MicroRNAs and their role in breast cancer metabolism (Review)
- Authors:
- Wen Xuan Lee
- Bann Siang Yeo
- Rozi Mahmud
- Geok Chin Tan
- Mohamed Ibrahim Abdul Wahid
- Yoke Kqueen Cheah
-
Affiliations: Department of Biomedical Science, Faculty of Medicine and Health Sciences, Universiti Putra Malaysia, Serdang, Selangor 43400, Malaysia, Department of Radiology, Faculty of Medicine and Health Sciences, Universiti Putra Malaysia, Serdang, Selangor 43400, Malaysia, Department of Pathology, Faculty of Medicine, Universiti Kebangsaan Malaysia, Kuala Lumpur 56000, Malaysia, Department of Oncology, Beacon Hospital Sdn. Bhd., Petaling Jaya, Selangor 46050, Malaysia - Published online on: December 5, 2024 https://doi.org/10.3892/ijo.2024.5713
- Article Number: 7
-
Copyright: © Lee et al. This is an open access article distributed under the terms of Creative Commons Attribution License.
This article is mentioned in:
Abstract
International Agency for Research on Cancer: Global Cancer Observatory. Cancer Today. Accessed on September 22, 2024https://gco.iarc.fr/today/online-analysis-multi-bars. | |
Sung H, Ferlay J, Siegel RL, Laversanne M, Soerjomataram I, Jemal A and Bray F: Global cancer statistics 2020: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J Clin. 71:209–249. 2021. View Article : Google Scholar : PubMed/NCBI | |
Arnold M, Morgan E, Rumgay H, Mafra A, Singh D, Laversanne M, Vignat J, Gralow JR, Cardoso F, Siesling S and Soerjomataram I: Current and future burden of breast cancer: Global statistics for 2020 and 2040. Breast. 66:15–23. 2022. View Article : Google Scholar : PubMed/NCBI | |
Lee MS, 'Azmiyaty Amar Ma' Ruf C, Nadhirah Izhar DP, Nafisah Ishak S, Wan Jamaluddin WS, Ya'acob SNM and Kamaluddin MN: Awareness on breast cancer screening in Malaysia: A cross sectional study. Biomedicine (Taipei). 9:182019. View Article : Google Scholar : PubMed/NCBI | |
Momenimovahed Z and Salehiniya H: Epidemiological characteristics of and risk factors for breast cancer in the world. Breast Cancer (Dove Med Press). 11:151–164. 2019.PubMed/NCBI | |
Malhotra GK, Zhao X, Band H and Band V: Histological, molecular and functional subtypes of breast cancers. Cancer Biol Ther. 10:955–960. 2010. View Article : Google Scholar : PubMed/NCBI | |
Watkins EJ: Overview of breast cancer. JAAPA. 32:13–17. 2019. View Article : Google Scholar : PubMed/NCBI | |
Posner MC and Wolmark N: Non-invasive breast carcinoma. Breast Cancer Res Treat. 21:155–164. 1992. View Article : Google Scholar : PubMed/NCBI | |
Corben AD: Pathology of invasive breast disease. Surg Clin North Am. 93:363–392. 2013. View Article : Google Scholar : PubMed/NCBI | |
Sharma GN, Dave R, Sanadya J, Sharma P and Sharma KK: Various types and management of breast cancer: An overview. J Adv Pharm Technol Res. 1:109–126. 2010. View Article : Google Scholar : PubMed/NCBI | |
Yip CH and Rhodes A: Estrogen and progesterone receptors in breast cancer. Future Oncol. 10:2293–2301. 2014. View Article : Google Scholar : PubMed/NCBI | |
Iqbal N and Iqbal N: Human epidermal growth factor receptor 2 (HER2) in cancers: Overexpression and therapeutic implications. Mol Biol Int. 2014:8527482014. View Article : Google Scholar : PubMed/NCBI | |
Derakhshan F and Reis-Filho JS: Pathogenesis of triple-negative breast cancer. Annu Rev Pathol. 17:181–204. 2022. View Article : Google Scholar : PubMed/NCBI | |
Tan J and Le A: The heterogeneity of breast cancer metabolism. Adv Exp Med Biol. 1311:89–101. 2021. View Article : Google Scholar : PubMed/NCBI | |
Ahn S, Woo JW, Lee K and Park SY: HER2 status in breast cancer: Changes in guidelines and complicating factors for interpretation. J Pathol Transl Med. 54:34–44. 2020. View Article : Google Scholar : | |
Hanahan D and Weinberg RA: Hallmarks of cancer: The next generation. Cell. 144:646–674. 2011. View Article : Google Scholar : PubMed/NCBI | |
Hanahan D: Hallmarks of cancer: New dimensions. Cancer Discov. 12:31–46. 2022. View Article : Google Scholar : PubMed/NCBI | |
Serrano-Carbajal EA, Espinal-Enríquez J and Hernández-Lemus E: Targeting metabolic deregulation landscapes in breast cancer subtypes. Front Oncol. 10:972020. View Article : Google Scholar : PubMed/NCBI | |
Wang L, Zhang S and Wang X: The metabolic mechanisms of breast cancer metastasis. Front Oncol. 10:6024162021. View Article : Google Scholar : PubMed/NCBI | |
Chan B, Manley J, Lee J and Singh SR: The emerging roles of microRNAs in cancer metabolism. Cancer Lett. 356:301–308. 2015. View Article : Google Scholar | |
Iorio MV and Croce CM: Causes and consequences of microRNA dysregulation. Cancer J. 18:215–222. 2012. View Article : Google Scholar : PubMed/NCBI | |
Muñoz JP, Pérez-Moreno P, Pérez Y and Calaf GM: The role of MicroRNAs in breast cancer and the challenges of their clinical application. Diagnostics (Basel). 13:30722023. View Article : Google Scholar : PubMed/NCBI | |
Suriya Muthukumaran N, Velusamy P, Akino Mercy CS, Langford D, Natarajaseenivasan K and Shanmughapriya S: MicroRNAs as regulators of cancer cell energy metabolism. J Pers Med. 12:13292022. View Article : Google Scholar : PubMed/NCBI | |
Saliminejad K, Khorram Khorshid HR, Soleymani Fard S and Ghaffari SH: An overview of microRNAs: Biology, functions, therapeutics, and analysis methods. J Cell Physiol. 234:5451–5465. 2019. View Article : Google Scholar | |
