|
1
|
Adhikari S, Bhattacharya A, Adhikary S,
Singh V, Gadad SS, Roy S and Da C: The paradigm of drug resistance
in cancer: An epigenetic perspective. Biosci Rep.
42:BSR202118122022. View Article : Google Scholar : PubMed/NCBI
|
|
2
|
Bukowski K, Kciuk M and Kontek R:
Mechanisms of multi-drug resistance in cancer chemotherapy. Int J
Mol Sci. 21:32332020. View Article : Google Scholar
|
|
3
|
Sung H, Ferlay J, Siegel RL, Laversanne M,
Soerjomataram I, Jemal A and Bray F: Global cancer statistics 2020:
GLOBOCAN estimates of incidence and mortality worldwide for 36
cancers in 185 countries. CA Cancer J Clin. 71:209–249. 2021.
View Article : Google Scholar : PubMed/NCBI
|
|
4
|
Leiter A, Veluswamy RR and Wisnivesky JP:
The global burden of lung cancer: Current status and future trends.
Nat Rev Clin Oncol. 20:624–639. 2023. View Article : Google Scholar : PubMed/NCBI
|
|
5
|
Rotow J and Bivona TG: Understanding and
targeting resistance mechanisms in NSCLC. Nat Rev Cancer.
17:637–658. 2017. View Article : Google Scholar : PubMed/NCBI
|
|
6
|
LoPiccolo J, Gusev A, Christiani DC and
Jänne PA: Lung cancer in patients who have never smoked-an emerging
disease. Nat Rev Clin Oncol. 21:121–146. 2024. View Article : Google Scholar : PubMed/NCBI
|
|
7
|
Siegel RL, Miller KD, Wagle NS and Jemal
A: Cancer statistics, 2023. CA Cancer J Clin. 73:17–48. 2023.
View Article : Google Scholar : PubMed/NCBI
|
|
8
|
Otano I, Ucero AC, Zugazagoitia J and
Paz-Ares L: At the crossroads of immunotherapy for
oncogene-addicted subsets of NSCLC. Nat Rev Clin Oncol. 20:143–159.
2023. View Article : Google Scholar : PubMed/NCBI
|
|
9
|
Soerjomataram I and Bray F: Planning for
tomorrow: Global cancer incidence and the role of prevention
2020-2070. Nat Rev Clin Oncol. 18:663–672. 2021. View Article : Google Scholar : PubMed/NCBI
|
|
10
|
Hirsch FR, Scagliotti GV, Mulshine JL,
Kwon R, Curran WJ Jr, Wu YL and Paz-Ares L: Lung cancer: Current
therapies and new targeted treatments. Lancet. 389:299–311. 2017.
View Article : Google Scholar
|
|
11
|
Nagasaka M and Gadgeel SM: Role of
chemotherapy and targeted therapy in early-stage non-small cell
lung cancer. Expert Rev Anticancer Ther. 18:63–70. 2018. View Article : Google Scholar
|
|
12
|
Yin JY, Li X, Zhou HH and Liu ZQ:
Pharmacogenomics of platinum-based chemotherapy sensitivity in
NSCLC: Toward precision medicine. Pharmacogenomics. 17:1365–1378.
2016. View Article : Google Scholar : PubMed/NCBI
|
|
13
|
Wang Y, Hu J, Fleishman JS, Li Y, Ren Z,
Wang J, Feng Y, Chen J and Wang H: Inducing ferroptosis by
traditional medicines: A novel approach to reverse chemoresistance
in lung cancer. Front Pharmacol. 15:12901832024. View Article : Google Scholar : PubMed/NCBI
|
|
14
|
Herbst RS, Morgensztern D and Boshoff C:
The biology and management of non-small cell lung cancer. Nature.
553:446–454. 2018. View Article : Google Scholar : PubMed/NCBI
|
|
15
|
Lim ZF and Ma PC: Emerging insights of
tumor heterogeneity and drug resistance mechanisms in lung cancer
targeted therapy. J Hematol Oncol. 12:1342019. View Article : Google Scholar : PubMed/NCBI
|
|
16
|
Lei G, Zhuang L and Gan B: Targeting
ferroptosis as a vulnerability in cancer. Nat Rev Cancer.
22:381–396. 2022. View Article : Google Scholar : PubMed/NCBI
|
|
17
|
Kobayashi H, Yoshimoto C, Matsubara S,
Shigetomi H and Imanaka S: A comprehensive overview of recent
developments on the mechanisms and pathways of ferroptosis in
cancer: The potential implications for therapeutic strategies in
ovarian cancer. Cancer Drug Resist. 6:547–566. 2023. View Article : Google Scholar : PubMed/NCBI
|
|
18
|
Yunchu Y, Miyanaga A and Seike M:
Integrative analysis of ferroptosis-related genes in small cell
lung cancer for the identification of biomarkers and therapeutic
targets. Front Biosci (Landmark Ed). 28:1252023. View Article : Google Scholar : PubMed/NCBI
|
|
19
|
Guo J, Xu B, Han Q, Zhou H, Xia Y, Gong C,
Dai X, Li Z and Wu G: Ferroptosis: A novel anti-tumor action for
cisplatin. Cancer Res Treat. 50:445–460. 2018. View Article : Google Scholar :
|
|
20
|
Lei G, Zhang Y, Koppula P, Liu X, Zhang J,
Lin SH, Ajani JA, Xiao Q, Liao Z, Wang H and Gan B: The role of
ferroptosis in ionizing radiation-induced cell death and tumor
suppression. Cell Res. 30:146–162. 2020. View Article : Google Scholar : PubMed/NCBI
|
|
21
|
Sun X, Ou Z, Chen R, Niu X, Chen D, Kang R
and Tang D: Activation of the p62-Keap1-NRF2 pathway protects
against ferroptosis in hepatocellular carcinoma cells. Hepatology.
63:173–184. 2016. View Article : Google Scholar
|
|
22
|
Wang W, Green M, Choi JE, Gijón M, Kennedy
PD, Johnson JK, Liao P, Lang X, Kryczek I, Sell A, et al: CD8(+) T
cells regulate tumour ferroptosis during cancer immunotherapy.
