Spandidos Publications Logo
  • About
    • About Spandidos
    • Aims and Scopes
    • Abstracting and Indexing
    • Editorial Policies
    • Reprints and Permissions
    • Job Opportunities
    • Terms and Conditions
    • Contact
  • Journals
    • All Journals
    • Oncology Letters
      • Oncology Letters
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Oncology
      • International Journal of Oncology
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Molecular and Clinical Oncology
      • Molecular and Clinical Oncology
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Experimental and Therapeutic Medicine
      • Experimental and Therapeutic Medicine
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Molecular Medicine
      • International Journal of Molecular Medicine
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Biomedical Reports
      • Biomedical Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Oncology Reports
      • Oncology Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Molecular Medicine Reports
      • Molecular Medicine Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • World Academy of Sciences Journal
      • World Academy of Sciences Journal
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Functional Nutrition
      • International Journal of Functional Nutrition
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Epigenetics
      • International Journal of Epigenetics
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Medicine International
      • Medicine International
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
  • Articles
  • Information
    • Information for Authors
    • Information for Reviewers
    • Information for Librarians
    • Information for Advertisers
    • Conferences
  • Language Editing
Spandidos Publications Logo
  • About
    • About Spandidos
    • Aims and Scopes
    • Abstracting and Indexing
    • Editorial Policies
    • Reprints and Permissions
    • Job Opportunities
    • Terms and Conditions
    • Contact
  • Journals
    • All Journals
    • Biomedical Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Experimental and Therapeutic Medicine
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Epigenetics
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Functional Nutrition
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Molecular Medicine
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Oncology
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Medicine International
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Molecular and Clinical Oncology
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Molecular Medicine Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Oncology Letters
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Oncology Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • World Academy of Sciences Journal
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
  • Articles
  • Information
    • For Authors
    • For Reviewers
    • For Librarians
    • For Advertisers
    • Conferences
  • Language Editing
Login Register Submit
  • This site uses cookies
  • You can change your cookie settings at any time by following the instructions in our Cookie Policy. To find out more, you may read our Privacy Policy.

    I agree
Search articles by DOI, keyword, author or affiliation
Search
Advanced Search
presentation
International Journal of Oncology
Join Editorial Board Propose a Special Issue
Print ISSN: 1019-6439 Online ISSN: 1791-2423
Journal Cover
December-2024 Volume 65 Issue 6

Full Size Image

Cover Legend PDF

Sign up for eToc alerts
Recommend to Library

Journals

International Journal of Molecular Medicine

International Journal of Molecular Medicine

International Journal of Molecular Medicine is an international journal devoted to molecular mechanisms of human disease.

International Journal of Oncology

International Journal of Oncology

International Journal of Oncology is an international journal devoted to oncology research and cancer treatment.

Molecular Medicine Reports

Molecular Medicine Reports

Covers molecular medicine topics such as pharmacology, pathology, genetics, neuroscience, infectious diseases, molecular cardiology, and molecular surgery.

Oncology Reports

Oncology Reports

Oncology Reports is an international journal devoted to fundamental and applied research in Oncology.

Experimental and Therapeutic Medicine

Experimental and Therapeutic Medicine

Experimental and Therapeutic Medicine is an international journal devoted to laboratory and clinical medicine.

Oncology Letters

Oncology Letters

Oncology Letters is an international journal devoted to Experimental and Clinical Oncology.

Biomedical Reports

Biomedical Reports

Explores a wide range of biological and medical fields, including pharmacology, genetics, microbiology, neuroscience, and molecular cardiology.

Molecular and Clinical Oncology

Molecular and Clinical Oncology

International journal addressing all aspects of oncology research, from tumorigenesis and oncogenes to chemotherapy and metastasis.

World Academy of Sciences Journal

World Academy of Sciences Journal

Multidisciplinary open-access journal spanning biochemistry, genetics, neuroscience, environmental health, and synthetic biology.

International Journal of Functional Nutrition

International Journal of Functional Nutrition

Open-access journal combining biochemistry, pharmacology, immunology, and genetics to advance health through functional nutrition.

International Journal of Epigenetics

International Journal of Epigenetics

Publishes open-access research on using epigenetics to advance understanding and treatment of human disease.

Medicine International

Medicine International

An International Open Access Journal Devoted to General Medicine.

Journal Cover
December-2024 Volume 65 Issue 6

Full Size Image

Cover Legend PDF

Sign up for eToc alerts
Recommend to Library

  • Article
  • Citations
    • Cite This Article
    • Download Citation
    • Create Citation Alert
    • Remove Citation Alert
    • Cited By
  • Similar Articles
    • Related Articles (in Spandidos Publications)
    • Similar Articles (Google Scholar)
    • Similar Articles (PubMed)
  • Download PDF
  • Download XML
  • View XML
Article Open Access

Investigating the biology of microRNA links to ALDH1A1 reveals candidates for preclinical testing in acute myeloid leukemia

  • Authors:
    • Spiros A. Vlahopoulos
    • Lokman Varisli
    • Panagiotis Zoumpourlis
    • Demetrios A. Spandidos
    • Vassilis Zoumpourlis
  • View Affiliations / Copyright

    Affiliations: First Department of Pediatrics, National and Kapodistrian University of Athens, 11527 Athens, Greece, Department of Molecular Biology and Genetics, Science Faculty, Dicle University, Diyarbakir 21280, Turkey, Biomedical Applications Unit, Institute of Chemical Biology, National Hellenic Research Foundation (NHRF), 11635 Athens, Greece, Laboratory of Clinical Virology, School of Medicine, University of Crete, 71003 Heraklion, Greece
    Copyright: © Vlahopoulos et al. This is an open access article distributed under the terms of Creative Commons Attribution License.
  • Article Number: 115
    |
    Published online on: October 30, 2024
       https://doi.org/10.3892/ijo.2024.5703
  • Expand metrics +
Metrics: Total Views: 0 (Spandidos Publications: | PMC Statistics: )
Metrics: Total PDF Downloads: 0 (Spandidos Publications: | PMC Statistics: )
Cited By (CrossRef): 0 citations Loading Articles...

