Spandidos Publications Logo
  • About
    • About Spandidos
    • Aims and Scopes
    • Abstracting and Indexing
    • Editorial Policies
    • Reprints and Permissions
    • Job Opportunities
    • Terms and Conditions
    • Contact
  • Journals
    • All Journals
    • Oncology Letters
      • Oncology Letters
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Oncology
      • International Journal of Oncology
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Molecular and Clinical Oncology
      • Molecular and Clinical Oncology
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Experimental and Therapeutic Medicine
      • Experimental and Therapeutic Medicine
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Molecular Medicine
      • International Journal of Molecular Medicine
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Biomedical Reports
      • Biomedical Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Oncology Reports
      • Oncology Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Molecular Medicine Reports
      • Molecular Medicine Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • World Academy of Sciences Journal
      • World Academy of Sciences Journal
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Functional Nutrition
      • International Journal of Functional Nutrition
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Epigenetics
      • International Journal of Epigenetics
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Medicine International
      • Medicine International
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
  • Articles
  • Information
    • Information for Authors
    • Information for Reviewers
    • Information for Librarians
    • Information for Advertisers
    • Conferences
  • Language Editing
Spandidos Publications Logo
  • About
    • About Spandidos
    • Aims and Scopes
    • Abstracting and Indexing
    • Editorial Policies
    • Reprints and Permissions
    • Job Opportunities
    • Terms and Conditions
    • Contact
  • Journals
    • All Journals
    • Biomedical Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Experimental and Therapeutic Medicine
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Epigenetics
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Functional Nutrition
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Molecular Medicine
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Oncology
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Medicine International
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Molecular and Clinical Oncology
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Molecular Medicine Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Oncology Letters
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Oncology Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • World Academy of Sciences Journal
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
  • Articles
  • Information
    • For Authors
    • For Reviewers
    • For Librarians
    • For Advertisers
    • Conferences
  • Language Editing
Login Register Submit
  • This site uses cookies
  • You can change your cookie settings at any time by following the instructions in our Cookie Policy. To find out more, you may read our Privacy Policy.

    I agree
Search articles by DOI, keyword, author or affiliation
Search
Advanced Search
presentation
International Journal of Oncology
Join Editorial Board Propose a Special Issue
Print ISSN: 1019-6439 Online ISSN: 1791-2423
Journal Cover
December-2024 Volume 65 Issue 6

Full Size Image

Cover Legend PDF

Sign up for eToc alerts
Recommend to Library

Journals

International Journal of Molecular Medicine

International Journal of Molecular Medicine

International Journal of Molecular Medicine is an international journal devoted to molecular mechanisms of human disease.

International Journal of Oncology

International Journal of Oncology

International Journal of Oncology is an international journal devoted to oncology research and cancer treatment.

Molecular Medicine Reports

Molecular Medicine Reports

Covers molecular medicine topics such as pharmacology, pathology, genetics, neuroscience, infectious diseases, molecular cardiology, and molecular surgery.

Oncology Reports

Oncology Reports

Oncology Reports is an international journal devoted to fundamental and applied research in Oncology.

Experimental and Therapeutic Medicine

Experimental and Therapeutic Medicine

Experimental and Therapeutic Medicine is an international journal devoted to laboratory and clinical medicine.

Oncology Letters

Oncology Letters

Oncology Letters is an international journal devoted to Experimental and Clinical Oncology.

Biomedical Reports

Biomedical Reports

Explores a wide range of biological and medical fields, including pharmacology, genetics, microbiology, neuroscience, and molecular cardiology.

Molecular and Clinical Oncology

Molecular and Clinical Oncology

International journal addressing all aspects of oncology research, from tumorigenesis and oncogenes to chemotherapy and metastasis.

World Academy of Sciences Journal

World Academy of Sciences Journal

Multidisciplinary open-access journal spanning biochemistry, genetics, neuroscience, environmental health, and synthetic biology.

International Journal of Functional Nutrition

International Journal of Functional Nutrition

Open-access journal combining biochemistry, pharmacology, immunology, and genetics to advance health through functional nutrition.

International Journal of Epigenetics

International Journal of Epigenetics

Publishes open-access research on using epigenetics to advance understanding and treatment of human disease.

Medicine International

Medicine International

An International Open Access Journal Devoted to General Medicine.

Journal Cover
December-2024 Volume 65 Issue 6

Full Size Image

Cover Legend PDF

Sign up for eToc alerts
Recommend to Library

  • Article
  • Citations
    • Cite This Article
    • Download Citation
    • Create Citation Alert
    • Remove Citation Alert
    • Cited By
  • Similar Articles
    • Related Articles (in Spandidos Publications)
    • Similar Articles (Google Scholar)
    • Similar Articles (PubMed)
  • Download PDF
  • Download XML
  • View XML
Review Open Access

Beyond tumor‑associated macrophages involved in spheroid formation and dissemination: Novel insights for ovarian cancer therapy (Review)

  • Authors:
    • Yuchen Liu
    • Haoyue Xiao
    • Hai Zeng
    • Ying Xiang
  • View Affiliations / Copyright

    Affiliations: Laboratory of Oncology, Center for Molecular Medicine, School of Basic Medicine, Health Science Center, Yangtze University, Jingzhou, Hubei 434023, P.R. China, Department of Oncology, First Affiliated Hospital of Yangtze University, Jingzhou, Hubei 434023, P.R. China
    Copyright: © Liu et al. This is an open access article distributed under the terms of Creative Commons Attribution License [CC BY 4.0].
  • Article Number: 117
    |
    Published online on: November 7, 2024
       https://doi.org/10.3892/ijo.2024.5705
  • Expand metrics +
Metrics: Total Views: 0 (Spandidos Publications: | PMC Statistics: )
Metrics: Total PDF Downloads: 0 (Spandidos Publications: | PMC Statistics: )
Cited By (CrossRef): 0 citations Loading Articles...

This article is mentioned in:



Abstract

Ovarian cancer (OC) is the most common and deadly malignant tumor of the female reproductive system. When OC cells detach from the primary tumor and enter the ascitic microenvironment, they are present as individual cells or multicellular spheroids in ascites. These spheroids, composed of cancer and non‑malignant cells, are metastatic units and play a crucial role in the progression of OC. However, little is known about the mechanism of spheroid formation and dissemination. Tumor‑associated macrophages (TAMs) in the center of spheroids are key in spheroid formation and metastasis and provide a potential target for OC therapy. The present review summarizes the key biological features of spheroids, focusing on the role of TAMs in spheroid formation, survival and peritoneal metastasis, and the strategies targeting TAMs to provide new insights in treating OC.
View Figures

Figure 1

Figure 2

Figure 3

View References

1 

Sung H, Ferlay J, Siegel RL, Laversanne M, Soerjomataram I, Jemal A and Bray F: Global cancer statistics 2020: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J Clin. 71:209–249. 2021. View Article : Google Scholar : PubMed/NCBI

2 

Bast RC, Han CY, Lu Z and Lu KH: Next steps in the early detection of ovarian cancer. Commun Med (Lond). 1:362021. View Article : Google Scholar : PubMed/NCBI

3 

Yang L, Xie HJ, Li YY, Wang X, Liu XX and Mai J: Molecular mechanisms of platinum-based chemotherapy resistance in ovarian cancer (review). Oncol Rep. 47:822022. View Article : Google Scholar