Nature. 569:270–274. 2019. View Article : Google Scholar : PubMed/NCBI
|
|
23
|
Wang Y, Wu X, Ren Z, Li Y, Zou W, Chen J
and Wang H: Overcoming cancer chemotherapy resistance by the
induction of ferroptosis. Drug Resist Updat. 66:1009162023.
View Article : Google Scholar : PubMed/NCBI
|
|
24
|
Lin X, Wu Z, Hu H, Luo ML and Song E:
Non-coding RNAs rewire cancer metabolism networks. Semin Cancer
Biol. 75:116–126. 2021. View Article : Google Scholar : PubMed/NCBI
|
|
25
|
Balihodzic A, Prinz F, Dengler MA, Calin
GA, Jost PJ and Pichler M: Non-coding RNAs and ferroptosis:
Potential implications for cancer therapy. Cell Death Differ.
29:1094–1106. 2022. View Article : Google Scholar : PubMed/NCBI
|
|
26
|
Ensoy M, Bumin ZS, Jama HA and
Cansaran-Duman D: The regulation role of ferroptosis mechanism of
anti-cancer drugs and noncoding RNAs. Curr Med Chem. 30:1638–1656.
2023. View Article : Google Scholar
|
|
27
|
Luo Y, Huang Q, He B, Liu Y, Huang S and
Xiao J: Regulation of ferroptosis by non-coding RNAs in the
development and treatment of cancer (Review). Oncol Rep. 45:29–48.
2021. View Article : Google Scholar
|
|
28
|
Valashedi MR, Bamshad C, Najafi-Ghalehlou
N, Nikoo A, Tomita K, Kuwahara Y, Sato T, Roushandeh AM and
Roudkenar MH: Non-coding RNAs in ferroptotic cancer cell death
pathway: Meet the new masters. Hum Cell. 35:972–994. 2022.
View Article : Google Scholar : PubMed/NCBI
|
|
29
|
Wang D, Tang L, Zhang Y, Ge G, Jiang X, Mo
Y, Wu P, Deng X, Li L, Zuo S, et al: Regulatory pathways and drugs
associated with ferroptosis in tumors. Cell Death Dis. 13:5442022.
View Article : Google Scholar : PubMed/NCBI
|
|
30
|
Xie B and Guo Y: Molecular mechanism of
cell ferroptosis and research progress in regulation of ferroptosis
by noncoding RNAs in tumor cells. Cell Death Discov. 7:1012021.
View Article : Google Scholar : PubMed/NCBI
|
|
31
|
Zuo YB, Zhang YF, Zhang R, Tian JW, Lv XB,
Li R, Li SP, Cheng MD, Shan J, Zhao Z and Xin H: Ferroptosis in
cancer progression: Role of noncoding RNAs. Int J Biol Sci.
18:1829–1843. 2022. View Article : Google Scholar : PubMed/NCBI
|
|
32
|
Wang H, Fleishman JS, Cheng S, Wang W, Wu
F and Wang Y and Wang Y: Epigenetic modification of ferroptosis by
non-coding RNAs in cancer drug resistance. Mol Cancer. 23:1772024.
View Article : Google Scholar : PubMed/NCBI
|
|
33
|
Sun L, Cao H, Wang Y and Wang H:
Regulating ferroptosis by noncoding RNAs in hepatocellular
carcinoma. Biol Direct. 19:802024. View Article : Google Scholar
|
|
34
|
Dixon SJ, Lemberg KM, Lamprecht MR, Skouta
R, Zaitsev EM, Gleason CE, Patel DN, Bauer AJ, Cantley AM, Yang WS,
et al: Ferroptosis: An iron-dependent form of nonapoptotic cell
death. Cell. 149:1060–1072. 2012. View Article : Google Scholar : PubMed/NCBI
|
|
35
|
Gu Y, Li Y, Wang J, Zhang L, Zhang J and
Wang Y: Targeting ferroptosis: Paving new roads for drug design and
discovery. Eur J Med Chem. 247:1150152023. View Article : Google Scholar
|
|
36
|
Huo L, Liu C, Yuan Y, Liu X and Cao Q:
Pharmacological inhibition of ferroptosis as a therapeutic target
for sepsis-associated organ damage. Eur J Med Chem. 257:1154382023.
View Article : Google Scholar : PubMed/NCBI
|
|
37
|
Stockwell BR: Ferroptosis turns 10:
Emerging mechanisms, physiological functions, and therapeutic
applications. Cell. 185:2401–2421. 2022. View Article : Google Scholar : PubMed/NCBI
|
|
38
|
Yin L, Liu P, Jin Y, Ning Z, Yang Y and
Gao H: Ferroptosis-related small-molecule compounds in cancer
therapy: Strategies and applications. Eur J Med Chem.
244:1148612022. View Article : Google Scholar : PubMed/NCBI
|
|
39
|
Wang Y, Hu J, Wu S, Fleishman JS, Li Y, Xu
Y, Zou W, Wang J, Feng Y, Chen J and Wang H: Targeting epigenetic
and posttranslational modifications regulating ferroptosis for the
treatment of diseases. Signal Transduct Target Ther. 8:4492023.
View Article : Google Scholar : PubMed/NCBI
|
|
40
|
Dixon SJ and Olzmann JA: The cell biology
of ferroptosis. Nat Rev Mol Cell Biol. 25:424–442. 2024. View Article : Google Scholar : PubMed/NCBI
|
|
41
|
Dai E, Chen X, Linkermann A, Jiang X, Kang
R, Kagan VE, Bayir H, Yang WS, Garcia-Saez AJ, Ioannou MS, et al: A
guideline on the molecular ecosystem regulating ferroptosis. Nat
Cell Biol. 26:1447–1457. 2024. View Article : Google Scholar : PubMed/NCBI
|
|
42
|
Chen X, Kang R, Kroemer G and Tang D:
Ferroptosis in infection, inflammation, and immunity. J Exp Med.
