Spandidos Publications Logo
  • About
    • About Spandidos
    • Aims and Scopes
    • Abstracting and Indexing
    • Editorial Policies
    • Reprints and Permissions
    • Job Opportunities
    • Terms and Conditions
    • Contact
  • Journals
    • All Journals
    • Oncology Letters
      • Oncology Letters
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Oncology
      • International Journal of Oncology
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Molecular and Clinical Oncology
      • Molecular and Clinical Oncology
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Experimental and Therapeutic Medicine
      • Experimental and Therapeutic Medicine
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Molecular Medicine
      • International Journal of Molecular Medicine
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Biomedical Reports
      • Biomedical Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Oncology Reports
      • Oncology Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Molecular Medicine Reports
      • Molecular Medicine Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • World Academy of Sciences Journal
      • World Academy of Sciences Journal
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Functional Nutrition
      • International Journal of Functional Nutrition
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Epigenetics
      • International Journal of Epigenetics
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Medicine International
      • Medicine International
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
  • Articles
  • Information
    • Information for Authors
    • Information for Reviewers
    • Information for Librarians
    • Information for Advertisers
    • Conferences
  • Language Editing
Spandidos Publications Logo
  • About
    • About Spandidos
    • Aims and Scopes
    • Abstracting and Indexing
    • Editorial Policies
    • Reprints and Permissions
    • Job Opportunities
    • Terms and Conditions
    • Contact
  • Journals
    • All Journals
    • Biomedical Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Experimental and Therapeutic Medicine
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Epigenetics
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Functional Nutrition
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Molecular Medicine
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Oncology
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Medicine International
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Molecular and Clinical Oncology
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Molecular Medicine Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Oncology Letters
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Oncology Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • World Academy of Sciences Journal
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
  • Articles
  • Information
    • For Authors
    • For Reviewers
    • For Librarians
    • For Advertisers
    • Conferences
  • Language Editing
Login Register Submit
  • This site uses cookies
  • You can change your cookie settings at any time by following the instructions in our Cookie Policy. To find out more, you may read our Privacy Policy.

    I agree
Search articles by DOI, keyword, author or affiliation
Search
Advanced Search
presentation
International Journal of Oncology
Join Editorial Board Propose a Special Issue
Print ISSN: 1019-6439 Online ISSN: 1791-2423
Journal Cover
January-2025 Volume 66 Issue 1

Full Size Image

Cover Legend PDF

Sign up for eToc alerts
Recommend to Library

Journals

International Journal of Molecular Medicine

International Journal of Molecular Medicine

International Journal of Molecular Medicine is an international journal devoted to molecular mechanisms of human disease.

International Journal of Oncology

International Journal of Oncology

International Journal of Oncology is an international journal devoted to oncology research and cancer treatment.

Molecular Medicine Reports

Molecular Medicine Reports

Covers molecular medicine topics such as pharmacology, pathology, genetics, neuroscience, infectious diseases, molecular cardiology, and molecular surgery.

Oncology Reports

Oncology Reports

Oncology Reports is an international journal devoted to fundamental and applied research in Oncology.

Experimental and Therapeutic Medicine

Experimental and Therapeutic Medicine

Experimental and Therapeutic Medicine is an international journal devoted to laboratory and clinical medicine.

Oncology Letters

Oncology Letters

Oncology Letters is an international journal devoted to Experimental and Clinical Oncology.

Biomedical Reports

Biomedical Reports

Explores a wide range of biological and medical fields, including pharmacology, genetics, microbiology, neuroscience, and molecular cardiology.

Molecular and Clinical Oncology

Molecular and Clinical Oncology

International journal addressing all aspects of oncology research, from tumorigenesis and oncogenes to chemotherapy and metastasis.

World Academy of Sciences Journal

World Academy of Sciences Journal

Multidisciplinary open-access journal spanning biochemistry, genetics, neuroscience, environmental health, and synthetic biology.

International Journal of Functional Nutrition

International Journal of Functional Nutrition

Open-access journal combining biochemistry, pharmacology, immunology, and genetics to advance health through functional nutrition.

International Journal of Epigenetics

International Journal of Epigenetics

Publishes open-access research on using epigenetics to advance understanding and treatment of human disease.

Medicine International

Medicine International

An International Open Access Journal Devoted to General Medicine.

Journal Cover
January-2025 Volume 66 Issue 1

Full Size Image

Cover Legend PDF

Sign up for eToc alerts
Recommend to Library

  • Article
  • Citations
    • Cite This Article
    • Download Citation
    • Create Citation Alert
    • Remove Citation Alert
    • Cited By
  • Similar Articles
    • Related Articles (in Spandidos Publications)
    • Similar Articles (Google Scholar)
    • Similar Articles (PubMed)
  • Download PDF
  • Download XML
  • View XML
Review Open Access

MicroRNAs and their role in breast cancer metabolism (Review)

  • Authors:
    • Wen Xuan Lee
    • Bann Siang Yeo
    • Rozi Mahmud
    • Geok Chin Tan
    • Mohamed Ibrahim Abdul Wahid
    • Yoke Kqueen Cheah
  • View Affiliations / Copyright

    Affiliations: Department of Biomedical Science, Faculty of Medicine and Health Sciences, Universiti Putra Malaysia, Serdang, Selangor 43400, Malaysia, Department of Radiology, Faculty of Medicine and Health Sciences, Universiti Putra Malaysia, Serdang, Selangor 43400, Malaysia, Department of Pathology, Faculty of Medicine, Universiti Kebangsaan Malaysia, Kuala Lumpur 56000, Malaysia, Department of Oncology, Beacon Hospital Sdn. Bhd., Petaling Jaya, Selangor 46050, Malaysia
    Copyright: © Lee et al. This is an open access article distributed under the terms of Creative Commons Attribution License.
  • Article Number: 7
    |
    Published online on: December 5, 2024
       https://doi.org/10.3892/ijo.2024.5713
  • Expand metrics +
Metrics: Total Views: 0 (Spandidos Publications: | PMC Statistics: )
Metrics: Total PDF Downloads: 0 (Spandidos Publications: | PMC Statistics: )
Cited By (CrossRef): 0 citations Loading Articles...

This article is mentioned in:



Abstract

Breast cancer (BC) continues to be the leading cause of cancer‑related mortality among women, placing a substantial disease burden on the global female population. MicroRNAs (miRNAs) are members of a large class of non‑coding RNAs capable of regulating gene expression at the post‑transcriptional level. With cases of early‑onset BC on the rise, miRNAs are promising biomarkers and therapeutic targets for early BC detection and treatment. Dysregulated miRNA expression is known to be closely linked to BC development and metastasis in cancer cells via metabolic reprogramming. Normal cellular metabolism is tightly regulated by various complex signaling pathways. Therefore, dysregulation of metabolism due to metabolic reprogramming is considered a hallmark of cancer. The present review delves into the crucial roles that miRNAs serve in disordered cellular metabolism of BC by targeting gene transcripts, key metabolic enzymes and transporter proteins responsible for regulating major cellular metabolism pathways. The future outlook and clinical implications of miRNAs as potential diagnostic, prognostic and therapeutic markers in BC metabolism are also discussed.
View Figures

Figure 1

Figure 2

View References

1 

International Agency for Research on Cancer: Global Cancer Observatory. Cancer Today. Accessed on September 22, 2024https://gco.iarc.fr/today/online-analysis-multi-bars.