Diener C, Keller A and Meese E: The miRNA-target interactions: An underestimated intricacy. Nucleic Acids Res. 52:1544–1557. 2024. View Article : Google Scholar | |
Liu L, He J, Wei X, Wan G, Lao Y, Xu W, Li Z, Hu H, Hu Z, Luo X, et al: MicroRNA-20a-mediated loss of autophagy contributes to breast tumorigenesis by promoting genomic damage and instability. Oncogene. 36:5874–5884. 2017. View Article : Google Scholar : PubMed/NCBI | |
Ma F, Li W, Liu C, Li W, Yu H, Lei B, Ren Y, Li Z, Pang D and Qian C: MiR-23a promotes TGF-β1-induced EMT and tumor metastasis in breast cancer cells by directly targeting CDH1 and activating Wnt/β-catenin signaling. Oncotarget. 8:69538–69550. 2017. View Article : Google Scholar : PubMed/NCBI | |
Gao F and Tian J: FOXK1, regulated by miR-365-3p, promotes cell growth and EMT indicates unfavorable prognosis in breast cancer. Onco Targets Ther. 13:623–634. 2020. View Article : Google Scholar : PubMed/NCBI | |
Ali Syeda Z, Langden SSS, Munkhzul C, Lee M and Song SJ: Regulatory mechanism of MicroRNA expression in cancer. Int J Mol Sci. 21:17232020. View Article : Google Scholar : PubMed/NCBI | |
Nakrani MN, Wineland RH and Anjum F: Physiology, glucose metabolism. StatPearls [Internet]. StatPearls Publishing; Treasure Island, FL: 2023 | |
Paredes-Flores MA and Mohiuddin SS: Biochemistry, glycogenolysis. StatPearls [Internet]. StatPearls Publishing; Treasure Island, FL: 2022 | |
Patino SC and Orrick JA: Biochemistry, glycogenesis. StatPearls [Internet]. StatPearls Publishing; Treasure Island, FL: 2023 | |
Dunn J and Grider MH: Physiology, adenosine triphosphate. StatPearls [Internet]. StatPearls Publishing; Treasure Island, FL: 2023 | |
Pavlova NN, Zhu J and Thompson CB: The hallmarks of cancer metabolism: Still emerging. Cell Metab. 34:355–377. 2022. View Article : Google Scholar : PubMed/NCBI | |
Warburg O: On the origin of cancer cells. Science. 123:309–314. 1956. View Article : Google Scholar : PubMed/NCBI | |
Liberti MV and Locasale JW: The warburg effect: How does it benefit cancer cells? Trends Biochem Sci. 41:211–218. 2016. View Article : Google Scholar : PubMed/NCBI | |
Pascale RM, Calvisi DF, Simile MM, Feo CF and Feo F: The Warburg effect 97 years after its discovery. Cancers (Basel). 12:28192020. View Article : Google Scholar : PubMed/NCBI | |
Yu L, Chen X, Wang L and Chen S: The sweet trap in tumors: Aerobic glycolysis and potential targets for therapy. Oncotarget. 7:38908–38926. 2016. View Article : Google Scholar : PubMed/NCBI | |
Nong S, Han X, Xiang Y, Qian Y, Wei Y, Zhang T, Tian K, Shen K, Yang J and Ma X: Metabolic reprogramming in cancer: Mechanisms and therapeutics. MedComm (2020). 4:e2182023. View Article : Google Scholar : PubMed/NCBI | |
Iorio MV and Croce CM: MicroRNA dysregulation in cancer: Diagnostics, monitoring and therapeutics. A comprehensive review. EMBO Mol Med. 4:143–159. 2012. View Article : Google Scholar : PubMed/NCBI | |
Chaudhry R and Varacallo M: Biochemistry, glycolysis. StatPearls [Internet]. StatPearls Publishing; Treasure Island, FL: 2023 | |
Lenzen S: A fresh view of glycolysis and glucokinase regulation: History and current status. J Biol Chem. 289:12189–12194. 2014. View Article : Google Scholar : PubMed/NCBI | |
Roberts DJ and Miyamoto S: Hexokinase II integrates energy metabolism and cellular protection: Akting on mitochondria and TORCing to autophagy. Cell Death Differ. 22:248–257. 2015. View Article : Google Scholar : | |
Jiang S, Zhang LF, Zhang HW, Hu S, Lu MH, Liang S, Li B, Li Y, Li D, Wang ED and Liu MF: A novel miR-155/miR-143 cascade controls glycolysis by regulating hexokinase 2 in breast cancer cells. EMBO J. 31:1985–1998. 2012. View Article : Google Scholar : PubMed/NCBI | |
Liu T, Ye P, Ye Y and Han B: MicroRNA-216b targets HK2 to potentiate autophagy and apoptosis of breast cancer cells via the mTOR signaling pathway. Int J Biol Sci. 17:2970–2983. 2021. View Article : Google Scholar : PubMed/NCBI | |
Li L, Zhang X, Lin Y, Ren X, Xie T, Lin J, Wu S and Ye Q: Let-7b-5p inhibits breast cancer cell growth and metastasis via repression of hexokinase 2-mediated aerobic glycolysis. Cell Death Discov. 9:1142023. View Article : Google Scholar : PubMed/NCBI | |
Li L, Peng G, Liu X, Zhang Y, Han H and Liu ZR: Pyruvate kinase M2 coordinates metabolism switch between glycolysis and glutaminolysis in cancer cells. iScience. 23:1016842020. View Article : Google Scholar : PubMed/NCBI | |
Hsu MC and Hung WC: Pyruvate kinase M2 fuels multiple aspects of cancer cells: From cellular metabolism, transcriptional regulation to extracellular signaling. Mol Cancer. 17:352018. View Article : Google Scholar : PubMed/NCBI | |
Park B, Kim JY, Riffey OF, Dowker-Key P, Bruckbauer A, McLoughlin J, Bettaieb A and Donohoe DR: Pyruvate kinase M1 regulates butyrate metabolism in cancerous colonocytes. Sci Rep. 12:87712022. View Article : Google Scholar : PubMed/NCBI | |
Schormann N, Hayden KL, Lee P, Banerjee S and Chattopadhyay D: An overview of structure, function, and regulation of pyruvate kinases. Protein Sci. 28:1771–1784. 2019. View Article : Google Scholar : PubMed/NCBI | |
Amin S, Yang P and Li Z: Pyruvate kinase M2: A multifarious enzyme in non-canonical localization to promote cancer progression. Biochim Biophys Acta Rev Cancer. 1871:331–341. 2019. View Article : Google Scholar : PubMed/NCBI | |