4 

Almeida-Nunes DL, Mendes-Frias A, Silvestre R, Dinis-Oliveira RJ and Ricardo S: Immune tumor microenvironment in ovarian cancer ascites. Int J Mol Sci. 23:106922022. View Article : Google Scholar : PubMed/NCBI

5 

Huang H, Li YJ, Lan CY, Huang QD, Feng YL, Huang YW and Liu JH: Clinical significance of ascites in epithelial ovarian cancer. Neoplasma. 60:546–552. 2013. View Article : Google Scholar : PubMed/NCBI

6 

Kim S, Kim B and Song YS: Ascites modulates cancer cell behavior, contributing to tumor heterogeneity in ovarian cancer. Cancer Sci. 107:1173–1178. 2016. View Article : Google Scholar : PubMed/NCBI

7 

Quan Q, Zhou S, Liu Y, Yin W, Liao Q, Ren S, Zhang F, Meng Y and Mu X: Relationship between ascites volume and clinical outcomes in epithelial ovarian cancer. J Obstet Gynaecol Res. 47:1527–1535. 2021. View Article : Google Scholar : PubMed/NCBI

8 

Cavazzoni E, Bugiantella W, Graziosi L, Franceschini MS and Donini A: Malignant ascites: Pathophysiology and treatment. Int J Clin Oncol. 18:1–9. 2013. View Article : Google Scholar

9 

Yeung TL, Leung CS, Yip KP, Au Yeung CL, Wong ST and Mok SC: Cellular and molecular processes in ovarian cancer metastasis. A review in the theme: Cell and molecular processes in cancer metastasis. Am J Physiol Cell Physiol. 309:C444–C456. 2015. View Article : Google Scholar : PubMed/NCBI

10 

Al Habyan S, Kalos C, Szymborski J and McCaffrey L: Multicellular detachment generates metastatic spheroids during intra-abdominal dissemination in epithelial ovarian cancer. Oncogene. 37:5127–5135. 2018. View Article : Google Scholar : PubMed/NCBI

11 

Ahmed N and Stenvers KL: Getting to know ovarian cancer ascites: Opportunities for targeted therapy-based translational research. Front Oncol. 3:2562013. View Article : Google Scholar : PubMed/NCBI

12 

Dhaliwal D and Shepherd TG: Molecular and cellular mechanisms controlling integrin-mediated cell adhesion and tumor progression in ovarian cancer metastasis: A review. Clin Exp Metastasis. 39:291–301. 2022. View Article : Google Scholar :

13 

Worzfeld T, Pogge von Strandmann E, Huber M, Adhikary T, Wagner U, Reinartz S and Müller R: The unique molecular and cellular microenvironment of ovarian cancer. Front Oncol. 7:242017. View Article : Google Scholar : PubMed/NCBI

14 

Gao Q, Yang Z, Xu S, Li X, Yang X, Jin P, Liu Y, Zhou X, Zhang T, Gong C, et al: Heterotypic CAF-tumor spheroids promote early peritoneal metastatis of ovarian cancer. J Exp Med. 216:688–703. 2019. View Article : Google Scholar : PubMed/NCBI

15 

Pan Y, Yu Y, Wang X and Zhang T: Tumor-associated macrophages in tumor immunity. Front Immunol. 11:5830842020. View Article : Google Scholar : PubMed/NCBI

16 

Long L, Hu Y, Long T, Lu X, Tuo Y, Li Y and Ke Z: Tumor-associated macrophages induced spheroid formation by CCL18-ZEB1-M-CSF feedback loop to promote transcoelomic metastasis of ovarian cancer. J Immunother Cancer. 9:e0039732021. View Article : Google Scholar

17 

Yin M, Li X, Tan S, Zhou HJ, Ji W, Bellone S, Xu X, Zhang H, Santin AD, Lou G and Min W: Tumor-associated macrophages drive spheroid formation during early transcoelomic metastasis of ovarian cancer. J Clin Invest. 126:4157–4173. 2016. View Article : Google Scholar : PubMed/NCBI

18 

Song M, Yeku OO, Rafiq S, Purdon T, Dong X, Zhu L, Zhang T, Wang H, Yu Z, Mai J, et al: Tumor derived UBR5 promotes ovarian cancer growth and metastasis through inducing immunosuppressive macrophages. Nat Commun. 11:62982020. View Article : Google Scholar : PubMed/NCBI

19 

El-Arabey AA, Alkhalil SS, Al-Shouli ST, Awadalla ME, Alhamdi HW, Almanaa TN, Mohamed SSEM and Abdalla M: Revisiting macrophages in ovarian cancer microenvironment: Development, function and interaction. Med Oncol. 40:1422023. View Article : Google Scholar : PubMed/NCBI

20 

Larionova I, Tuguzbaeva G, Ponomaryova A, Stakheyeva M, Cherdyntseva N, Pavlov V, Choinzonov E and Kzhyshkowska J: Tumor-associated macrophages in human breast, colorectal, lung, ovarian and prostate cancers. Front Oncol. 10:5665112020. View Article : Google Scholar : PubMed/NCBI

21 

Miyamoto T, Murphy B and Zhang N: Intraperitoneal metastasis of ovarian cancer: New insights on resident macrophages in the peritoneal cavity. Front Immunol. 14:11046942023. View Article : Google Scholar : PubMed/NCBI

22 

Yin M, Shen J, Yu S, Fei J, Zhu X, Zhao J, Zhai L, Sadhukhan A and Zhou J: Tumor-associated macrophages (TAMs): A critical activator in ovarian cancer metastasis. Onco Targets Ther. 12:8687–8699. 2019. View Article : Google Scholar : PubMed/NCBI

23 

Jazwinska DE, Kulawiec DG and Zervantonakis IK: Cancer-mesothelial and cancer-macrophage interactions in the ovarian cancer microenvironment. Am J Physiol Cell Physiol. 325:C721–C730. 2023. View Article : Google Scholar : PubMed/NCBI

24 

Klymenko Y, Johnson J, Bos B, Lombard R, Campbell L, Loughran E and Stack MS: Heterogeneous cadherin expression and multicellular aggregate dynamics in ovarian cancer dissemination. Neoplasia. 19:549–563. 2017. View Article : Google Scholar : PubMed/NCBI

25 

Ford CE, Werner B, Hacker NF and Warton K: The untapped potential of ascites in ovarian cancer research and treatment. Br J Cancer. 123:9–16. 2020. View Article : Google Scholar : PubMed/NCBI

26 

Habanjar O, Diab-Assaf M, Caldefie-Chezet F and Delort L: 3D cell culture systems: Tumor application, advantages, and disadvantages. Int J Mol Sci. 22:122002021. View Article : Google Scholar : PubMed/NCBI

27 

Matte I, Legault CM, Garde-Granger P, Laplante C, Bessette P, Rancourt C and Piché A: Mesothelial cells interact with tumor cells for the formation of ovarian cancer multicellular spheroids in peritoneal effusions. Clin Exp Metastasis. 33:839–852. 2016. View Article : Google Scholar : PubMed/NCBI

28 

Xu S, Yang Y, Dong L, Qiu W, Yang L, Wang X and Liu L: Construction and characteristics of an E-cadherin-related three-dimensional suspension growth model of ovarian cancer. Sci Rep. 4:56462014. View Article : Google Scholar : PubMed/NCBI