This article is mentioned in:



Abstract

Aldehyde dehydrogenase 1 family member A1 (ALDH1A1) is a member of the aldehyde dehydrogenase gene subfamily that encode enzymes with the ability to oxidize retinaldehyde. It was recently shown that high ALDH1A1 RNA abundance correlates with a poor prognosis in acute myeloid leukemia (AML). AML is a hematopoietic malignancy associated with high morbidity and mortality rates. Although there are a number of agents that inhibit ALDH activity, it would be crucial to develop methodologies for adjustable genetic interference, which would permit interventions on several oncogenic pathways in parallel. Intervention in multiple oncogenic pathways is theoretically possible with microRNAs (miRNAs or miRs), a class of small non‑coding RNAs that have emerged as key regulators of gene expression in AML. A number of miRNAs have shown the ability to interfere with ALDH1A1 gene expression directly in solid tumor cells, and these miRNAs can be evaluated in AML model systems. There are indications that a few of these miRNAs actually do have an association with AML disease course, rendering them a promising target for genetic intervention in AML cells.
View Figures

Figure 1

Figure 2

Figure 3

View References

1 

Smith C, Gasparetto M, Jordan C, Pollyea DA and Vasiliou V: The effects of alcohol and aldehyde dehydrogenases on disorders of hematopoiesis. Adv Exp Med Biol. 815:349–359. 2015. View Article : Google Scholar

2 

Duan X, Hu H, Wang L and Chen L: Aldehyde dehydrogenase 1 family: A potential molecule target for diseases. Cell Biol Int. May 27–2024.Epub ahead of print. View Article : Google Scholar : PubMed/NCBI

3 

Lavudi K, Nuguri SM, Pandey P, Kokkanti RR and Wang QE: ALDH and cancer stem cells: Pathways, challenges, and future directions in targeted therapy. Life Sci. 356:1230332024. View Article : Google Scholar : PubMed/NCBI

4 

Vlahopoulos S, Pan L, Varisli L, Dancik GM, Karantanos T and Boldogh I: OGG1 as an epigenetic reader affects NFκB: What this means for cancer. Cancers (Basel). 16:1482023. View Article : Google Scholar

5 

Vlahopoulos SA: Divergent processing of cell stress signals as the basis of cancer progression: Licensing NFκB on Chromatin. Int J Mol Sci. 25:86212024. View Article : Google Scholar

6 

Carroll C, Manaprasertsak A, Boffelli Castro A, van den Bos H, Spierings DCJ, Wardenaar R, Bukkuri A, Engström N, Baratchart E, Yang M, et al: Drug-resilient Cancer Cell Phenotype Is Acquired via Polyploidization Associated with Early Stress Response Coupled to HIF2α Transcriptional Regulation. Cancer Res Commun. 4:691–705. 2024. View Article : Google Scholar : PubMed/NCBI

7 

Fredebohm J, Boettcher M, Eisen C, Gaida MM, Heller A, Keleg S, Tost J, Greulich-Bode KM, Hotz-Wagenblatt A, Lathrop M, et al: Establishment and characterization of a highly tumourigenic and cancer stem cell enriched pancreatic cancer cell line as a well defined model system. PLoS One. 7:e485032012. View Article : Google Scholar : PubMed/NCBI

8 

Kaigorodova EV, Kozik AV and Grishchenko MY: Decoding Metastasis: From cell death to fusion in cancer progression. Curr Cancer Drug Targets. Jul 15–2024.Epub ahead of print. View Article : Google Scholar : PubMed/NCBI

9 

Truskowski K, Amend SR and Pienta KJ: Dormant cancer cells: Programmed quiescence, senescence, or both? Cancer Metastasis Rev. 42:37–47. 2023. View Article : Google Scholar : PubMed/NCBI

10 

Park MN: The therapeutic potential of a strategy to prevent acute myeloid leukemia stem cell reprogramming in older patients. Int J Mol Sci. 24:120372023. View Article : Google Scholar : PubMed/NCBI

11 

Dancik GM, Varisli L and Vlahopoulos SA: The molecular context of oxidant stress response in cancer establishes ALDH1A1 as a Critical Target: What this means for acute myeloid leukemia. Int J Mol Sci. 24:93722023. View Article : Google Scholar : PubMed/NCBI

12 

Shortall K, Djeghader A, Magner E and Soulimane T: Insights into aldehyde dehydrogenase enzymes: A structural perspective. Front Mol Biosci. 8:6595502021. View Article : Google Scholar : PubMed/NCBI

13 

Gasparetto M and Smith CA: ALDHs in normal and malignant hematopoietic cells: Potential new avenues for treatment of AML and other blood cancers. Chem Biol Interact. 276:46–51. 2017. View Article : Google Scholar : PubMed/NCBI

14 

Yue H, Hu Z, Hu R, Guo Z, Zheng Y, Wang Y and Zhou Y: ALDH1A1 in Cancers: Bidirectional function, drug resistance, and regulatory mechanism. Front Oncol. 12:9187782022. View Article : Google Scholar : PubMed/NCBI

15 

Zhou Y, Huang G, Cai X, Liu Y, Qian B and Li D: Global, regional, and national burden of acute myeloid leukemia, 1990-2021: a systematic analysis for the global burden of disease study 2021. Biomark Res. 12:1012024. View Article : Google Scholar : PubMed/NCBI

16 

Magni M, Shammah S, Schiró R, Mellado W, Dalla-Favera R and Gianni AM: Induction of cyclophosphamide-resistance by aldehyde-dehydrogenase gene transfer. Blood. 87:1097–1103. 1996. View Article : Google Scholar : PubMed/NCBI

17 

Moreb JS, Maccow C, Schweder M and Hecomovich J: Expression of antisense RNA to aldehyde dehydrogenase class-1 sensitizes tumor cells to 4-hydroperoxycyclophosphamide in vitro. J Pharmacol Exp Ther. 293:390–396. 2000.PubMed/NCBI

18 

Smith C, Gasparetto M, Humphries K, Pollyea DA, Vasiliou V and Jordan CT: Aldehyde dehydrogenases in acute myeloid leukemia. Ann N Y Acad Sci. 1310:58–68. 2014. View Article : Google Scholar : PubMed/NCBI

