Non‑coding RNA‑mediated epigenetic modification of ferroptosis in non‑small cell lung cancer (Review)
- Authors:
- Yumin Wang
- Joshua S. Fleishman
- Yulin Li
- Yuwei Cao
- Haidong Wei
- Zhe Zhang
- Jichao Chen
- Mingchao Ding
-
Affiliations: Department of Respiratory and Critical Care Medicine, Aerospace Center Hospital, Peking University Aerospace School of Clinical Medicine, Beijing 100049, P.R. China, Department of Pharmaceutical Sciences, College of Pharmacy and Health Sciences, St. John's University, New York, NY 11439, USA, Department of Emergency, Aerospace Center Hospital, Peking University Aerospace School of Clinical Medicine, Beijing 100049, P.R. China, Department of Peripheral Vascular Intervention, Aerospace Center Hospital, Peking University Aerospace School of Clinical Medicine, Beijing, Beijing 100049, P.R. China - Published online on: December 9, 2024 https://doi.org/10.3892/ijo.2024.5714
- Article Number: 8
-
Copyright: © Wang et al. This is an open access article distributed under the terms of Creative Commons Attribution License.
This article is mentioned in:
Abstract
Adhikari S, Bhattacharya A, Adhikary S, Singh V, Gadad SS, Roy S and Da C: The paradigm of drug resistance in cancer: An epigenetic perspective. Biosci Rep. 42:BSR202118122022. View Article : Google Scholar : PubMed/NCBI | |
Bukowski K, Kciuk M and Kontek R: Mechanisms of multi-drug resistance in cancer chemotherapy. Int J Mol Sci. 21:32332020. View Article : Google Scholar | |
Sung H, Ferlay J, Siegel RL, Laversanne M, Soerjomataram I, Jemal A and Bray F: Global cancer statistics 2020: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J Clin. 71:209–249. 2021. View Article : Google Scholar : PubMed/NCBI | |
Leiter A, Veluswamy RR and Wisnivesky JP: The global burden of lung cancer: Current status and future trends. Nat Rev Clin Oncol. 20:624–639. 2023. View Article : Google Scholar : PubMed/NCBI | |
Rotow J and Bivona TG: Understanding and targeting resistance mechanisms in NSCLC. Nat Rev Cancer. 17:637–658. 2017. View Article : Google Scholar : PubMed/NCBI | |
LoPiccolo J, Gusev A, Christiani DC and Jänne PA: Lung cancer in patients who have never smoked-an emerging disease. Nat Rev Clin Oncol. 21:121–146. 2024. View Article : Google Scholar : PubMed/NCBI | |
Siegel RL, Miller KD, Wagle NS and Jemal A: Cancer statistics, 2023. CA Cancer J Clin. 73:17–48. 2023. View Article : Google Scholar : PubMed/NCBI | |
Otano I, Ucero AC, Zugazagoitia J and Paz-Ares L: At the crossroads of immunotherapy for oncogene-addicted subsets of NSCLC. Nat Rev Clin Oncol. 20:143–159. 2023. View Article : Google Scholar : PubMed/NCBI | |
Soerjomataram I and Bray F: Planning for tomorrow: Global cancer incidence and the role of prevention 2020-2070. Nat Rev Clin Oncol. 18:663–672. 2021. View Article : Google Scholar : PubMed/NCBI | |
Hirsch FR, Scagliotti GV, Mulshine JL, Kwon R, Curran WJ Jr, Wu YL and Paz-Ares L: Lung cancer: Current therapies and new targeted treatments. Lancet. 389:299–311. 2017. View Article : Google Scholar | |
Nagasaka M and Gadgeel SM: Role of chemotherapy and targeted therapy in early-stage non-small cell lung cancer. Expert Rev Anticancer Ther. 18:63–70. 2018. View Article : Google Scholar | |
Yin JY, Li X, Zhou HH and Liu ZQ: Pharmacogenomics of platinum-based chemotherapy sensitivity in NSCLC: Toward precision medicine. Pharmacogenomics. 17:1365–1378. 2016. View Article : Google Scholar : PubMed/NCBI | |
Wang Y, Hu J, Fleishman JS, Li Y, Ren Z, Wang J, Feng Y, Chen J and Wang H: Inducing ferroptosis by traditional medicines: A novel approach to reverse chemoresistance in lung cancer. Front Pharmacol. 15:12901832024. View Article : Google Scholar : PubMed/NCBI | |
Herbst RS, Morgensztern D and Boshoff C: The biology and management of non-small cell lung cancer. Nature. 553:446–454. 2018. View Article : Google Scholar : PubMed/NCBI | |
Lim ZF and Ma PC: Emerging insights of tumor heterogeneity and drug resistance mechanisms in lung cancer targeted therapy. J Hematol Oncol. 12:1342019. View Article : Google Scholar : PubMed/NCBI | |
Lei G, Zhuang L and Gan B: Targeting ferroptosis as a vulnerability in cancer. Nat Rev Cancer. 22:381–396. 2022. View Article : Google Scholar : PubMed/NCBI | |
Kobayashi H, Yoshimoto C, Matsubara S, Shigetomi H and Imanaka S: A comprehensive overview of recent developments on the mechanisms and pathways of ferroptosis in cancer: The potential implications for therapeutic strategies in ovarian cancer. Cancer Drug Resist. 6:547–566. 2023. View Article : Google Scholar : PubMed/NCBI | |