218:e202105182021. View Article : Google Scholar : PubMed/NCBI
|
|
43
|
Hadian K and Stockwell BR: SnapShot:
Ferroptosis. Cell. 181:1188–1188.e1. 2020. View Article : Google Scholar : PubMed/NCBI
|
|
44
|
Pope LE and Dixon SJ: Regulation of
ferroptosis by lipid metabolism. Trends Cell Biol. 33:1077–1087.
2023. View Article : Google Scholar : PubMed/NCBI
|
|
45
|
Jiang X, Stockwell BR and Conrad M:
Ferroptosis: Mechanisms, biology and role in disease. Nat Rev Mol
Cell Biol. 22:266–282. 2021. View Article : Google Scholar : PubMed/NCBI
|
|
46
|
Gan B: Mitochondrial regulation of
ferroptosis. J Cell Biol. 220:e2021050432021. View Article : Google Scholar : PubMed/NCBI
|
|
47
|
Gao M, Yi J, Zhu J, Minikes AM, Monian P,
Thompson CB and Jiang X: Role of mitochondria in ferroptosis. Mol
Cell. 73:354–363.e3. 2019. View Article : Google Scholar :
|
|
48
|
Stockwell BR, Angeli JP, Bayir H, Bush AI,
Conrad M, Dixon SJ, Fulda S, Gascón S, Hatzios SK, Kagan VE, et al:
Ferroptosis: A regulated cell death nexus linking metabolism, redox
biology, and disease. Cell. 171:273–285. 2017. View Article : Google Scholar : PubMed/NCBI
|
|
49
|
Zhang DD: Ironing out the details of
ferroptosis. Nat Cell Biol. 26:1386–1393. 2024. View Article : Google Scholar : PubMed/NCBI
|
|
50
|
Liang D, Minikes AM and Jiang X:
Ferroptosis at the intersection of lipid metabolism and cellular
signaling. Mol Cell. 82:2215–2227. 2022. View Article : Google Scholar : PubMed/NCBI
|
|
51
|
Doll S and Conrad M: Iron and ferroptosis:
A still ill-defined liaison. IUBMB Life. 69:423–434. 2017.
View Article : Google Scholar : PubMed/NCBI
|
|
52
|
Helberg J and Pratt DA: Autoxidation vs.
antioxidants-the fight for forever. Chem Soc Rev. 50:7343–7358.
2021. View Article : Google Scholar : PubMed/NCBI
|
|
53
|
Conrad M and Pratt DA: The chemical basis
of ferroptosis. Nat Chem Biol. 15:1137–1147. 2019. View Article : Google Scholar : PubMed/NCBI
|
|
54
|
Kang MJ, Fujino T, Sasano H, Minekura H,
Yabuki N, Nagura H, Iijima H and Yamamoto TT: A novel
arachidonate-preferring acyl-CoA synthetase is present in
steroidogenic cells of the rat adrenal, ovary, and testis. Proc
Natl Acad Sci USA. 94:2880–2884. 1997. View Article : Google Scholar : PubMed/NCBI
|
|
55
|
Kim JW, Lee JY, Oh M and Lee EW: An
integrated view of lipid metabolism in ferroptosis revisited via
lipidomic analysis. Exp Mol Med. 55:1620–1631. 2023. View Article : Google Scholar : PubMed/NCBI
|
|
56
|
Hishikawa D, Shindou H, Kobayashi S,
Nakanishi H, Taguchi R and Shimizu T: Discovery of a
lysophospholipid acyltransferase family essential for membrane
asymmetry and diversity. Proc Natl Acad Sci USA. 105:2830–2835.
2008. View Article : Google Scholar : PubMed/NCBI
|
|
57
|
Yan B, Ai Y, Sun Q, Ma Y, Cao Y, Wang J,
Zhang Z and Wang X: Membrane damage during ferroptosis is caused by
oxidation of phospholipids catalyzed by the oxidoreductases POR and
CYB5R1. Mol Cell. 81:355–369.e10. 2021. View Article : Google Scholar
|
|
58
|
Zou Y, Li H, Graham ET, Deik AA, Eaton JK,
Wang W, Sandoval-Gomez G, Clish CB, Doench JG and Schreiber SL:
Cytochrome P450 oxidoreductase contributes to phospholipid
peroxidation in ferroptosis. Nat Chem Biol. 16:302–309. 2020.
View Article : Google Scholar : PubMed/NCBI
|
|
59
|
Poursaitidis I, Wang X, Crighton T,
Labuschagne C, Mason D, Cramer SL, Triplett K, Roy R, Pardo OE,
Seckl MJ, et al: Oncogene-selective sensitivity to synchronous cell
death following modulation of the amino acid nutrient cystine. Cell
Rep. 18:2547–2556. 2017. View Article : Google Scholar : PubMed/NCBI
|
|
60
|
Yang WH, Ding CC, Sun T, Rupprecht G, Lin
CC, Hsu D and Chi JT: The hippo pathway effector TAZ regulates
ferroptosis in renal cell carcinoma. Cell Rep. 28:2501–2508.e4.