19 

Cheung AM, Wan TS, Leung JC, Chan LY, Huang H, Kwong YL, Liang R and Leung AY: Aldehyde dehydrogenase activity in leukemic blasts defines a subgroup of acute myeloid leukemia with adverse prognosis and superior NOD/SCID engrafting potential. Leukemia. 21:1423–1430. 2007. View Article : Google Scholar : PubMed/NCBI

20 

Dancik GM, Voutsas IF and Vlahopoulos S: Aldehyde dehydrogenase enzyme functions in acute leukemia stem cells. Front Biosci (Sch Ed). 14:82022. View Article : Google Scholar

21 

Hoang VT, Buss EC, Wang W, Hoffmann I, Raffel S, Zepeda-Moreno A, Baran N, Wuchter P, Eckstein V, Trumpp A, et al: The rarity of ALDH(+) cells is the key to separation of normal versus leukemia stem cells by ALDH activity in AML patients. Int J Cancer. 137:525–536. 2015. View Article : Google Scholar

22 

Gasparetto M, Pei S, Minhajuddin M, Khan N, Pollyea DA, Myers JR, Ashton JM, Becker MW, Vasiliou V, Humphries KR, et al: Targeted therapy for a subset of acute myeloid leukemias that lack expression of aldehyde dehydrogenase 1A1. Haematologica. 102:1054–1065. 2017. View Article : Google Scholar : PubMed/NCBI

23 

Batten DJ, Crofts JJ and Chuzhanova N: Towards In Silico identification of genes contributing to similarity of patients' multi-omics profiles: A case study of acute myeloid leukemia. Genes (Basel). 14:17952023. View Article : Google Scholar : PubMed/NCBI

24 

Dancik GM, Voutsas IF and Vlahopoulos S: Lower RNA expression of ALDH1A1 distinguishes the favorable risk group in acute myeloid leukemia. Mol Biol Rep. 49:3321–3331. 2022. View Article : Google Scholar : PubMed/NCBI

25 

Dancik GM, Varisli L, Tolan V and Vlahopoulos S: Aldehyde dehydrogenase genes as prospective actionable targets in acute myeloid leukemia. Genes (Basel). 14:18072023. View Article : Google Scholar : PubMed/NCBI

26 

Venton G, Pérez-Alea M, Baier C, Fournet G, Quash G, Labiad Y, Martin G, Sanderson F, Poullin P, Suchon P, et al: Aldehyde dehydrogenases inhibition eradicates leukemia stem cells while sparing normal progenitors. Blood Cancer J. 6:e4692016. View Article : Google Scholar : PubMed/NCBI

27 

Pei S, Minhajuddin M, Adane B, Khan N, Stevens BM, Mack SC, Lai S, Rich JN, Inguva A, Shannon KM, et al: AMPK/FIS1-Mediated mitophagy is required for self-renewal of human AML stem cells. Cell Stem Cell. 23:86–100.e6. 2018. View Article : Google Scholar : PubMed/NCBI

28 

Marcucci G, Mrózek K, Radmacher MD, Garzon R and Bloomfield CD: The prognostic and functional role of microRNAs in acute myeloid leukemia. Blood. 117:1121–1129. 2011. View Article : Google Scholar :

29 

Xiang M, Birkbak NJ, Vafaizadeh V, Walker SR, Yeh JE, Liu S, Kroll Y, Boldin M, Taganov K, Groner B, et al: STAT3 induction of miR-146b forms a feedback loop to inhibit the NF-κB to IL-6 signaling axis and STAT3-driven cancer phenotypes. Sci Signal. 7:ra112014. View Article : Google Scholar

30 

Karin M: NF-kappaB as a critical link between inflammation and cancer. Cold Spring Harb Perspect Biol. 1:a0001412009. View Article : Google Scholar

31 

Vlahopoulos SA, Cen O, Hengen N, Agan J, Moschovi M, Critselis E, Adamaki M, Bacopoulou F, Copland JA, Boldogh I, et al: Dynamic aberrant NF-κB spurs tumorigenesis: a new model encompassing the microenvironment. Cytokine Growth Factor Rev. 26:389–403. 2015. View Article : Google Scholar : PubMed/NCBI

32 

Jimbu L, Mesaros O, Joldes C, Neaga A, Zaharie L and Zdrenghea M: MicroRNAs associated with a bad prognosis in acute myeloid leukemia and their impact on macrophage polarization. Biomedicines. 12:1212024. View Article : Google Scholar : PubMed/NCBI

33 

Wallace JA and O'Connell RM: MicroRNAs and acute myeloid leukemia: Therapeutic implications and emerging concepts. Blood. 130:1290–1301. 2017. View Article : Google Scholar : PubMed/NCBI

34 

Boudreau RL, Jiang P, Gilmore BL, Spengler RM, Tirabassi R, Nelson JA, Ross CA, Xing Y and Davidson BL: Transcriptome-wide discovery of microRNA binding sites in human brain. Neuron. 81:294–305. 2014. View Article : Google Scholar : PubMed/NCBI

35 

Lee SH, Lee CR, Rigas NK, Kim RH, Kang MK, Park NH and Shin KH: Human papillomavirus 16 (HPV16) enhances tumor growth and cancer stemness of HPV-negative oral/oropharyngeal squamous cell carcinoma cells via miR-181 regulation. Papillomavirus Res. 1:116–125. 2015. View Article : Google Scholar : PubMed/NCBI

36 

Liu X, Liao W, Peng H, Luo X, Luo Z, Jiang H and Xu L: miR-181a promotes G1/S transition and cell proliferation in pediatric acute myeloid leukemia by targeting ATM. J Cancer Res Clin Oncol. 142:77–87. 2016. View Article : Google Scholar

37 

Nanbakhsh A, Visentin G, Olive D, Janji B, Mussard E, Dessen P, Meurice G, Zhang Y, Louache F, Bourhis JH and Chouaib S: miR-181a modulates acute myeloid leukemia susceptibility to natural killer cells. Oncoimmunology. 4:e9964752015. View Article : Google Scholar : PubMed/NCBI

38 

Huang X, Schwind S, Santhanam R, Eisfeld AK, Chiang CL, Lankenau M, Yu B, Hoellerbauer P, Jin Y, Tarighat SS, et al: Targeting the RAS/MAPK pathway with miR-181a in acute myeloid leukemia. Oncotarget. 7:59273–59286. 2016. View Article : Google Scholar : PubMed/NCBI