2 

Sung H, Ferlay J, Siegel RL, Laversanne M, Soerjomataram I, Jemal A and Bray F: Global cancer statistics 2020: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J Clin. 71:209–249. 2021. View Article : Google Scholar : PubMed/NCBI

3 

Arnold M, Morgan E, Rumgay H, Mafra A, Singh D, Laversanne M, Vignat J, Gralow JR, Cardoso F, Siesling S and Soerjomataram I: Current and future burden of breast cancer: Global statistics for 2020 and 2040. Breast. 66:15–23. 2022. View Article : Google Scholar : PubMed/NCBI

4 

Lee MS, 'Azmiyaty Amar Ma' Ruf C, Nadhirah Izhar DP, Nafisah Ishak S, Wan Jamaluddin WS, Ya'acob SNM and Kamaluddin MN: Awareness on breast cancer screening in Malaysia: A cross sectional study. Biomedicine (Taipei). 9:182019. View Article : Google Scholar : PubMed/NCBI

5 

Momenimovahed Z and Salehiniya H: Epidemiological characteristics of and risk factors for breast cancer in the world. Breast Cancer (Dove Med Press). 11:151–164. 2019.PubMed/NCBI

6 

Malhotra GK, Zhao X, Band H and Band V: Histological, molecular and functional subtypes of breast cancers. Cancer Biol Ther. 10:955–960. 2010. View Article : Google Scholar : PubMed/NCBI

7 

Watkins EJ: Overview of breast cancer. JAAPA. 32:13–17. 2019. View Article : Google Scholar : PubMed/NCBI

8 

Posner MC and Wolmark N: Non-invasive breast carcinoma. Breast Cancer Res Treat. 21:155–164. 1992. View Article : Google Scholar : PubMed/NCBI

9 

Corben AD: Pathology of invasive breast disease. Surg Clin North Am. 93:363–392. 2013. View Article : Google Scholar : PubMed/NCBI

10 

Sharma GN, Dave R, Sanadya J, Sharma P and Sharma KK: Various types and management of breast cancer: An overview. J Adv Pharm Technol Res. 1:109–126. 2010. View Article : Google Scholar : PubMed/NCBI

11 

Yip CH and Rhodes A: Estrogen and progesterone receptors in breast cancer. Future Oncol. 10:2293–2301. 2014. View Article : Google Scholar : PubMed/NCBI

12 

Iqbal N and Iqbal N: Human epidermal growth factor receptor 2 (HER2) in cancers: Overexpression and therapeutic implications. Mol Biol Int. 2014:8527482014. View Article : Google Scholar : PubMed/NCBI

13 

Derakhshan F and Reis-Filho JS: Pathogenesis of triple-negative breast cancer. Annu Rev Pathol. 17:181–204. 2022. View Article : Google Scholar : PubMed/NCBI

14 

Tan J and Le A: The heterogeneity of breast cancer metabolism. Adv Exp Med Biol. 1311:89–101. 2021. View Article : Google Scholar : PubMed/NCBI

15 

Ahn S, Woo JW, Lee K and Park SY: HER2 status in breast cancer: Changes in guidelines and complicating factors for interpretation. J Pathol Transl Med. 54:34–44. 2020. View Article : Google Scholar :

16 

Hanahan D and Weinberg RA: Hallmarks of cancer: The next generation. Cell. 144:646–674. 2011. View Article : Google Scholar : PubMed/NCBI

17 

Hanahan D: Hallmarks of cancer: New dimensions. Cancer Discov. 12:31–46. 2022. View Article : Google Scholar : PubMed/NCBI

18 

Serrano-Carbajal EA, Espinal-Enríquez J and Hernández-Lemus E: Targeting metabolic deregulation landscapes in breast cancer subtypes. Front Oncol. 10:972020. View Article : Google Scholar : PubMed/NCBI

19 

Wang L, Zhang S and Wang X: The metabolic mechanisms of breast cancer metastasis. Front Oncol. 10:6024162021. View Article : Google Scholar : PubMed/NCBI

20 

Chan B, Manley J, Lee J and Singh SR: The emerging roles of microRNAs in cancer metabolism. Cancer Lett. 356:301–308. 2015. View Article : Google Scholar

21 

Iorio MV and Croce CM: Causes and consequences of microRNA dysregulation. Cancer J. 18:215–222. 2012. View Article : Google Scholar : PubMed/NCBI

22 

Muñoz JP, Pérez-Moreno P, Pérez Y and Calaf GM: The role of MicroRNAs in breast cancer and the challenges of their clinical application. Diagnostics (Basel). 13:30722023. View Article : Google Scholar : PubMed/NCBI

23 

Suriya Muthukumaran N, Velusamy P, Akino Mercy CS, Langford D, Natarajaseenivasan K and Shanmughapriya S: MicroRNAs as regulators of cancer cell energy metabolism. J Pers Med. 12:13292022. View Article : Google Scholar : PubMed/NCBI

24 

Saliminejad K, Khorram Khorshid HR, Soleymani Fard S and Ghaffari SH: An overview of microRNAs: Biology, functions, therapeutics, and analysis methods. J Cell Physiol. 234:5451–5465. 2019. View Article : Google Scholar

25 

Diener C, Keller A and Meese E: The miRNA-target interactions: An underestimated intricacy. Nucleic Acids Res. 52:1544–1557. 2024. View Article : Google Scholar

26 

Liu L, He J, Wei X, Wan G, Lao Y, Xu W, Li Z, Hu H, Hu Z, Luo X, et al: MicroRNA-20a-mediated loss of autophagy contributes to breast tumorigenesis by promoting genomic damage and instability. Oncogene. 36:5874–5884. 2017. View Article : Google Scholar : PubMed/NCBI

27 

Ma F, Li W, Liu C, Li W, Yu H, Lei B, Ren Y, Li Z, Pang D and Qian C: MiR-23a promotes TGF-β1-induced EMT and tumor metastasis in breast cancer cells by directly targeting CDH1 and activating Wnt/β-catenin signaling. Oncotarget. 8:69538–69550. 2017. View Article : Google Scholar : PubMed/NCBI

28 

Gao F and Tian J: FOXK1, regulated by miR-365-3p, promotes cell growth and EMT indicates unfavorable prognosis in breast cancer. Onco Targets Ther. 13:623–634. 2020. View Article : Google Scholar : PubMed/NCBI

29 

Ali Syeda Z, Langden SSS, Munkhzul C, Lee M and Song SJ: Regulatory mechanism of MicroRNA expression in cancer. Int J Mol Sci. 21:17232020. View Article : Google Scholar : PubMed/NCBI

30 

Nakrani MN, Wineland RH and Anjum F: Physiology, glucose metabolism. StatPearls [Internet]. StatPearls Publishing; Treasure Island, FL: 2023

31 

Paredes-Flores MA and Mohiuddin SS: Biochemistry, glycogenolysis. StatPearls [Internet]. StatPearls Publishing; Treasure Island, FL: 2022

32 

Patino SC and Orrick JA: Biochemistry, glycogenesis. StatPearls [Internet]. StatPearls Publishing; Treasure Island, FL: 2023

33 

Dunn J and Grider MH: Physiology, adenosine triphosphate. StatPearls [Internet]. StatPearls Publishing; Treasure Island, FL: 2023

34 

Pavlova NN, Zhu J and Thompson CB: The hallmarks of cancer metabolism: Still emerging. Cell Metab. 34:355–377. 2022. View Article : Google Scholar : PubMed/NCBI

35 

Warburg O: On the origin of cancer cells. Science. 123:309–314. 1956. View Article : Google Scholar : PubMed/NCBI

36 

Liberti MV and Locasale JW: The warburg effect: How does it benefit cancer cells? Trends Biochem Sci. 41:211–218. 2016. View Article : Google Scholar : PubMed/NCBI

37 

Pascale RM, Calvisi DF, Simile MM, Feo CF and Feo F: The Warburg effect 97 years after its discovery. Cancers (Basel). 12:28192020. View Article : Google Scholar : PubMed/NCBI

38 

Yu L, Chen X, Wang L and Chen S: The sweet trap in tumors: Aerobic glycolysis and potential targets for therapy. Oncotarget. 7:38908–38926. 2016. View Article : Google Scholar : PubMed/NCBI