29 

Sawada K, Mitra AK, Radjabi AR, Bhaskar V, Kistner EO, Tretiakova M, Jagadeeswaran S, Montag A, Becker A, Kenny HA, et al: Loss of E-cadherin promotes ovarian cancer metastasis via alpha 5-integrin, which is a therapeutic target. Cancer Res. 68:2329–2339. 2008. View Article : Google Scholar : PubMed/NCBI

30 

Casey RC, Burleson KM, Skubitz KM, Pambuccian SE, Oegema TR Jr, Ruff LE and Skubitz AP: Beta 1-integrins regulate the formation and adhesion of ovarian carcinoma multicellular spheroids. Am J Pathol. 159:2071–2080. 2001. View Article : Google Scholar : PubMed/NCBI

31 

Han Q, Huang B, Huang Z, Cai J, Gong L, Zhang Y, Jiang J, Dong W and Wang Z: Tumor cell-fibroblast heterotypic aggregates in malignant ascites of patients with ovarian cancer. Int J Mol Med. 44:2245–2255. 2019.PubMed/NCBI

32 

Hassn Mesrati M, Syafruddin SE, Mohtar MA and Syahir A: CD44: A multifunctional mediator of cancer progression. Biomolecules. 11:18502021. View Article : Google Scholar : PubMed/NCBI

33 

Chen MW, Yang ST, Chien MH, Hua KT, Wu CJ, Hsiao SM, Lin H, Hsiao M, Su JL and Wei LH: The STAT3-miRNA-92-Wnt signaling pathway regulates spheroid formation and malignant progression in ovarian cancer. Cancer Res. 77:1955–1967. 2017. View Article : Google Scholar : PubMed/NCBI

34 

Li SS, Ma J and Wong AST: Chemoresistance in ovarian cancer: Exploiting cancer stem cell metabolism. J Gynecol Oncol. 29:e322018. View Article : Google Scholar : PubMed/NCBI

35 

Casagrande N, Borghese C, Agostini F, Durante C, Mazzucato M, Colombatti A and Aldinucci D: In ovarian cancer multicellular spheroids, platelet releasate promotes growth, expansion of ALDH+ and CD133+ cancer stem cells, and protection against the cytotoxic effects of cisplatin, carboplatin and paclitaxel. Int J Mol Sci. 22:30192021. View Article : Google Scholar : PubMed/NCBI

36 

Condello S, Morgan CA, Nagdas S, Cao L, Turek J, Hurley TD and Matei D: β-Catenin-regulated ALDH1A1 is a target in ovarian cancer spheroids. Oncogene. 34:2297–2308. 2015. View Article : Google Scholar

37 

Cui TX, Kryczek I, Zhao L, Zhao E, Kuick R, Roh MH, Vatan L, Szeliga W, Mao Y, Thomas DG, et al: Myeloid-derived suppressor cells enhance stemness of cancer cells by inducing microRNA101 and suppressing the corepressor CtBP2. Immunity. 39:611–621. 2013. View Article : Google Scholar : PubMed/NCBI

38 

Suganuma T, Ino K, Shibata K, Kajiyama H, Nagasaka T, Mizutani S and Kikkawa F: Functional expression of the angiotensin II type 1 receptor in human ovarian carcinoma cells and its blockade therapy resulting in suppression of tumor invasion, angiogenesis, and peritoneal dissemination. Clin Cancer Res. 11:2686–2694. 2005. View Article : Google Scholar : PubMed/NCBI

39 

Zhang Q, Yu S, Lam MMT, Poon TCW, Sun L, Jiao Y, Wong AST and Lee LTO: Angiotensin II promotes ovarian cancer spheroid formation and metastasis by upregulation of lipid desaturation and suppression of endoplasmic reticulum stress. J Exp Clin Cancer Res. 38:1162019. View Article : Google Scholar : PubMed/NCBI

40 

Adeshakin FO, Adeshakin AO, Afolabi LO, Yan D, Zhang G and Wan X: Mechanisms for modulating anoikis resistance in cancer and the relevance of metabolic reprogramming. Front Oncol. 11:6265772021. View Article : Google Scholar : PubMed/NCBI

41 

Frisch SM and Screaton RA: Anoikis mechanisms. Curr Opin Cell Biol. 13:555–562. 2001. View Article : Google Scholar : PubMed/NCBI

42 

Grossmann J: Molecular mechanisms of 'detachment-induced apoptosis-Anoikis'. Apoptosis. 7:247–260. 2002. View Article : Google Scholar : PubMed/NCBI

43 

Taddei ML, Giannoni E, Fiaschi T and Chiarugi P: Anoikis: An emerging hallmark in health and diseases. J Pathol. 226:380–393. 2012. View Article : Google Scholar

44 

Cai Q, Yan L and Xu Y: Anoikis resistance is a critical feature of highly aggressive ovarian cancer cells. Oncogene. 34:3315–3324. 2015. View Article : Google Scholar :

45 

Cancer Genome Atlas Research Network: Integrated genomic analyses of ovarian carcinoma. Nature. 474:609–615. 2011. View Article : Google Scholar : PubMed/NCBI

46 

Park JT, Shih IeM and Wang TL: Identification of Pbx1, a potential oncogene, as a Notch3 target gene in ovarian cancer. Cancer Res. 68:8852–8860. 2008. View Article : Google Scholar : PubMed/NCBI

47 

Brown CW, Brodsky AS and Freiman RN: Notch3 overexpression promotes anoikis resistance in epithelial ovarian cancer via upregulation of COL4A2. Mol Cancer Res. 13:78–85. 2015. View Article : Google Scholar :

48 

Tang MKS, Zhou HY, Yam JW and Wong AS: c-Met overexpression contributes to the acquired apoptotic resistance of nonadherent ovarian cancer cells through a cross talk mediated by phosphatidylinositol 3-kinase and extracellular signal-regulated kinase 1/2. Neoplasia. 12:128–138. 2010. View Article : Google Scholar : PubMed/NCBI

49 

Lopez A, Reyna DE, Gitego N, Kopp F, Zhou H, Miranda-Roman MA, Nordstrøm LU, Narayanagari SR, Chi P, Vilar E, et al: Co-targeting of BAX and BCL-XL proteins broadly overcomes resistance to apoptosis in cancer. Nat Commun. 13:11992022. View Article : Google Scholar : PubMed/NCBI

50 

Mei H, Nakatsu MN, Baclagon ER and Deng SX: Frizzled 7 maintains the undifferentiated state of human limbal stem/progenitor cells. Stem Cells. 32:938–945. 2014. View Article : Google Scholar

51 

Condello S, Sima L, Ivan C, Cardenas H, Schiltz G, Mishra RK and Matei D: Tissue tranglutaminase regulates interactions between ovarian cancer stem cells and the tumor niche. Cancer Res. 78:2990–3001. 2018. View Article : Google Scholar : PubMed/NCBI

52 

Qin Q, Xu Y, He T, Qin C and Xu J: Normal and disease-related biological functions of Twist1 and underlying molecular mechanisms. Cell Res. 22:90–106. 2012. View Article : Google Scholar :

53 

Tan M, Asad M, Heong V, Wong MK, Tan TZ, Ye J, Kuay KT, Thiery JP, Scott C and Huang RY: The FZD7-TWIST1 axis is responsible for anoikis resistance and tumorigenesis in ovarian carcinoma. Mol Oncol. 13:757–780. 2019. View Article : Google Scholar :