Israelsen WJ and Vander Heiden MG: Pyruvate kinase: Function, regulation and role in cancer. Semin Cell Dev Biol. 43:43–51. 2015. View Article : Google Scholar : PubMed/NCBI | |
Wen YY, Liu WT, Sun HR, Ge X, Shi ZM, Wang M, Li W, Zhang JY, Liu LZ and Jiang BH: IGF-1-mediated PKM2/β-catenin/miR-152 regulatory circuit in breast cancer. Sci Rep. 7:158972017. View Article : Google Scholar | |
Xu Q, Liu LZ, Yin Y, He J, Li Q, Qian X, You Y, Lu Z, Peiper SC, Shu Y and Jiang BH: Regulatory circuit of PKM2/NF-κB/miR-148a/152-modulated tumor angiogenesis and cancer progression. Oncogene. 34:5482–5493. 2015. View Article : Google Scholar : PubMed/NCBI | |
Yao A, Xiang Y, Si YR, Fan LJ, Li JP, Li H, Guo W, He HX, Liang XJ, Tan Y, et al: PKM2 promotes glucose metabolism through a let-7a-5p/Stat3/hnRNP-A1 regulatory feedback loop in breast cancer cells. J Cell Biochem. 120:6542–6554. 2019. View Article : Google Scholar | |
Chen Y, Cen L, Guo R, Huang S and Chen D: Roles and mechanisms of phosphoglycerate kinase 1 in cancer. Bull Cancer. 109:1298–1307. 2022. View Article : Google Scholar : PubMed/NCBI | |
Ye T, Liang Y, Zhang D and Zhang X: MicroRNA-16-1-3p represses breast tumor growth and metastasis by inhibiting PGK1-mediated warburg effect. Front Cell Dev Biol. 8:6151542020. View Article : Google Scholar : PubMed/NCBI | |
Ran F, Zhang Y, Shi Y, Liu J, Li H, Ding L and Ye Q: miR-1224-3p promotes breast cancer cell proliferation and migration through PGM5-mediated aerobic glycolysis. J Oncol. 2021:55297702021. View Article : Google Scholar : PubMed/NCBI | |
Li L, Kang L, Zhao W, Feng Y, Liu W, Wang T, Mai H, Huang J, Chen S, Liang Y, et al: miR-30a-5p suppresses breast tumor growth and metastasis through inhibition of LDHA-mediated Warburg effect. Cancer Lett. 400:89–98. 2017. View Article : Google Scholar : PubMed/NCBI | |
Xiao X, Huang X, Ye F, Chen B, Song C, Wen J, Zhang Z, Zheng G, Tang H and Xie X: The miR-34a-LDHA axis regulates glucose metabolism and tumor growth in breast cancer. Sci Rep. 6:217352016. View Article : Google Scholar : PubMed/NCBI | |
Ge X, Lyu P, Cao Z, Li J, Guo G, Xia W and Gu Y: Overexpression of miR-206 suppresses glycolysis, proliferation and migration in breast cancer cells via PFKFB3 targeting. Biochem Biophys Res Commun. 463:1115–1121. 2015. View Article : Google Scholar : PubMed/NCBI | |
Telang S, Yalcin A, Clem AL, Bucala R, Lane AN, Eaton JW and Chesney J: Ras transformation requires metabolic control by 6-phosphofructo-2-kinase. Oncogene. 25:7225–7234. 2006. View Article : Google Scholar : PubMed/NCBI | |
Kim JW and Dang CV: Multifaceted roles of glycolytic enzymes. Trends Biochem Sci. 30:142–150. 2005. View Article : Google Scholar : PubMed/NCBI | |
Ahmad A, Aboukameel A, Kong D, Wang Z, Sethi S, Chen W, Sarkar FH and Raz A: Phosphoglucose isomerase/autocrine motility factor mediates epithelial-mesenchymal transition regulated by miR-200 in breast cancer cells. Cancer Res. 71:3400–3409. 2011. View Article : Google Scholar : PubMed/NCBI | |
Guda MR, Asuthkar S, Labak CM, Tsung AJ, Alexandrov I, Mackenzie MJ, Prasad DV and Velpula KK: Targeting PDK4 inhibits breast cancer metabolism. Am J Cancer Res. 8:1725–1738. 2018.PubMed/NCBI | |
Lu H, Forbes RA and Verma A: Hypoxia-inducible factor 1 activation by aerobic glycolysis implicates the Warburg effect in carcinogenesis. J Biol Chem. 277:23111–23115. 2002. View Article : Google Scholar : PubMed/NCBI | |
Zhai Z, Mu T, Zhao L, Li Y, Zhu D and Pan Y: MiR-181a-5p facilitates proliferation, invasion, and glycolysis of breast cancer through NDRG2-mediated activation of PTEN/AKT pathway. Bioengineered. 13:83–95. 2022. View Article : Google Scholar : | |
Lang L, Tao J, Yang C and Li W: Tumor suppressive role of microRNA-4731-5p in breast cancer through reduction of PAICS-induced FAK phosphorylation. Cell Death Discov. 8:1542022. View Article : Google Scholar : PubMed/NCBI | |
Ziello JE, Jovin IS and Huang Y: Hypoxia-Inducible Factor (HIF)-1 regulatory pathway and its potential for therapeutic intervention in malignancy and ischemia. Yale J Biol Med. 80:51–60. 2007.PubMed/NCBI | |
Semenza GL: HIF-1: Upstream and downstream of cancer metabolism. Curr Opin Genet Dev. 20:51–56. 2010. View Article : Google Scholar : | |
Du Y, Wei N, Ma R, Jiang SH and Song D: A miR-210-3p regulon that controls the Warburg effect by modulating HIF-1α and p53 activity in triple-negative breast cancer. Cell Death Dis. 11:7312020. View Article : Google Scholar | |
Jiang Y, Zhang M, Yu D, Hou G, Wu J and Li F: CircRBM33 downregulation inhibits hypoxia-induced glycolysis and promotes apoptosis of breast cancer cells via a microRNA-542-3p/HIF-1α axis. Cell Death Discov. 8:1262022. View Article : Google Scholar | |
Cao L, Wang M, Dong Y, Xu B, Chen J, Ding Y, Qiu S, Li L, Karamfilova Zaharieva E, Zhou X and Xu Y: Circular RNA circRNF20 promotes breast cancer tumorigenesis and Warburg effect through miR-487a/HIF-1α/HK2. Cell Death Dis. 11:1452020. View Article : Google Scholar | |
Zhao Y, He J, Yang L, Luo Q and Liu Z: Histone deacetylase-3 modification of MicroRNA-31 promotes cell proliferation and aerobic glycolysis in breast cancer and is predictive of poor prognosis. J Breast Cancer. 21:112–123. 2018. View Article : Google Scholar : PubMed/NCBI | |
Kurmi K and Haigis MC: Nitrogen metabolism in cancer and immunity. Trends Cell Biol. 30:408–424. 2020. View Article : Google Scholar : PubMed/NCBI | |