39 

Seipel K, Messerli C, Wiedemann G, Bacher U and Pabst T: MN1, FOXP1 and hsa-miR-181a-5p as prognostic markers in acute myeloid leukemia patients treated with intensive induction chemotherapy and autologous stem cell transplantation. Leuk Res. 89:1062962020. View Article : Google Scholar : PubMed/NCBI

40 

Fletcher D, Brown E, Javadala J, Uysal-Onganer P and Guinn BA: microRNA expression in acute myeloid leukaemia: New targets for therapy? EJHaem. 3:596–608. 2022. View Article : Google Scholar : PubMed/NCBI

41 

Gong X, Xu B, Zi L and Chen X: miR-625 reverses multidrug resistance in gastric cancer cells by directly targeting ALDH1A1. Cancer Manag Res. 11:6615–6624. 2019. View Article : Google Scholar : PubMed/NCBI

42 

Ma L, Wang YY and Jiang P: LncRNA LINC00909 promotes cell proliferation and metastasis in pediatric acute myeloid leukemia via miR-625-mediated modulation of Wnt/β-catenin signaling. Biochem Biophys Res Commun. 527:654–661. 2020. View Article : Google Scholar : PubMed/NCBI

43 

Shang Z, Ming X, Wu J and Xiao Y: Downregulation of circ_0012152 inhibits proliferation and induces apoptosis in acute myeloid leukemia cells through the miR-625-5p/SOX12 axis. Hematol Oncol. 39:539–548. 2021. View Article : Google Scholar : PubMed/NCBI

44 

Aliabedi B, Mousavi SH, Ebrahimi M, Alizadeh S, Hedayati Asl AA, Mohammad M and Samieyan Dehkordi S: Hsa-miR-625 Upregulation promotes apoptosis in acute myeloid leukemia cell line by targeting integrin-linked kinase pathway. Asian Pac J Cancer Prev. 23:1159–1167. 2022. View Article : Google Scholar : PubMed/NCBI

45 

Samieyan Dehkordi S, Mousavi SH, Ebrahimi M, Alizadeh SH, Hedayati Asl AA, Mohammad M and Aliabedi B: Upregulation of hsa-miR-625-5p inhibits invasion of acute myeloid leukemia cancer cells through ILK/AKT Pathway. Cell J. 24:76–84. 2022.PubMed/NCBI

46 

Li Q, Yao Y, Eades G, Liu Z, Zhang Y and Zhou Q: Downregulation of miR-140 promotes cancer stem cell formation in basal-like early stage breast cancer. Oncogene. 33:2589–2600. 2014. View Article : Google Scholar :

47 

Li H, Bi K, Feng S, Wang Y and Zhu C: MiR-140 Targets lncRNA DNAJC3-AS1 to Suppress Cell Proliferation in Acute Myeloid Leukemia. Mediterr J Hematol Infect Dis. 14:e20220052022. View Article : Google Scholar : PubMed/NCBI

48 

Wang Y, Wang F, Lu Y, Li Y, Ran H, Yan F and Tian Y: MiR-140 targets lncRNA FAM230B to suppress cell proliferation in acute myeloid leukemia running title: MiR-140 targets FAM230B in AML. Hematology. 27:700–705. 2022. View Article : Google Scholar : PubMed/NCBI

49 

Huang J, Jin S, Guo R, Wu W, Yang C, Qin Y, Chen Q, He X, Qu J and Yang Z: Histone lysine demethylase KDM5B facilitates proliferation and suppresses apoptosis in human acute myeloid leukemia cells through the miR-140-3p/BCL2 axis. RNA. 30:435–447. 2024. View Article : Google Scholar : PubMed/NCBI

50 

Huang HY, Lin YC, Cui S, Huang Y, Tang Y, Xu J, Bao J, Li Y, Wen J, Zuo H, et al: miRTarBase update 2022: an informative resource for experimentally validated miRNA-target interactions. Nucleic Acids Res. 50(D1): D222–D230. 2022. View Article : Google Scholar

51 

Kariuki D, Asam K, Aouizerat BE, Lewis KA, Florez JC and Flowers E: Review of databases for experimentally validated human microRNA-mRNA interactions. Database (Oxford). 2023:baad0142023. View Article : Google Scholar : PubMed/NCBI

52 

Kern F, Aparicio-Puerta E, Li Y, Fehlmann T, Kehl T, Wagner V, Ray K, Ludwig N, Lenhof HP, Meese E and Keller A: miRTargetLink 2.0-interactive miRNA target gene and target pathway networks. Nucleic Acids Res. 49(W1): W409–W416. 2021. View Article : Google Scholar : PubMed/NCBI

53 

Wang W, Li Y, Liu N, Gao Y and Li L: MiR-23b controls ALDH1A1 expression in cervical cancer stem cells. BMC Cancer. 17:2922017. View Article : Google Scholar : PubMed/NCBI

54 

Barrera-Ramirez J, Lavoie JR, Maganti HB, Stanford WL, Ito C, Sabloff M, Brand M, Rosu-Myles M, Le Y and Allan DS: Micro-RNA profiling of exosomes from marrow-derived mesenchymal stromal cells in patients with acute myeloid leukemia: Implications in Leukemogenesis. Stem Cell Rev Rep. 13:817–825. 2017. View Article : Google Scholar : PubMed/NCBI

55 

Jiang W, Min J, Sui X, Qian Y, Liu Y, Liu Z, Zhou H, Li X and Gong Y: MicroRNA-26a-5p and microRNA-23b-3p up-regulate peroxiredoxin III in acute myeloid leukemia. Leuk Lymphoma. 56:460–471. 2015. View Article : Google Scholar :

56 

Gaál Z, Oláh É, Rejtő L, Bálint BL and Csernoch L: Expression Levels of Warburg-Effect Related microRNAs Correlate with each Other and that of Histone Deacetylase Enzymes in Adult Hematological Malignancies with Emphasis on Acute Myeloid Leukemia. Pathol Oncol Res. 23:207–216. 2017. View Article : Google Scholar

57 

Sethupathy P, Corda B and Hatzigeorgiou AG: TarBase: A comprehensive database of experimentally supported animal microRNA targets. RNA. 12:192–197. 2006. View Article : Google Scholar :