54 

Motohara T, Masuda K, Morotti M, Zheng Y, El-Sahhar S, Chong KY, Wietek N, Alsaadi A, Carrami EM, Hu Z, et al: An evolving story of the metastatic voyage of ovarian cancer cells: Cellular and molecular orchestration of the adipose-rich metastatic microenvironment. Oncogene. 38:2885–2898. 2019. View Article : Google Scholar :

55 

Dai ZY, Jin SM, Luo HQ, Leng HL and Fang JD: LncRNA HOTAIR regulates anoikis-resistance capacity and spheroid formation of ovarian cancer cells by recruiting EZH2 and influencing H3K27 methylation. Neoplasma. 68:509–518. 2021. View Article : Google Scholar : PubMed/NCBI

56 

Zhang L, Huang J, Yang N, Greshock J, Liang S, Hasegawa K, Giannakakis A, Poulos N, O'Brien-Jenkins A, Katsaros D, et al: Integrative genomic analysis of phosphatidylinositol 3′-kinase family identifies PIK3R3 as a potential therapeutic target in epithelial ovarian cancer. Clin Cancer Res. 13:5314–5321. 2007. View Article : Google Scholar : PubMed/NCBI

57 

Dong L and Hui L: HOTAIR promotes proliferation, migration, and invasion of ovarian cancer SKOV3 cells through regulating PIK3R3. Med Sci Monit. 22:325–331. 2016. View Article : Google Scholar : PubMed/NCBI

58 

Dolinschek R, Hingerl J, Benge A, Zafiu C, Schüren E, Ehmoser EK, Lössner D and Reuning U: Constitutive activation of integrin αvβ3 contributes to anoikis resistance of ovarian cancer cells. Mol Oncol. 15:503–522. 2021. View Article : Google Scholar

59 

Yu X, Liu L, Cai B, He Y and Wan X: Suppression of anoikis by the neurotrophic receptor TrkB in human ovarian cancer. Cancer Sci. 99:543–552. 2008. View Article : Google Scholar : PubMed/NCBI

60 

Carduner L, Picot CR, Leroy-Dudal J, Blay L, Kellouche S and Carreiras F: Cell cycle arrest or survival signaling through αv integrins, activation of PKC and ERK1/2 lead to anoikis resistance of ovarian cancer spheroids. Exp Cell Res. 320:329–342. 2014. View Article : Google Scholar

61 

Kim S, Kim S, Kim J, Kim B, Kim SI, Kim MA, Kwon S and Song YS: Evaluating tumor evolution via genomic profiling of individual tumor spheroids in a malignant ascites. Sci Rep. 8:127242018. View Article : Google Scholar : PubMed/NCBI

62 

Allen HJ, Porter C, Gamarra M, Piver MS and Johnson EA: Isolation and morphologic characterization of human ovarian carcinoma cell clusters present in effusions. Exp Cell Biol. 55:194–208. 1987.PubMed/NCBI

63 

Azharuddin M, Roberg K, Dhara AK, Jain MV, Darcy P, Hinkula J, Slater NKH and Patra HK: Dissecting multi drug resistance in head and neck cancer cells using multicellular tumor spheroids. Sci Rep. 9:200662019. View Article : Google Scholar : PubMed/NCBI

64 

Świerczewska M, Sterzyńska K, Ruciński M, Andrzejewska M, Nowicki M and Januchowski R: The response and resistance to drugs in ovarian cancer cell lines in 2D monolayers and 3D spheroids. Biomed Pharmacother. 165:1151522023. View Article : Google Scholar : PubMed/NCBI

65 

Sun Y, Li S, Yang L, Zhang D, Zhao Z, Gao J and Liu L: CDC25A facilitates chemo-resistance in ovarian cancer multicellular spheroids by promoting E-cadherin expression and arresting cell cycles. J Cancer. 10:2874–2884. 2019. View Article : Google Scholar : PubMed/NCBI

66 

Shen T and Huang S: The role of Cdc25A in the regulation of cell proliferation and apoptosis. Anticancer Agents Med Chem. 12:631–639. 2012. View Article : Google Scholar : PubMed/NCBI

67 

Broggini M, Buraggi G, Brenna A, Riva L, Codegoni AM, Torri V, Lissoni AA, Mangioni C and D'Incalci M: Cell cycle-related phosphatases CDC25A and B expression correlates with survival in ovarian cancer patients. Anticancer Res. 20:4835–4840. 2000.

68 

Green SK, Francia G, Isidoro C and Kerbel RS: Antiadhesive antibodies targeting E-cadherin sensitize multicellular tumor spheroids to chemotherapy in vitro. Mol Cancer Ther. 3:149–159. 2004. View Article : Google Scholar : PubMed/NCBI

69 

Lim GH, An JH, Park SM, Youn GH, Oh YI, Seo KW and Youn HY: Macrophage induces anti-cancer drug resistance in canine mammary gland tumor spheroid. Sci Rep. 13:103942023. View Article : Google Scholar : PubMed/NCBI

70 

Makhija S, Taylor DD, Gibb RK and Gerçel-Taylor C: Taxol-induced bcl-2 phosphorylation in ovarian cancer cell monolayer and spheroids. Int J Oncol. 14:515–521. 1999.PubMed/NCBI

71 

Yvon AM, Wadsworth P and Jordan MA: Taxol suppresses dynamics of individual microtubules in living human tumor cells. Mol Biol Cell. 10:947–959. 1999. View Article : Google Scholar : PubMed/NCBI

72 

Makovec T: Cisplatin and beyond: Molecular mechanisms of action and drug resistance development in cancer chemotherapy. Radiol Oncol. 53:148–158. 2019. View Article : Google Scholar : PubMed/NCBI

73 

Kwon MJ and Shin YK: Regulation of ovarian cancer stem cells or tumor-initiating cells. Int J Mol Sci. 14:6624–6648. 2013. View Article : Google Scholar : PubMed/NCBI

74 

Liao J, Qian F, Tchabo N, Mhawech-Fauceglia P, Beck A, Qian Z, Wang X, Huss WJ, Lele SB, Morrison CD and Odunsi K: Ovarian cancer spheroid cells with stem cell-like properties contribute to tumor generation, metastasis and chemotherapy resistance through hypoxia-resistant metabolism. PLoS One. 9:e849412014. View Article : Google Scholar : PubMed/NCBI

75 

McAuliffe SM, Morgan SL, Wyant GA, Tran LT, Muto KW, Chen YS, Chin KT, Partridge JC, Poole BB, Cheng KH, et al: Targeting Notch, a key pathway for ovarian cancer stem cells, sensitizes tumors to platinum therapy. Proc Natl Acad Sci USA. 109:E2939–E2948. 2012. View Article : Google Scholar : PubMed/NCBI

76 

Kang H, Jeong JY, Song JY, Kim TH, Kim G, Huh JH, Kwon AY, Jung SG and An HJ: Notch3-specific inhibition using siRNA knockdown or GSI sensitizes paclitaxel-resistant ovarian cancer cells. Mol Carcinog. 55:1196–1209. 2016. View Article : Google Scholar