2019. View Article : Google Scholar : PubMed/NCBI
|
|
61
|
Chu B, Kon N, Chen D, Li T, Liu T, Jiang
L, Song S, Tavana O and Gu W: ALOX12 is required for p53-mediated
tumour suppression through a distinct ferroptosis pathway. Nat Cell
Biol. 21:579–591. 2019. View Article : Google Scholar : PubMed/NCBI
|
|
62
|
Shah R, Shchepinov MS and Pratt DA:
Resolving the role of lipoxygenases in the initiation and execution
of ferroptosis. ACS Cent Sci. 4:387–396. 2018. View Article : Google Scholar : PubMed/NCBI
|
|
63
|
Anthonymuthu TS, Tyurina YY, Sun WY,
Mikulska-Ruminska K, Shrivastava IH, Tyurin VA, Cinemre FB, Dar HH,
VanDemark AP, Holman TR, et al: Resolving the paradox of
ferroptotic cell death: Ferrostatin-1 binds to 15LOX/PEBP1 complex,
suppresses generation of peroxidized ETE-PE, and protects against
ferroptosis. Redox Biol. 38:1017442021. View Article : Google Scholar
|
|
64
|
Yang WS, Kim KJ, Gaschler MM, Patel M,
Shchepinov MS and Stockwell BR: Peroxidation of polyunsaturated
fatty acids by lipoxygenases drives ferroptosis. Proc Natl Acad Sci
USA. 113:E4966–E4975. 2016. View Article : Google Scholar : PubMed/NCBI
|
|
65
|
Haeggström JZ and Funk CD: Lipoxygenase
and leukotriene pathways: Biochemistry, biology, and roles in
disease. Chem Rev. 111:5866–5898. 2011. View Article : Google Scholar : PubMed/NCBI
|
|
66
|
Alvarez SW, Sviderskiy VO, Terzi EM,
Papagiannakopoulos T, Moreira AL, Adams S, Sabatini DM, Birsoy K
and Possemato R: NFS1 undergoes positive selection in lung tumours
and protects cells from ferroptosis. Nature. 551:639–643. 2017.
View Article : Google Scholar : PubMed/NCBI
|
|
67
|
Gaschler MM, Hu F, Feng H, Linkermann A,
Min W and Stockwell BR: Determination of the subcellular
localization and mechanism of action of ferrostatins in suppressing
ferroptosis. ACS Chem Biol. 13:1013–1020. 2018. View Article : Google Scholar : PubMed/NCBI
|
|
68
|
Chen X, Li J, Kang R, Klionsky DJ and Tang
D: Ferroptosis: Machinery and regulation. Autophagy. 17:2054–2081.
2021. View Article : Google Scholar :
|
|
69
|
Hassannia B, Vandenabeele P and Berghe TV:
Targeting ferroptosis to iron out cancer. Cancer Cell. 35:830–849.
2019. View Article : Google Scholar : PubMed/NCBI
|
|
70
|
Jacquemyn J, Ralhan I and Ioannou MS:
Driving factors of neuronal ferroptosis. Trends Cell Biol.
34:535–546. 2024. View Article : Google Scholar : PubMed/NCBI
|
|
71
|
Ayala A, Muñoz MF and Argüelles S: Lipid
peroxidation: Production, metabolism, and signaling mechanisms of
malondialdehyde and 4-hydroxy-2-nonenal. Oxid Med Cell Longev.
2014:3604382014. View Article : Google Scholar : PubMed/NCBI
|
|
72
|
Dos Santos AF, Fazeli G, da Silva TN and
Angeli JP: Ferroptosis: Mechanisms and implications for cancer
development and therapy response. Trends Cell Biol. 33:1062–1076.
2023. View Article : Google Scholar : PubMed/NCBI
|
|
73
|
Ryter SW, Kim HP, Hoetzel A, Park JW,
Nakahira K, Wang X and Choi AM: Mechanisms of cell death in
oxidative stress. Antioxid Redox Signal. 9:49–89. 2007. View Article : Google Scholar
|
|
74
|
Bao WD, Pang P, Zhou XT, Hu F, Xiong W,
Chen K, Wang J, Wang F, Xie D, Hu YZ, et al: Loss of ferroportin
induces memory impairment by promoting ferroptosis in Alzheimer's
disease. Cell Death Differ. 28:1548–1562. 2021. View Article : Google Scholar : PubMed/NCBI
|
|
75
|
Chen PH, Wu J, Ding CC, Lin CC, Pan S,
Bossa N, Xu Y, Yang WH, Mathey-Prevot B and Chi J: Kinome screen of
ferroptosis reveals a novel role of ATM in regulating iron
metabolism. Cell Death Differ. 27:1008–1022. 2020. View Article : Google Scholar :
|
|
76
|
Geng N, Shi BJ, Li SL, Zhong ZY, Li YC,
Xua WL, Zhou H and Cai JH: Knockdown of ferroportin accelerates
erastin-induced ferroptosis in neuroblastoma cells. Eur Rev Med
Pharmacol Sci. 22:3826–3836. 2018.PubMed/NCBI
|
|
77
|
Gao M, Monian P, Quadri N, Ramasamy R and
Jiang X: Glutaminolysis and transferrin regulate ferroptosis. Mol
Cell. 59:298–308. 2015. View Article : Google Scholar : PubMed/NCBI
|
|
78
|
Gao M, Monian P, Pan Q, Zhang W, Xiang J
and Jiang X: Ferroptosis is an autophagic cell death process. Cell
Res. 26:1021–1032. 2016. View Article : Google Scholar : PubMed/NCBI
|
|
79
|
Hou W, Xie Y, Song X, Sun X, Lotze MT, Zeh
HJ III, Kang R and Tang D: Autophagy promotes ferroptosis by
degradation of ferritin. Autophagy. 12:1425–1428. 2016. View Article : Google Scholar : PubMed/NCBI
|
|
80
|
Chen X, Yu C, Kang R and Tang D: Iron
metabolism in ferroptosis. Front Cell Dev Biol. 8:5902262020.
View Article : Google Scholar : PubMed/NCBI
|
|
81
|
David S, Jhelum P, Ryan F, Jeong SY and
Kroner A: Dysregulation of iron homeostasis in the central nervous
system and the role of ferroptosis in neurodegenerative disorders.
Antioxid Redox Signal. 37:150–170. 2022. View Article : Google Scholar
|
|
82
|
Stockwell BR and Jiang X: The chemistry
and biology of ferroptosis. Cell Chem Biol. 27:365–375. 2020.
View Article : Google Scholar : PubMed/NCBI
|
|
83
|
Sun Y, Xia X, Basnet D, Zheng JC, Huang J
and Liu J: Mechanisms of ferroptosis and emerging links to the
pathology of neurodegenerative diseases. Front Aging Neurosci.
14:9041522022. View Article : Google Scholar : PubMed/NCBI
|
|
84
|
Brigelius-Flohé R and Flohé L: Regulatory
phenomena in the glutathione peroxidase superfamily. Antioxid Redox
Signal. 33:498–516. 2020. View Article : Google Scholar
|
|
85
|
Brigelius-Flohé R and Maiorino M:
Glutathione peroxidases. Biochim Biophys Acta. 1830:3289–3303.