Wang S, Tsun ZY, Wolfson RL, Shen K, Wyant GA, Plovanich ME, Yuan ED, Jones TD, Chantranupong L, Comb W, et al: Metabolism. Lysosomal amino acid transporter SLC38A9 signals arginine sufficiency to mTORC1. Science. 347:188–194. 2015. View Article : Google Scholar : PubMed/NCBI | |
Yeon A, You S, Kim M, Gupta A, Park MH, Weisenberger DJ, Liang G and Kim J: Rewiring of cisplatin-resistant bladder cancer cells through epigenetic regulation of genes involved in amino acid metabolism. Theranostics. 8:4520–4534. 2018. View Article : Google Scholar : PubMed/NCBI | |
Gao M, Monian P, Quadri N, Ramasamy R and Jiang X: Glutaminolysis and transferrin regulate ferroptosis. Mol Cell. 59:298–308. 2015. View Article : Google Scholar : PubMed/NCBI | |
Wei Z, Liu X, Cheng C, Yu W and Yi P: Metabolism of amino acids in cancer. Front Cell Dev Biol. 8:6038372021. View Article : Google Scholar : PubMed/NCBI | |
Yan W, Wu X, Zhou W, Fong MY, Cao M, Liu J, Liu X, Chen CH, Fadare O, Pizzo DP, et al: Cancer-cell-secreted exosomal miR-105 promotes tumour growth through the MYC-dependent metabolic reprogramming of stromal cells. Nat Cell Biol. 20:597–609. 2018. View Article : Google Scholar : PubMed/NCBI | |
Cruzat V, Macedo Rogero M, Noel Keane K, Curi R and Newsholme P: Glutamine: Metabolism and immune function, supplementation and clinical translation. Nutrients. 10:15642018. View Article : Google Scholar : PubMed/NCBI | |
Choi YK and Park KG: Targeting glutamine metabolism for cancer treatment. Biomol Ther (Seoul). 26:19–28. 2018. View Article : Google Scholar | |
Wise DR and Thompson CB: Glutamine addiction: A new therapeutic target in cancer. Trends Biochem Sci. 35:427–433. 2010. View Article : Google Scholar : PubMed/NCBI | |
Jin J, Byun JK, Choi YK and Park KG: Targeting glutamine metabolism as a therapeutic strategy for cancer. Exp Mol Med. 55:706–715. 2023. View Article : Google Scholar : PubMed/NCBI | |
Jin L, Alesi GN and Kang S: Glutaminolysis as a target for cancer therapy. Oncogene. 35:3619–3625. 2016. View Article : Google Scholar | |
Haikala HM, Marques E, Turunen M and Klefström J: Myc requires RhoA/SRF to reprogram glutamine metabolism. Small GTPases. 9:274–282. 2018. View Article : Google Scholar : | |
Budczies J, Pfitzner BM, Györffy B, Winzer KJ, Radke C, Dietel M, Fiehn O and Denkert C: Glutamate enrichment as new diagnostic opportunity in breast cancer. Int J Cancer. 136:1619–1628. 2015. View Article : Google Scholar | |
Herner A, Sauliunaite D, Michalski CW, Erkan M, De Oliveira T, Abiatari I, Kong B, Esposito I, Friess H and Kleeff J: Glutamate increases pancreatic cancer cell invasion and migration via AMPA receptor activation and Kras-MAPK signaling. Int J Cancer. 129:2349–2359. 2011. View Article : Google Scholar : PubMed/NCBI | |
Mukha A, Kahya U, Linge A, Chen O, Löck S, Lukiyanchuk V, Richter S, Alves TC, Peitzsch M, Telychko V, et al: GLS-driven glutamine catabolism contributes to prostate cancer radiosensitivity by regulating the redox state, stemness and ATG5-mediated autophagy. Theranostics. 11:7844–7868. 2021. View Article : Google Scholar : PubMed/NCBI | |
Xiong J, Wang N, Zhong HJ, Cui BW, Cheng S, Sun R, Chen JY, Xu PP, Cai G, Wang L, et al: SLC1A1 mediated glutamine addiction and contributed to natural killer T-cell lymphoma progression with immunotherapeutic potential. EBioMedicine. 72:1036142021. View Article : Google Scholar : PubMed/NCBI | |
Cluntun AA, Lukey MJ, Cerione RA and Locasale JW: Glutamine metabolism in cancer: Understanding the heterogeneity. Trends Cancer. 3:169–180. 2017. View Article : Google Scholar : PubMed/NCBI | |
El Ansari R, McIntyre A, Craze ML, Ellis IO, Rakha EA and Green AR: Altered glutamine metabolism in breast cancer; subtype dependencies and alternative adaptations. Histopathology. 72:183–190. 2018. View Article : Google Scholar | |
Lieu EL, Nguyen T, Rhyne S and Kim J: Amino acids in cancer. Exp Mol Med. 52:15–30. 2020. View Article : Google Scholar : PubMed/NCBI | |
Kung HN, Marks JR and Chi JT: Glutamine synthetase is a genetic determinant of cell type-specific glutamine independence in breast epithelia. PLoS Genet. 7:e10022292011. View Article : Google Scholar : PubMed/NCBI | |
Lampa M, Arlt H, He T, Ospina B, Reeves J, Zhang B, Murtie J, Deng G, Barberis C, Hoffmann D, et al: Glutaminase is essential for the growth of triple-negative breast cancer cells with a deregulated glutamine metabolism pathway and its suppression synergizes with mTOR inhibition. PLoS One. 12:e01850922017. View Article : Google Scholar : PubMed/NCBI | |
Thewes V, Simon R, Hlevnjak M, Schlotter M, Schroeter P, Schmidt K, Wu Y, Anzeneder T, Wang W, Windisch P, et al: The branched-chain amino acid transaminase 1 sustains growth of antiestrogen-resistant and ERα-negative breast cancer. Oncogene. 36:4124–4134. 2017. View Article : Google Scholar : PubMed/NCBI | |
Craze ML, El-Ansari R, Aleskandarany MA, Cheng KW, Alfarsi L, Masisi B, Diez-Rodriguez M, Nolan CC, Ellis IO, Rakha EA and Green AR: Glutamate dehydrogenase (GLUD1) expression in breast cancer. Breast Cancer Res Treat. 174:79–91. 2019. View Article : Google Scholar | |
Cao Y, Lin SH, Wang Y, Chin YE, Kang L and Mi J: Glutamic pyruvate transaminase GPT2 promotes tumorigenesis of breast cancer cells by activating sonic hedgehog signaling. Theranostics. 7:3021–3033. 2017. View Article : Google Scholar : PubMed/NCBI | |