39 

Nong S, Han X, Xiang Y, Qian Y, Wei Y, Zhang T, Tian K, Shen K, Yang J and Ma X: Metabolic reprogramming in cancer: Mechanisms and therapeutics. MedComm (2020). 4:e2182023. View Article : Google Scholar : PubMed/NCBI

40 

Iorio MV and Croce CM: MicroRNA dysregulation in cancer: Diagnostics, monitoring and therapeutics. A comprehensive review. EMBO Mol Med. 4:143–159. 2012. View Article : Google Scholar : PubMed/NCBI

41 

Chaudhry R and Varacallo M: Biochemistry, glycolysis. StatPearls [Internet]. StatPearls Publishing; Treasure Island, FL: 2023

42 

Lenzen S: A fresh view of glycolysis and glucokinase regulation: History and current status. J Biol Chem. 289:12189–12194. 2014. View Article : Google Scholar : PubMed/NCBI

43 

Roberts DJ and Miyamoto S: Hexokinase II integrates energy metabolism and cellular protection: Akting on mitochondria and TORCing to autophagy. Cell Death Differ. 22:248–257. 2015. View Article : Google Scholar :

44 

Jiang S, Zhang LF, Zhang HW, Hu S, Lu MH, Liang S, Li B, Li Y, Li D, Wang ED and Liu MF: A novel miR-155/miR-143 cascade controls glycolysis by regulating hexokinase 2 in breast cancer cells. EMBO J. 31:1985–1998. 2012. View Article : Google Scholar : PubMed/NCBI

45 

Liu T, Ye P, Ye Y and Han B: MicroRNA-216b targets HK2 to potentiate autophagy and apoptosis of breast cancer cells via the mTOR signaling pathway. Int J Biol Sci. 17:2970–2983. 2021. View Article : Google Scholar : PubMed/NCBI

46 

Li L, Zhang X, Lin Y, Ren X, Xie T, Lin J, Wu S and Ye Q: Let-7b-5p inhibits breast cancer cell growth and metastasis via repression of hexokinase 2-mediated aerobic glycolysis. Cell Death Discov. 9:1142023. View Article : Google Scholar : PubMed/NCBI

47 

Li L, Peng G, Liu X, Zhang Y, Han H and Liu ZR: Pyruvate kinase M2 coordinates metabolism switch between glycolysis and glutaminolysis in cancer cells. iScience. 23:1016842020. View Article : Google Scholar : PubMed/NCBI

48 

Hsu MC and Hung WC: Pyruvate kinase M2 fuels multiple aspects of cancer cells: From cellular metabolism, transcriptional regulation to extracellular signaling. Mol Cancer. 17:352018. View Article : Google Scholar : PubMed/NCBI

49 

Park B, Kim JY, Riffey OF, Dowker-Key P, Bruckbauer A, McLoughlin J, Bettaieb A and Donohoe DR: Pyruvate kinase M1 regulates butyrate metabolism in cancerous colonocytes. Sci Rep. 12:87712022. View Article : Google Scholar : PubMed/NCBI

50 

Schormann N, Hayden KL, Lee P, Banerjee S and Chattopadhyay D: An overview of structure, function, and regulation of pyruvate kinases. Protein Sci. 28:1771–1784. 2019. View Article : Google Scholar : PubMed/NCBI

51 

Amin S, Yang P and Li Z: Pyruvate kinase M2: A multifarious enzyme in non-canonical localization to promote cancer progression. Biochim Biophys Acta Rev Cancer. 1871:331–341. 2019. View Article : Google Scholar : PubMed/NCBI

52 

Israelsen WJ and Vander Heiden MG: Pyruvate kinase: Function, regulation and role in cancer. Semin Cell Dev Biol. 43:43–51. 2015. View Article : Google Scholar : PubMed/NCBI

53 

Wen YY, Liu WT, Sun HR, Ge X, Shi ZM, Wang M, Li W, Zhang JY, Liu LZ and Jiang BH: IGF-1-mediated PKM2/β-catenin/miR-152 regulatory circuit in breast cancer. Sci Rep. 7:158972017. View Article : Google Scholar

54 

Xu Q, Liu LZ, Yin Y, He J, Li Q, Qian X, You Y, Lu Z, Peiper SC, Shu Y and Jiang BH: Regulatory circuit of PKM2/NF-κB/miR-148a/152-modulated tumor angiogenesis and cancer progression. Oncogene. 34:5482–5493. 2015. View Article : Google Scholar : PubMed/NCBI

55 

Yao A, Xiang Y, Si YR, Fan LJ, Li JP, Li H, Guo W, He HX, Liang XJ, Tan Y, et al: PKM2 promotes glucose metabolism through a let-7a-5p/Stat3/hnRNP-A1 regulatory feedback loop in breast cancer cells. J Cell Biochem. 120:6542–6554. 2019. View Article : Google Scholar

56 

Chen Y, Cen L, Guo R, Huang S and Chen D: Roles and mechanisms of phosphoglycerate kinase 1 in cancer. Bull Cancer. 109:1298–1307. 2022. View Article : Google Scholar : PubMed/NCBI

57 

Ye T, Liang Y, Zhang D and Zhang X: MicroRNA-16-1-3p represses breast tumor growth and metastasis by inhibiting PGK1-mediated warburg effect. Front Cell Dev Biol. 8:6151542020. View Article : Google Scholar : PubMed/NCBI

58 

Ran F, Zhang Y, Shi Y, Liu J, Li H, Ding L and Ye Q: miR-1224-3p promotes breast cancer cell proliferation and migration through PGM5-mediated aerobic glycolysis. J Oncol. 2021:55297702021. View Article : Google Scholar : PubMed/NCBI

59 

Li L, Kang L, Zhao W, Feng Y, Liu W, Wang T, Mai H, Huang J, Chen S, Liang Y, et al: miR-30a-5p suppresses breast tumor growth and metastasis through inhibition of LDHA-mediated Warburg effect. Cancer Lett. 400:89–98. 2017. View Article : Google Scholar : PubMed/NCBI

60 

Xiao X, Huang X, Ye F, Chen B, Song C, Wen J, Zhang Z, Zheng G, Tang H and Xie X: The miR-34a-LDHA axis regulates glucose metabolism and tumor growth in breast cancer. Sci Rep. 6:217352016. View Article : Google Scholar : PubMed/NCBI

61 

Ge X, Lyu P, Cao Z, Li J, Guo G, Xia W and Gu Y: Overexpression of miR-206 suppresses glycolysis, proliferation and migration in breast cancer cells via PFKFB3 targeting. Biochem Biophys Res Commun. 463:1115–1121. 2015. View Article : Google Scholar : PubMed/NCBI

62 

Telang S, Yalcin A, Clem AL, Bucala R, Lane AN, Eaton JW and Chesney J: Ras transformation requires metabolic control by 6-phosphofructo-2-kinase. Oncogene. 25:7225–7234. 2006. View Article : Google Scholar : PubMed/NCBI

63 

Kim JW and Dang CV: Multifaceted roles of glycolytic enzymes. Trends Biochem Sci. 30:142–150. 2005. View Article : Google Scholar : PubMed/NCBI

64 

Ahmad A, Aboukameel A, Kong D, Wang Z, Sethi S, Chen W, Sarkar FH and Raz A: Phosphoglucose isomerase/autocrine motility factor mediates epithelial-mesenchymal transition regulated by miR-200 in breast cancer cells. Cancer Res. 71:3400–3409. 2011. View Article : Google Scholar : PubMed/NCBI

65 

Guda MR, Asuthkar S, Labak CM, Tsung AJ, Alexandrov I, Mackenzie MJ, Prasad DV and Velpula KK: Targeting PDK4 inhibits breast cancer metabolism. Am J Cancer Res. 8:1725–1738. 2018.PubMed/NCBI