2013. View Article : Google Scholar
|
|
86
|
Seibt TM, Proneth B and Conrad M: Role of
GPX4 in ferroptosis and its pharmacological implication. Free Radic
Biol Med. 133:144–152. 2019. View Article : Google Scholar
|
|
87
|
Ursini F, Maiorino M, Valente M, Ferri L
and Gregolin C: Purification from pig liver of a protein which
protects liposomes and biomembranes from peroxidative degradation
and exhibits glutathione peroxidase activity on phosphatidylcholine
hydroperoxides. Biochim Biophys Acta. 710:197–211. 1982. View Article : Google Scholar : PubMed/NCBI
|
|
88
|
Forcina GC and Dixon SJ: GPX4 at the
crossroads of lipid homeostasis and ferroptosis. Proteomics.
19:e18003112019. View Article : Google Scholar : PubMed/NCBI
|
|
89
|
Angeli JP, Schneider M, Proneth B, Tyurina
YY, Tyurin VA, Hammond VJ, Herbach N, Aichler M, Walch A,
Eggenhofer E, et al: Inactivation of the ferroptosis regulator Gpx4
triggers acute renal failure in mice. Nat Cell Biol. 16:1180–1191.
2014. View Article : Google Scholar
|
|
90
|
Ingold I, Berndt C, Schmitt S, Doll S,
Poschmann G, Buday K, Roveri A, Peng X, Freitas FP, Seibt T, et al:
Selenium utilization by GPX4 is required to prevent
hydroperoxide-induced ferroptosis. Cell. 172:409–422.e21. 2018.
View Article : Google Scholar : PubMed/NCBI
|
|
91
|
Yang WS, SriRamaratnam R, Welsch ME,
Shimada K, Skouta R, Viswanathan VS, Cheah JH, Clemons PA, Shamji
AF, Clish C, et al: Regulation of ferroptotic cancer cell death by
GPX4. Cell. 156:317–331. 2014. View Article : Google Scholar : PubMed/NCBI
|
|
92
|
Koppula P, Zhang Y, Zhuang L and Gan B:
Amino acid transporter SLC7A11/xCT at the crossroads of regulating
redox homeostasis and nutrient dependency of cancer. Cancer Commun
(Lond). 38:122018.PubMed/NCBI
|
|
93
|
Sato H, Tamba M, Ishii T and Bannai S:
Cloning and expression of a plasma membrane cystine/glutamate
exchange transporter composed of two distinct proteins. J Biol
Chem. 274:11455–11458. 1999. View Article : Google Scholar : PubMed/NCBI
|
|
94
|
Bersuker K, Hendricks JM, Li Z, Magtanong
L, Ford B, Tang PH, Roberts MA, Tong B, Maimone TJ, Zoncu R, et al:
The CoQ oxidoreductase FSP1 acts parallel to GPX4 to inhibit
ferroptosis. Nature. 575:688–692. 2019. View Article : Google Scholar : PubMed/NCBI
|
|
95
|
Doll S, Freitas FP, Shah R, Aldrovandi M,
da Silva MC, Ingold I, Grocin AG, da Silva TN, Panzilius E, Scheel
CH, et al: FSP1 is a glutathione-independent ferroptosis
suppressor. Nature. 575:693–698. 2019. View Article : Google Scholar : PubMed/NCBI
|
|
96
|
Nakamura T, Hipp C, Mourão ASD, Borggräfe
J, Aldrovandi M, Henkelmann B, Wanninger J, Mishima E, Lytton E,
Emler D, et al: Phase separation of FSP1 promotes ferroptosis.
Nature. 619:371–377. 2023. View Article : Google Scholar : PubMed/NCBI
|
|
97
|
Dai E, Zhang W, Cong D, Kang R, Wang J and
Tang D: AIFM2 blocks ferroptosis independent of ubiquinol
metabolism. Biochem Biophys Res Commun. 523:966–971. 2020.
View Article : Google Scholar : PubMed/NCBI
|
|
98
|
Pedrera L, Espiritu RA, Ros U, Weber J,
Schmitt A, Stroh J, Hailfinger S, von Karstedt S and García-Sáez
AJ: Ferroptotic pores induce Ca(2+) fluxes and ESCRT-III activation
to modulate cell death kinetics. Cell Death Differ. 28:1644–1657.
2021. View Article : Google Scholar
|
|
99
|
Kraft V, Bezjian CT, Pfeiffer S,
Ringelstetter L, Müller C, Zandkarimi F, Merl-Pham J, Bao X,
Anastasov N, Kössl J, et al: GTP Cyclohydrolase
1/Tetrahydrobiopterin counteract ferroptosis through lipid
remodeling. ACS Cent Sci. 6:41–53. 2020. View Article : Google Scholar : PubMed/NCBI
|
|
100
|
Soula M, Weber RA, Zilka O, Alwaseem H, La
K, Yen F, Molina H, Garcia-Bermudez J, Pratt DA and Birso K:
Metabolic determinants of cancer cell sensitivity to canonical
ferroptosis inducers. Nat Chem Biol. 16:1351–1360. 2020. View Article : Google Scholar : PubMed/NCBI
|
|
101
|
Mao C, Liu X, Zhang Y, Lei G, Yan Y, Lee
H, Koppula P, Wu S, Zhuang L, Fang B, et al: DHODH-mediated
ferroptosis defence is a targetable vulnerability in cancer.
