1
|
Richters A, Aben KKH and Kiemeney LALM:
The global burden of urinary bladder cancer: An update. World J
Urol. 38:1895–1904. 2020. View Article : Google Scholar :
|
2
|
Saginala K and Barsouk A, Aluru JS, Rawla
P, Padala SA and Barsouk A: Epidemiology of bladder cancer. Med Sci
(Basel). 8:152020.PubMed/NCBI
|
3
|
Ikeda A, Kojima T, Kawai K, Hinotsu S,
Keino N, Shiga K, Miyake H, Miyata Y, Enomoto Y, Shimizu F, et al:
Risk for intravesical recurrence of bladder cancer stratified by
the results on two consecutive UroVysion fluorescence in situ
hybridization tests: A prospective follow-up study in Japan. Int J
Clin Oncol. 25:1163–1169. 2020. View Article : Google Scholar : PubMed/NCBI
|
4
|
Cheung G, Sahai A, Billia M, Dasgupta P
and Khan MS: Recent advances in the diagnosis and treatment of
bladder cancer. BMC Med. 11:132013. View Article : Google Scholar : PubMed/NCBI
|
5
|
Wołącewicz M, Hrynkiewicz R, Grywalska E,
Suchojad T, Leksowski T, Roliński J and Niedźwiedzka-Rystwej P:
Immunotherapy in bladder cancer: Current methods and future
perspectives. Cancers (Basel). 12:11812020. View Article : Google Scholar
|
6
|
Reesink DJ, van de Garde EMW, Peters BJM,
van der Nat PB, Los M, Horenblas S and van Melick HHE: Treatment
patterns and clinical outcomes of chemotherapy treatment in
patients with muscle-invasive or metastatic bladder cancer in the
Netherlands. Sci Rep. 10:158222020. View Article : Google Scholar : PubMed/NCBI
|
7
|
Mari A, D'Andrea D, Abufaraj M, Foerster
B, Kimura S and Shariat SF: Genetic determinants for chemo- and
radiotherapy resistance in bladder cancer. Transl Androl Urol.
6:1081–1089. 2017. View Article : Google Scholar
|
8
|
Rijnders M, de Wit R, Boormans JL, Lolkema
MPJ and van der Veldt AAM: Systematic review of immune checkpoint
inhibition in urological cancers. Eur Urol. 72:411–423. 2017.
View Article : Google Scholar : PubMed/NCBI
|
9
|
Sugarbaker PH, Sugarbaker C, Stephens AD
and Chang D: Radiofrequency hyperthermia in the palliative
treatment of mucinous carcinomatosis of appendiceal origin:
Optimizing and monitoring heat delivery in western patients. Int J
Hyperthermia. 16:429–241. 2000. View Article : Google Scholar : PubMed/NCBI
|
10
|
Maluta S and Kolff MW: Role of
hyperthermia in breast cancer locoregional recurrence: A review.
Breast Care (Basel). 10:408–412. 2015. View Article : Google Scholar
|
11
|
Oei AL, Vriend LE, Crezee J, Franken NA
and Krawczyk PM: Effects of hyperthermia on DNA repair pathways:
One treatment to inhibit them all. Radiat Oncol. 10:1652015.
View Article : Google Scholar : PubMed/NCBI
|
12
|
De-Colle C, Weidner N, Heinrich V, Brucker
S, Hahn M, MacMillan K, Lamprecht U, Gaupp S, Voigt O and Zips D:
Hyperthermic chest wall re-irradiation in recurrent breast cancer:
A prospective observational study. Strahlenther Onkol. 195:318–326.