77 

van Baal JOAM, Van de Vijver KK, Nieuwland R, van Noorden CJF, van Driel WJ, Sturk A, Kenter GG, Rikkert LG and Lok CAR: The histophysiology and pathophysiology of the peritoneum. Tissue Cell. 49:95–105. 2017. View Article : Google Scholar

78 

Nakamura M, Ono YJ, Kanemura M, Tanaka T, Hayashi M, Terai Y and Ohmichi M: Hepatocyte growth factor secreted by ovarian cancer cells stimulates peritoneal implantation via the mesothelial-mesenchymal transition of the peritoneum. Gynecol Oncol. 139:345–354. 2015. View Article : Google Scholar : PubMed/NCBI

79 

Yousefi M, Dehghani S, Nosrati R, Ghanei M, Salmaninejad A, Rajaie S, Hasanzadeh M and Pasdar A: Current insights into the metastasis of epithelial ovarian cancer-hopes and hurdles. Cell Oncol (Dordr). 43:515–538. 2020. View Article : Google Scholar : PubMed/NCBI

80 

Cui L, Johkura K, Liang Y, Teng R, Ogiwara N, Okouchi Y, Asanuma K and Sasaki K: Biodefense function of omental milky spots through cell adhesion molecules and leukocyte proliferation. Cell Tissue Res. 310:321–330. 2002. View Article : Google Scholar : PubMed/NCBI

81 

Niedbala MJ, Crickard K and Bernacki RJ: Interactions of human ovarian tumor cells with human mesothelial cells grown on extracellular matrix. An in vitro model system for studying tumor cell adhesion and invasion. Exp Cell Res. 160:499–513. 1985. View Article : Google Scholar : PubMed/NCBI

82 

Iwanicki MP, Davidowitz RA, Ng MR, Besser A, Muranen T, Merritt M, Danuser G, Ince TA and Brugge JS: Ovarian cancer spheroids use myosin-generated force to clear the mesothelium. Cancer Discov. 1:144–157. 2011. View Article : Google Scholar

83 

Cannistra SA, Kansas GS, Niloff J, DeFranzo B, Kim Y and Ottensmeier C: Binding of ovarian cancer cells to peritoneal mesothelium in vitro is partly mediated by CD44H. Cancer Res. 53:3830–3838. 1993.PubMed/NCBI

84 

Witz CA, Montoya-Rodriguez IA, Cho S, Centonze VE, Bonewald LF and Schenken RS: Composition of the extracellular matrix of the peritoneum. J Soc Gynecol Investig. 8:299–304. 2001. View Article : Google Scholar : PubMed/NCBI

85 

Burleson KM, Casey RC, Skubitz KM, Pambuccian SE, Oegema TR Jr and Skubitz AP: Ovarian carcinoma ascites spheroids adhere to extracellular matrix components and mesothelial cell monolayers. Gynecol Oncol. 93:170–181. 2004. View Article : Google Scholar : PubMed/NCBI

86 

Burleson KM, Boente MP, Pambuccian SE and Skubitz AP: Disaggregation and invasion of ovarian carcinoma ascites spheroids. J Transl Med. 4:62006. View Article : Google Scholar : PubMed/NCBI

87 

Moser TL, Pizzo SV, Bafetti LM, Fishman DA and Stack MS: Evidence for preferential adhesion of ovarian epithelial carcinoma cells to type I collagen mediated by the alpha2beta1 integrin. Int J Cancer. 67:695–701. 1996. View Article : Google Scholar : PubMed/NCBI

88 

Shield K, Riley C, Quinn MA, Rice GE, Ackland ML and Ahmed N: Alpha2beta1 integrin affects metastatic potential of ovarian carcinoma spheroids by supporting disaggregation and proteolysis. J Carcinog. 6:112007. View Article : Google Scholar : PubMed/NCBI

89 

Gupta V, Yull F and Khabele D: Bipolar tumor-associated macrophages in ovarian cancer as targets for therapy. Cancers (Basel). 10:3662018. View Article : Google Scholar : PubMed/NCBI

90 

Leek RD, Lewis CE, Whitehouse R, Greenall M, Clarke J and Harris AL: Association of macrophage infiltration with angiogenesis and prognosis in invasive breast carcinoma. Cancer Res. 56:4625–4629. 1996.PubMed/NCBI

91 

Lewis JS, Landers RJ, Underwood JC, Harris AL and Lewis CE: Expression of vascular endothelial growth factor by macrophages is up-regulated in poorly vascularized areas of breast carcinomas. J Pathol. 192:150–158. 2000. View Article : Google Scholar : PubMed/NCBI

92 

Shibuya M: Vascular endothelial growth factor and its receptor system: Physiological functions in angiogenesis and pathological roles in various diseases. J Biochem. 153:13–19. 2013. View Article : Google Scholar

93 

Han KY, Kim CW, Lee TH, Son Y and Kim J: CCL23 up-regulates expression of KDR/Flk-1 and potentiates VEGF-induced proliferation and migration of human endothelial cells. Biochem Biophys Res Commun. 382:124–128. 2009. View Article : Google Scholar : PubMed/NCBI

94 

Hefler LA, Zeillinger R, Grimm C, Sood AK, Cheng WF, Gadducci A, Tempfer CB and Reinthaller A: Preoperative serum vascular endothelial growth factor as a prognostic parameter in ovarian cancer. Gynecol Oncol. 103:512–517. 2006. View Article : Google Scholar : PubMed/NCBI

95 

Byrne AT, Ross L, Holash J, Nakanishi M, Hu L, Hofmann JI, Yancopoulos GD and Jaffe RB: Vascular endothelial growth factor-trap decreases tumor burden, inhibits ascites, and causes dramatic vascular remodeling in an ovarian cancer model. Clin Cancer Res. 9:5721–5728. 2003.PubMed/NCBI

96 

Jeon BH, Jang C, Han J, Kataru RP, Piao L, Jung K, Cha HJ, Schwendener RA, Jang KY, Kim KS, et al: Profound but dysfunctional lymphangiogenesis via vascular endothelial growth factor ligands from CD11b+ macrophages in advanced ovarian cancer. Cancer Res. 68:1100–1109. 2008. View Article : Google Scholar : PubMed/NCBI

97 

Zhang S, Xie B, Wang L, Yang H, Zhang H, Chen Y, Wang F, Liu C and He H: Macrophage-mediated vascular permeability via VLA4/VCAM1 pathway dictates ascites development in ovarian cancer. J Clin Invest. 131:e1403152021. View Article : Google Scholar :

98 

Reinartz S, Schumann T, Finkernagel F, Wortmann A, Jansen JM, Meissner W, Krause M, Schwörer AM, Wagner U, Müller-Brüsselbach S and Müller R: Mixed-polarization phenotype of ascites-associated macrophages in human ovarian carcinoma: Correlation of CD163 expression, cytokine levels and early relapse. Int J Cancer. 134:32–42. 2014. View Article : Google Scholar :

99 

Moughon DL, He H, Schokrpur S, Jiang ZK, Yaqoob M, David J, Lin C, Iruela-Arispe ML, Dorigo O and Wu L: Macrophage blockade using CSF1R inhibitors reverses the vascular leakage underlying malignant ascites in late-stage epithelial ovarian cancer. Cancer Res. 75:4742–4752. 2015. View Article : Google Scholar : PubMed/NCBI