Yunchu Y, Miyanaga A and Seike M: Integrative analysis of ferroptosis-related genes in small cell lung cancer for the identification of biomarkers and therapeutic targets. Front Biosci (Landmark Ed). 28:1252023. View Article : Google Scholar : PubMed/NCBI | |
Guo J, Xu B, Han Q, Zhou H, Xia Y, Gong C, Dai X, Li Z and Wu G: Ferroptosis: A novel anti-tumor action for cisplatin. Cancer Res Treat. 50:445–460. 2018. View Article : Google Scholar : | |
Lei G, Zhang Y, Koppula P, Liu X, Zhang J, Lin SH, Ajani JA, Xiao Q, Liao Z, Wang H and Gan B: The role of ferroptosis in ionizing radiation-induced cell death and tumor suppression. Cell Res. 30:146–162. 2020. View Article : Google Scholar : PubMed/NCBI | |
Sun X, Ou Z, Chen R, Niu X, Chen D, Kang R and Tang D: Activation of the p62-Keap1-NRF2 pathway protects against ferroptosis in hepatocellular carcinoma cells. Hepatology. 63:173–184. 2016. View Article : Google Scholar | |
Wang W, Green M, Choi JE, Gijón M, Kennedy PD, Johnson JK, Liao P, Lang X, Kryczek I, Sell A, et al: CD8(+) T cells regulate tumour ferroptosis during cancer immunotherapy. Nature. 569:270–274. 2019. View Article : Google Scholar : PubMed/NCBI | |
Wang Y, Wu X, Ren Z, Li Y, Zou W, Chen J and Wang H: Overcoming cancer chemotherapy resistance by the induction of ferroptosis. Drug Resist Updat. 66:1009162023. View Article : Google Scholar : PubMed/NCBI | |
Lin X, Wu Z, Hu H, Luo ML and Song E: Non-coding RNAs rewire cancer metabolism networks. Semin Cancer Biol. 75:116–126. 2021. View Article : Google Scholar : PubMed/NCBI | |
Balihodzic A, Prinz F, Dengler MA, Calin GA, Jost PJ and Pichler M: Non-coding RNAs and ferroptosis: Potential implications for cancer therapy. Cell Death Differ. 29:1094–1106. 2022. View Article : Google Scholar : PubMed/NCBI | |
Ensoy M, Bumin ZS, Jama HA and Cansaran-Duman D: The regulation role of ferroptosis mechanism of anti-cancer drugs and noncoding RNAs. Curr Med Chem. 30:1638–1656. 2023. View Article : Google Scholar | |
Luo Y, Huang Q, He B, Liu Y, Huang S and Xiao J: Regulation of ferroptosis by non-coding RNAs in the development and treatment of cancer (Review). Oncol Rep. 45:29–48. 2021. View Article : Google Scholar | |
Valashedi MR, Bamshad C, Najafi-Ghalehlou N, Nikoo A, Tomita K, Kuwahara Y, Sato T, Roushandeh AM and Roudkenar MH: Non-coding RNAs in ferroptotic cancer cell death pathway: Meet the new masters. Hum Cell. 35:972–994. 2022. View Article : Google Scholar : PubMed/NCBI | |
Wang D, Tang L, Zhang Y, Ge G, Jiang X, Mo Y, Wu P, Deng X, Li L, Zuo S, et al: Regulatory pathways and drugs associated with ferroptosis in tumors. Cell Death Dis. 13:5442022. View Article : Google Scholar : PubMed/NCBI | |
Xie B and Guo Y: Molecular mechanism of cell ferroptosis and research progress in regulation of ferroptosis by noncoding RNAs in tumor cells. Cell Death Discov. 7:1012021. View Article : Google Scholar : PubMed/NCBI | |
Zuo YB, Zhang YF, Zhang R, Tian JW, Lv XB, Li R, Li SP, Cheng MD, Shan J, Zhao Z and Xin H: Ferroptosis in cancer progression: Role of noncoding RNAs. Int J Biol Sci. 18:1829–1843. 2022. View Article : Google Scholar : PubMed/NCBI | |
Wang H, Fleishman JS, Cheng S, Wang W, Wu F and Wang Y and Wang Y: Epigenetic modification of ferroptosis by non-coding RNAs in cancer drug resistance. Mol Cancer. 23:1772024. View Article : Google Scholar : PubMed/NCBI | |
Sun L, Cao H, Wang Y and Wang H: Regulating ferroptosis by noncoding RNAs in hepatocellular carcinoma. Biol Direct. 19:802024. View Article : Google Scholar | |
Dixon SJ, Lemberg KM, Lamprecht MR, Skouta R, Zaitsev EM, Gleason CE, Patel DN, Bauer AJ, Cantley AM, Yang WS, et al: Ferroptosis: An iron-dependent form of nonapoptotic cell death. Cell. 149:1060–1072. 2012. View Article : Google Scholar : PubMed/NCBI | |
Gu Y, Li Y, Wang J, Zhang L, Zhang J and Wang Y: Targeting ferroptosis: Paving new roads for drug design and discovery. Eur J Med Chem. 247:1150152023. View Article : Google Scholar | |
Huo L, Liu C, Yuan Y, Liu X and Cao Q: Pharmacological inhibition of ferroptosis as a therapeutic target for sepsis-associated organ damage. Eur J Med Chem. 257:1154382023. View Article : Google Scholar : PubMed/NCBI | |
Stockwell BR: Ferroptosis turns 10: Emerging mechanisms, physiological functions, and therapeutic applications. Cell. 185:2401–2421. 2022. View Article : Google Scholar : PubMed/NCBI | |