2019. View Article : Google Scholar : PubMed/NCBI
|
13
|
Issels R, Kampmann E, Kanaar R and Lindner
LH: Hallmarks of hyperthermia in driving the future of clinical
hyperthermia as targeted therapy: Translation into clinical
application. Int J Hyperthermia. 32:89–95. 2016. View Article : Google Scholar : PubMed/NCBI
|
14
|
Gofrit ON, Shapiro A, Pode D, Sidi A,
Nativ O, Leib Z, Witjes JA, van der Heijden AG, Naspro R and
Colombo R: Combined local bladder hyperthermia and intravesical
chemotherapy for the treatment of high-grade superficial bladder
cancer. Urology. 63:466–471. 2004. View Article : Google Scholar : PubMed/NCBI
|
15
|
Datta NR, Stutz E, Puric E, Eberle B,
Meister A, Marder D, Timm O, Rogers S, Wyler S and Bodis S: A pilot
study of radiotherapy and local hyperthermia in elderly patients
with muscle-invasive bladder cancers unfit for definitive surgery
or chemoradiotherapy. Front Oncol. 9:8892019. View Article : Google Scholar : PubMed/NCBI
|
16
|
Datta NR, Rogers S, Ordóñez SG, Puric E
and Bodis S: Hyperthermia and radiotherapy in the management of
head and neck cancers: A systematic review and meta-analysis. Int J
Hyperthermia. 32:31–40. 2016. View Article : Google Scholar : PubMed/NCBI
|
17
|
Adnan A, Muñoz NM, Prakash P, Habibollahi
P, Cressman ENK and Sheth RA: Hyperthermia and tumor immunity.
Cancers (Basel). 13:25072021. View Article : Google Scholar : PubMed/NCBI
|
18
|
Tsang YW, Huang CC, Yang KL, Chi MS,
Chiang HC, Wang YS, Andocs G, Szasz A, Li WT and Chi KH: Improving
immunological tumor microenvironment using electro-hyperthermia
followed by dendritic cell immunotherapy. BMC Cancer. 15:7082015.
View Article : Google Scholar : PubMed/NCBI
|
19
|
Vancsik T, Máthé D, Horváth I, Várallyaly
AA, Benedek A, Bergmann R, Krenács T, Benyó Z and Balogh A:
Modulated electro-hyperthermia facilitates NK-cell infiltration and
growth arrest of human A2058 melanoma in a xenograft model. Front
Oncol. 11:5907642021. View Article : Google Scholar : PubMed/NCBI
|
20
|
Farling KB: Bladder cancer: Risk factors,
diagnosis, and management. Nurse Pract. 42:26–33. 2017. View Article : Google Scholar : PubMed/NCBI
|
21
|
Fus ŁP and Górnicka B: Role of
angiogenesis in urothelial bladder carcinoma. Cent European J Urol.
69:258–263. 2016.PubMed/NCBI
|
22
|
Shinagare AB, Ramaiya NH, Jagannathan JP,
Fennessy FM, Taplin ME and Van den Abbeele AD: Metastatic pattern
of bladder cancer: correlation with the characteristics of the
primary tumor. AJR Am J Roentgenol. 196:117–122. 2011. View Article : Google Scholar
|
23
|
Biswas PK, Kwak Y, Kim A, Seok J, Kwak HJ,
Lee M, Dayem AA, Song K, Park JY, Park KS, et al: TTYH3 modulates
bladder cancer proliferation and metastasis via
FGFR1/H-Ras/A-Raf/MEK/ERK pathway. Int J Mol Sci. 23:104962022.
View Article : Google Scholar : PubMed/NCBI
|
24
|
Cui N, Hu M and Khalil RA: Biochemical and
biological attributes of matrix metalloproteinases. Prog Mol Biol
Transl Sci. 147:1–73. 2017. View Article : Google Scholar : PubMed/NCBI
|
25
|
Jabłońska-Trypuć A, Matejczyk M and
Rosochacki S: Matrix metalloproteinases (MMPs), the main
extracellular matrix (ECM) enzymes in collagen degradation, as a
target for anticancer drugs. J Enzyme Inhib Med Chem. 31(Suppl 1):
S177–S183. 2016. View Article : Google Scholar
|
26
|
Lee S, Jilani SM, Nikolova GV, Carpizo D
and Iruela-Arispe ML: Processing of VEGF-A by matrix
metalloproteinases regulates bioavailability and vascular
patterning in tumors. J Cell Biol. 169:681–691. 2005. View Article : Google Scholar : PubMed/NCBI
|
27
|
Fares J, Fares MY, Khachfe HH, Salhab HA
and Fares Y: Molecular principles of metastasis: A hallmark of
cancer revisited. Signal Transduct Target Ther. 5:282020.