58 

Chang L, Zhou G, Soufan O and Xia J: miRNet 2.0: Network-based visual analytics for miRNA functional analysis and systems biology. Nucleic Acids Res. 48(W1): W244–W251. 2020. View Article : Google Scholar : PubMed/NCBI

59 

Calin GA, Dumitru CD, Shimizu M, Bichi R, Zupo S, Noch E, Aldler H, Rattan S, Keating M, Rai K, et al: Frequent deletions and down-regulation of micro-RNA genes miR15 and miR16 at 13q14 in chronic lymphocytic leukemia. Proc Natl Acad Sci USA. 99:15524–15529. 2002. View Article : Google Scholar

60 

Liberati FR, Di Russo S, Barolo L, Peruzzi G, Farina MV, Spizzichino S, Di Fonzo F, Quaglio D, Pisano L, Botta B, et al: Combined Delivery of miR-15/16 through Humanized ferritin nanocages for the treatment of chronic lymphocytic leukemia. Pharmaceutics. 16:4022024. View Article : Google Scholar : PubMed/NCBI

61 

Gao SM, Yang J, Chen C, Zhang S, Xing CY, Li H, Wu J and Jiang L: miR-15a/16-1 enhances retinoic acid-mediated differentiation of leukemic cells and is up-regulated by retinoic acid. Leuk Lymphoma. 52:2365–2371. 2011. View Article : Google Scholar : PubMed/NCBI

62 

Kim KT, Carroll AP, Mashkani B, Cairns MJ, Small D and Scott RJ: MicroRNA-16 is down-regulated in mutated FLT3 expressing murine myeloid FDC-P1 cells and interacts with Pim-1. PLoS One. 7:e445462012. View Article : Google Scholar : PubMed/NCBI

63 

Abraham M, Klein S, Bulvik B, Wald H, Weiss ID, Olam D, Weiss L, Beider K, Eizenberg O and Wald O, et al: The CXCR4 inhibitor BL-8040 induces the apoptosis of AML blasts by downregulating ERK, BCL-2, MCL-1 and cyclin-D1 via altered miR-15a/16-1 expression. Leukemia. 31:2336–2346. 2017. View Article : Google Scholar : PubMed/NCBI

64 

Abdellateif MS, Hassan NM, Kamel MM and El-Meligui YM: Bone marrow microRNA-34a is a good indicator for response to treatment in acute myeloid leukemia. Oncol Res. 32:577–584. 2024. View Article : Google Scholar : PubMed/NCBI

65 

Ma W, Xiao GG, Mao J, Lu Y, Song B, Wang L, Fan S, Fan P, Hou Z, Li J, et al: Dysregulation of the miR-34a-SIRT1 axis inhibits breast cancer stemness. Oncotarget. 6:10432–10444. 2015. View Article : Google Scholar : PubMed/NCBI

66 

Hsieh PL, Liao YW, Hsieh CW, Chen PN and Yu CC: Soy isoflavone genistein impedes cancer stemness and mesenchymal transition in head and neck cancer through activating miR-34a/RTCB Axis. Nutrients. 12:19242020. View Article : Google Scholar : PubMed/NCBI

67 

Xu C, Cao X, Cao X, Liu L, Qiu Y, Li X, Zhou L, Ning Y, Ren K and Cao J: Isovitexin Inhibits Stemness and Induces Apoptosis in Hepatocellular Carcinoma SK-Hep-1 Spheroids by Upregulating miR-34a Expression. Anticancer Agents Med Chem. 20:1654–1663. 2020. View Article : Google Scholar : PubMed/NCBI

68 

Fuster O, Llop M, Dolz S, García P, Such E, Ibáñez M, Luna I, Gómez I, López M, Cervera J, et al: Adverse prognostic value of MYBL2 overexpression and association with microRNA-30 family in acute myeloid leukemia patients. Leuk Res. 37:1690–1696. 2013. View Article : Google Scholar : PubMed/NCBI

69 

Farzadfard E, Kalantari T and Tamaddon G: Serum Expression of Seven MicroRNAs in Chronic Lymphocytic Leukemia Patients. J Blood Med. 11:97–102. 2020. View Article : Google Scholar : PubMed/NCBI

70 

Shiah SG, Hsiao JR, Chang HJ, Hsu YM, Wu GH, Peng HY, Chou ST, Kuo CC and Chang JY: MiR-30a and miR-379 modulate retinoic acid pathway by targeting DNA methyltransferase 3B in oral cancer. J Biomed Sci. 27:462020. View Article : Google Scholar : PubMed/NCBI

71 

Nurwidya F, Takahashi F, Winardi W, Tajima K, Mitsuishi Y, Murakami A, Kobayashi I, Nara T, Hashimoto M, Kato M, et al: Zinc-finger E-box-binding homeobox 1 (ZEB1) plays a crucial role in the maintenance of lung cancer stem cells resistant to gefitinib. Thorac Cancer. 12:1536–1548. 2021. View Article : Google Scholar : PubMed/NCBI

72 

Hashida S, Yamamoto H, Shien K, Miyoshi Y, Ohtsuka T, Suzawa K, Watanabe M, Maki Y, Soh J, Asano H, et al: Acquisition of cancer stem cell-like properties in non-small cell lung cancer with acquired resistance to afatinib. Cancer Sci. 106:1377–1384. 2015. View Article : Google Scholar : PubMed/NCBI

73 

Pyzer AR, Stroopinsky D, Rosenblatt J, Anastasiadou E, Rajabi H, Washington A, Tagde A, Chu JH, Coll M, Jiao AL, et al: MUC1 inhibition leads to decrease in PD-L1 levels via upregulation of miRNAs. Leukemia. 31:2780–2790. 2017. View Article : Google Scholar : PubMed/NCBI

74 

Havelange V, Stauffer N, Heaphy CC, Volinia S, Andreeff M, Marcucci G, Croce CM and Garzon R: Functional implications of microRNAs in acute myeloid leukemia by integrating microRNA and messenger RNA expression profiling. Cancer. 117:4696–4706. 2011. View Article : Google Scholar : PubMed/NCBI