Yin L, Liu P, Jin Y, Ning Z, Yang Y and Gao H: Ferroptosis-related small-molecule compounds in cancer therapy: Strategies and applications. Eur J Med Chem. 244:1148612022. View Article : Google Scholar : PubMed/NCBI | |
Wang Y, Hu J, Wu S, Fleishman JS, Li Y, Xu Y, Zou W, Wang J, Feng Y, Chen J and Wang H: Targeting epigenetic and posttranslational modifications regulating ferroptosis for the treatment of diseases. Signal Transduct Target Ther. 8:4492023. View Article : Google Scholar : PubMed/NCBI | |
Dixon SJ and Olzmann JA: The cell biology of ferroptosis. Nat Rev Mol Cell Biol. 25:424–442. 2024. View Article : Google Scholar : PubMed/NCBI | |
Dai E, Chen X, Linkermann A, Jiang X, Kang R, Kagan VE, Bayir H, Yang WS, Garcia-Saez AJ, Ioannou MS, et al: A guideline on the molecular ecosystem regulating ferroptosis. Nat Cell Biol. 26:1447–1457. 2024. View Article : Google Scholar : PubMed/NCBI | |
Chen X, Kang R, Kroemer G and Tang D: Ferroptosis in infection, inflammation, and immunity. J Exp Med. 218:e202105182021. View Article : Google Scholar : PubMed/NCBI | |
Hadian K and Stockwell BR: SnapShot: Ferroptosis. Cell. 181:1188–1188.e1. 2020. View Article : Google Scholar : PubMed/NCBI | |
Pope LE and Dixon SJ: Regulation of ferroptosis by lipid metabolism. Trends Cell Biol. 33:1077–1087. 2023. View Article : Google Scholar : PubMed/NCBI | |
Jiang X, Stockwell BR and Conrad M: Ferroptosis: Mechanisms, biology and role in disease. Nat Rev Mol Cell Biol. 22:266–282. 2021. View Article : Google Scholar : PubMed/NCBI | |
Gan B: Mitochondrial regulation of ferroptosis. J Cell Biol. 220:e2021050432021. View Article : Google Scholar : PubMed/NCBI | |
Gao M, Yi J, Zhu J, Minikes AM, Monian P, Thompson CB and Jiang X: Role of mitochondria in ferroptosis. Mol Cell. 73:354–363.e3. 2019. View Article : Google Scholar : | |
Stockwell BR, Angeli JP, Bayir H, Bush AI, Conrad M, Dixon SJ, Fulda S, Gascón S, Hatzios SK, Kagan VE, et al: Ferroptosis: A regulated cell death nexus linking metabolism, redox biology, and disease. Cell. 171:273–285. 2017. View Article : Google Scholar : PubMed/NCBI | |
Zhang DD: Ironing out the details of ferroptosis. Nat Cell Biol. 26:1386–1393. 2024. View Article : Google Scholar : PubMed/NCBI | |
Liang D, Minikes AM and Jiang X: Ferroptosis at the intersection of lipid metabolism and cellular signaling. Mol Cell. 82:2215–2227. 2022. View Article : Google Scholar : PubMed/NCBI | |
Doll S and Conrad M: Iron and ferroptosis: A still ill-defined liaison. IUBMB Life. 69:423–434. 2017. View Article : Google Scholar : PubMed/NCBI | |
Helberg J and Pratt DA: Autoxidation vs. antioxidants-the fight for forever. Chem Soc Rev. 50:7343–7358. 2021. View Article : Google Scholar : PubMed/NCBI | |
Conrad M and Pratt DA: The chemical basis of ferroptosis. Nat Chem Biol. 15:1137–1147. 2019. View Article : Google Scholar : PubMed/NCBI | |
Kang MJ, Fujino T, Sasano H, Minekura H, Yabuki N, Nagura H, Iijima H and Yamamoto TT: A novel arachidonate-preferring acyl-CoA synthetase is present in steroidogenic cells of the rat adrenal, ovary, and testis. Proc Natl Acad Sci USA. 94:2880–2884. 1997. View Article : Google Scholar : PubMed/NCBI | |
Kim JW, Lee JY, Oh M and Lee EW: An integrated view of lipid metabolism in ferroptosis revisited via lipidomic analysis. Exp Mol Med. 55:1620–1631. 2023. View Article : Google Scholar : PubMed/NCBI | |
Hishikawa D, Shindou H, Kobayashi S, Nakanishi H, Taguchi R and Shimizu T: Discovery of a lysophospholipid acyltransferase family essential for membrane asymmetry and diversity. Proc Natl Acad Sci USA. 105:2830–2835. 2008. View Article : Google Scholar : PubMed/NCBI | |
Yan B, Ai Y, Sun Q, Ma Y, Cao Y, Wang J, Zhang Z and Wang X: Membrane damage during ferroptosis is caused by oxidation of phospholipids catalyzed by the oxidoreductases POR and CYB5R1. Mol Cell. 81:355–369.e10. 2021. View Article : Google Scholar | |
Zou Y, Li H, Graham ET, Deik AA, Eaton JK, Wang W, Sandoval-Gomez G, Clish CB, Doench JG and Schreiber SL: Cytochrome P450 oxidoreductase contributes to phospholipid peroxidation in ferroptosis. Nat Chem Biol. 16:302–309. 2020. View Article : Google Scholar : PubMed/NCBI | |
Poursaitidis I, Wang X, Crighton T, Labuschagne C, Mason D, Cramer SL, Triplett K, Roy R, Pardo OE, Seckl MJ, et al: Oncogene-selective sensitivity to synchronous cell death following modulation of the amino acid nutrient cystine. Cell Rep. 18:2547–2556. 2017. View Article : Google Scholar : PubMed/NCBI | |