View Article : Google Scholar : PubMed/NCBI
|
28
|
van der Heijden AG, Jansen CF, Verhaegh G,
O'donnell MA, Schalken JA and Witjes JA: The effect of hyperthermia
on mitomycin-C induced cytotoxicity in four human bladder cancer
cell lines. Eur Urol. 46:670–674. 2004. View Article : Google Scholar : PubMed/NCBI
|
29
|
van der Heijden AG, Verhaegh G, Jansen CF,
Schalken JA and Witjes JA: Effect of hyperthermia on the
cytotoxicity of 4 chemotherapeutic agents currently used for the
treatment of transitional cell carcinoma of the bladder: An in
vitro study. J Urol. 173:1375–1380. 2005. View Article : Google Scholar : PubMed/NCBI
|
30
|
Chang AC, Lien MY, Tsai MH, Hua CH and
Tang CH: WISP-1 promotes epithelial-mesenchymal transition in oral
squamous cell carcinoma cells via the miR-153-3p/Snail axis.
Cancers (Basel). 11:19032019. View Article : Google Scholar : PubMed/NCBI
|
31
|
Chang AC, Chen PC, Lin YF, Su CM, Liu JF,
Lin TH, Chuang SM and Tang CH: Osteoblast-secreted WISP-1 promotes
adherence of prostate cancer cells to bone via the VCAM-1/integrin
α4β1 system. Cancer Lett. 426:47–56. 2018. View Article : Google Scholar : PubMed/NCBI
|
32
|
Livak KJ and Schmittgen TD: Analysis of
relative gene expression data using real-time quantitative PCR and
the 2(-Delta Delta C(T)) method. Methods. 25:402–108. 2001.
View Article : Google Scholar
|
33
|
Xu N, Lao Y, Zhang Y and Gillespie DA:
Akt: A double-edged sword in cell proliferation and genome
stability. J Oncol. 2012:9517242012. View Article : Google Scholar : PubMed/NCBI
|
34
|
Zhang C, Xu C, Gao X and Yao Q:
Platinum-based drugs for cancer therapy and anti-tumor strategies.
Theranostics. 12:2115–2132. 2022. View Article : Google Scholar : PubMed/NCBI
|
35
|
Ismaili N, Amzerin M and Flechon A:
Chemotherapy in advanced bladder cancer: Current status and future.
J Hematol Oncol. 4:352011. View Article : Google Scholar : PubMed/NCBI
|
36
|
De Las Rivas J, Brozovic A, Izraely S,
Casas-Pais A, Witz IP and Figueroa A: Cancer drug resistance
induced by EMT: Novel therapeutic strategies. Arch Toxicol.
95:2279–2297. 2021. View Article : Google Scholar : PubMed/NCBI
|
37
|
Fouad H, Salem H, Ellakwa DE and
Abdel-Hamid M: MMP-2 and MMP-9 as prognostic markers for the early
detection of urinary bladder cancer. J Biochem Mol Toxicol.
33:e222752019. View Article : Google Scholar
|
38
|
Chou KY, Chang AC, Ho CY, Tsai TF, Chen
HE, Chen PC and Hwang TI: Thrombospondin-4 promotes bladder cancer
cell migration and invasion via MMP2 production. J Cell Mol Med.
25:6046–6055. 2021.Epub ahead of print. View Article : Google Scholar : PubMed/NCBI
|
39
|
Reis ST, Leite KR, Piovesan LF,
Pontes-Junior J, Viana NI, Abe DK, Crippa A, Moura CM, Adonias SP,
Srougi M and Dall'Oglio MF: Increased expression of MMP-9 and IL-8
are correlated with poor prognosis of bladder cancer. BMC Urol.
12:182012. View Article : Google Scholar : PubMed/NCBI
|
40
|
Han Y, Liu D and Li L: PD-1/PD-L1 pathway:
Current researches in cancer. Am J Cancer Res. 10:727–742.