Zhang L and Han J: Branched-chain amino acid transaminase 1 (BCAT1) promotes the growth of breast cancer cells through improving mTOR-mediated mitochondrial biogenesis and function. Biochem Biophys Res Commun. 486:224–231. 2017. View Article : Google Scholar : PubMed/NCBI | |
Masisi BK, El Ansari R, Alfarsi L, Craze ML, Jewa N, Oldfield A, Cheung H, Toss M, Rakha EA and Green AR: The biological and clinical significance of glutaminase in luminal breast cancer. Cancers (Basel). 13:39632021. View Article : Google Scholar : PubMed/NCBI | |
Kandasamy P, Gyimesi G, Kanai Y and Hediger MA: Amino acid transporters revisited: New views in health and disease. Trends Biochem Sci. 43:752–789. 2018. View Article : Google Scholar : PubMed/NCBI | |
Yadav P, Sharma P, Sundaram S, Venkatraman G, Bera AK and Karunagaran D: SLC7A11/xCT is a target of miR-5096 and its restoration partially rescues miR-5096-mediated ferroptosis and anti-tumor effects in human breast cancer cells. Cancer Lett. 522:211–224. 2021. View Article : Google Scholar : PubMed/NCBI | |
Liu Y, Hu Y, Jiang Y, Bu J and Gu X: Targeting ferroptosis, the achilles' heel of breast cancer: A review. Front Pharmacol. 13:10361402022. View Article : Google Scholar : PubMed/NCBI | |
Liu XX, Li XJ, Zhang B, Liang YJ, Zhou CX, Cao DX, He M, Chen GQ, He JR and Zhao Q: MicroRNA-26b is underexpressed in human breast cancer and induces cell apoptosis by targeting SLC7A11. FEBS Lett. 585:1363–1367. 2011. View Article : Google Scholar : PubMed/NCBI | |
Sun D, Li YC and Zhang XY: Lidocaine promoted ferroptosis by targeting miR-382-5p/SLC7A11 axis in ovarian and breast cancer. Front Pharmacol. 12:6812232021. View Article : Google Scholar | |
Wang J, Yang K, Cao J and Li L: Knockdown of circular RNA septin 9 inhibits the malignant progression of breast cancer by reducing the expression of solute carrier family 1 member 5 in a microRNA-149-5p-dependent manner. Bioengineered. 12:10624–10637. 2021. View Article : Google Scholar : PubMed/NCBI | |
van Geldermalsen M, Wang Q, Nagarajah R, Marshall AD, Thoeng A, Gao D, Ritchie W, Feng Y, Bailey CG, Deng N, et al: ASCT2/SLC1A5 controls glutamine uptake and tumour growth in triple-negative basal-like breast cancer. Oncogene. 35:3201–3108. 2016. View Article : Google Scholar : | |
Kinslow CJ, Tang A, Chaudhary KR and Cheng SK: Prevalence of estrogen receptor alpha (ESR1) somatic mutations in breast cancer. JNCI Cancer Spectr. 6:pkac0602022. View Article : Google Scholar : PubMed/NCBI | |
Msheik ZS, Nassar FJ, Chamandi G, Itani AR, Gadaleta E, Chalala C, Alwan N and Nasr RR: miR-126 decreases proliferation and mammosphere formation of MCF-7 and predicts prognosis of ER+ breast cancer. Diagnostics (Basel). 12:7452022. View Article : Google Scholar : PubMed/NCBI | |
Yanagida O, Kanai Y, Chairoungdua A, Kim DK, Segawa H, Nii T, Cha SH, Matsuo H, Fukushima J, Fukasawa Y, et al: Human L-type amino acid transporter 1 (LAT1): Characterization of function and expression in tumor cell lines. Biochim Biophys Acta. 1514:291–302. 2001. View Article : Google Scholar : PubMed/NCBI | |
Saito Y and Soga T: Amino acid transporters as emerging therapeutic targets in cancer. Cancer Sci. 112:2958–2965. 2021. View Article : Google Scholar : PubMed/NCBI | |
Li Y, Wang W, Wu X, Ling S, Ma Y and Huang P: SLC7A5 serves as a prognostic factor of breast cancer and promotes cell proliferation through activating AKT/mTORC1 signaling pathway. Ann Transl Med. 9:8922021. View Article : Google Scholar : PubMed/NCBI | |
Kurozumi S, Kaira K, Matsumoto H, Kurosumi M, Yokobori T, Kanai Y, Sekine C, Honda C, Katayama A, Furuya M, et al: Association of L-type amino acid transporter 1 (LAT1) with the immune system and prognosis in invasive breast cancer. Sci Rep. 12:27422022. View Article : Google Scholar : PubMed/NCBI | |
Törnroos R, Tina E and Göthlin Eremo A: SLC7A5 is linked to increased expression of genes related to proliferation and hypoxia in estrogen-receptor-positive breast cancer. Oncol Rep. 47:172022. View Article : Google Scholar | |
Bacci M, Lorito N, Ippolito L, Ramazzotti M, Luti S, Romagnoli S, Parri M, Bianchini F, Cappellesso F, Virga F, et al: Reprogramming of amino acid transporters to support aspartate and glutamate dependency sustains endocrine resistance in breast cancer. Cell Rep. 28:104–118.e8. 2019. View Article : Google Scholar : PubMed/NCBI | |
Delgir S, Ilkhani K, Safi A, Rahmati Y, Montazari V, Zaynali-Khasraghi Z, Seif F, Bastami M and Alivand MR: The expression of miR-513c and miR-3163 was downregulated in tumor tissues compared with normal adjacent tissue of patients with breast cancer. BMC Med Genomics. 14:1802021. View Article : Google Scholar : PubMed/NCBI | |
Fong MY, Zhou W, Liu L, Alontaga AY, Chandra M, Ashby J, Chow A, O'Connor STF, Li S, Chin R, et al: Breast-cancer-secreted miR-122 reprograms glucose metabolism in premetastatic niche to promote metastasis. Nat Cell Biol. 17:183–194. 2015. View Article : Google Scholar : PubMed/NCBI | |
Figueira I, Godinho-Pereira J, Galego S, Maia J, Haskó J, Molnár K, Malhó R, Costa-Silva B, Wilhelm I, Krizbai IA and Brito MA: MicroRNAs and extracellular vesicles as distinctive biomarkers of precocious and advanced stages of breast cancer brain metastases development. Int J Mol Sci. 22:52142021. View Article : Google Scholar : PubMed/NCBI | |