Yang WH, Ding CC, Sun T, Rupprecht G, Lin CC, Hsu D and Chi JT: The hippo pathway effector TAZ regulates ferroptosis in renal cell carcinoma. Cell Rep. 28:2501–2508.e4. 2019. View Article : Google Scholar : PubMed/NCBI | |
Chu B, Kon N, Chen D, Li T, Liu T, Jiang L, Song S, Tavana O and Gu W: ALOX12 is required for p53-mediated tumour suppression through a distinct ferroptosis pathway. Nat Cell Biol. 21:579–591. 2019. View Article : Google Scholar : PubMed/NCBI | |
Shah R, Shchepinov MS and Pratt DA: Resolving the role of lipoxygenases in the initiation and execution of ferroptosis. ACS Cent Sci. 4:387–396. 2018. View Article : Google Scholar : PubMed/NCBI | |
Anthonymuthu TS, Tyurina YY, Sun WY, Mikulska-Ruminska K, Shrivastava IH, Tyurin VA, Cinemre FB, Dar HH, VanDemark AP, Holman TR, et al: Resolving the paradox of ferroptotic cell death: Ferrostatin-1 binds to 15LOX/PEBP1 complex, suppresses generation of peroxidized ETE-PE, and protects against ferroptosis. Redox Biol. 38:1017442021. View Article : Google Scholar | |
Yang WS, Kim KJ, Gaschler MM, Patel M, Shchepinov MS and Stockwell BR: Peroxidation of polyunsaturated fatty acids by lipoxygenases drives ferroptosis. Proc Natl Acad Sci USA. 113:E4966–E4975. 2016. View Article : Google Scholar : PubMed/NCBI | |
Haeggström JZ and Funk CD: Lipoxygenase and leukotriene pathways: Biochemistry, biology, and roles in disease. Chem Rev. 111:5866–5898. 2011. View Article : Google Scholar : PubMed/NCBI | |
Alvarez SW, Sviderskiy VO, Terzi EM, Papagiannakopoulos T, Moreira AL, Adams S, Sabatini DM, Birsoy K and Possemato R: NFS1 undergoes positive selection in lung tumours and protects cells from ferroptosis. Nature. 551:639–643. 2017. View Article : Google Scholar : PubMed/NCBI | |
Gaschler MM, Hu F, Feng H, Linkermann A, Min W and Stockwell BR: Determination of the subcellular localization and mechanism of action of ferrostatins in suppressing ferroptosis. ACS Chem Biol. 13:1013–1020. 2018. View Article : Google Scholar : PubMed/NCBI | |
Chen X, Li J, Kang R, Klionsky DJ and Tang D: Ferroptosis: Machinery and regulation. Autophagy. 17:2054–2081. 2021. View Article : Google Scholar : | |
Hassannia B, Vandenabeele P and Berghe TV: Targeting ferroptosis to iron out cancer. Cancer Cell. 35:830–849. 2019. View Article : Google Scholar : PubMed/NCBI | |
Jacquemyn J, Ralhan I and Ioannou MS: Driving factors of neuronal ferroptosis. Trends Cell Biol. 34:535–546. 2024. View Article : Google Scholar : PubMed/NCBI | |
Ayala A, Muñoz MF and Argüelles S: Lipid peroxidation: Production, metabolism, and signaling mechanisms of malondialdehyde and 4-hydroxy-2-nonenal. Oxid Med Cell Longev. 2014:3604382014. View Article : Google Scholar : PubMed/NCBI | |
Dos Santos AF, Fazeli G, da Silva TN and Angeli JP: Ferroptosis: Mechanisms and implications for cancer development and therapy response. Trends Cell Biol. 33:1062–1076. 2023. View Article : Google Scholar : PubMed/NCBI | |
Ryter SW, Kim HP, Hoetzel A, Park JW, Nakahira K, Wang X and Choi AM: Mechanisms of cell death in oxidative stress. Antioxid Redox Signal. 9:49–89. 2007. View Article : Google Scholar | |
Bao WD, Pang P, Zhou XT, Hu F, Xiong W, Chen K, Wang J, Wang F, Xie D, Hu YZ, et al: Loss of ferroportin induces memory impairment by promoting ferroptosis in Alzheimer's disease. Cell Death Differ. 28:1548–1562. 2021. View Article : Google Scholar : PubMed/NCBI | |
Chen PH, Wu J, Ding CC, Lin CC, Pan S, Bossa N, Xu Y, Yang WH, Mathey-Prevot B and Chi J: Kinome screen of ferroptosis reveals a novel role of ATM in regulating iron metabolism. Cell Death Differ. 27:1008–1022. 2020. View Article : Google Scholar : | |
Geng N, Shi BJ, Li SL, Zhong ZY, Li YC, Xua WL, Zhou H and Cai JH: Knockdown of ferroportin accelerates erastin-induced ferroptosis in neuroblastoma cells. Eur Rev Med Pharmacol Sci. 22:3826–3836. 2018.PubMed/NCBI | |
Gao M, Monian P, Quadri N, Ramasamy R and Jiang X: Glutaminolysis and transferrin regulate ferroptosis. Mol Cell. 59:298–308. 2015. View Article : Google Scholar : PubMed/NCBI | |
Gao M, Monian P, Pan Q, Zhang W, Xiang J and Jiang X: Ferroptosis is an autophagic cell death process. Cell Res. 26:1021–1032. 2016. View Article : Google Scholar : PubMed/NCBI | |
Hou W, Xie Y, Song X, Sun X, Lotze MT, Zeh HJ III, Kang R and Tang D: Autophagy promotes ferroptosis by degradation of ferritin. Autophagy. 12:1425–1428. 2016. View Article : Google Scholar : PubMed/NCBI | |
Chen X, Yu C, Kang R and Tang D: Iron metabolism in ferroptosis. Front Cell Dev Biol. 8:5902262020. View Article : Google Scholar : PubMed/NCBI | |