66 

Lu H, Forbes RA and Verma A: Hypoxia-inducible factor 1 activation by aerobic glycolysis implicates the Warburg effect in carcinogenesis. J Biol Chem. 277:23111–23115. 2002. View Article : Google Scholar : PubMed/NCBI

67 

Zhai Z, Mu T, Zhao L, Li Y, Zhu D and Pan Y: MiR-181a-5p facilitates proliferation, invasion, and glycolysis of breast cancer through NDRG2-mediated activation of PTEN/AKT pathway. Bioengineered. 13:83–95. 2022. View Article : Google Scholar :

68 

Lang L, Tao J, Yang C and Li W: Tumor suppressive role of microRNA-4731-5p in breast cancer through reduction of PAICS-induced FAK phosphorylation. Cell Death Discov. 8:1542022. View Article : Google Scholar : PubMed/NCBI

69 

Ziello JE, Jovin IS and Huang Y: Hypoxia-Inducible Factor (HIF)-1 regulatory pathway and its potential for therapeutic intervention in malignancy and ischemia. Yale J Biol Med. 80:51–60. 2007.PubMed/NCBI

70 

Semenza GL: HIF-1: Upstream and downstream of cancer metabolism. Curr Opin Genet Dev. 20:51–56. 2010. View Article : Google Scholar :

71 

Du Y, Wei N, Ma R, Jiang SH and Song D: A miR-210-3p regulon that controls the Warburg effect by modulating HIF-1α and p53 activity in triple-negative breast cancer. Cell Death Dis. 11:7312020. View Article : Google Scholar

72 

Jiang Y, Zhang M, Yu D, Hou G, Wu J and Li F: CircRBM33 downregulation inhibits hypoxia-induced glycolysis and promotes apoptosis of breast cancer cells via a microRNA-542-3p/HIF-1α axis. Cell Death Discov. 8:1262022. View Article : Google Scholar

73 

Cao L, Wang M, Dong Y, Xu B, Chen J, Ding Y, Qiu S, Li L, Karamfilova Zaharieva E, Zhou X and Xu Y: Circular RNA circRNF20 promotes breast cancer tumorigenesis and Warburg effect through miR-487a/HIF-1α/HK2. Cell Death Dis. 11:1452020. View Article : Google Scholar

74 

Zhao Y, He J, Yang L, Luo Q and Liu Z: Histone deacetylase-3 modification of MicroRNA-31 promotes cell proliferation and aerobic glycolysis in breast cancer and is predictive of poor prognosis. J Breast Cancer. 21:112–123. 2018. View Article : Google Scholar : PubMed/NCBI

75 

Kurmi K and Haigis MC: Nitrogen metabolism in cancer and immunity. Trends Cell Biol. 30:408–424. 2020. View Article : Google Scholar : PubMed/NCBI

76 

Wang S, Tsun ZY, Wolfson RL, Shen K, Wyant GA, Plovanich ME, Yuan ED, Jones TD, Chantranupong L, Comb W, et al: Metabolism. Lysosomal amino acid transporter SLC38A9 signals arginine sufficiency to mTORC1. Science. 347:188–194. 2015. View Article : Google Scholar : PubMed/NCBI

77 

Yeon A, You S, Kim M, Gupta A, Park MH, Weisenberger DJ, Liang G and Kim J: Rewiring of cisplatin-resistant bladder cancer cells through epigenetic regulation of genes involved in amino acid metabolism. Theranostics. 8:4520–4534. 2018. View Article : Google Scholar : PubMed/NCBI

78 

Gao M, Monian P, Quadri N, Ramasamy R and Jiang X: Glutaminolysis and transferrin regulate ferroptosis. Mol Cell. 59:298–308. 2015. View Article : Google Scholar : PubMed/NCBI

79 

Wei Z, Liu X, Cheng C, Yu W and Yi P: Metabolism of amino acids in cancer. Front Cell Dev Biol. 8:6038372021. View Article : Google Scholar : PubMed/NCBI

80 

Yan W, Wu X, Zhou W, Fong MY, Cao M, Liu J, Liu X, Chen CH, Fadare O, Pizzo DP, et al: Cancer-cell-secreted exosomal miR-105 promotes tumour growth through the MYC-dependent metabolic reprogramming of stromal cells. Nat Cell Biol. 20:597–609. 2018. View Article : Google Scholar : PubMed/NCBI

81 

Cruzat V, Macedo Rogero M, Noel Keane K, Curi R and Newsholme P: Glutamine: Metabolism and immune function, supplementation and clinical translation. Nutrients. 10:15642018. View Article : Google Scholar : PubMed/NCBI

82 

Choi YK and Park KG: Targeting glutamine metabolism for cancer treatment. Biomol Ther (Seoul). 26:19–28. 2018. View Article : Google Scholar

83 

Wise DR and Thompson CB: Glutamine addiction: A new therapeutic target in cancer. Trends Biochem Sci. 35:427–433. 2010. View Article : Google Scholar : PubMed/NCBI

84 

Jin J, Byun JK, Choi YK and Park KG: Targeting glutamine metabolism as a therapeutic strategy for cancer. Exp Mol Med. 55:706–715. 2023. View Article : Google Scholar : PubMed/NCBI

85 

Jin L, Alesi GN and Kang S: Glutaminolysis as a target for cancer therapy. Oncogene. 35:3619–3625. 2016. View Article : Google Scholar

86 

Haikala HM, Marques E, Turunen M and Klefström J: Myc requires RhoA/SRF to reprogram glutamine metabolism. Small GTPases. 9:274–282. 2018. View Article : Google Scholar :

87 

Budczies J, Pfitzner BM, Györffy B, Winzer KJ, Radke C, Dietel M, Fiehn O and Denkert C: Glutamate enrichment as new diagnostic opportunity in breast cancer. Int J Cancer. 136:1619–1628. 2015. View Article : Google Scholar

88 

Herner A, Sauliunaite D, Michalski CW, Erkan M, De Oliveira T, Abiatari I, Kong B, Esposito I, Friess H and Kleeff J: Glutamate increases pancreatic cancer cell invasion and migration via AMPA receptor activation and Kras-MAPK signaling. Int J Cancer. 129:2349–2359. 2011. View Article : Google Scholar : PubMed/NCBI

89 

Mukha A, Kahya U, Linge A, Chen O, Löck S, Lukiyanchuk V, Richter S, Alves TC, Peitzsch M, Telychko V, et al: GLS-driven glutamine catabolism contributes to prostate cancer radiosensitivity by regulating the redox state, stemness and ATG5-mediated autophagy. Theranostics. 11:7844–7868. 2021. View Article : Google Scholar : PubMed/NCBI

90 

Xiong J, Wang N, Zhong HJ, Cui BW, Cheng S, Sun R, Chen JY, Xu PP, Cai G, Wang L, et al: SLC1A1 mediated glutamine addiction and contributed to natural killer T-cell lymphoma progression with immunotherapeutic potential. EBioMedicine. 72:1036142021. View Article : Google Scholar : PubMed/NCBI

91 

Cluntun AA, Lukey MJ, Cerione RA and Locasale JW: Glutamine metabolism in cancer: Understanding the heterogeneity. Trends Cancer. 3:169–180. 2017. View Article : Google Scholar : PubMed/NCBI

92 

El Ansari R, McIntyre A, Craze ML, Ellis IO, Rakha EA and Green AR: Altered glutamine metabolism in breast cancer; subtype dependencies and alternative adaptations. Histopathology. 72:183–190. 2018. View Article : Google Scholar

93 

Lieu EL, Nguyen T, Rhyne S and Kim J: Amino acids in cancer. Exp Mol Med. 52:15–30. 2020. View Article : Google Scholar : PubMed/NCBI