75 

Thomsen KG, Terp MG, Lund RR, Søkilde R, Elias D, Bak M, Litman T, Beck HC, Lyng MB and Ditzel HJ: miR-155, identified as anti-metastatic by global miRNA profiling of a metastasis model, inhibits cancer cell extravasation and colonization in vivo and causes significant signaling alterations. Oncotarget. 6:29224–29239. 2015. View Article : Google Scholar : PubMed/NCBI

76 

Metzeler KH, Maharry K, Kohlschmidt J, Volinia S, Mrózek K, Becker H, Nicolet D, Whitman SP, Mendler JH, Schwind S, et al: A stem cell-like gene expression signature associates with inferior outcomes and a distinct microRNA expression profile in adults with primary cytogenetically normal acute myeloid leukemia. Leukemia. 27:2023–2031. 2013. View Article : Google Scholar : PubMed/NCBI

77 

Rizzo M, Mariani L, Pitto L, Rainaldi G and Simili M: miR-20a and miR-290, multi-faceted players with a role in tumourigenesis and senescence. J Cell Mol Med. 14:2633–2640. 2010. View Article : Google Scholar : PubMed/NCBI

78 

Gerrits A, Walasek MA, Olthof S, Weersing E, Ritsema M, Zwart E, van Os R, Bystrykh LV and de Haan G: Genetic screen identifies microRNA cluster 99b/let-7e/125a as a regulator of primitive hematopoietic cells. Blood. 119:377–387. 2012. View Article : Google Scholar

79 

Li Y, Vecchiarelli-Federico LM, Li YJ, Egan SE, Spaner D, Hough MR and Ben-David Y: The miR-17-92 cluster expands multipotent hematopoietic progenitors whereas imbalanced expression of its individual oncogenic miRNAs promotes leukemia in mice. Blood. 119:4486–4498. 2012. View Article : Google Scholar : PubMed/NCBI

80 

Bousquet M, Harris MH, Zhou B and Lodish HF: MicroRNA miR-125b causes leukemia. Proc Natl Acad Sci USA. 107:21558–21563. 2010. View Article : Google Scholar : PubMed/NCBI

81 

Buettner R, Nguyen LXT, Kumar B, Morales C, Liu C, Chen LS, Pemovska T, Synold TW, Palmer J, Thompson R, et al: 8-chloro-adenosine activity in FLT3-ITD acute myeloid leukemia. J Cell Physiol. 234:16295–16303. 2019. View Article : Google Scholar : PubMed/NCBI

82 

Testa U and Pelosi E: MicroRNAs expressed in hematopoietic stem/progenitor cells are deregulated in acute myeloid leukemias. Leuk Lymphoma. 56:1466–1474. 2015. View Article : Google Scholar

83 

Xu D, Jiang J, He G, Zhou H and Ji C: miR-143-3p represses leukemia cell proliferation by inhibiting KAT6A expression. Anticancer Drugs. 33:e662–e669. 2022. View Article : Google Scholar

84 

Buggins AG, Milojkovic D, Arno MJ, Lea NC, Mufti GJ, Thomas NS and Hirst WJ: Microenvironment produced by acute myeloid leukemia cells prevents T cell activation and proliferation by inhibition of NF-kappaB, c-Myc, and pRb pathways. J Immunol. 167:6021–6030. 2001. View Article : Google Scholar : PubMed/NCBI

85 

Sun YX, Kong HL, Liu CF, Yu S, Tian T, Ma DX and Ji CY: The imbalanced profile and clinical significance of T helper associated cytokines in bone marrow microenvironment of the patients with acute myeloid leukemia. Hum Immunol. 75:113–118. 2014. View Article : Google Scholar

86 

Alhattab DM, Isaioglou I, Alshehri S, Khan ZN, Susapto HH, Li Y, Marghani Y, Alghuneim AA, Díaz-Rúa R, Abdelrahman S, et al: Fabrication of a three-dimensional bone marrow niche-like acute myeloid Leukemia disease model by an automated and controlled process using a robotic multicellular bioprinting system. Biomater Res. 27:1112023. View Article : Google Scholar : PubMed/NCBI

87 

Ito S, Minamizaki T, Kohno S, Sotomaru Y, Kitaura Y, Ohba S, Sugiyama T, Aubin JE, Tanimoto K and Yoshiko Y: Overexpression of miR-125b in osteoblasts improves age-related changes in bone mass and quality through suppression of osteoclast formation. Int J Mol Sci. 22:67452021. View Article : Google Scholar : PubMed/NCBI

88 

Pais H, Nicolas FE, Soond SM, Swingler TE, Clark IM, Chantry A, Moulton V and Dalmay T: Analyzing mRNA expression identifies Smad3 as a microRNA-140 target regulated only at protein level. RNA. 16:489–494. 2010. View Article : Google Scholar : PubMed/NCBI

89 

Varisli L and Vlahopoulos S: Epithelial-Mesenchymal transition in acute leukemias. Int J Mol Sci. 25:21732024. View Article : Google Scholar : PubMed/NCBI

90 

Imodoye SO, Adedokun KA, Muhammed AO, Bello IO, Muhibi MA, Oduola T and Oyenike MA: Understanding the complex milieu of epithelial-mesenchymal transition in cancer metastasis: New insight into the roles of transcription factors. Front Oncol. 11:7628172021. View Article : Google Scholar : PubMed/NCBI

91 

Mani SA, Guo W, Liao MJ, Eaton EN, Ayyanan A, Zhou AY, Brooks M, Reinhard F, Zhang CC, Shipitsin M, et al: The epithelial-mesenchymal transition generates cells with properties of stem cells. Cell. 133:704–715. 2008. View Article : Google Scholar : PubMed/NCBI

92 

Kong D, Banerjee S, Ahmad A, Li Y, Wang Z, Sethi S and Sarkar FH: Epithelial to mesenchymal transition is mechanistically linked with stem cell signatures in prostate cancer cells. PLoS One. 5:e124452010. View Article : Google Scholar : PubMed/NCBI

93 

Muraoka-Cook RS, Shin I, Yi JY, Easterly E, Barcellos-Hoff MH, Yingling JM, Zent R and Arteaga CL: Activated type I TGFbeta receptor kinase enhances the survival of mammary epithelial cells and accelerates tumor progression. Oncogene. 25:3408–3423. 2006. View Article : Google Scholar

94 

Gorodetska I, Lukiyanchuk V, Gawin M, Sliusar M, Linge A, Lohaus F, Hölscher T, Kati Erdmann, Fuessel S, Borkowetz A, et al: Blood-based detection of MMP11 as a marker of prostate cancer progression regulated by the ALDH1A1-TGF-β1 signaling mechanism. bioRxiv: https://doi.org/10.1101/2024.07.16.603771.