2020.PubMed/NCBI
|
41
|
Oei AL, Kok HP, Oei SB, Horsman MR,
Stalpers LJA, Franken NAP and Crezee J: Molecular and biological
rationale of hyperthermia as radio- and chemosensitizer. Adv Drug
Deliv Rev. 163-164:84–97. 2020. View Article : Google Scholar : PubMed/NCBI
|
42
|
Jiang Z, Yan W, Ming J and Yu Y: Docetaxel
weekly regimen in conjunction with RF hyperthermia for pretreated
locally advanced non-small cell lung cancer: A preliminary study.
BMC Cancer. 7:1892007. View Article : Google Scholar : PubMed/NCBI
|
43
|
Kitamura K, Ishida M, Kimura Y, Saeki H,
Maehara Y and Sugimachi K: Early report of correlation between the
thermal dosage and the treatment effect of hyperthermia in
combination with chemoradiotherapy for esophageal cancer patients.
Hepatogastroenterology. 49:1560–1562. 2002.PubMed/NCBI
|
44
|
Trabulsi NH, Patakfalvi L, Nassif MO,
Turcotte RE, Nichols A and Meguerditchian AN: Hyperthermic isolated
limb perfusion for extremity soft tissue sarcomas: Systematic
review of clinical efficacy and quality assessment of reported
trials. J Surg Oncol. 106:921–928. 2012. View Article : Google Scholar : PubMed/NCBI
|
45
|
Stauffer PR and van Rhoon GC: Overview of
bladder heating technology: Matching capabilities with clinical
requirements. Int J Hyperthermia. 32:407–416. 2016. View Article : Google Scholar : PubMed/NCBI
|
46
|
Wittlinger M, Rödel CM, Weiss C, Krause
SF, Kühn R, Fietkau R, Sauer R and Ott OJ: Quadrimodal treatment of
high-risk T1 and T2 bladder cancer: Transurethral tumor resection
followed by concurrent radiochemotherapy and regional deep
hyperthermia. Radiother Oncol. 93:358–363. 2009. View Article : Google Scholar : PubMed/NCBI
|
47
|
Juang T, Stauffer PR, Craciunescu OA,
Maccarini PF, Yuan Y, Das SK, Dewhirst MW, Inman BA and Vujaskovic
Z: Thermal dosimetry characteristics of deep regional heating of
non-muscle invasive bladder cancer. Int J Hyperthermia. 30:176–183.
2014. View Article : Google Scholar : PubMed/NCBI
|
48
|
Colombo R, Da Pozzo LF, Salonia A, Rigatti
P, Leib Z, Baniel J, Caldarera E and Pavone-Macaluso M:
Multicentric study comparing intravesical chemotherapy alone and
with local microwave hyperthermia for prophylaxis of recurrence of
superficial transitional cell carcinoma. J Clin Oncol.
21:4270–4276. 2003. View Article : Google Scholar : PubMed/NCBI
|
49
|
Colombo R, Salonia A, Leib Z,
Pavone-Macaluso M and Engelstein D: Long-term outcomes of a
randomized controlled trial comparing thermochemotherapy with
mitomycin-C alone as adjuvant treatment for non-muscle-invasive
bladder cancer (NMIBC). BJU Int. 107:912–918. 2011. View Article : Google Scholar
|
50
|
Duan H, Deng Z, Zou J, Zhang G, Zou X and
Xie T: The efficacy and safety of Hyperthermia intravesical
chemotherapy in the treatment non-muscle invasive bladder cancer:A
meta analysis. Urol Int. 108:322–333. 2024. View Article : Google Scholar
|
51
|
von der Maase H, Hansen SW, Roberts JT,
Dogliotti L, Oliver T, Moore MJ, Bodrogi I, Albers P, Knuth A,
Lippert CM, et al: Gemcitabine and cisplatin versus methotrexate,
vinblastine, doxorubicin, and cisplatin in advanced or metastatic
bladder cancer: Results of a large, randomized, multinational,
multicenter, phase III study. J Clin Oncol. 18:3068–3077. 2000.