94 

Kung HN, Marks JR and Chi JT: Glutamine synthetase is a genetic determinant of cell type-specific glutamine independence in breast epithelia. PLoS Genet. 7:e10022292011. View Article : Google Scholar : PubMed/NCBI

95 

Lampa M, Arlt H, He T, Ospina B, Reeves J, Zhang B, Murtie J, Deng G, Barberis C, Hoffmann D, et al: Glutaminase is essential for the growth of triple-negative breast cancer cells with a deregulated glutamine metabolism pathway and its suppression synergizes with mTOR inhibition. PLoS One. 12:e01850922017. View Article : Google Scholar : PubMed/NCBI

96 

Thewes V, Simon R, Hlevnjak M, Schlotter M, Schroeter P, Schmidt K, Wu Y, Anzeneder T, Wang W, Windisch P, et al: The branched-chain amino acid transaminase 1 sustains growth of antiestrogen-resistant and ERα-negative breast cancer. Oncogene. 36:4124–4134. 2017. View Article : Google Scholar : PubMed/NCBI

97 

Craze ML, El-Ansari R, Aleskandarany MA, Cheng KW, Alfarsi L, Masisi B, Diez-Rodriguez M, Nolan CC, Ellis IO, Rakha EA and Green AR: Glutamate dehydrogenase (GLUD1) expression in breast cancer. Breast Cancer Res Treat. 174:79–91. 2019. View Article : Google Scholar

98 

Cao Y, Lin SH, Wang Y, Chin YE, Kang L and Mi J: Glutamic pyruvate transaminase GPT2 promotes tumorigenesis of breast cancer cells by activating sonic hedgehog signaling. Theranostics. 7:3021–3033. 2017. View Article : Google Scholar : PubMed/NCBI

99 

Zhang L and Han J: Branched-chain amino acid transaminase 1 (BCAT1) promotes the growth of breast cancer cells through improving mTOR-mediated mitochondrial biogenesis and function. Biochem Biophys Res Commun. 486:224–231. 2017. View Article : Google Scholar : PubMed/NCBI

100 

Masisi BK, El Ansari R, Alfarsi L, Craze ML, Jewa N, Oldfield A, Cheung H, Toss M, Rakha EA and Green AR: The biological and clinical significance of glutaminase in luminal breast cancer. Cancers (Basel). 13:39632021. View Article : Google Scholar : PubMed/NCBI

101 

Kandasamy P, Gyimesi G, Kanai Y and Hediger MA: Amino acid transporters revisited: New views in health and disease. Trends Biochem Sci. 43:752–789. 2018. View Article : Google Scholar : PubMed/NCBI

102 

Yadav P, Sharma P, Sundaram S, Venkatraman G, Bera AK and Karunagaran D: SLC7A11/xCT is a target of miR-5096 and its restoration partially rescues miR-5096-mediated ferroptosis and anti-tumor effects in human breast cancer cells. Cancer Lett. 522:211–224. 2021. View Article : Google Scholar : PubMed/NCBI

103 

Liu Y, Hu Y, Jiang Y, Bu J and Gu X: Targeting ferroptosis, the achilles' heel of breast cancer: A review. Front Pharmacol. 13:10361402022. View Article : Google Scholar : PubMed/NCBI

104 

Liu XX, Li XJ, Zhang B, Liang YJ, Zhou CX, Cao DX, He M, Chen GQ, He JR and Zhao Q: MicroRNA-26b is underexpressed in human breast cancer and induces cell apoptosis by targeting SLC7A11. FEBS Lett. 585:1363–1367. 2011. View Article : Google Scholar : PubMed/NCBI

105 

Sun D, Li YC and Zhang XY: Lidocaine promoted ferroptosis by targeting miR-382-5p/SLC7A11 axis in ovarian and breast cancer. Front Pharmacol. 12:6812232021. View Article : Google Scholar

106 

Wang J, Yang K, Cao J and Li L: Knockdown of circular RNA septin 9 inhibits the malignant progression of breast cancer by reducing the expression of solute carrier family 1 member 5 in a microRNA-149-5p-dependent manner. Bioengineered. 12:10624–10637. 2021. View Article : Google Scholar : PubMed/NCBI

107 

van Geldermalsen M, Wang Q, Nagarajah R, Marshall AD, Thoeng A, Gao D, Ritchie W, Feng Y, Bailey CG, Deng N, et al: ASCT2/SLC1A5 controls glutamine uptake and tumour growth in triple-negative basal-like breast cancer. Oncogene. 35:3201–3108. 2016. View Article : Google Scholar :

108 

Kinslow CJ, Tang A, Chaudhary KR and Cheng SK: Prevalence of estrogen receptor alpha (ESR1) somatic mutations in breast cancer. JNCI Cancer Spectr. 6:pkac0602022. View Article : Google Scholar : PubMed/NCBI

109 

Msheik ZS, Nassar FJ, Chamandi G, Itani AR, Gadaleta E, Chalala C, Alwan N and Nasr RR: miR-126 decreases proliferation and mammosphere formation of MCF-7 and predicts prognosis of ER+ breast cancer. Diagnostics (Basel). 12:7452022. View Article : Google Scholar : PubMed/NCBI

110 

Yanagida O, Kanai Y, Chairoungdua A, Kim DK, Segawa H, Nii T, Cha SH, Matsuo H, Fukushima J, Fukasawa Y, et al: Human L-type amino acid transporter 1 (LAT1): Characterization of function and expression in tumor cell lines. Biochim Biophys Acta. 1514:291–302. 2001. View Article : Google Scholar : PubMed/NCBI

111 

Saito Y and Soga T: Amino acid transporters as emerging therapeutic targets in cancer. Cancer Sci. 112:2958–2965. 2021. View Article : Google Scholar : PubMed/NCBI

112 

Li Y, Wang W, Wu X, Ling S, Ma Y and Huang P: SLC7A5 serves as a prognostic factor of breast cancer and promotes cell proliferation through activating AKT/mTORC1 signaling pathway. Ann Transl Med. 9:8922021. View Article : Google Scholar : PubMed/NCBI

113 

Kurozumi S, Kaira K, Matsumoto H, Kurosumi M, Yokobori T, Kanai Y, Sekine C, Honda C, Katayama A, Furuya M, et al: Association of L-type amino acid transporter 1 (LAT1) with the immune system and prognosis in invasive breast cancer. Sci Rep. 12:27422022. View Article : Google Scholar : PubMed/NCBI

114 

Törnroos R, Tina E and Göthlin Eremo A: SLC7A5 is linked to increased expression of genes related to proliferation and hypoxia in estrogen-receptor-positive breast cancer. Oncol Rep. 47:172022. View Article : Google Scholar

115 

Bacci M, Lorito N, Ippolito L, Ramazzotti M, Luti S, Romagnoli S, Parri M, Bianchini F, Cappellesso F, Virga F, et al: Reprogramming of amino acid transporters to support aspartate and glutamate dependency sustains endocrine resistance in breast cancer. Cell Rep. 28:104–118.e8. 2019. View Article : Google Scholar : PubMed/NCBI

116 

Delgir S, Ilkhani K, Safi A, Rahmati Y, Montazari V, Zaynali-Khasraghi Z, Seif F, Bastami M and Alivand MR: The expression of miR-513c and miR-3163 was downregulated in tumor tissues compared with normal adjacent tissue of patients with breast cancer. BMC Med Genomics. 14:1802021. View Article : Google Scholar : PubMed/NCBI

117 

Fong MY, Zhou W, Liu L, Alontaga AY, Chandra M, Ashby J, Chow A, O'Connor STF, Li S, Chin R, et al: Breast-cancer-secreted miR-122 reprograms glucose metabolism in premetastatic niche to promote metastasis. Nat Cell Biol. 17:183–194. 2015. View Article : Google Scholar : PubMed/NCBI