100 

Clancy JL, Henderson MJ, Russell AJ, Anderson DW, Bova RJ, Campbell IG, Choong DY, Macdonald GA, Mann GJ, Nolan T, et al: EDD, the human orthologue of the hyperplastic discs tumour suppressor gene, is amplified and overexpressed in cancer. Oncogene. 22:5070–5081. 2003. View Article : Google Scholar : PubMed/NCBI

101 

Shearer RF, Iconomou M, Watts CK and Saunders DN: Functional roles of the E3 ubiquitin ligase UBR5 in cancer. Mol Cancer Res. 13:1523–1532. 2015. View Article : Google Scholar : PubMed/NCBI

102 

Tang M, Liu B, Bu X and Zhao P: Cross-talk between ovarian cancer cells and macrophages through periostin promotes macrophage recruitment. Cancer Sci. 109:1309–1318. 2018. View Article : Google Scholar : PubMed/NCBI

103 

Durlanik S, Fundel-Clemens K, Viollet C, Huber HJ, Lenter M, Kitt K and Pflanz S: CD276 is an important player in macrophage recruitment into the tumor and an upstream regulator for PAI-1. Sci Rep. 11:148492021. View Article : Google Scholar : PubMed/NCBI

104 

Worzfeld T, Finkernagel F, Reinartz S, Konzer A, Adhikary T, Nist A, Stiewe T, Wagner U, Looso M, Graumann J and Müller R: Proteotranscriptomics reveal signaling networks in the ovarian cancer microenvironment. Mol Cell Proteomics. 17:270–289. 2018. View Article : Google Scholar :

105 

Ichijo H, Nishida E, Irie K, ten Dijke P, Saitoh M, Moriguchi T, Takagi M, Matsumoto K, Miyazono K and Gotoh Y: Induction of apoptosis by ASK1, a mammalian MAPKKK that activates SAPK/JNK and p38 signaling pathways. Science. 275:90–94. 1997. View Article : Google Scholar : PubMed/NCBI

106 

Yin M, Zhou HJ, Zhang J, Lin C, Li H, Li X, Li Y, Zhang H, Breckenridge DG, Ji W and Min W: ASK1-dependent endothelial cell activation is critical in ovarian cancer growth and metastasis. JCI Insight. 2:e918282017. View Article : Google Scholar : PubMed/NCBI

107 

Sica A and Mantovani A: Macrophage plasticity and polarization: In vivo veritas. J Clin Invest. 122:787–795. 2012. View Article : Google Scholar : PubMed/NCBI

108 

Mills CD, Kincaid K, Alt JM, Heilman MJ and Hill AM: M-1/M-2 macrophages and the Th1/Th2 paradigm. J Immunol. 164:6166–6173. 2000. View Article : Google Scholar : PubMed/NCBI

109 

Mantovani A, Sozzani S, Locati M, Allavena P and Sica A: Macrophage polarization: tumor-associated macrophages as a paradigm for polarized M2 mononuclear phagocytes. Trends Immunol. 23:549–555. 2002. View Article : Google Scholar : PubMed/NCBI

110 

Mantovani A, Sica A, Sozzani S, Allavena P, Vecchi A and Locati M: The chemokine system in diverse forms of macrophage activation and polarization. Trends Immunol. 25:677–686. 2004. View Article : Google Scholar : PubMed/NCBI

111 

Wen Y and Crowley SD: The varying roles of macrophages in kidney injury and repair. Curr Opin Nephrol Hypertens. 29:286–292. 2020. View Article : Google Scholar : PubMed/NCBI

112 

Garofalo RS, Orena SJ, Rafidi K, Torchia AJ, Stock JL, Hildebrandt AL, Coskran T, Black SC, Brees DJ, Wicks JR, et al: Severe diabetes, age-dependent loss of adipose tissue, and mild growth deficiency in mice lacking Akt2/PKB beta. J Clin Invest. 112:197–208. 2003. View Article : Google Scholar : PubMed/NCBI

113 

Gao J, Liang Y and Wang L: Shaping polarization of tumor-associated macrophages in cancer immunotherapy. Front Immunol. 13:8887132022. View Article : Google Scholar : PubMed/NCBI

114 

Wan C, Sun Y, Tian Y, Lu L, Dai X, Meng J, Huang J, He Q, Wu B, Zhang Z, et al: Irradiated tumor cell-derived microparticles mediate tumor eradication via cell killing and immune reprogramming. Sci Adv. 6:eaay97892020. View Article : Google Scholar : PubMed/NCBI

115 

Shu Y and Cheng P: Targeting tumor-associated macrophages for cancer immunotherapy. Biochim Biophys Acta Rev Cancer. 1874:1884342020. View Article : Google Scholar : PubMed/NCBI

116 

He J, Yin P and Xu K: Effect and molecular mechanisms of traditional Chinese medicine on tumor targeting tumor-associated macrophages. Drug Des Devel Ther. 14:907–919. 2020. View Article : Google Scholar : PubMed/NCBI

117 

Macciò A, Gramignano G, Cherchi MC, Tanca L, Melis L and Madeddu C: Role of M1-polarized tumor-associated macrophages in the prognosis of advanced ovarian cancer patients. Sci Rep. 10:60962020. View Article : Google Scholar : PubMed/NCBI

118 

Guiducci C, Vicari AP, Sangaletti S, Trinchieri G and Colombo MP: Redirecting in vivo elicited tumor infiltrating macrophages and dendritic cells towards tumor rejection. Cancer Res. 65:3437–3446. 2005. View Article : Google Scholar : PubMed/NCBI

119 

Capellero S, Erriquez J, Battistini C, Porporato R, Scotto G, Borella F, Di Renzo MF, Valabrega G and Olivero M: Ovarian cancer cells in ascites form aggregates that display a hybrid epithelial-mesenchymal phenotype and allows survival and proliferation of metastasizing cells. Int J Mol Sci. 23:8332022. View Article : Google Scholar : PubMed/NCBI

120 

Sun S, Pan X, Zhao L, Zhou J, Wang H and Sun Y: The expression and relationship of CD68-tumor-associated macrophages and microvascular density with the prognosis of patients with laryngeal squamous cell carcinoma. Clin Exp Otorhinolaryngol. 9:270–277. 2016. View Article : Google Scholar : PubMed/NCBI

121 

Sadrkhanloo M, Entezari M, Orouei S, Ghollasi M, Fathi N, Rezaei S, Hejazi ES, Kakavand A, Saebfar H, Hashemi M, et al: STAT3-EMT axis in tumors: Modulation of cancer metastasis, stemness and therapy response. Pharmacol Res. 182:1063112022. View Article : Google Scholar : PubMed/NCBI

122 

Liang R, Chen X, Chen L, Wan F, Chen K, Sun Y and Zhu X: STAT3 signaling in ovarian cancer: A potential therapeutic target. J Cancer. 11:837–848. 2020. View Article : Google Scholar : PubMed/NCBI

123 

Takaishi K, Komohara Y, Tashiro H, Ohtake H, Nakagawa T, Katabuchi H and Takeya M: Involvement of M2-polarized macrophages in the ascites from advanced epithelial ovarian carcinoma in tumor progression via Stat3 activation. Cancer Sci. 101:2128–2136. 2010. View Article : Google Scholar : PubMed/NCBI