David S, Jhelum P, Ryan F, Jeong SY and Kroner A: Dysregulation of iron homeostasis in the central nervous system and the role of ferroptosis in neurodegenerative disorders. Antioxid Redox Signal. 37:150–170. 2022. View Article : Google Scholar | |
Stockwell BR and Jiang X: The chemistry and biology of ferroptosis. Cell Chem Biol. 27:365–375. 2020. View Article : Google Scholar : PubMed/NCBI | |
Sun Y, Xia X, Basnet D, Zheng JC, Huang J and Liu J: Mechanisms of ferroptosis and emerging links to the pathology of neurodegenerative diseases. Front Aging Neurosci. 14:9041522022. View Article : Google Scholar : PubMed/NCBI | |
Brigelius-Flohé R and Flohé L: Regulatory phenomena in the glutathione peroxidase superfamily. Antioxid Redox Signal. 33:498–516. 2020. View Article : Google Scholar | |
Brigelius-Flohé R and Maiorino M: Glutathione peroxidases. Biochim Biophys Acta. 1830:3289–3303. 2013. View Article : Google Scholar | |
Seibt TM, Proneth B and Conrad M: Role of GPX4 in ferroptosis and its pharmacological implication. Free Radic Biol Med. 133:144–152. 2019. View Article : Google Scholar | |
Ursini F, Maiorino M, Valente M, Ferri L and Gregolin C: Purification from pig liver of a protein which protects liposomes and biomembranes from peroxidative degradation and exhibits glutathione peroxidase activity on phosphatidylcholine hydroperoxides. Biochim Biophys Acta. 710:197–211. 1982. View Article : Google Scholar : PubMed/NCBI | |
Forcina GC and Dixon SJ: GPX4 at the crossroads of lipid homeostasis and ferroptosis. Proteomics. 19:e18003112019. View Article : Google Scholar : PubMed/NCBI | |
Angeli JP, Schneider M, Proneth B, Tyurina YY, Tyurin VA, Hammond VJ, Herbach N, Aichler M, Walch A, Eggenhofer E, et al: Inactivation of the ferroptosis regulator Gpx4 triggers acute renal failure in mice. Nat Cell Biol. 16:1180–1191. 2014. View Article : Google Scholar | |
Ingold I, Berndt C, Schmitt S, Doll S, Poschmann G, Buday K, Roveri A, Peng X, Freitas FP, Seibt T, et al: Selenium utilization by GPX4 is required to prevent hydroperoxide-induced ferroptosis. Cell. 172:409–422.e21. 2018. View Article : Google Scholar : PubMed/NCBI | |
Yang WS, SriRamaratnam R, Welsch ME, Shimada K, Skouta R, Viswanathan VS, Cheah JH, Clemons PA, Shamji AF, Clish C, et al: Regulation of ferroptotic cancer cell death by GPX4. Cell. 156:317–331. 2014. View Article : Google Scholar : PubMed/NCBI | |
Koppula P, Zhang Y, Zhuang L and Gan B: Amino acid transporter SLC7A11/xCT at the crossroads of regulating redox homeostasis and nutrient dependency of cancer. Cancer Commun (Lond). 38:122018.PubMed/NCBI | |
Sato H, Tamba M, Ishii T and Bannai S: Cloning and expression of a plasma membrane cystine/glutamate exchange transporter composed of two distinct proteins. J Biol Chem. 274:11455–11458. 1999. View Article : Google Scholar : PubMed/NCBI | |
Bersuker K, Hendricks JM, Li Z, Magtanong L, Ford B, Tang PH, Roberts MA, Tong B, Maimone TJ, Zoncu R, et al: The CoQ oxidoreductase FSP1 acts parallel to GPX4 to inhibit ferroptosis. Nature. 575:688–692. 2019. View Article : Google Scholar : PubMed/NCBI | |
Doll S, Freitas FP, Shah R, Aldrovandi M, da Silva MC, Ingold I, Grocin AG, da Silva TN, Panzilius E, Scheel CH, et al: FSP1 is a glutathione-independent ferroptosis suppressor. Nature. 575:693–698. 2019. View Article : Google Scholar : PubMed/NCBI | |
Nakamura T, Hipp C, Mourão ASD, Borggräfe J, Aldrovandi M, Henkelmann B, Wanninger J, Mishima E, Lytton E, Emler D, et al: Phase separation of FSP1 promotes ferroptosis. Nature. 619:371–377. 2023. View Article : Google Scholar : PubMed/NCBI | |
Dai E, Zhang W, Cong D, Kang R, Wang J and Tang D: AIFM2 blocks ferroptosis independent of ubiquinol metabolism. Biochem Biophys Res Commun. 523:966–971. 2020. View Article : Google Scholar : PubMed/NCBI | |
Pedrera L, Espiritu RA, Ros U, Weber J, Schmitt A, Stroh J, Hailfinger S, von Karstedt S and García-Sáez AJ: Ferroptotic pores induce Ca(2+) fluxes and ESCRT-III activation to modulate cell death kinetics. Cell Death Differ. 28:1644–1657. 2021. View Article : Google Scholar | |
Kraft V, Bezjian CT, Pfeiffer S, Ringelstetter L, Müller C, Zandkarimi F, Merl-Pham J, Bao X, Anastasov N, Kössl J, et al: GTP Cyclohydrolase 1/Tetrahydrobiopterin counteract ferroptosis through lipid remodeling. ACS Cent Sci. 6:41–53. 2020. View Article : Google Scholar : PubMed/NCBI | |
Soula M, Weber RA, Zilka O, Alwaseem H, La K, Yen F, Molina H, Garcia-Bermudez J, Pratt DA and Birso K: Metabolic determinants of cancer cell sensitivity to canonical ferroptosis inducers. Nat Chem Biol. 16:1351–1360. 2020. View Article : Google Scholar : PubMed/NCBI | |