118 

Figueira I, Godinho-Pereira J, Galego S, Maia J, Haskó J, Molnár K, Malhó R, Costa-Silva B, Wilhelm I, Krizbai IA and Brito MA: MicroRNAs and extracellular vesicles as distinctive biomarkers of precocious and advanced stages of breast cancer brain metastases development. Int J Mol Sci. 22:52142021. View Article : Google Scholar : PubMed/NCBI

119 

Lu C, Zhao Y, Wang J, Shi W, Dong F, Xin Y, Zhao X and Liu C: Breast cancer cell-derived extracellular vesicles transfer miR-182-5p and promote breast carcinogenesis via the CMTM7/EGFR/AKT axis. Mol Med. 27:782021. View Article : Google Scholar : PubMed/NCBI

120 

Yang M, Zhang Y, Li M, Liu X and Darvishi M: The various role of microRNAs in breast cancer angiogenesis, with a special focus on novel miRNA-based delivery strategies. Cancer Cell Int. 23:242023. View Article : Google Scholar : PubMed/NCBI

121 

Guo L, Kong D, Liu J, Zhan L, Luo L, Zheng W, Zheng Q, Chen C and Sun S: Breast cancer heterogeneity and its implication in personalized precision therapy. Exp Hematol Oncol. 12:32023. View Article : Google Scholar : PubMed/NCBI

122 

Muciño-Olmos EA, Vázquez-Jiménez A, López-Esparza DE, Maldonado V, Valverde M and Resendis-Antonio O: MicroRNAs regulate metabolic phenotypes during multicellular tumor spheroids progression. Front Oncol. 10:5823962020. View Article : Google Scholar

123 

Fu Y, Zou T, Shen X, Nelson PJ, Li J, Wu C, Yang J, Zheng Y, Bruns C, Zhao Y, et al: Lipid metabolism in cancer progression and therapeutic strategies. MedComm (2020). 2:27–59. 2020. View Article : Google Scholar

124 

Gyamfi D, Ofori Awuah E and Owusu S: Chapter 2-lipid metabolism: An overview. Patel VB: The Molecular Nutrition of Fats. Academic Press; Cambridge, MA, USA: pp. 17–32. 2019

125 

Burdge GC and Calder PC: Introduction to fatty acids and lipids. World Rev Nutr Diet. 112:1–16. 2015. View Article : Google Scholar

126 

Zechner R, Zimmermann R, Eichmann TO, Kohlwein SD, Haemmerle G, Lass A and Madeo F: FAT SIGNALS-lipases and lipolysis in lipid metabolism and signaling. Cell Metab. 15:279–291. 2012. View Article : Google Scholar : PubMed/NCBI

127 

Monaco ME: Fatty acid metabolism in breast cancer subtypes. Oncotarget. 8:29487–29500. 2017. View Article : Google Scholar : PubMed/NCBI

128 

Park JK, Coffey NJ, Limoges A and Le A: The Heterogeneity of lipid metabolism in cancer. Adv Exp Med Biol. 1063:33–55. 2018. View Article : Google Scholar : PubMed/NCBI

129 

Vasseur S and Guillaumond F: Lipids in cancer: A global view of the contribution of lipid pathways to metastatic formation and treatment resistance. Oncogenesis. 11:462022. View Article : Google Scholar : PubMed/NCBI

130 

Koundouros N and Poulogiannis G: Reprogramming of fatty acid metabolism in cancer. Br J Cancer. 122:4–22. 2020. View Article : Google Scholar :

131 

Menendez JA and Lupu R: Fatty acid synthase and the lipogenic phenotype in cancer pathogenesis. Nat Rev Cancer. 7:763–777. 2007. View Article : Google Scholar : PubMed/NCBI

132 

Alo' PL, Visca P, Marci A, Mangoni A, Botti C and Di Tondo U: Expression of fatty acid synthase (FAS) as a predictor of recurrence in stage I breast carcinoma patients. Cancer. 77:474–482. 1996. View Article : Google Scholar : PubMed/NCBI

133 

Chajès V, Cambot M, Moreau K, Lenoir GM and Joulin V: Acetyl-CoA carboxylase alpha is essential to breast cancer cell survival. Cancer Res. 66:5287–5294. 2006. View Article : Google Scholar : PubMed/NCBI

134 

Mashima T, Seimiya H and Tsuruo T: De novo fatty-acid synthesis and related pathways as molecular targets for cancer therapy. Br J Cancer. 100:1369–1372. 2009. View Article : Google Scholar : PubMed/NCBI

135 

Xu S, Chen T, Dong L, Li T, Xue H, Gao B, Ding X, Wang H and Li H: Fatty acid synthase promotes breast cancer metastasis by mediating changes in fatty acid metabolism. Oncol Lett. 21:272021.

136 

Wang J, Zhang X, Shi J, Cao P, Wan M, Zhang Q, Wang Y, Kridel SJ, Liu W, Xu J, et al: Fatty acid synthase is a primary target of MiR-15a and MiR-16-1 in breast cancer. Oncotarget. 7:78566–78576. 2016. View Article : Google Scholar : PubMed/NCBI

137 

Wahdan-Alaswad RS, Cochrane DR, Spoelstra NS, Howe EN, Edgerton SM, Anderson SM, Thor AD and Richer JK: Metformin-induced killing of triple-negative breast cancer cells is mediated by reduction in fatty acid synthase via miRNA-193b. Horm Cancer. 5:374–389. 2014. View Article : Google Scholar : PubMed/NCBI

138 

Chen Y, Li K, Gong D, Zhang J, Li Q, Zhao G and Lin P: ACLY: A biomarker of recurrence in breast cancer. Pathol Res Pract. 216:1530762020. View Article : Google Scholar : PubMed/NCBI

139 

Liu H, Huang X and Ye T: MiR-22 down-regulates the proto-oncogene ATP citrate lyase to inhibit the growth and metastasis of breast cancer. Am J Transl Res. 10:659–669. 2018.PubMed/NCBI

140 

Adorno-Cruz V, Hoffmann AD, Liu X, Dashzeveg NK, Taftaf R, Wray B, Keri RA and Liu H: ITGA2 promotes expression of ACLY and CCND1 in enhancing breast cancer stemness and metastasis. Genes Dis. 8:493–508. 2020. View Article : Google Scholar : PubMed/NCBI

141 

Daniëls VW, Smans K, Royaux I, Chypre M, Swinnen JV and Zaidi N: Cancer cells differentially activate and thrive on de novo lipid synthesis pathways in a low-lipid environment. PLoS One. 9:e1069132014. View Article : Google Scholar : PubMed/NCBI

142 

Simeone P, Tacconi S, Longo S, Lanuti P, Bravaccini S, Pirini F, Ravaioli S, Dini L and Giudetti AM: Expanding roles of De Novo lipogenesis in breast cancer. Int J Environ Res Public Health. 18:35752021. View Article : Google Scholar : PubMed/NCBI

143 

Singh R, Yadav V, Kumar S and Saini N: MicroRNA-195 inhibits proliferation, invasion and metastasis in breast cancer cells by targeting FASN, HMGCR, ACACA and CYP27B1. Sci Rep. 5:174542015. View Article : Google Scholar : PubMed/NCBI

144 

Yang Z, Qin W, Chen Y, Yuan B, Song X, Wang B, Shen F, Fu J and Wang H: Cholesterol inhibits hepatocellular carcinoma invasion and metastasis by promoting CD44 localization in lipid rafts. Cancer Lett. 429:66–77. 2018. View Article : Google Scholar : PubMed/NCBI