View Article : Google Scholar : PubMed/NCBI
|
52
|
Liu D, Abbosh P, Keliher D, Reardon B,
Miao D, Mouw K, Weiner-Taylor A, Wankowicz S, Han G, Teo MY, et al:
Mutational patterns in chemotherapy resistant muscle-invasive
bladder cancer. Nat Commun. 8:21932017. View Article : Google Scholar : PubMed/NCBI
|
53
|
Ashrafizadeh M, Zarrabi A, Hushmandi K,
Kalantari M, Mohammadinejad R, Javaheri T and Sethi G: Association
of the epithelial-mesenchymal transition (EMT) with cisplatin
resistance. Int J Mol Sci. 21:40022020. View Article : Google Scholar : PubMed/NCBI
|
54
|
Hill C and Wang Y: The importance of
epithelial-mesenchymal transition and autophagy in cancer drug
resistance. Cancer Drug Resist. 3:38–47. 2020.PubMed/NCBI
|
55
|
Wilson C, Nicholes K, Bustos D, Lin E,
Song Q, Stephan JP, Kirkpatrick DS and Settleman J: Overcoming
EMT-associated resistance to anti-cancer drugs via Src/FAK pathway
inhibition. Oncotarget. 5:7328–7341. 2014. View Article : Google Scholar : PubMed/NCBI
|
56
|
Chang TH, Tsai MF, Su KY, Wu SG, Huang CP,
Yu SL, Yu YL, Lan CC, Yang CH, Lin SB, et al: Slug confers
resistance to the epidermal growth factor receptor tyrosine kinase
inhibitor. Am J Respir Crit Care Med. 183:1071–107. 2011.
View Article : Google Scholar
|
57
|
Xie M, He CS, Wei SH and Zhang L: Notch-1
contributes to epidermal growth factor receptor tyrosine kinase
inhibitor acquired resistance in non-small cell lung cancer in
vitro and in vivo. Eur J Cancer. 49:3559–3572. 2013. View Article : Google Scholar : PubMed/NCBI
|
58
|
Shibue T and Weinberg RA: EMT, CSCs, and
drug resistance: The mechanistic link and clinical implications.
Nat Rev Clin Oncol. 14:611–629. 2017. View Article : Google Scholar : PubMed/NCBI
|
59
|
Feng J, Li K, Liu G, Feng Y, Shi H and
Zhang X: Precision hyperthermia-induced miRNA-409-3p upregulation
inhibits migration, invasion, and EMT of gastric cancer cells by
targeting KLF17. Biochem Biophys Res Commun. 549:113–119. 2021.
View Article : Google Scholar : PubMed/NCBI
|
60
|
Jin H, Zhao Y, Zhang S, Yang J, Zhang X
and Ma S: Hyperthermia inhibits the motility of
gemcitabine-resistant pancreatic cancer PANC-1 cells through the
inhibition of epithelial-mesenchymal transition. Mol Med Rep.
17:7274–7280. 2018.PubMed/NCBI
|
61
|
Skitzki JJ, Repasky EA and Evans SS:
Hyperthermia as an immunotherapy strategy for cancer. Curr Opin
Investig Drugs. 10:550–558. 2009.PubMed/NCBI
|
62
|
Lee S, Son B, Park G, Kim H, Kang H, Jeon
J, Youn H and Youn B: Immunogenic effect of hyperthermia on
enhancing radiotherapeutic efficacy. Int J Mol Sci. 19:27952018.