124 

Jinushi M, Chiba S, Yoshiyama H, Masutomi K, Kinoshita I, Dosaka-Akita H, Yagita H, Takaoka A and Tahara H: Tumor-associated macrophages regulate tumorigenicity and anticancer drug responses of cancer stem/initiating cells. Proc Natl Acad Sci USA. 108:12425–12430. 2011. View Article : Google Scholar : PubMed/NCBI

125 

Raghavan S, Mehta P, Xie Y, Lei YL and Mehta G: Ovarian cancer stem cells and macrophages reciprocally interact through the WNT pathway to promote pro-tumoral and malignant phenotypes in 3D engineered microenvironments. J Immunother Cancer. 7:1902019. View Article : Google Scholar : PubMed/NCBI

126 

Ruffell B and Coussens LM: Macrophages and therapeutic resistance in cancer. Cancer Cell. 27:462–472. 2015. View Article : Google Scholar : PubMed/NCBI

127 

Li L, He D, Guo Q, Zhang Z, Ru D, Wang L, Gong K, Liu F, Duan Y and Li H: Exosome-liposome hybrid nanoparticle codelivery of TP and miR497 conspicuously overcomes chemoresistant ovarian cancer. J Nanobiotechnology. 20:502022. View Article : Google Scholar : PubMed/NCBI

128 

Li H, Luo F, Jiang X, Zhang W, Xiang T, Pan Q, Cai L, Zhao J, Weng D, Li Y, et al: CircITGB6 promotes ovarian cancer cisplatin resistance by resetting tumor-associated macrophage polarization toward the M2 phenotype. J Immunother Cancer. 10:e0040292022. View Article : Google Scholar : PubMed/NCBI

129 

Ding L, Wang Q, Martincuks A, Kearns MJ, Jiang T, Lin Z, Cheng X, Qian C, Xie S, Kim HJ, et al: STING agonism overcomes STAT3-mediated immunosuppression and adaptive resistance to PARP inhibition in ovarian cancer. J Immunother Cancer. 11:e0056272023. View Article : Google Scholar : PubMed/NCBI

130 

Willingham SB, Volkmer JP, Gentles AJ, Sahoo D, Dalerba P, Mitra SS, Wang J, Contreras-Trujillo H, Martin R, Cohen JD, et al: The CD47-signal regulatory protein alpha (SIRPa) interaction is a therapeutic target for human solid tumors. Proc Natl Acad Sci USA. 109:6662–6667. 2012. View Article : Google Scholar : PubMed/NCBI

131 

Sikic BI, Lakhani N, Patnaik A, Shah SA, Chandana SR, Rasco D, Colevas AD, O'Rourke T, Narayanan S, Papadopoulos K, et al: First-in-human, first-in-class phase I trial of the anti-CD47 antibody Hu5F9-G4 in patients with advanced cancers. J Clin Oncol. 37:946–953. 2019. View Article : Google Scholar : PubMed/NCBI

132 

Huang Y, Lv SQ, Liu PY, Ye ZL, Yang H, Li LF, Zhu HL, Wang Y, Cui LZ, Jiang DQ, et al: A SIRPα-Fc fusion protein enhances the antitumor effect of oncolytic adenovirus against ovarian cancer. Mol Oncol. 14:657–668. 2020. View Article : Google Scholar : PubMed/NCBI

133 

Batchu RB, Gruzdyn OV, Kolli BK, Dachepalli R, Umar PS, Rai SK, Singh N, Tavva PS, Weaver DW and Gruber SA: IL-10 signaling in the tumor microenvironment of ovarian cancer. Adv Exp Med Biol. 1290:51–65. 2021. View Article : Google Scholar : PubMed/NCBI

134 

McKarns SC, Schwartz RH and Kaminski NE: Smad3 is essential for TGF-beta 1 to suppress IL-2 production and TCR-induced proliferation, but not IL-2-induced proliferation. J Immunol. 172:4275–4284. 2004. View Article : Google Scholar : PubMed/NCBI

135 

Wertel I, Surówka J, Polak G, Barczyński B, Bednarek W, Jakubowicz-Gil J, Bojarska-Junak A and Kotarski J: Macrophage-derived chemokine CCL22 and regulatory T cells in ovarian cancer patients. Tumour Biol. 36:4811–4817. 2015. View Article : Google Scholar : PubMed/NCBI

136 

Kamat K, Krishnan V and Dorigo O: Macrophage-derived CCL23 upregulates expression of T-cell exhaustion markers in ovarian cancer. Br J Cancer. 127:1026–1033. 2022. View Article : Google Scholar : PubMed/NCBI

137 

Noy R and Pollard JW: Tumor-associated macrophages: From mechanisms to therapy. Immunity. 41:49–61. 2014. View Article : Google Scholar : PubMed/NCBI

138 

Chapoval AI, Ni J, Lau JS, Wilcox RA, Flies DB, Liu D, Dong H, Sica GL, Zhu G, Tamada K and Chen L: B7-H3: A costimulatory molecule for T cell activation and IFN-gamma production. Nat Immunol. 2:269–274. 2001. View Article : Google Scholar : PubMed/NCBI

139 

Miyamoto T, Murakami R, Hamanishi J, Tanigaki K, Hosoe Y, Mise N, Takamatsu S, Mise Y, Ukita M, Taki M, et al: B7-H3 suppresses antitumor immunity via the CCL2-CCR2-M2 macrophage axis and contributes to ovarian cancer progression. Cancer Immunol Res. 10:56–69. 2022. View Article : Google Scholar

140 

Liu Z, Jin K, Zeng H, Shao F, Chang Y, Wang Y, Xu L, Wang Z, Cui X, Zhu Y and Xu J: B7-H4 correlates with clinical outcome and immunotherapeutic benefit in muscle-invasive bladder cancer. Eur J Cancer. 171:133–142. 2022. View Article : Google Scholar : PubMed/NCBI

141 

Kryczek I, Zou L, Rodriguez P, Zhu G, Wei S, Mottram P, Brumlik M, Cheng P, Curiel T, Myers L, et al: B7-H4 expression identifies a novel suppressive macrophage population in human ovarian carcinoma. J Exp Med. 203:871–881. 2006. View Article : Google Scholar : PubMed/NCBI

142 

Carroll MJ, Fogg KC, Patel HA, Krause HB, Mancha AS, Patankar MS, Weisman PS, Barroilhet L and Kreeger PK: Alternatively-activated macrophages upregulate mesothelial expression of P-selectin to enhance adhesion of ovarian cancer cells. Cancer Res. 78:3560–3573. 2018. View Article : Google Scholar : PubMed/NCBI

143 

Robinson-Smith TM, Isaacsohn I, Mercer CA, Zhou M, Van Rooijen N, Husseinzadeh N, McFarland-Mancini MM and Drew AF: Macrophages mediate inflammation-enhanced metastasis of ovarian tumors in mice. Cancer Res. 67:5708–5716. 2007. View Article : Google Scholar : PubMed/NCBI

144 

Fogg KC, Olson WR, Miller JN, Khan A, Renner C, Hale I, Weisman PS and Kreeger PK: Alternatively activated macrophage-derived secretome stimulates ovarian cancer spheroid spreading through a JAK2/STAT3 pathway. Cancer Lett. 458:92–101. 2019. View Article : Google Scholar : PubMed/NCBI

