NCBI | |
Talib WH, Ahmed Jum'AH DA, Attallah ZS, Jallad MS, Al Kury LT, Hadi RW and Mahmod AI: Role of vitamins A, C, D, E in cancer prevention and therapy: Therapeutic potentials and mechanisms of action. Front Nutr. 10:12818792024. View Article : Google Scholar : PubMed/NCBI | |
El-Bassiouny NA, Helmy MW, Hassan MAE and Khedr GA: The Cardioprotective effect of vitamin D in breast cancer patients receiving adjuvant doxorubicin based chemotherapy. Clin Breast Cancer. 22:359–366. 2022. View Article : Google Scholar : PubMed/NCBI | |
Galus Ł, Michalak M, Lorenz M, Stoińska-Swiniarek R, Tusień Małecka D, Galus A, Kolenda T, Leporowska E and Mackiewicz J: Vitamin D supplementation increases objective response rate and prolongs progression-free time in patients with advanced melanoma undergoing anti-PD-1 therapy. Cancer. 129:2047–2055. 2023. View Article : Google Scholar : PubMed/NCBI | |
Yu X, Liu B, Zhang N, Wang Q and Cheng G: Immune response: A missed opportunity between vitamin D and radiotherapy. Front Cell Dev Biol. 9:6469812021. View Article : Google Scholar : PubMed/NCBI | |
Arayici ME, Basbinar Y and Ellidokuz H: Vitamin D intake, serum 25-hydroxyvitamin-D (25(OH)D) levels, and cancer risk: A comprehensive meta-meta-analysis including meta-analyses of randomized controlled trials and observational epidemiological studies. Nutrients. 15:27222023. View Article : Google Scholar : PubMed/NCBI | |
Krasanakis T, Nikolouzakis TK, Sgantzos M, Mariolis-Sapsakos T, Souglakos J, Spandidos DA, Tsitsimpikou C, Tsatsakis A and Tsiaoussis J: Role of anabolic agents in colorectal carcinogenesis: Myths and realities (Review). Oncol Rep. 42:2228–2244. 2019.PubMed/NCBI | |
Dimitrakopoulou VI, Tsilidis KK, Haycock PC, Dimou NL, Al-Dabhani K, Martin RM, Lewis SJ, Gunter MJ, Mondul A, Shui IM, et al: Circulating vitamin D concentration and risk of seven cancers: Mendelian randomisation study. BMJ. 359:j47612017. View Article : Google Scholar : PubMed/NCBI | |
Young MRI and Xiong Y: Influence of vitamin D on cancer risk and treatment: Why the variability? Trends Cancer Res. 13:43–53. 2018.PubMed/NCBI | |
Mocayar Marón FJ, Ferder L, Reiter RJ and Manucha W: Daily and seasonal mitochondrial protection: Unraveling common possible mechanisms involving vitamin D and melatonin. J Steroid Biochem Mol Biol. 199:1055952020. View Article : Google Scholar : PubMed/NCBI | |
Vitti-Ruela BV, Dokkedal-Silva V, Hachul H, Tufik S and Andersen ML: Melatonin and vitamin D: Complementary therapeutic strategies for breast cancer. Support Care Cancer. 29:3433–3434. 2021. View Article : Google Scholar : PubMed/NCBI | |
Bizzarri M, Cucina A, Valente MG, Tagliaferri F, Borrelli V, Stipa F and Cavallaro A: Melatonin and vitamin D3 increase TGF-beta1 release and induce growth inhibition in breast cancer cell cultures. J Surg Res. 110:332–337. 2003. View Article : Google Scholar : PubMed/NCBI | |
Proietti S, Cucina A, D'Anselmi F, Dinicola S, Pasqualato A, Lisi E and Bizzarri M: Melatonin and vitamin D3 synergistically down-regulate Akt and MDM2 leading to TGFβ-1-dependent growth inhibition of breast cancer cells. J Pineal Res. 50:150–158. 2011. View Article : Google Scholar | |
Wang H, Wei W, Wang NP, Gui SY, Wu L, Sun WY and Xu SY: Melatonin ameliorates carbon tetrachloride-induced hepatic fibrogenesis in rats via inhibition of oxidative stress. Life Sci. 77:1902–1915. 2005. View Article : Google Scholar : PubMed/NCBI | |