View Article : Google Scholar : PubMed/NCBI
|
63
|
Torigoe T, Tamura Y and Sato N: Heat shock
proteins and immunity: Application of hyperthermia for
immunomodulation. Int J Hyperthermia. 25:610–616. 2009. View Article : Google Scholar : PubMed/NCBI
|
64
|
Ito A, Shinkai M, Honda H, Yoshikawa K,
Saga S, Wakabayashi T, Yoshida J and Kobayashi T: Heat shock
protein 70 expression induces antitumor immunity during
intracellular hyperthermia using magnetite nanoparticles. Cancer
Immunol Immunother. 52:80–88. 2003. View Article : Google Scholar : PubMed/NCBI
|
65
|
Li Z, Deng J, Sun J and Ma Y: Hyperthermia
targeting the tumor microenvironment facilitates immune checkpoint
inhibitors. Front Immunol. 11:5952072020. View Article : Google Scholar : PubMed/NCBI
|
66
|
Dayanc BE, Beachy SH, Ostberg JR and
Repasky EA: Dissecting the role of hyperthermia in natural killer
cell mediated anti-tumor responses. Int J Hyperthermia. 24:41–56.
2008. View Article : Google Scholar : PubMed/NCBI
|
67
|
Sen A, Capitano ML, Spernyak JA,
Schueckler JT, Thomas S, Singh AK, Evans SS, Hylander BL and
Repasky EA: Mild elevation of body temperature reduces tumor
interstitial fluid pressure and hypoxia and enhances efficacy of
radiotherapy in murine tumor models. Cancer Res. 71:3872–3880.
2011. View Article : Google Scholar : PubMed/NCBI
|
68
|
Song CW: Effect of local hyperthermia on
blood flow and microenvironment: A review. Cancer Res. 44(10
Suppl): 4721s–4730s. 1984.PubMed/NCBI
|
69
|
Vasala K, Pääkkö P and
Turpeenniemi-Hujanen T: Matrix metalloproteinase-2 immunoreactive
protein as a prognostic marker in bladder cancer. Urology.
62:952–957. 2003. View Article : Google Scholar : PubMed/NCBI
|
70
|
Chou KY, Chang AC, Tsai TF, Lin YC, Chen
HE, Ho CY, Chen PC and Hwang TI: MicroRNA-34a-5p serves as a tumor
suppressor by regulating the cell motility of bladder cancer cells
through matrix metalloproteinase-2 silencing. Oncol Rep.
45:911–920. 2021. View Article : Google Scholar : PubMed/NCBI
|
71
|
Hwang TI, Chen PC, Tsai TF, Lin JF, Chou
KY, Ho CY, Chen HE and Chang AC: Hsa-miR-30a-3p overcomes the
acquired protective autophagy of bladder cancer in chemotherapy and
suppresses tumor growth and muscle invasion. Cell Death Dis.
13:3902022. View Article : Google Scholar : PubMed/NCBI
|
72
|
Lee TH, Bu J, Kim BH, Poellmann MJ, Hong S
and Hyun SH: Sub-lethal hyperthermia promotes
epithelial-to-mesenchymal-like transition of breast cancer cells:
implication of the synergy between hyperthermia and chemotherapy.
RSC Adv. 9:52–57. 2018. View Article : Google Scholar : PubMed/NCBI
|
73
|
Wang DC, Zhang Y, Chen HY, Li XL, Qin LJ,
Li YJ, Zhang HY and Wang S: Hyperthermia promotes apoptosis and
suppresses invasion in C6 rat glioma cells. Asian Pac J Cancer
Prev. 13:3239–3245. 2012. View Article : Google Scholar : PubMed/NCBI
|
74
|
Jo Y, Han YI, Lee E, Seo J, Oh G, Sung H,
Gi Y, Kim H, Park S and Yoon M: The combination of tumor treating
fields and hyperthermia has synergistic therapeutic effects in
glioblastoma cells by downregulating STAT3. Am J Cancer Res.
12:1423–1432. 2022.PubMed/NCBI
|
75
|
Ma L, Kambe R, Tsuchiya T, Kanegasaki S
and Takahashi A: Anti-metastatic benefits produced by hyperthermia
and a CCL3 derivative. Cancers (Basel). 11:17702019. View Article : Google Scholar : PubMed/NCBI
|
76
|
Sharma D, Cartar H, Law N, Giles A, Farhat
G, Oelze M and Czarnota GJ: Optimization of microbubble enhancement
of hyperthermia for cancer therapy in an in vivo breast tumour
model. PLoS One. 15:e02373722020. View Article : Google Scholar : PubMed/NCBI
|