145 

Zeng XY, Xie H, Yuan J, Jiang XY, Yong JH, Zeng D, Dou YY and Xiao SS: M2-like tumor-associated macrophages-secreted EGF promotes epithelial ovarian cancer metastasis via activating EGFR-ERK signaling and suppressing lncRNA LIMT expression. Cancer Biol Ther. 20:956–966. 2019. View Article : Google Scholar : PubMed/NCBI

146 

Germano G, Frapolli R, Belgiovine C, Anselmo A, Pesce S, Liguori M, Erba E, Uboldi S, Zucchetti M, Pasqualini F, et al: Role of macrophage targeting in the antitumor activity of trabectedin. Cancer Cell. 23:249–262. 2013. View Article : Google Scholar : PubMed/NCBI

147 

Sandhu SK, Papadopoulos K, Fong PC, Patnaik A, Messiou C, Olmos D, Wang G, Tromp BJ, Puchalski TA, Balkwill F, et al: A first-in-human, first-in-class, phase I study of carlumab (CNTO 888), a human monoclonal antibody against CC-chemokine ligand 2 in patients with solid tumors. Cancer Chemother Pharmacol. 71:1041–1050. 2013. View Article : Google Scholar : PubMed/NCBI

148 

Wesolowski R, Sharma N, Reebel L, Rodal MB, Peck A, West BL, Marimuthu A, Severson P, Karlin DA, Dowlati A, et al: Phase Ib study of the combination of pexidartinib (PLX3397), a CSF-1R inhibitor, and paclitaxel in patients with advanced solid tumors. Ther Adv Med Oncol. 11:17588359198542382019. View Article : Google Scholar : PubMed/NCBI

149 

Zeng Y, Li B, Liang Y, Reeves PM, Qu X, Ran C, Liu Q, Callahan MV, Sluder AE, Gelfand JA, et al: Dual blockade of CXCL12-CXCR4 and PD-1-PD-L1 pathways prolongs survival of ovarian tumor-bearing mice by prevention of immunosuppression in the tumor microenvironment. FASEB J. 33:6596–6608. 2019. View Article : Google Scholar : PubMed/NCBI

150 

Wanderley CW, Colón DF, Luiz JPM, Oliveira FF, Viacava PR, Leite CA, Pereira JA, Silva CM, Silva CR, Silva RL, et al: Paclitaxel reduces tumor growth by reprogramming tumor-associated macrophages to an M1 Profile in a TLR4-dependent manner. Cancer Res. 78:5891–5900. 2018. View Article : Google Scholar : PubMed/NCBI

151 

Zhang Q, Li Y, Miao C, Wang Y, Xu Y, Dong R, Zhang Z, Griffin BB, Yuan C, Yan S, et al: Anti-angiogenesis effect of Neferine via regulating autophagy and polarization of tumor-associated macrophages in high-grade serous ovarian carcinoma. Cancer Lett. 432:144–155. 2018. View Article : Google Scholar : PubMed/NCBI

152 

Zhang F, Parayath NN, Ene CI, Stephan SB, Koehne AL, Coon ME, Holland EC and Stephan MT: Genetic programming of macrophages to perform anti-tumor functions using targeted mRNA nanocarriers. Nat Commun. 10:39742019. View Article : Google Scholar : PubMed/NCBI

153 

Chen D, Xie J, Fiskesund R, Dong W, Liang X, Lv J, Jin X, Liu J, Mo S, Zhang T, et al: Chloroquine modulates antitumor immune response by resetting tumor-associated macrophages toward M1 phenotype. Nat Commun. 9:8732018. View Article : Google Scholar : PubMed/NCBI

154 

Bellora F, Castriconi R, Dondero A, Pessino A, Nencioni A, Liggieri G, Moretta L, Mantovani A, Moretta A and Bottino C: TLR activation of tumor-associated macrophages from ovarian cancer patients triggers cytolytic activity of NK cells. Eur J Immunol. 44:1814–1822. 2014. View Article : Google Scholar : PubMed/NCBI

155 

Ma L, Zhu M, Gai J, Li G, Chang Q, Qiao P, Cao L, Chen W, Zhang S and Wan Y: Preclinical development of a novel CD47 nanobody with less toxicity and enhanced anti-cancer therapeutic potential. J Nanobiotechnology. 18:122020. View Article : Google Scholar : PubMed/NCBI

156 

Rakina M, Kazakova A, Villert A, Kolomiets L and Larionova I: Spheroid formation and peritoneal metastasis in ovarian cancer: The role of stromal and immune components. Int J Mol Sci. 23:62152022. View Article : Google Scholar : PubMed/NCBI

157 

Long L, Yin M and Min W: 3D co-culture system of tumor-associated macrophages and ovarian cancer cells. Bio Protoc. 8:e28152018.PubMed/NCBI

Related Articles

  • Abstract
  • View
  • Download
  • Twitter
Copy and paste a formatted citation
Spandidos Publications style
Liu Y, Xiao H, Zeng H and Xiang Y: Beyond tumor‑associated macrophages involved in spheroid formation and dissemination: Novel insights for ovarian cancer therapy (Review). Int J Oncol 65: 117, 2024.
APA
Liu, Y., Xiao, H., Zeng, H., & Xiang, Y. (2024). Beyond tumor‑associated macrophages involved in spheroid formation and dissemination: Novel insights for ovarian cancer therapy (Review). International Journal of Oncology, 65, 117. https://doi.org/10.3892/ijo.2024.5705
MLA
Liu, Y., Xiao, H., Zeng, H., Xiang, Y."Beyond tumor‑associated macrophages involved in spheroid formation and dissemination: Novel insights for ovarian cancer therapy (Review)". International Journal of Oncology 65.6 (2024): 117.
Chicago
Liu, Y., Xiao, H., Zeng, H., Xiang, Y."Beyond tumor‑associated macrophages involved in spheroid formation and dissemination: Novel insights for ovarian cancer therapy (Review)". International Journal of Oncology 65, no. 6 (2024): 117. https://doi.org/10.3892/ijo.2024.5705
Copy and paste a formatted citation
x
Spandidos Publications style
Liu Y, Xiao H, Zeng H and Xiang Y: Beyond tumor‑associated macrophages involved in spheroid formation and dissemination: Novel insights for ovarian cancer therapy (Review). Int J Oncol 65: 117, 2024.
APA
Liu, Y., Xiao, H., Zeng, H., & Xiang, Y. (2024). Beyond tumor‑associated macrophages involved in spheroid formation and dissemination: Novel insights for ovarian cancer therapy (Review). International Journal of Oncology, 65, 117. https://doi.org/10.3892/ijo.2024.5705
MLA
Liu, Y., Xiao, H., Zeng, H., Xiang, Y."Beyond tumor‑associated macrophages involved in spheroid formation and dissemination: Novel insights for ovarian cancer therapy (Review)". International Journal of Oncology 65.6 (2024): 117.
Chicago
Liu, Y., Xiao, H., Zeng, H., Xiang, Y."Beyond tumor‑associated macrophages involved in spheroid formation and dissemination: Novel insights for ovarian cancer therapy (Review)". International Journal of Oncology 65, no. 6 (2024): 117. https://doi.org/10.3892/ijo.2024.5705
Follow us
  • Twitter
  • LinkedIn
  • Facebook
About
  • Spandidos Publications
  • Careers
  • Cookie Policy
  • Privacy Policy
How can we help?
  • Help
  • Live Chat
  • Contact
  • Email to our Support Team