Lu C, Zhao Y, Wang J, Shi W, Dong F, Xin Y, Zhao X and Liu C: Breast cancer cell-derived extracellular vesicles transfer miR-182-5p and promote breast carcinogenesis via the CMTM7/EGFR/AKT axis. Mol Med. 27:782021. View Article : Google Scholar : PubMed/NCBI | |
Yang M, Zhang Y, Li M, Liu X and Darvishi M: The various role of microRNAs in breast cancer angiogenesis, with a special focus on novel miRNA-based delivery strategies. Cancer Cell Int. 23:242023. View Article : Google Scholar : PubMed/NCBI | |
Guo L, Kong D, Liu J, Zhan L, Luo L, Zheng W, Zheng Q, Chen C and Sun S: Breast cancer heterogeneity and its implication in personalized precision therapy. Exp Hematol Oncol. 12:32023. View Article : Google Scholar : PubMed/NCBI | |
Muciño-Olmos EA, Vázquez-Jiménez A, López-Esparza DE, Maldonado V, Valverde M and Resendis-Antonio O: MicroRNAs regulate metabolic phenotypes during multicellular tumor spheroids progression. Front Oncol. 10:5823962020. View Article : Google Scholar | |
Fu Y, Zou T, Shen X, Nelson PJ, Li J, Wu C, Yang J, Zheng Y, Bruns C, Zhao Y, et al: Lipid metabolism in cancer progression and therapeutic strategies. MedComm (2020). 2:27–59. 2020. View Article : Google Scholar | |
Gyamfi D, Ofori Awuah E and Owusu S: Chapter 2-lipid metabolism: An overview. Patel VB: The Molecular Nutrition of Fats. Academic Press; Cambridge, MA, USA: pp. 17–32. 2019 | |
Burdge GC and Calder PC: Introduction to fatty acids and lipids. World Rev Nutr Diet. 112:1–16. 2015. View Article : Google Scholar | |
Zechner R, Zimmermann R, Eichmann TO, Kohlwein SD, Haemmerle G, Lass A and Madeo F: FAT SIGNALS-lipases and lipolysis in lipid metabolism and signaling. Cell Metab. 15:279–291. 2012. View Article : Google Scholar : PubMed/NCBI | |
Monaco ME: Fatty acid metabolism in breast cancer subtypes. Oncotarget. 8:29487–29500. 2017. View Article : Google Scholar : PubMed/NCBI | |
Park JK, Coffey NJ, Limoges A and Le A: The Heterogeneity of lipid metabolism in cancer. Adv Exp Med Biol. 1063:33–55. 2018. View Article : Google Scholar : PubMed/NCBI | |
Vasseur S and Guillaumond F: Lipids in cancer: A global view of the contribution of lipid pathways to metastatic formation and treatment resistance. Oncogenesis. 11:462022. View Article : Google Scholar : PubMed/NCBI | |
Koundouros N and Poulogiannis G: Reprogramming of fatty acid metabolism in cancer. Br J Cancer. 122:4–22. 2020. View Article : Google Scholar : | |
Menendez JA and Lupu R: Fatty acid synthase and the lipogenic phenotype in cancer pathogenesis. Nat Rev Cancer. 7:763–777. 2007. View Article : Google Scholar : PubMed/NCBI | |
Alo' PL, Visca P, Marci A, Mangoni A, Botti C and Di Tondo U: Expression of fatty acid synthase (FAS) as a predictor of recurrence in stage I breast carcinoma patients. Cancer. 77:474–482. 1996. View Article : Google Scholar : PubMed/NCBI | |
Chajès V, Cambot M, Moreau K, Lenoir GM and Joulin V: Acetyl-CoA carboxylase alpha is essential to breast cancer cell survival. Cancer Res. 66:5287–5294. 2006. View Article : Google Scholar : PubMed/NCBI | |
Mashima T, Seimiya H and Tsuruo T: De novo fatty-acid synthesis and related pathways as molecular targets for cancer therapy. Br J Cancer. 100:1369–1372. 2009. View Article : Google Scholar : PubMed/NCBI | |
Xu S, Chen T, Dong L, Li T, Xue H, Gao B, Ding X, Wang H and Li H: Fatty acid synthase promotes breast cancer metastasis by mediating changes in fatty acid metabolism. Oncol Lett. 21:272021. | |
Wang J, Zhang X, Shi J, Cao P, Wan M, Zhang Q, Wang Y, Kridel SJ, Liu W, Xu J, et al: Fatty acid synthase is a primary target of MiR-15a and MiR-16-1 in breast cancer. Oncotarget. 7:78566–78576. 2016. View Article : Google Scholar : PubMed/NCBI | |
Wahdan-Alaswad RS, Cochrane DR, Spoelstra NS, Howe EN, Edgerton SM, Anderson SM, Thor AD and Richer JK: Metformin-induced killing of triple-negative breast cancer cells is mediated by reduction in fatty acid synthase via miRNA-193b. Horm Cancer. 5:374–389. 2014. View Article : Google Scholar : PubMed/NCBI | |
Chen Y, Li K, Gong D, Zhang J, Li Q, Zhao G and Lin P: ACLY: A biomarker of recurrence in breast cancer. Pathol Res Pract. 216:1530762020. View Article : Google Scholar : PubMed/NCBI | |
Liu H, Huang X and Ye T: MiR-22 down-regulates the proto-oncogene ATP citrate lyase to inhibit the growth and metastasis of breast cancer. Am J Transl Res. 10:659–669. 2018.PubMed/NCBI | |
Adorno-Cruz V, Hoffmann AD, Liu X, Dashzeveg NK, Taftaf R, Wray B, Keri RA and Liu H: ITGA2 promotes expression of ACLY and CCND1 in enhancing breast cancer stemness and metastasis. Genes Dis. 8:493–508. 2020. View Article : Google Scholar : PubMed/NCBI | |
Daniëls VW, Smans K, Royaux I, Chypre M, Swinnen JV and Zaidi N: Cancer cells differentially activate and thrive on de novo lipid synthesis pathways in a low-lipid environment. PLoS One. 9:e1069132014. View Article : Google Scholar : PubMed/NCBI | |
Simeone P, Tacconi S, Longo S, Lanuti P, Bravaccini S, Pirini F, Ravaioli S, Dini L and Giudetti AM: Expanding roles of De Novo lipogenesis in breast cancer. Int J Environ Res Public Health. 18:35752021. View Article : Google Scholar : PubMed/NCBI | |
Singh R, Yadav V, Kumar S and Saini N: MicroRNA-195 inhibits proliferation, invasion and metastasis in breast cancer cells by targeting FASN, HMGCR, ACACA and CYP27B1. Sci Rep. 5:174542015. View Article : Google Scholar : PubMed/NCBI | |