Özerkan D, Özsoy N and Yılmaz E: Vitamin D and melatonin protect the cell's viability and ameliorate the CCl4 induced cytotoxicity in HepG2 and Hep3B hepatoma cell lines. Cytotechnology. 67:995–1002. 2015. View Article : Google Scholar | |
Frenkel M, Abrams DI, Ladas EJ, Deng G, Hardy M, Capodice JL, Winegardner MF, Gubili JK, Yeung KS, Kussmann H and Block KI: Integrating dietary supplements into cancer care. Integr Cancer Ther. 12:369–384. 2013. View Article : Google Scholar : PubMed/NCBI | |
Nuszkiewicz J, Czuczejko J, Maruszak M, Pawłowska M, Woźniak A, Małkowski B and Szewczyk-Golec K: Parameters of oxidative stress, vitamin D, osteopontin, and melatonin in patients with lip, oral cavity, and pharyngeal cancer. Oxid Med Cell Longev. 2021:23649312021. View Article : Google Scholar : PubMed/NCBI | |
Rai V, Bose S, Saha S and Chakraborty C: Evaluation of oxidative stress and the microenvironment in oral submucous fibrosis. Heliyon. 5:e015022019. View Article : Google Scholar : PubMed/NCBI | |
Di Bella G: The Di Bella Method (DBM) improved survival, objective response and performance status in a retrospective observational clinical study on 122 cases of breast cancer. Neuro Endocrinol Lett. 32:751–762. 2011.PubMed/NCBI | |
Di Bella G and Colori B: The Di Bella Method (DBM) improved survival, objective response and performance status in a retrospective observational clinical study on 23 tumours of the head and neck. Neuro Endocrinol Lett. 33:249–256. 2012.PubMed/NCBI | |
Di Bella G, Borghetto V and Costanzo E: A retrospective observational study on cases of anaplastic brain tumors treated with the Di Bella Method: A rationale and effectiveness. Neuro Endocrinol Lett. 42:464–483. 2021. | |
Di Bella G, Di Bella L, Borghetto V, Moscato I and Costanzo E: A retrospective observational study on cases of osteosarcomas treated with a multitherapy: The rationale and effectiveness. Neuro Endocrinol Lett. 43:173–179. 2022.PubMed/NCBI | |
Norsa A and Martino V: Somatostatin, retinoids, melatonin, vitamin D, bromocriptine, and cyclophosphamide in advanced non-small-cell lung cancer patients with low performance status. Cancer Biother Radiopharm. 21:68–73. 2006.PubMed/NCBI | |
Norsa A and Martino V: Somatostatin, retinoids, melatonin, vitamin D, bromocriptine, and cyclophosphamide in chemotherapy-pretreated patients with advanced lung adenocarcinoma and low performance status. Cancer Biother Radiopharm. 22:50–55. 2007.PubMed/NCBI | |
Nuszkiewicz J, Woźniak A and Szewczyk-Golec K: Ionizing radiation as a source of oxidative stress-the protective role of melatonin and vitamin D. Int J Mol Sci. 21:58042020. View Article : Google Scholar : PubMed/NCBI | |
Minich DM, Henning M, Darley C, Fahoum M, Schuler CB and Frame J: Is Melatonin the 'Next vitamin D'?: A review of emerging science, clinical uses, safety, and dietary supplements. Nutrients. 14:39342022. View Article : Google Scholar | |
Smolensky MH, Sackett-Lundeen LL and Portaluppi F: Nocturnal light pollution and underexposure to daytime sunlight: Complementary mechanisms of circadian disruption and related diseases. Chronobiol Int. 32:1029–1048. 2015. View Article : Google Scholar : PubMed/NCBI | |
Besedovsky L, Lange T and Haack M: The sleep-immune crosstalk in health and disease. Physiol Rev. 99:1325–1380. 2019. View Article : Google Scholar : PubMed/NCBI |