Mao C, Liu X, Zhang Y, Lei G, Yan Y, Lee H, Koppula P, Wu S, Zhuang L, Fang B, et al: DHODH-mediated ferroptosis defence is a targetable vulnerability in cancer. Nature. 593:586–590. 2021. View Article : Google Scholar : PubMed/NCBI | |
Liang D, Feng Y, Zandkarimi F, Wang H, Zhang Z, Kim J, Cai Y, Gu W, Stockwell BR and Jiang X: Ferroptosis surveillance independent of GPX4 and differentially regulated by sex hormones. Cell. 186:2748–2764. 2023. View Article : Google Scholar : PubMed/NCBI | |
Doll S, Proneth B, Tyurina YY, Panzilius E, Kobayashi S, Ingold I, Irmler M, Beckers J, Aichler M, Walch A, et al: ACSL4 dictates ferroptosis sensitivity by shaping cellular lipid composition. Nat Chem Biol. 13:91–98. 2017. View Article : Google Scholar : | |
Kagan VE, Mao G, Qu F, Angeli JP, Doll S, Croix CS, Dar HH, Liu B, Tyurin VA, Ritov VB, et al: Oxidized arachidonic and adrenic PEs navigate cells to ferroptosis. Nat Chem Biol. 13:81–90. 2017. View Article : Google Scholar | |
Freitas FP, Alborzinia H, Dos Santos AF, Nepachalovich P, Pedrera L, Zilka O, Inague A, Klein C, Aroua N, Kaushal K, et al: 7-Dehydrocholesterol is an endogenous suppressor of ferroptosis. Nature. 626:401–410. 2024. View Article : Google Scholar : PubMed/NCBI | |
Li Y, Ran Q, Duan Q, Jin J, Wang Y, Yu L, Wang C, Zhu Z, Chen X, Weng L, et al: 7-Dehydrocholesterol dictates ferroptosis sensitivity. Nature. 626:411–418. 2024. View Article : Google Scholar : PubMed/NCBI | |
Garcia-Martinez L, Zhang Y, Nakata Y, Chan HL and Morey L: Epigenetic mechanisms in breast cancer therapy and resistance. Nat Commun. 12:17862021. View Article : Google Scholar : PubMed/NCBI | |
Ling C and Rönn T: Epigenetics in human obesity and type 2 diabetes. Cell Metab. 29:1028–1044. 2019. View Article : Google Scholar : PubMed/NCBI | |
Shu F, Xiao H, Li QN, Ren XS, Liu ZG, Hu BW, Wang HS, Wang H and Jiang GM: Epigenetic and post-translational modifications in autophagy: Biological functions and therapeutic targets. Signal Transduct Target Ther. 8:322023. View Article : Google Scholar : PubMed/NCBI | |
Yang M, Luo H, Yi X, Wei X and Jiang DS: The epigenetic regulatory mechanisms of ferroptosis and its implications for biological processes and diseases. MedComm (2020). 4:e2672023. View Article : Google Scholar : PubMed/NCBI | |
Deng SH, Wu DM, Li L, Liu T, Zhang T, Li J, Yu Y, He M, Zhao YY, Han R and Xu Y: miR-324-3p reverses cisplatin resistance by inducing GPX4-mediated ferroptosis in lung adenocarcinoma cell line A549. Biochem Biophys Res Commun. 549:54–60. 2021. View Article : Google Scholar : PubMed/NCBI | |
Song Z, Jia G, Ma P and Cang S: Exosomal miR-4443 promotes cisplatin resistance in non-small cell lung carcinoma by regulating FSP1 m6A modification-mediated ferroptosis. Life Sci. 276:1193992021. View Article : Google Scholar : PubMed/NCBI | |
Chen Q, Pan Q, Gao H, Wang Y and Zhong X: miR-17-5p/HOXA7 is a potential driver for brain metastasis of lung adenocarcinoma related to ferroptosis revealed by bioinformatic analysis. Front Neurol. 13:8789472022. View Article : Google Scholar : PubMed/NCBI | |
Lu X, Kang N, Ling X, Pan M, Du W and Gao S: MiR-27a-3p promotes non-small cell lung cancer through SLC7A11-mediated-ferroptosis. Front Oncol. 11:7593462021. View Article : Google Scholar : PubMed/NCBI | |
Bi G, Liang J, Zhao M, Zhang H, Jin X, Lu T, Zheng Y, Bian Y, Chen Z, Huang Y, et al: miR-6077 promotes cisplatin/pemetrexed resistance in lung adenocarcinoma via CDKN1A/cell cycle arrest and KEAP1/ferroptosis pathways. Mol Ther Nucleic Acids. 28:366–386. 2022. View Article : Google Scholar : PubMed/NCBI | |
Wei D, Ke YQ, Duan P, Zhou L, Wang CY and Cao P: MicroRNA-302a-3p induces ferroptosis of non-small cell lung cancer cells via targeting ferroportin. Free Radic Res. 55:821–830. 2021. View Article : Google Scholar : PubMed/NCBI | |
Zhang L, Xu Y, Cheng Z, Zhao J, Wang M, Sun Y, Mi Z, Yuan Z and Wu Z: The EGR1/miR-139/NRF2 axis orchestrates radiosensitivity of non-small-cell lung cancer via ferroptosis. Cancer Lett. 595:2170002024. View Article : Google Scholar : PubMed/NCBI | |
Guo J, Gong C and Wang H: PURPL promotes M2 macrophage polarization in lung cancer by regulating RBM4/xCT signaling. Crit Rev Eukaryot Gene Expr. 34:59–68. 2024. View Article : Google Scholar : PubMed/NCBI | |