Nature. 593:586–590. 2021. View Article : Google Scholar : PubMed/NCBI
|
|
102
|
Liang D, Feng Y, Zandkarimi F, Wang H,
Zhang Z, Kim J, Cai Y, Gu W, Stockwell BR and Jiang X: Ferroptosis
surveillance independent of GPX4 and differentially regulated by
sex hormones. Cell. 186:2748–2764. 2023. View Article : Google Scholar : PubMed/NCBI
|
|
103
|
Doll S, Proneth B, Tyurina YY, Panzilius
E, Kobayashi S, Ingold I, Irmler M, Beckers J, Aichler M, Walch A,
et al: ACSL4 dictates ferroptosis sensitivity by shaping cellular
lipid composition. Nat Chem Biol. 13:91–98. 2017. View Article : Google Scholar :
|
|
104
|
Kagan VE, Mao G, Qu F, Angeli JP, Doll S,
Croix CS, Dar HH, Liu B, Tyurin VA, Ritov VB, et al: Oxidized
arachidonic and adrenic PEs navigate cells to ferroptosis. Nat Chem
Biol. 13:81–90. 2017. View Article : Google Scholar
|
|
105
|
Freitas FP, Alborzinia H, Dos Santos AF,
Nepachalovich P, Pedrera L, Zilka O, Inague A, Klein C, Aroua N,
Kaushal K, et al: 7-Dehydrocholesterol is an endogenous suppressor
of ferroptosis. Nature. 626:401–410. 2024. View Article : Google Scholar : PubMed/NCBI
|
|
106
|
Li Y, Ran Q, Duan Q, Jin J, Wang Y, Yu L,
Wang C, Zhu Z, Chen X, Weng L, et al: 7-Dehydrocholesterol dictates
ferroptosis sensitivity. Nature. 626:411–418. 2024. View Article : Google Scholar : PubMed/NCBI
|
|
107
|
Garcia-Martinez L, Zhang Y, Nakata Y, Chan
HL and Morey L: Epigenetic mechanisms in breast cancer therapy and
resistance. Nat Commun. 12:17862021. View Article : Google Scholar : PubMed/NCBI
|
|
108
|
Ling C and Rönn T: Epigenetics in human
obesity and type 2 diabetes. Cell Metab. 29:1028–1044. 2019.
View Article : Google Scholar : PubMed/NCBI
|
|
109
|
Shu F, Xiao H, Li QN, Ren XS, Liu ZG, Hu
BW, Wang HS, Wang H and Jiang GM: Epigenetic and post-translational
modifications in autophagy: Biological functions and therapeutic
targets. Signal Transduct Target Ther. 8:322023. View Article : Google Scholar : PubMed/NCBI
|
|
110
|
Yang M, Luo H, Yi X, Wei X and Jiang DS:
The epigenetic regulatory mechanisms of ferroptosis and its
implications for biological processes and diseases. MedComm (2020).
4:e2672023. View Article : Google Scholar : PubMed/NCBI
|
|
111
|
Deng SH, Wu DM, Li L, Liu T, Zhang T, Li
J, Yu Y, He M, Zhao YY, Han R and Xu Y: miR-324-3p reverses
cisplatin resistance by inducing GPX4-mediated ferroptosis in lung
adenocarcinoma cell line A549. Biochem Biophys Res Commun.
549:54–60. 2021. View Article : Google Scholar : PubMed/NCBI
|
|
112
|
Song Z, Jia G, Ma P and Cang S: Exosomal
miR-4443 promotes cisplatin resistance in non-small cell lung
carcinoma by regulating FSP1 m6A modification-mediated ferroptosis.
Life Sci. 276:1193992021. View Article : Google Scholar : PubMed/NCBI
|
|
113
|
Chen Q, Pan Q, Gao H, Wang Y and Zhong X:
miR-17-5p/HOXA7 is a potential driver for brain metastasis of lung
adenocarcinoma related to ferroptosis revealed by bioinformatic
analysis. Front Neurol. 13:8789472022. View Article : Google Scholar : PubMed/NCBI
|
|
114
|
Lu X, Kang N, Ling X, Pan M, Du W and Gao
S: MiR-27a-3p promotes non-small cell lung cancer through
SLC7A11-mediated-ferroptosis. Front Oncol. 11:7593462021.
View Article : Google Scholar : PubMed/NCBI
|
|
115
|
Bi G, Liang J, Zhao M, Zhang H, Jin X, Lu
T, Zheng Y, Bian Y, Chen Z, Huang Y, et al: miR-6077 promotes
cisplatin/pemetrexed resistance in lung adenocarcinoma via
CDKN1A/cell cycle arrest and KEAP1/ferroptosis pathways. Mol Ther
Nucleic Acids. 28:366–386. 2022. View Article : Google Scholar : PubMed/NCBI
|
|
116
|
Wei D, Ke YQ, Duan P, Zhou L, Wang CY and
Cao P: MicroRNA-302a-3p induces ferroptosis of non-small cell lung
cancer cells via targeting ferroportin. Free Radic Res. 55:821–830.
2021. View Article : Google Scholar : PubMed/NCBI
|
|
117
|
Zhang L, Xu Y, Cheng Z, Zhao J, Wang M,
Sun Y, Mi Z, Yuan Z and Wu Z: The EGR1/miR-139/NRF2 axis
orchestrates radiosensitivity of non-small-cell lung cancer via
ferroptosis. Cancer Lett. 595:2170002024. View Article : Google Scholar : PubMed/NCBI
|
|
118
|
Guo J, Gong C and Wang H: PURPL promotes
M2 macrophage polarization in lung cancer by regulating RBM4/xCT
signaling. Crit Rev Eukaryot Gene Expr. 34:59–68. 2024. View Article : Google Scholar : PubMed/NCBI
|
|
119
|
Yao F, Zhao Y, Wang G, Zhao M, Hong X, Ye
Z, Dong F, Li W and Deng Q: Exosomal lncRNA ROR1-AS1 from
cancer-associated fibroblasts inhibits ferroptosis of lung cancer
cells through the IGF2BP1/SLC7A11 signal axis. Cell Signal.
120:1112212024. View Article : Google Scholar : PubMed/NCBI
|
|
120
|
Lu CL, Liu J and Yang JF: LncRNA-XIST
promotes lung adenocarcinoma growth and inhibits ferroptosis by
regulating GPX4. Mol Biotechnol. 28: View Article : Google Scholar : 2023.
|
|
121
|
Zhang N, Huang J, Xu M and Wang Y: LncRNA
T-UCR Uc.339/miR-339/SLC7A11 axis regulates the metastasis of
ferroptosis-induced lung adenocarcinoma. J Cancer. 13:1945–1957.