Yang Z, Qin W, Chen Y, Yuan B, Song X, Wang B, Shen F, Fu J and Wang H: Cholesterol inhibits hepatocellular carcinoma invasion and metastasis by promoting CD44 localization in lipid rafts. Cancer Lett. 429:66–77. 2018. View Article : Google Scholar : PubMed/NCBI | |
Yang YF, Jan YH, Liu YP, Yang CJ, Su CY, Chang YC, Lai TC, Chiou J, Tsai HY, Lu J, et al: Squalene synthase induces tumor necrosis factor receptor 1 enrichment in lipid rafts to promote lung cancer metastasis. Am J Respir Crit Care Med. 190:675–687. 2014. View Article : Google Scholar : PubMed/NCBI | |
Vona R, Iessi E and Matarrese P: Role of cholesterol and lipid rafts in cancer signaling: A promising therapeutic opportunity? Front Cell Dev Biol. 9:6229082021. View Article : Google Scholar : PubMed/NCBI | |
Bhardwaj A, Singh H, Trinidad CM, Albarracin CT, Hunt KK and Bedrosian I: The isomiR-140-3p-regulated mevalonic acid pathway as a potential target for prevention of triple negative breast cancer. Breast Cancer Res. 20:1502018. View Article : Google Scholar : PubMed/NCBI | |
DeBose-Boyd RA and Ye J: SREBPs in lipid metabolism, insulin signaling, and beyond. Trends Biochem Sci. 43:358–368. 2018. View Article : Google Scholar : PubMed/NCBI | |
Wu CL, Xu LL, Peng J and Zhang DH: Al-MPS obstructs EMT in breast cancer by inhibiting lipid metabolism via miR-215-5p/SREBP1. Endocrinology. 163:bqac0402022. View Article : Google Scholar : PubMed/NCBI | |
Zhao J, Xu L, Sun J, Song M, Wang L, Yuan S, Zhu Y, Wan Z, Larsson S, Tsilidis K, et al: Global trends in incidence, death, burden and risk factors of early-onset cancer from 1990 to 2019. BMJ Oncol. 2:e0000492023. View Article : Google Scholar | |
Ellsworth RE, Blackburn HL, Shriver CD, Soon-Shiong P and Ellsworth DL: Molecular heterogeneity in breast cancer: State of the science and implications for patient care. Semin Cell Dev Biol. 64:65–72. 2017. View Article : Google Scholar | |
Ho TQH, Bissell MCS, Kerlikowske K, Hubbard RA, Sprague BL, Lee CI, Tice JA, Tosteson ANA and Miglioretti DL: Cumulative probability of false-positive results after 10 years of screening with digital breast tomosynthesis vs digital mammography. JAMA Netw Open. 5:e2224402022. View Article : Google Scholar : PubMed/NCBI | |
El Hachem Z, Zoghbi M and Hallit S: Psychosocial consequences of false-positive results in screening mammography. J Family Med Prim Care. 8:419–425. 2019. View Article : Google Scholar : PubMed/NCBI | |
Park S, Ahn S, Kim JY, Kim J, Han HJ, Hwang D, Park J, Park HS, Park S, Kim GM, et al: Blood test for breast cancer screening through the detection of tumor-associated circulating transcripts. Int J Mol Sci. 23:91402022. View Article : Google Scholar : PubMed/NCBI | |
Gilson Sena IF, Fernandes LL, Lorandi LL, Santana TV, Cintra L, Lima IF, Iwai LK, Kramer JM, Birbrair A and Heller D: Identification of early biomarkers in saliva in genetically engineered mouse model C(3)1-TAg of breast cancer. Sci Rep. 12:115442022. View Article : Google Scholar : PubMed/NCBI | |
Giró Benet J, Seo M, Khine M, Gumà Padró J, Pardo Martnez A and Kurdahi F: Breast cancer detection by analyzing the volatile organic compound (VOC) signature in human urine. Sci Rep. 12:148732022. View Article : Google Scholar : PubMed/NCBI | |
Zhang L, Xiao H, Karlan S, Zhou H, Gross J, Elashoff D, Akin D, Yan X, Chia D, Karlan B and Wong DT: Discovery and preclinical validation of salivary transcriptomic and proteomic biomarkers for the non-invasive detection of breast cancer. PLoS One. 5:e155732010. View Article : Google Scholar | |
Lee RC, Feinbaum RL and Ambros V: The C. elegans heterochronic gene lin-4 encodes small RNAs with antisense complementarity to lin-14. Cell. 75:843–854. 1993. View Article : Google Scholar : PubMed/NCBI | |
Garrido-Palacios A, Rojas Carvajal AM, Núñez-Negrillo AM, Cortés-Martín J, Sánchez-García JC and Aguilar-Cordero MJ: MicroRNA dysregulation in early breast cancer diagnosis: A systematic review and meta-analysis. Int J Mol Sci. 24:82702023. View Article : Google Scholar : PubMed/NCBI | |
Kashyap D and Kaur H: Cell-free miRNAs as non-invasive biomarkers in breast cancer: Significance in early diagnosis and metastasis prediction. Life Sci. 246:1174172020. View Article : Google Scholar : PubMed/NCBI | |
Papadaki C, Stoupis G, Tsalikis L, Monastirioti A, Papadaki M, Maliotis N, Stratigos M, Mastrostamatis G, Mavroudis D and Agelaki S: Circulating miRNAs as a marker of metastatic disease and prognostic factor in metastatic breast cancer. Oncotarget. 10:966–981. 2019. View Article : Google Scholar : PubMed/NCBI | |
Chen X, Wang YW, Zhu WJ, Li Y, Liu L, Yin G and Gao P: A 4-microRNA signature predicts lymph node metastasis and prognosis in breast cancer. Hum Pathol. 76:122–132. 2018. View Article : Google Scholar : PubMed/NCBI | |
Gong C, Tan W, Chen K, You N, Zhu S, Liang G, Xie X, Li Q, Zeng Y, Ouyang N, et al: Prognostic value of a BCSC-associated MicroRNA signature in hormone receptor-positive HER2-negative breast cancer. EBioMedicine. 11:199–209. 2016. View Article : Google Scholar : PubMed/NCBI | |
Fu Z, Wang L, Li S, Chen F, Au-Yeung KK and Shi C: MicroRNA as an important target for anticancer drug development. Front Pharmacol. 12:7363232021. View Article : Google Scholar : PubMed/NCBI | |
Chakrabortty A, Patton DJ, Smith BF and Agarwal P: miRNAs: Potential as biomarkers and therapeutic targets for cancer. Genes (Basel). 14:13752023. View Article : Google Scholar : PubMed/NCBI | |