145 

Yang YF, Jan YH, Liu YP, Yang CJ, Su CY, Chang YC, Lai TC, Chiou J, Tsai HY, Lu J, et al: Squalene synthase induces tumor necrosis factor receptor 1 enrichment in lipid rafts to promote lung cancer metastasis. Am J Respir Crit Care Med. 190:675–687. 2014. View Article : Google Scholar : PubMed/NCBI

146 

Vona R, Iessi E and Matarrese P: Role of cholesterol and lipid rafts in cancer signaling: A promising therapeutic opportunity? Front Cell Dev Biol. 9:6229082021. View Article : Google Scholar : PubMed/NCBI

147 

Bhardwaj A, Singh H, Trinidad CM, Albarracin CT, Hunt KK and Bedrosian I: The isomiR-140-3p-regulated mevalonic acid pathway as a potential target for prevention of triple negative breast cancer. Breast Cancer Res. 20:1502018. View Article : Google Scholar : PubMed/NCBI

148 

DeBose-Boyd RA and Ye J: SREBPs in lipid metabolism, insulin signaling, and beyond. Trends Biochem Sci. 43:358–368. 2018. View Article : Google Scholar : PubMed/NCBI

149 

Wu CL, Xu LL, Peng J and Zhang DH: Al-MPS obstructs EMT in breast cancer by inhibiting lipid metabolism via miR-215-5p/SREBP1. Endocrinology. 163:bqac0402022. View Article : Google Scholar : PubMed/NCBI

150 

Zhao J, Xu L, Sun J, Song M, Wang L, Yuan S, Zhu Y, Wan Z, Larsson S, Tsilidis K, et al: Global trends in incidence, death, burden and risk factors of early-onset cancer from 1990 to 2019. BMJ Oncol. 2:e0000492023. View Article : Google Scholar

151 

Ellsworth RE, Blackburn HL, Shriver CD, Soon-Shiong P and Ellsworth DL: Molecular heterogeneity in breast cancer: State of the science and implications for patient care. Semin Cell Dev Biol. 64:65–72. 2017. View Article : Google Scholar

152 

Ho TQH, Bissell MCS, Kerlikowske K, Hubbard RA, Sprague BL, Lee CI, Tice JA, Tosteson ANA and Miglioretti DL: Cumulative probability of false-positive results after 10 years of screening with digital breast tomosynthesis vs digital mammography. JAMA Netw Open. 5:e2224402022. View Article : Google Scholar : PubMed/NCBI

153 

El Hachem Z, Zoghbi M and Hallit S: Psychosocial consequences of false-positive results in screening mammography. J Family Med Prim Care. 8:419–425. 2019. View Article : Google Scholar : PubMed/NCBI

154 

Park S, Ahn S, Kim JY, Kim J, Han HJ, Hwang D, Park J, Park HS, Park S, Kim GM, et al: Blood test for breast cancer screening through the detection of tumor-associated circulating transcripts. Int J Mol Sci. 23:91402022. View Article : Google Scholar : PubMed/NCBI

155 

Gilson Sena IF, Fernandes LL, Lorandi LL, Santana TV, Cintra L, Lima IF, Iwai LK, Kramer JM, Birbrair A and Heller D: Identification of early biomarkers in saliva in genetically engineered mouse model C(3)1-TAg of breast cancer. Sci Rep. 12:115442022. View Article : Google Scholar : PubMed/NCBI

156 

Giró Benet J, Seo M, Khine M, Gumà Padró J, Pardo Martnez A and Kurdahi F: Breast cancer detection by analyzing the volatile organic compound (VOC) signature in human urine. Sci Rep. 12:148732022. View Article : Google Scholar : PubMed/NCBI

157 

Zhang L, Xiao H, Karlan S, Zhou H, Gross J, Elashoff D, Akin D, Yan X, Chia D, Karlan B and Wong DT: Discovery and preclinical validation of salivary transcriptomic and proteomic biomarkers for the non-invasive detection of breast cancer. PLoS One. 5:e155732010. View Article : Google Scholar

158 

Lee RC, Feinbaum RL and Ambros V: The C. elegans heterochronic gene lin-4 encodes small RNAs with antisense complementarity to lin-14. Cell. 75:843–854. 1993. View Article : Google Scholar : PubMed/NCBI

159 

Garrido-Palacios A, Rojas Carvajal AM, Núñez-Negrillo AM, Cortés-Martín J, Sánchez-García JC and Aguilar-Cordero MJ: MicroRNA dysregulation in early breast cancer diagnosis: A systematic review and meta-analysis. Int J Mol Sci. 24:82702023. View Article : Google Scholar : PubMed/NCBI

160 

Kashyap D and Kaur H: Cell-free miRNAs as non-invasive biomarkers in breast cancer: Significance in early diagnosis and metastasis prediction. Life Sci. 246:1174172020. View Article : Google Scholar : PubMed/NCBI

161 

Papadaki C, Stoupis G, Tsalikis L, Monastirioti A, Papadaki M, Maliotis N, Stratigos M, Mastrostamatis G, Mavroudis D and Agelaki S: Circulating miRNAs as a marker of metastatic disease and prognostic factor in metastatic breast cancer. Oncotarget. 10:966–981. 2019. View Article : Google Scholar : PubMed/NCBI

162 

Chen X, Wang YW, Zhu WJ, Li Y, Liu L, Yin G and Gao P: A 4-microRNA signature predicts lymph node metastasis and prognosis in breast cancer. Hum Pathol. 76:122–132. 2018. View Article : Google Scholar : PubMed/NCBI

163 

Gong C, Tan W, Chen K, You N, Zhu S, Liang G, Xie X, Li Q, Zeng Y, Ouyang N, et al: Prognostic value of a BCSC-associated MicroRNA signature in hormone receptor-positive HER2-negative breast cancer. EBioMedicine. 11:199–209. 2016. View Article : Google Scholar : PubMed/NCBI

164 

Fu Z, Wang L, Li S, Chen F, Au-Yeung KK and Shi C: MicroRNA as an important target for anticancer drug development. Front Pharmacol. 12:7363232021. View Article : Google Scholar : PubMed/NCBI

165 

Chakrabortty A, Patton DJ, Smith BF and Agarwal P: miRNAs: Potential as biomarkers and therapeutic targets for cancer. Genes (Basel). 14:13752023. View Article : Google Scholar : PubMed/NCBI

166 

Hsieh TH, Hsu CY, Tsai CF, Long CY, Chai CY, Hou MF, Lee JN, Wu DC, Wang SC and Tsai EM: miR-125a-5p is a prognostic biomarker that targets HDAC4 to suppress breast tumorigenesis. Oncotarget. 6:494–509. 2015. View Article : Google Scholar :

167 

Søkilde R, Persson H, Ehinger A, Pirona AC, Fernö M, Hegardt C, Larsson C, Loman N, Malmberg M, Rydén L, et al: Refinement of breast cancer molecular classification by miRNA expression profiles. BMC Genomics. 20:5032019. View Article : Google Scholar : PubMed/NCBI

168 

Wang H, Tan Z, Hu H, Liu H, Wu T, Zheng C, Wang X, Luo Z, Wang J, Liu S, et al: microRNA-21 promotes breast cancer proliferation and metastasis by targeting LZTFL1. BMC Cancer. 19:7382019. View Article : Google Scholar : PubMed/NCBI

169 

Arisan ED, Rencuzogullari O, Cieza-Borrella C, Miralles Arenas F, Dwek M, Lange S and Uysal-Onganer P: MiR-21 is required for the epithelial-mesenchymal transition in MDA-MB-231 breast cancer cells. Int J Mol Sci. 22:15572021. View Article : Google Scholar : PubMed/NCBI