95 

Singh B, Murphy RF, Ding XZ, Roginsky AB, Bell RH and Adrian TE: On the role of transforming growth factor-beta in the growth inhibitory effects of retinoic acid in human pancreatic cancer cells. Mol Cancer. 6:822007. View Article : Google Scholar : PubMed/NCBI

96 

Seyhan AA: Trials and Tribulations of MicroRNA Therapeutics. Int J Mol Sci. 25:14692024. View Article : Google Scholar : PubMed/NCBI

97 

Hong DS, Kang YK, Borad M, Sachdev J, Ejadi S, Lim HY, Brenner AJ, Park K, Lee JL, Kim TY, et al: Phase 1 study of MRX34, a liposomal miR-34a mimic, in patients with advanced solid tumours. Br J Cancer. 122:1630–1637. 2020. View Article : Google Scholar : PubMed/NCBI

98 

Witten L and Slack FJ: miR-155 as a novel clinical target for hematological malignancies. Carcinogenesis. 41:2–7. 2020. View Article : Google Scholar

99 

Gallant-Behm CL, Piper J, Lynch JM, Seto AG, Hong SJ, Mustoe TA, Maari C, Pestano LA, Dalby CM, Jackson AL, et al: A MicroRNA-29 Mimic (Remlarsen) Represses Extracellular Matrix Expression and Fibroplasia in the Skin. J Invest Dermatol. 139:1073–1081. 2019. View Article : Google Scholar

100 

Chioccioli M, Roy S, Newell R, Sauler M, Ahangari F, Ding S, DeIuliis J, Aurelien N, Montgomery RL and Kaminski N: A lung targeted miR-29 mimic as a therapy for pulmonary fibrosis. EBioMedicine. 85:1043042022. View Article : Google Scholar : PubMed/NCBI

101 

Narendra G, Raju B, Verma H and Silakari O: Identification of potential genes associated with ALDH1A1 overexpression and cyclophosphamide resistance in chronic myelogenous leukemia using network analysis. Med Oncol. 38:1232021. View Article : Google Scholar : PubMed/NCBI

102 

van Zandwijk N, Pavlakis N, Kao SC, Linton A, Boyer MJ, Clarke S, Huynh Y, Chrzanowska A, Fulham MJ, Bailey DL, et al: Safety and activity of microRNA-loaded minicells in patients with recurrent malignant pleural mesothelioma: A first-in-man, phase 1, open-label, dose-escalation study. Lancet Oncol. 18:1386–1396. 2017. View Article : Google Scholar : PubMed/NCBI

103 

Zanjirband M, Rahgozar S and Aberuyi N: miR-16-5p enhances sensitivity to RG7388 through targeting PPM1D expression (WIP1) in childhood acute lymphoblastic leukemia. Cancer Drug Resist. 6:242–256. 2023. View Article : Google Scholar : PubMed/NCBI

104 

Zhang J, Mullighan CG, Harvey RC, Wu G, Chen X, Edmonson M, Buetow KH, Carroll WL, Chen IM, Devidas M, et al: Key pathways are frequently mutated in high-risk childhood acute lymphoblastic leukemia: a report from the Children's Oncology Group. Blood. 118:3080–3087. 2011. View Article : Google Scholar : PubMed/NCBI

105 

Huang BJ, Smith JL, Farrar JE, Wang YC, Umeda M, Ries RE, Leonti AR, Crowgey E, Furlan SN, Tarlock K, et al: Integrated stem cell signature and cytomolecular risk determination in pediatric acute myeloid leukemia. Nat Commun. 13:54872022. View Article : Google Scholar : PubMed/NCBI

106 

Won Lee G, Thangavelu M, Joung Choi M, Yeong Shin E, Sol Kim H, Seon Baek J, Woon Jeong Y, Eun Song J, Carlomagno C, Miguel Oliveira J, et al: Exosome mediated transfer of miRNA-140 promotes enhanced chondrogenic differentiation of bone marrow stem cells for enhanced cartilage repair and regeneration. J Cell Biochem. 121:3642–3652. 2020. View Article : Google Scholar : PubMed/NCBI

107 

Wang N, Liu X, Tang Z, Wei X, Dong H, Liu Y, Wu H, Wu Z, Li X, Ma X and Guo Z: Increased BMSC exosomal miR-140-3p alleviates bone degradation and promotes bone restoration by targeting Plxnb1 in diabetic rats. J Nanobiotechnology. 20:972022. View Article : Google Scholar : PubMed/NCBI

108 

Rajagopal K, Arjunan P, Marepally S and Madhuri V: Controlled differentiation of mesenchymal stem cells into Hyaline Cartilage in miR-140-Activated Collagen Hydrogel. Cartilage. 13(2_suppl): 571S–581S. 2021. View Article : Google Scholar : PubMed/NCBI

109 

Zhou Y, Jia H, Hu A, Liu R, Zeng X and Wang H: Nanoparticles targeting delivery antagomir-483-5p to bone marrow mesenchymal stem cells treat osteoporosis by increasing bone formation. Curr Stem Cell Res Ther. 18:115–126. 2023. View Article : Google Scholar

110 

Diener C, Keller A and Meese E: Emerging concepts of miRNA therapeutics: From cells to clinic. Trends Genet. 38:613–626. 2022. View Article : Google Scholar : PubMed/NCBI

111 

Kim T and Croce CM: MicroRNA: Trends in clinical trials of cancer diagnosis and therapy strategies. Exp Mol Med. 55:1314–1321. 2023. View Article : Google Scholar : PubMed/NCBI

112 

Grillone K, Caridà G, Luciano F, Cordua A, Di Martino MT, Tagliaferri P and Tassone P: A systematic review of non-coding RNA therapeutics in early clinical trials: A new perspective against cancer. J Transl Med. 22:7312024. View Article : Google Scholar : PubMed/NCBI