Yao F, Zhao Y, Wang G, Zhao M, Hong X, Ye Z, Dong F, Li W and Deng Q: Exosomal lncRNA ROR1-AS1 from cancer-associated fibroblasts inhibits ferroptosis of lung cancer cells through the IGF2BP1/SLC7A11 signal axis. Cell Signal. 120:1112212024. View Article : Google Scholar : PubMed/NCBI | |
Lu CL, Liu J and Yang JF: LncRNA-XIST promotes lung adenocarcinoma growth and inhibits ferroptosis by regulating GPX4. Mol Biotechnol. 28: View Article : Google Scholar : 2023. | |
Zhang N, Huang J, Xu M and Wang Y: LncRNA T-UCR Uc.339/miR-339/SLC7A11 axis regulates the metastasis of ferroptosis-induced lung adenocarcinoma. J Cancer. 13:1945–1957. 2022. View Article : Google Scholar : PubMed/NCBI | |
Wu H and Liu A: Long non-coding RNA NEAT1 regulates ferroptosis sensitivity in non-small-cell lung cancer. J Int Med Res. 49:3000605219961832021. View Article : Google Scholar : PubMed/NCBI | |
Zhang R, Pan T, Xiang Y, Zhang M, Xie H, Liang Z, Chen B, Xu C, Wang J, Huan Q, et al: Curcumenol triggered ferroptosis in lung cancer cells via lncRNA H19/miR-19b-3p/FTH1 axis. Bioact Mater. 13:23–36. 2022.PubMed/NCBI | |
Tai F, Zhai R, Ding K, Zhang Y, Yang H, Li H, Wang Q, Cao Z, Ge C, Fu H, et al: Long non-coding RNA lung cancer-associated transcript 1 regulates ferroptosis via microRNA-34a-5p-mediated GTP cyclohydrolase 1 downregulation in lung cancer cells. Int J Oncol. 64: View Article : Google Scholar : 2024. | |
An J, Shi J, Yang C, Luo J, Li Y, Ren J, Lv Y and Zhang Y: Regulation of tumorigenesis and ferroptosis in non-small cell lung cancer by a novel BBOX1-AS1/miR-326/PROM2 axis. Mol Cell Biochem. 479:2143–2155. 2023. View Article : Google Scholar : PubMed/NCBI | |
Gao GB, Chen L, Pan JF, Lei T, Cai X, Hao Z, Wang Q, Shan G and Li J: LncRNA RGMB-AS1 inhibits HMOX1 ubiquitination and NAA10 activation to induce ferroptosis in non-small cell lung cancer. Cancer Lett. 590:2168262024. View Article : Google Scholar : PubMed/NCBI | |
Mao C, Wang X, Liu Y, Wang M, Yan B, Jiang Y, Shi Y, Shen Y, Liu X, Lai W, et al: A G3BP1-interacting lncRNA promotes ferroptosis and apoptosis in cancer via nuclear sequestration of p53. Cancer Res. 78:3484–3496. 2018. View Article : Google Scholar : PubMed/NCBI | |
Gai C, Liu C, Wu X, Yu M, Zheng J, Zhang W, Lv S and Li W: MT1DP loaded by folate-modified liposomes sensitizes erastin-induced ferroptosis via regulating miR-365a-3p/NRF2 axis in non-small cell lung cancer cells. Cell Death Dis. 11:7512020. View Article : Google Scholar : PubMed/NCBI | |
Zhen S, Jia Y, Zhao Y, Wang J, Zheng B, Liu T, Duan Y, Lv W, Wang J, Xu F, et al: NEAT1_1 confers gefitinib resistance in lung adenocarcinoma through promoting AKR1C1-mediated ferroptosis defence. Cell Death Discov. 10:1312024. View Article : Google Scholar : PubMed/NCBI | |
Chen H, Wang L, Liu J, Wan Z, Zhou L, Liao H and Wan R: LncRNA ITGB2-AS1 promotes cisplatin resistance of non-small cell lung cancer by inhibiting ferroptosis via activating the FOSL2/NAMPT axis. Cancer Biol Ther. 24:22233772023. View Article : Google Scholar : PubMed/NCBI | |
Shi Z, Zhang H, Shen Y, Zhang S, Zhang X, Xu Y and Sun D: SETD1A-mediated H3K4me3 methylation upregulates lncRNA HOXC-AS3 and the binding of HOXC-AS3 to EP300 and increases EP300 stability to suppress the ferroptosis of NSCLC cells. Thorac Cancer. 14:2579–2590. 2023. View Article : Google Scholar : PubMed/NCBI | |
Sui X, Hu N, Zhang Z, Wang Y, Wang P and Xiu G: ASMTL-AS1 impedes the malignant progression of lung adenocarcinoma by regulating SAT1 to promote ferroptosis. Pathol Int. 71:741–751. 2021. View Article : Google Scholar : PubMed/NCBI | |
Wang M, Mao C, Ouyang L, Liu Y, Lai W, Liu N, Shi Y, Chen L, Xiao D, Yu F, et al: Long noncoding RNA LINC00336 inhibits ferroptosis in lung cancer by functioning as a competing endogenous RNA. Cell Death Differ. 26:2329–2343. 2019. View Article : Google Scholar : PubMed/NCBI | |
Dai N, Ma H and Feng Y: Silencing of long non-coding RNA SDCBP2-AS1/microRNA-656-3p/CRIM1 axis promotes ferroptosis of lung cancer cells. Cell Mol Biol (Noisy-le-grand). 69:189–194. 2023. View Article : Google Scholar : PubMed/NCBI | |
Liu L, Su S, Ye D, Yu Z, Lu W and Li X: Long non-coding RNA OGFRP1 regulates cell proliferation and ferroptosis by miR-299-3p/SLC38A1 axis in lung cancer. Anticancer Drugs. 33:826–839. 2022.PubMed/NCBI | |
Xu C, Jiang ZB, Shao L, Zhao ZM, Fan XX, Sui X, Yu LL, Wang XR, Zhang RN, Wang WJ, et al: β-Elemene enhances erlotinib sensitivity through induction of ferroptosis by upregulating lncRNA H19 in EGFR-mutant non-small cell lung cancer. Pharmacol Res. 191:1067392023. View Article : Google Scholar | |