170 

Wang J, Wang Q, Guan Y, Sun Y, Wang X, Lively K, Wang Y, Luo M, Kim JA, Murphy E, et al: Breast cancer cell-derived microRNA-155 suppresses tumor progression via enhancing immune cell recruitment and antitumor function. J Clin Invest. 132:e1572482022. View Article : Google Scholar : PubMed/NCBI

171 

Xu W, Song C, Wang X, Li Y, Bai X, Liang X, Wu J and Liu J: Downregulation of miR-155-5p enhances the anti-tumor effect of cetuximab on triple-negative breast cancer cells via inducing cell apoptosis and pyroptosis. Aging (Albany NY). 13:228–240. 2021. View Article : Google Scholar : PubMed/NCBI

172 

Schmidt DR, Patel R, Kirsch DG, Lewis CA, Vander Heiden MG and Locasale JW: Metabolomics in cancer research and emerging applications in clinical oncology. CA Cancer J Clin. 71:333–358. 2021. View Article : Google Scholar : PubMed/NCBI

173 

Rossi C, Cicalini I, Cufaro MC, Consalvo A, Upadhyaya P, Sala G, Antonucci I, Del Boccio P, Stuppia L and De Laurenzi V: Breast cancer in the era of integrating 'Omics' approaches. Oncogenesis. 11:172022. View Article : Google Scholar

174 

Danzi F, Pacchiana R, Mafficini A, Scupoli MT, Scarpa A, Donadelli M and Fiore A: To metabolomics and beyond: A technological portfolio to investigate cancer metabolism. Signal Transduct Target Ther. 8:1372023. View Article : Google Scholar : PubMed/NCBI

175 

Fan S, Shahid M, Jin P, Asher A and Kim J: Identification of metabolic alterations in breast cancer using mass spectrometry-based metabolomic analysis. Metabolites. 10:1702020. View Article : Google Scholar : PubMed/NCBI

176 

Subramani R, Poudel S, Smith KD, Estrada A and Lakshmanaswamy R: Metabolomics of breast cancer: A review. Metabolites. 12:6432022. View Article : Google Scholar : PubMed/NCBI

177 

Budczies J, Brockmöller SF, Müller BM, Barupal DK, Richter-Ehrenstein C, Kleine-Tebbe A, Griffin JL, Orešič M, Dietel M, Denkert C and Fiehn O: Comparative metabolomics of estrogen receptor positive and estrogen receptor negative breast cancer: Alterations in glutamine and beta-alanine metabolism. J Proteomics. 94:279–288. 2013. View Article : Google Scholar : PubMed/NCBI

178 

Amiri-Dashatan N, Yekta RF, Koushki M, Arefi Oskouie A, Esfahani H, Taheri S and Kazemian E: Metabolomic study of serum in patients with invasive ductal breast carcinoma with LC-MS/MS approach. Int J Biol Markers. 37:349–359. 2022. View Article : Google Scholar : PubMed/NCBI

179 

Shestakova KM, Moskaleva NE, Boldin AA, Rezvanov PM, Shestopalov AV, Rumyantsev SA, Zlatnik EY, Novikova IA, Sagakyants AB, Timofeeva SV, et al: Targeted metabolomic profiling as a tool for diagnostics of patients with non-small-cell lung cancer. Sci Rep. 13:110722023. View Article : Google Scholar : PubMed/NCBI

180 

Gold A, Choueiry F, Jin N, Mo X and Zhu J: The application of metabolomics in recent colorectal cancer studies: A state-of-the-art review. Cancers (Basel). 14:7252022. View Article : Google Scholar : PubMed/NCBI

181 

Nam M, Seo SS, Jung S, Jang SY, Lee J, Kwon M, Khan I, Ryu DH, Kim MK and Hwang GS: Comparable plasma lipid changes in patients with high-grade cervical intraepithelial neoplasia and patients with cervical cancer. J Proteome Res. 20:740–750. 2021. View Article : Google Scholar

182 

Granit A, Mishra K, Barasch D, Peretz-Yablonsky T, Eyal S and Kakhlon O: Metabolomic profiling of triple negative breast cancer cells suggests that valproic acid can enhance the anticancer effect of cisplatin. Front Cell Dev Biol. 10:10147982022. View Article : Google Scholar : PubMed/NCBI

183 

Xiao Y, Ma D, Yang YS, Yang F, Ding JH, Gong Y, Jiang L, Ge LP, Wu SY, Yu Q, et al: Comprehensive metabolomics expands precision medicine for triple-negative breast cancer. Cell Res. 32:477–490. 2022. View Article : Google Scholar : PubMed/NCBI

184 

Iyer A, Hamers AAJ and Pillai AB: CyTOF® for the masses. Front Immunol. 13:8158282022. View Article : Google Scholar

185 

Fogazzi V, Kapahnke M, Cataldo A, Plantamura I, Tagliabue E, Di Cosimo S, Cosentino G and Iorio MV: The role of MicroRNAs in HER2-positive breast cancer: Where we are and future prospective. Cancers (Basel). 14:53262022. View Article : Google Scholar : PubMed/NCBI

186 

Cappelletti V, Iorio E, Miodini P, Silvestri M, Dugo M and Daidone MG: Metabolic footprints and molecular subtypes in breast cancer. Dis Markers. 2017:76878512017. View Article : Google Scholar

Related Articles

  • Abstract
  • View
  • Download
  • Twitter
Copy and paste a formatted citation
Spandidos Publications style
Lee WX, Yeo BS, Mahmud R, Tan GC, Wahid MI and Cheah YK: MicroRNAs and their role in breast cancer metabolism (Review). Int J Oncol 66: 7, 2025.
APA
Lee, W.X., Yeo, B.S., Mahmud, R., Tan, G.C., Wahid, M.I., & Cheah, Y.K. (2025). MicroRNAs and their role in breast cancer metabolism (Review). International Journal of Oncology, 66, 7. https://doi.org/10.3892/ijo.2024.5713
MLA
Lee, W. X., Yeo, B. S., Mahmud, R., Tan, G. C., Wahid, M. I., Cheah, Y. K."MicroRNAs and their role in breast cancer metabolism (Review)". International Journal of Oncology 66.1 (2025): 7.
Chicago
Lee, W. X., Yeo, B. S., Mahmud, R., Tan, G. C., Wahid, M. I., Cheah, Y. K."MicroRNAs and their role in breast cancer metabolism (Review)". International Journal of Oncology 66, no. 1 (2025): 7. https://doi.org/10.3892/ijo.2024.5713
Copy and paste a formatted citation
x
Spandidos Publications style
Lee WX, Yeo BS, Mahmud R, Tan GC, Wahid MI and Cheah YK: MicroRNAs and their role in breast cancer metabolism (Review). Int J Oncol 66: 7, 2025.
APA
Lee, W.X., Yeo, B.S., Mahmud, R., Tan, G.C., Wahid, M.I., & Cheah, Y.K. (2025). MicroRNAs and their role in breast cancer metabolism (Review). International Journal of Oncology, 66, 7. https://doi.org/10.3892/ijo.2024.5713
MLA
Lee, W. X., Yeo, B. S., Mahmud, R., Tan, G. C., Wahid, M. I., Cheah, Y. K."MicroRNAs and their role in breast cancer metabolism (Review)". International Journal of Oncology 66.1 (2025): 7.
Chicago
Lee, W. X., Yeo, B. S., Mahmud, R., Tan, G. C., Wahid, M. I., Cheah, Y. K."MicroRNAs and their role in breast cancer metabolism (Review)". International Journal of Oncology 66, no. 1 (2025): 7. https://doi.org/10.3892/ijo.2024.5713
Follow us
  • Twitter
  • LinkedIn
  • Facebook
About
  • Spandidos Publications
  • Careers
  • Cookie Policy
  • Privacy Policy
How can we help?
  • Help
  • Live Chat
  • Contact
  • Email to our Support Team