113 

Truong VA, Chang YH, Dang TQ, Tu Y, Tu J, Chang CW, Chang YH, Liu GS and Hu YC: Programmable editing of primary MicroRNA switches stem cell differentiation and improves tissue regeneration. Nat Commun. 15:83582024. View Article : Google Scholar : PubMed/NCBI

114 

Wen C, Xu X, Zhang Y, Xia J, Liang Y and Xu L: Bone targeting nanoparticles for the treatment of osteoporosis. Int J Nanomedicine. 19:1363–1383. 2024. View Article : Google Scholar : PubMed/NCBI

115 

Gu J, Jiang L, Chen Z and Qi J: A simple nanoplatform of thermo-sensitive liposomes and gold nanorods to treat bone metastasis through improved chemotherapy combined with photothermal therapy. Int J Pharm X. 8:1002822024.PubMed/NCBI

116 

Li S, Kang Y and Zeng Y: Targeting tumor and bone microenvironment: Novel therapeutic opportunities for castration-resistant prostate cancer patients with bone metastasis. Biochim Biophys Acta Rev Cancer. 1879:1890332024. View Article : Google Scholar

117 

Xu M and Li S: Nano-drug delivery system targeting tumor microenvironment: A prospective strategy for melanoma treatment. Cancer Lett. 574:2163972023. View Article : Google Scholar : PubMed/NCBI

118 

de Janon A, Mantalaris A and Panoskaltsis N: Three-Dimensional Human Bone Marrow Organoids for the Study and Application of Normal and Abnormal Hematoimmunopoiesis. J Immunol. 210:895–904. 2023. View Article : Google Scholar : PubMed/NCBI

119 

Herrera-Carrillo E, Liu YP and Berkhout B: Improving miRNA Delivery by Optimizing miRNA expression cassettes in diverse virus vectors. Hum Gene Ther Methods. 28:177–190. 2017. View Article : Google Scholar : PubMed/NCBI

120 

Calloni R and Bonatto D: Scaffolds for Artificial miRNA expression in animal cells. Hum Gene Ther Methods. 26:162–174. 2015. View Article : Google Scholar : PubMed/NCBI

121 

Lundstrom K: Trans-amplifying RNA hitting new grounds: Gene regulation by microRNA. Mol Ther Nucleic Acids. 35:1021912024. View Article : Google Scholar : PubMed/NCBI

122 

Yıldız A, Hasani A, Hempel T, Köhl N, Beicht A, Becker R, Hubich-Rau S, Suchan M, Poleganov MA, Sahin U and Beissert T: Trans-amplifying RNA expressing functional miRNA mediates target gene suppression and simultaneous transgene expression. Mol Ther Nucleic Acids. 35:1021622024. View Article : Google Scholar : PubMed/NCBI

123 

Goldman MJ, Craft B, Hastie M, Repečka K, McDade F, Kamath A, Banerjee A, Luo Y, Rogers D, Brooks AN, et al: Visualizing and interpreting cancer genomics data via the Xena platform. Nat Biotechnol. 38:675–678. 2020. View Article : Google Scholar : PubMed/NCBI

Related Articles

  • Abstract
  • View
  • Download
  • Twitter
Copy and paste a formatted citation
Spandidos Publications style
Vlahopoulos SA, Varisli L, Zoumpourlis P, Spandidos DA and Zoumpourlis V: Investigating the biology of microRNA links to ALDH1A1 reveals candidates for preclinical testing in acute myeloid leukemia. Int J Oncol 65: 115, 2024.
APA
Vlahopoulos, S.A., Varisli, L., Zoumpourlis, P., Spandidos, D.A., & Zoumpourlis, V. (2024). Investigating the biology of microRNA links to ALDH1A1 reveals candidates for preclinical testing in acute myeloid leukemia. International Journal of Oncology, 65, 115. https://doi.org/10.3892/ijo.2024.5703
MLA
Vlahopoulos, S. A., Varisli, L., Zoumpourlis, P., Spandidos, D. A., Zoumpourlis, V."Investigating the biology of microRNA links to ALDH1A1 reveals candidates for preclinical testing in acute myeloid leukemia". International Journal of Oncology 65.6 (2024): 115.
Chicago
Vlahopoulos, S. A., Varisli, L., Zoumpourlis, P., Spandidos, D. A., Zoumpourlis, V."Investigating the biology of microRNA links to ALDH1A1 reveals candidates for preclinical testing in acute myeloid leukemia". International Journal of Oncology 65, no. 6 (2024): 115. https://doi.org/10.3892/ijo.2024.5703
Copy and paste a formatted citation
x
Spandidos Publications style
Vlahopoulos SA, Varisli L, Zoumpourlis P, Spandidos DA and Zoumpourlis V: Investigating the biology of microRNA links to ALDH1A1 reveals candidates for preclinical testing in acute myeloid leukemia. Int J Oncol 65: 115, 2024.
APA
Vlahopoulos, S.A., Varisli, L., Zoumpourlis, P., Spandidos, D.A., & Zoumpourlis, V. (2024). Investigating the biology of microRNA links to ALDH1A1 reveals candidates for preclinical testing in acute myeloid leukemia. International Journal of Oncology, 65, 115. https://doi.org/10.3892/ijo.2024.5703
MLA
Vlahopoulos, S. A., Varisli, L., Zoumpourlis, P., Spandidos, D. A., Zoumpourlis, V."Investigating the biology of microRNA links to ALDH1A1 reveals candidates for preclinical testing in acute myeloid leukemia". International Journal of Oncology 65.6 (2024): 115.
Chicago
Vlahopoulos, S. A., Varisli, L., Zoumpourlis, P., Spandidos, D. A., Zoumpourlis, V."Investigating the biology of microRNA links to ALDH1A1 reveals candidates for preclinical testing in acute myeloid leukemia". International Journal of Oncology 65, no. 6 (2024): 115. https://doi.org/10.3892/ijo.2024.5703
Follow us
  • Twitter
  • LinkedIn
  • Facebook
About
  • Spandidos Publications
  • Careers
  • Cookie Policy
  • Privacy Policy
How can we help?
  • Help
  • Live Chat
  • Contact
  • Email to our Support Team