2022. View Article : Google Scholar : PubMed/NCBI
|
|
122
|
Wu H and Liu A: Long non-coding RNA NEAT1
regulates ferroptosis sensitivity in non-small-cell lung cancer. J
Int Med Res. 49:3000605219961832021. View Article : Google Scholar : PubMed/NCBI
|
|
123
|
Zhang R, Pan T, Xiang Y, Zhang M, Xie H,
Liang Z, Chen B, Xu C, Wang J, Huan Q, et al: Curcumenol triggered
ferroptosis in lung cancer cells via lncRNA H19/miR-19b-3p/FTH1
axis. Bioact Mater. 13:23–36. 2022.PubMed/NCBI
|
|
124
|
Tai F, Zhai R, Ding K, Zhang Y, Yang H, Li
H, Wang Q, Cao Z, Ge C, Fu H, et al: Long non-coding RNA lung
cancer-associated transcript 1 regulates ferroptosis via
microRNA-34a-5p-mediated GTP cyclohydrolase 1 downregulation in
lung cancer cells. Int J Oncol. 64: View Article : Google Scholar : 2024.
|
|
125
|
An J, Shi J, Yang C, Luo J, Li Y, Ren J,
Lv Y and Zhang Y: Regulation of tumorigenesis and ferroptosis in
non-small cell lung cancer by a novel BBOX1-AS1/miR-326/PROM2 axis.
Mol Cell Biochem. 479:2143–2155. 2023. View Article : Google Scholar : PubMed/NCBI
|
|
126
|
Gao GB, Chen L, Pan JF, Lei T, Cai X, Hao
Z, Wang Q, Shan G and Li J: LncRNA RGMB-AS1 inhibits HMOX1
ubiquitination and NAA10 activation to induce ferroptosis in
non-small cell lung cancer. Cancer Lett. 590:2168262024. View Article : Google Scholar : PubMed/NCBI
|
|
127
|
Mao C, Wang X, Liu Y, Wang M, Yan B, Jiang
Y, Shi Y, Shen Y, Liu X, Lai W, et al: A G3BP1-interacting lncRNA
promotes ferroptosis and apoptosis in cancer via nuclear
sequestration of p53. Cancer Res. 78:3484–3496. 2018. View Article : Google Scholar : PubMed/NCBI
|
|
128
|
Gai C, Liu C, Wu X, Yu M, Zheng J, Zhang
W, Lv S and Li W: MT1DP loaded by folate-modified liposomes
sensitizes erastin-induced ferroptosis via regulating
miR-365a-3p/NRF2 axis in non-small cell lung cancer cells. Cell
Death Dis. 11:7512020. View Article : Google Scholar : PubMed/NCBI
|
|
129
|
Zhen S, Jia Y, Zhao Y, Wang J, Zheng B,
Liu T, Duan Y, Lv W, Wang J, Xu F, et al: NEAT1_1 confers gefitinib
resistance in lung adenocarcinoma through promoting AKR1C1-mediated
ferroptosis defence. Cell Death Discov. 10:1312024. View Article : Google Scholar : PubMed/NCBI
|
|
130
|
Chen H, Wang L, Liu J, Wan Z, Zhou L, Liao
H and Wan R: LncRNA ITGB2-AS1 promotes cisplatin resistance of
non-small cell lung cancer by inhibiting ferroptosis via activating
the FOSL2/NAMPT axis. Cancer Biol Ther. 24:22233772023. View Article : Google Scholar : PubMed/NCBI
|
|
131
|
Shi Z, Zhang H, Shen Y, Zhang S, Zhang X,
Xu Y and Sun D: SETD1A-mediated H3K4me3 methylation upregulates
lncRNA HOXC-AS3 and the binding of HOXC-AS3 to EP300 and increases
EP300 stability to suppress the ferroptosis of NSCLC cells. Thorac
Cancer. 14:2579–2590. 2023. View Article : Google Scholar : PubMed/NCBI
|
|
132
|
Sui X, Hu N, Zhang Z, Wang Y, Wang P and
Xiu G: ASMTL-AS1 impedes the malignant progression of lung
adenocarcinoma by regulating SAT1 to promote ferroptosis. Pathol
Int. 71:741–751. 2021. View Article : Google Scholar : PubMed/NCBI
|
|
133
|
Wang M, Mao C, Ouyang L, Liu Y, Lai W, Liu
N, Shi Y, Chen L, Xiao D, Yu F, et al: Long noncoding RNA LINC00336
inhibits ferroptosis in lung cancer by functioning as a competing
endogenous RNA. Cell Death Differ. 26:2329–2343. 2019. View Article : Google Scholar : PubMed/NCBI
|
|
134
|
Dai N, Ma H and Feng Y: Silencing of long
non-coding RNA SDCBP2-AS1/microRNA-656-3p/CRIM1 axis promotes
ferroptosis of lung cancer cells. Cell Mol Biol (Noisy-le-grand).
69:189–194. 2023. View Article : Google Scholar : PubMed/NCBI
|
|
135
|
Liu L, Su S, Ye D, Yu Z, Lu W and Li X:
Long non-coding RNA OGFRP1 regulates cell proliferation and
ferroptosis by miR-299-3p/SLC38A1 axis in lung cancer. Anticancer
Drugs. 33:826–839. 2022.PubMed/NCBI
|
|
136
|
Xu C, Jiang ZB, Shao L, Zhao ZM, Fan XX,
Sui X, Yu LL, Wang XR, Zhang RN, Wang WJ, et al: β-Elemene enhances
erlotinib sensitivity through induction of ferroptosis by
upregulating lncRNA H19 in EGFR-mutant non-small cell lung cancer.