Xu P, Wang L, Xie X, Hu F, Yang Q, Hu R, Jiang L, Ding F, Mei J, Liu J and Xiao H: Hsa_circ_0001869 promotes NSCLC progression via sponging miR-638 and enhancing FOSL2 expression. Aging (Albany NY). 12:23836–23848. 2020. View Article : Google Scholar : PubMed/NCBI | |
Jiang L, Kon N, Li T, Wang SJ, Su T, Hibshoosh H, Baer R and Gu W: Ferroptosis as a p53-mediated activity during tumour suppression. Nature. 520:57–62. 2015. View Article : Google Scholar : PubMed/NCBI | |
Zhao Y, Cui Q, Shen J, Shen W and Weng Y: Hsa_ circ_0070440 promotes lung adenocarcinoma progression by SLC7A11-mediated-ferroptosis. Histol Histopathol. 38:1429–1441. 2023.PubMed/NCBI | |
Pan CF, Wei K, Ma ZJ, He YZ, Huang JJ, Guo ZZ, Chen ZP, Barr MP, Shackelford RE, Xia Y and Wang J: CircP4HB regulates ferroptosis via SLC7A11-mediated glutathione synthesis in lung adenocarcinoma. Transl Lung Cancer Res. 11:366–380. 2022. View Article : Google Scholar : PubMed/NCBI | |
Wu L, Li N, Zhu L and Shao G: CircPDSS1 (hsa_circ_0017998) silencing induces ferroptosis in non-small-cell lung cancer cells by modulating the miR-137/SLC7A11/GPX4/GCLC axis. Toxicol In Vitro. 99:1058872024. View Article : Google Scholar : PubMed/NCBI | |
Li Z, Fan M, Zhou Z and Sang X: Circ_0082374 promotes the tumorigenesis and suppresses ferroptosis in non-small cell lung cancer by up-regulating GPX4 through sequestering miR-491-5p. Mol Biotechnol. 4: View Article : Google Scholar : 2024. | |
Fu H and Zhao Q: CircSCUBE3 promoted ferroptosis to inhibit lung adenocarcinoma progression. Cell Mol Biol (Noisy-le-grand). 70:161–168. 2024. View Article : Google Scholar : PubMed/NCBI | |
Shanshan W, Hongying M, Jingjing F, Yiming Y, Yu R and Rui Y: CircDTL functions as an oncogene and regulates both apoptosis and ferroptosis in non-small cell lung cancer cells. Front Genet. 12:7435052021. View Article : Google Scholar : PubMed/NCBI | |
Liu B, Ma H, Liu X and Xing W: CircSCN8A suppresses malignant progression and induces ferroptosis in non-small cell lung cancer by regulating miR-1290/ACSL4 axis. Cell Cycle. 22:758–776. 2023. View Article : Google Scholar : | |
Zhang X, Xu Y, Ma L, Yu K, Niu Y, Xu X, Shi Y, Guo S, Xue X, Wang Y, et al: Essential roles of exosome and circRNA_101093 on ferroptosis desensitization in lung adenocarcinoma. Cancer Commun (Lond). 42:287–313. 2022. View Article : Google Scholar : PubMed/NCBI | |
Zhang Q, Fan X, Zhang X and Ju S: Ferroptosis in tumors and its relationship to other programmed cell death: Role of non-coding RNAs. J Transl Med. 21:5142023. View Article : Google Scholar : PubMed/NCBI | |
Wang Y, Chen Y, Zhang J, Yang Y, Fleishman JS, Wang Y, Wang J, Chen J, Li Y and Wang H: Cuproptosis: A novel therapeutic target for overcoming cancer drug resistance. Drug Resist Updat. 72:1010182024. View Article : Google Scholar | |
Tang D and Kang R: NFE2L2 and ferroptosis resistance in cancer therapy. Cancer Drug Resist. 7:412024.PubMed/NCBI | |
Winkle M, El-Daly SM, Fabbri M and Calin GA: Noncoding RNA therapeutics-challenges and potential solutions. Nat Rev Drug Discov. 20:629–651. 2021. View Article : Google Scholar : PubMed/NCBI | |
Nappi F: Non-coding RNA-targeted therapy: A state-of-the-art review. Int J Mol Sci. 25:36302024. View Article : Google Scholar : PubMed/NCBI | |
He AT, Liu J, Li F and Yang BB: Targeting circular RNAs as a therapeutic approach: Current strategies and challenges. Signal Transduct Target Ther. 6:1852021. View Article : Google Scholar : PubMed/NCBI | |
Zhao R, Fu J, Zhu L, Chen Y and Liu B: Designing strategies of small-molecule compounds for modulating non-coding RNAs in cancer therapy. J Hematol Oncol. 15:142022. View Article : Google Scholar : PubMed/NCBI | |
Han B, Liu Y, Zhang Q and Liang L: Propofol decreases cisplatin resistance of non-small cell lung cancer by inducing GPX4-mediated ferroptosis through the miR-744-5p/miR-615-3p axis. J Proteomics. 274:1047772023. View Article : Google Scholar | |
Fu R, You Y, Wang Y, Wang J, Lu Y, Gao R, Pang M, Yang P and Wang H: Sanggenol L induces ferroptosis in non-small cell lung cancer cells via regulating the miR-26a-1-3p/MDM2/p53 signaling pathway. Biochem Pharmacol. 226:1163452024. View Article : Google Scholar : PubMed/NCBI | |
Huang J, Deng C, Guo T, Chen X, Chen P, Du S and Lu M: Cinobufotalin induces ferroptosis to suppress lung cancer cell growth by lncRNA LINC00597/hsa-miR-367-3p/TFRC pathway via resibufogenin. Anticancer Agents Med Chem. 23:717–725. 2023. View Article : Google Scholar |