Hsieh TH, Hsu CY, Tsai CF, Long CY, Chai CY, Hou MF, Lee JN, Wu DC, Wang SC and Tsai EM: miR-125a-5p is a prognostic biomarker that targets HDAC4 to suppress breast tumorigenesis. Oncotarget. 6:494–509. 2015. View Article : Google Scholar : | |
Søkilde R, Persson H, Ehinger A, Pirona AC, Fernö M, Hegardt C, Larsson C, Loman N, Malmberg M, Rydén L, et al: Refinement of breast cancer molecular classification by miRNA expression profiles. BMC Genomics. 20:5032019. View Article : Google Scholar : PubMed/NCBI | |
Wang H, Tan Z, Hu H, Liu H, Wu T, Zheng C, Wang X, Luo Z, Wang J, Liu S, et al: microRNA-21 promotes breast cancer proliferation and metastasis by targeting LZTFL1. BMC Cancer. 19:7382019. View Article : Google Scholar : PubMed/NCBI | |
Arisan ED, Rencuzogullari O, Cieza-Borrella C, Miralles Arenas F, Dwek M, Lange S and Uysal-Onganer P: MiR-21 is required for the epithelial-mesenchymal transition in MDA-MB-231 breast cancer cells. Int J Mol Sci. 22:15572021. View Article : Google Scholar : PubMed/NCBI | |
Wang J, Wang Q, Guan Y, Sun Y, Wang X, Lively K, Wang Y, Luo M, Kim JA, Murphy E, et al: Breast cancer cell-derived microRNA-155 suppresses tumor progression via enhancing immune cell recruitment and antitumor function. J Clin Invest. 132:e1572482022. View Article : Google Scholar : PubMed/NCBI | |
Xu W, Song C, Wang X, Li Y, Bai X, Liang X, Wu J and Liu J: Downregulation of miR-155-5p enhances the anti-tumor effect of cetuximab on triple-negative breast cancer cells via inducing cell apoptosis and pyroptosis. Aging (Albany NY). 13:228–240. 2021. View Article : Google Scholar : PubMed/NCBI | |
Schmidt DR, Patel R, Kirsch DG, Lewis CA, Vander Heiden MG and Locasale JW: Metabolomics in cancer research and emerging applications in clinical oncology. CA Cancer J Clin. 71:333–358. 2021. View Article : Google Scholar : PubMed/NCBI | |
Rossi C, Cicalini I, Cufaro MC, Consalvo A, Upadhyaya P, Sala G, Antonucci I, Del Boccio P, Stuppia L and De Laurenzi V: Breast cancer in the era of integrating 'Omics' approaches. Oncogenesis. 11:172022. View Article : Google Scholar | |
Danzi F, Pacchiana R, Mafficini A, Scupoli MT, Scarpa A, Donadelli M and Fiore A: To metabolomics and beyond: A technological portfolio to investigate cancer metabolism. Signal Transduct Target Ther. 8:1372023. View Article : Google Scholar : PubMed/NCBI | |
Fan S, Shahid M, Jin P, Asher A and Kim J: Identification of metabolic alterations in breast cancer using mass spectrometry-based metabolomic analysis. Metabolites. 10:1702020. View Article : Google Scholar : PubMed/NCBI | |
Subramani R, Poudel S, Smith KD, Estrada A and Lakshmanaswamy R: Metabolomics of breast cancer: A review. Metabolites. 12:6432022. View Article : Google Scholar : PubMed/NCBI | |
Budczies J, Brockmöller SF, Müller BM, Barupal DK, Richter-Ehrenstein C, Kleine-Tebbe A, Griffin JL, Orešič M, Dietel M, Denkert C and Fiehn O: Comparative metabolomics of estrogen receptor positive and estrogen receptor negative breast cancer: Alterations in glutamine and beta-alanine metabolism. J Proteomics. 94:279–288. 2013. View Article : Google Scholar : PubMed/NCBI | |
Amiri-Dashatan N, Yekta RF, Koushki M, Arefi Oskouie A, Esfahani H, Taheri S and Kazemian E: Metabolomic study of serum in patients with invasive ductal breast carcinoma with LC-MS/MS approach. Int J Biol Markers. 37:349–359. 2022. View Article : Google Scholar : PubMed/NCBI | |
Shestakova KM, Moskaleva NE, Boldin AA, Rezvanov PM, Shestopalov AV, Rumyantsev SA, Zlatnik EY, Novikova IA, Sagakyants AB, Timofeeva SV, et al: Targeted metabolomic profiling as a tool for diagnostics of patients with non-small-cell lung cancer. Sci Rep. 13:110722023. View Article : Google Scholar : PubMed/NCBI | |
Gold A, Choueiry F, Jin N, Mo X and Zhu J: The application of metabolomics in recent colorectal cancer studies: A state-of-the-art review. Cancers (Basel). 14:7252022. View Article : Google Scholar : PubMed/NCBI | |
Nam M, Seo SS, Jung S, Jang SY, Lee J, Kwon M, Khan I, Ryu DH, Kim MK and Hwang GS: Comparable plasma lipid changes in patients with high-grade cervical intraepithelial neoplasia and patients with cervical cancer. J Proteome Res. 20:740–750. 2021. View Article : Google Scholar | |
Granit A, Mishra K, Barasch D, Peretz-Yablonsky T, Eyal S and Kakhlon O: Metabolomic profiling of triple negative breast cancer cells suggests that valproic acid can enhance the anticancer effect of cisplatin. Front Cell Dev Biol. 10:10147982022. View Article : Google Scholar : PubMed/NCBI | |
Xiao Y, Ma D, Yang YS, Yang F, Ding JH, Gong Y, Jiang L, Ge LP, Wu SY, Yu Q, et al: Comprehensive metabolomics expands precision medicine for triple-negative breast cancer. Cell Res. 32:477–490. 2022. View Article : Google Scholar : PubMed/NCBI | |
Iyer A, Hamers AAJ and Pillai AB: CyTOF® for the masses. Front Immunol. 13:8158282022. View Article : Google Scholar | |
Fogazzi V, Kapahnke M, Cataldo A, Plantamura I, Tagliabue E, Di Cosimo S, Cosentino G and Iorio MV: The role of MicroRNAs in HER2-positive breast cancer: Where we are and future prospective. Cancers (Basel). 14:53262022. View Article : Google Scholar : PubMed/NCBI | |
Cappelletti V, Iorio E, Miodini P, Silvestri M, Dugo M and Daidone MG: Metabolic footprints and molecular subtypes in breast cancer. Dis Markers. 2017:76878512017. View Article : Google Scholar |