Pharmacol Res. 191:1067392023. View Article : Google Scholar
|
|
137
|
Xu P, Wang L, Xie X, Hu F, Yang Q, Hu R,
Jiang L, Ding F, Mei J, Liu J and Xiao H: Hsa_circ_0001869 promotes
NSCLC progression via sponging miR-638 and enhancing FOSL2
expression. Aging (Albany NY). 12:23836–23848. 2020. View Article : Google Scholar : PubMed/NCBI
|
|
138
|
Jiang L, Kon N, Li T, Wang SJ, Su T,
Hibshoosh H, Baer R and Gu W: Ferroptosis as a p53-mediated
activity during tumour suppression. Nature. 520:57–62. 2015.
View Article : Google Scholar : PubMed/NCBI
|
|
139
|
Zhao Y, Cui Q, Shen J, Shen W and Weng Y:
Hsa_ circ_0070440 promotes lung adenocarcinoma progression by
SLC7A11-mediated-ferroptosis. Histol Histopathol. 38:1429–1441.
2023.PubMed/NCBI
|
|
140
|
Pan CF, Wei K, Ma ZJ, He YZ, Huang JJ, Guo
ZZ, Chen ZP, Barr MP, Shackelford RE, Xia Y and Wang J: CircP4HB
regulates ferroptosis via SLC7A11-mediated glutathione synthesis in
lung adenocarcinoma. Transl Lung Cancer Res. 11:366–380. 2022.
View Article : Google Scholar : PubMed/NCBI
|
|
141
|
Wu L, Li N, Zhu L and Shao G: CircPDSS1
(hsa_circ_0017998) silencing induces ferroptosis in non-small-cell
lung cancer cells by modulating the miR-137/SLC7A11/GPX4/GCLC axis.
Toxicol In Vitro. 99:1058872024. View Article : Google Scholar : PubMed/NCBI
|
|
142
|
Li Z, Fan M, Zhou Z and Sang X:
Circ_0082374 promotes the tumorigenesis and suppresses ferroptosis
in non-small cell lung cancer by up-regulating GPX4 through
sequestering miR-491-5p. Mol Biotechnol. 4: View Article : Google Scholar : 2024.
|
|
143
|
Fu H and Zhao Q: CircSCUBE3 promoted
ferroptosis to inhibit lung adenocarcinoma progression. Cell Mol
Biol (Noisy-le-grand). 70:161–168. 2024. View Article : Google Scholar : PubMed/NCBI
|
|
144
|
Shanshan W, Hongying M, Jingjing F, Yiming
Y, Yu R and Rui Y: CircDTL functions as an oncogene and regulates
both apoptosis and ferroptosis in non-small cell lung cancer cells.
Front Genet. 12:7435052021. View Article : Google Scholar : PubMed/NCBI
|
|
145
|
Liu B, Ma H, Liu X and Xing W: CircSCN8A
suppresses malignant progression and induces ferroptosis in
non-small cell lung cancer by regulating miR-1290/ACSL4 axis. Cell
Cycle. 22:758–776. 2023. View Article : Google Scholar :
|
|
146
|
Zhang X, Xu Y, Ma L, Yu K, Niu Y, Xu X,
Shi Y, Guo S, Xue X, Wang Y, et al: Essential roles of exosome and
circRNA_101093 on ferroptosis desensitization in lung
adenocarcinoma. Cancer Commun (Lond). 42:287–313. 2022. View Article : Google Scholar : PubMed/NCBI
|
|
147
|
Zhang Q, Fan X, Zhang X and Ju S:
Ferroptosis in tumors and its relationship to other programmed cell
death: Role of non-coding RNAs. J Transl Med. 21:5142023.
View Article : Google Scholar : PubMed/NCBI
|
|
148
|
Wang Y, Chen Y, Zhang J, Yang Y, Fleishman
JS, Wang Y, Wang J, Chen J, Li Y and Wang H: Cuproptosis: A novel
therapeutic target for overcoming cancer drug resistance. Drug
Resist Updat. 72:1010182024. View Article : Google Scholar
|
|
149
|
Tang D and Kang R: NFE2L2 and ferroptosis
resistance in cancer therapy. Cancer Drug Resist.
7:412024.PubMed/NCBI
|
|
150
|
Winkle M, El-Daly SM, Fabbri M and Calin
GA: Noncoding RNA therapeutics-challenges and potential solutions.
Nat Rev Drug Discov. 20:629–651. 2021. View Article : Google Scholar : PubMed/NCBI
|
|
151
|
Nappi F: Non-coding RNA-targeted therapy:
A state-of-the-art review. Int J Mol Sci. 25:36302024. View Article : Google Scholar : PubMed/NCBI
|
|
152
|
He AT, Liu J, Li F and Yang BB: Targeting
circular RNAs as a therapeutic approach: Current strategies and
challenges. Signal Transduct Target Ther. 6:1852021. View Article : Google Scholar : PubMed/NCBI
|
|
153
|
Zhao R, Fu J, Zhu L, Chen Y and Liu B:
Designing strategies of small-molecule compounds for modulating
non-coding RNAs in cancer therapy. J Hematol Oncol. 15:142022.
View Article : Google Scholar : PubMed/NCBI
|
|
154
|
Han B, Liu Y, Zhang Q and Liang L:
Propofol decreases cisplatin resistance of non-small cell lung
cancer by inducing GPX4-mediated ferroptosis through the
miR-744-5p/miR-615-3p axis. J Proteomics. 274:1047772023.
View Article : Google Scholar
|
|
155
|
Fu R, You Y, Wang Y, Wang J, Lu Y, Gao R,
Pang M, Yang P and Wang H: Sanggenol L induces ferroptosis in
non-small cell lung cancer cells via regulating the
miR-26a-1-3p/MDM2/p53 signaling pathway. Biochem Pharmacol.
226:1163452024. View Article : Google Scholar : PubMed/NCBI
|
|
156
|
Huang J, Deng C, Guo T, Chen X, Chen P, Du
S and Lu M: Cinobufotalin induces ferroptosis to suppress lung
cancer cell growth by lncRNA LINC00597/hsa-miR-367-3p/TFRC pathway
via resibufogenin. Anticancer Agents Med Chem. 23:717–725. 2023.
View Article : Google Scholar
|