You can change your cookie settings at any time by following the instructions in our Cookie Policy. To find out more, you may read our Privacy Policy.
I agree
International Journal of Molecular Medicine is an international journal devoted to molecular mechanisms of human disease.
International Journal of Oncology is an international journal devoted to oncology research and cancer treatment.
Covers molecular medicine topics such as pharmacology, pathology, genetics, neuroscience, infectious diseases, molecular cardiology, and molecular surgery.
Oncology Reports is an international journal devoted to fundamental and applied research in Oncology.
Experimental and Therapeutic Medicine is an international journal devoted to laboratory and clinical medicine.
Oncology Letters is an international journal devoted to Experimental and Clinical Oncology.
Explores a wide range of biological and medical fields, including pharmacology, genetics, microbiology, neuroscience, and molecular cardiology.
International journal addressing all aspects of oncology research, from tumorigenesis and oncogenes to chemotherapy and metastasis.
Multidisciplinary open-access journal spanning biochemistry, genetics, neuroscience, environmental health, and synthetic biology.
Open-access journal combining biochemistry, pharmacology, immunology, and genetics to advance health through functional nutrition.
Publishes open-access research on using epigenetics to advance understanding and treatment of human disease.
An International Open Access Journal Devoted to General Medicine.
![]() |
![]() |
![]() |
|
Bray F, Laversanne M, Sung H, Ferlay J, Siegel RL, Soerjomataram I and Jemal A: Global cancer statistics 2022: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J Clin. 74:229–263. 2024. View Article : Google Scholar : PubMed/NCBI | |
|
Gilbertson RJ: Mapping cancer origins. Cell. 145:25–29. 2011. View Article : Google Scholar : PubMed/NCBI | |
|
Dhanasekaran R, Deutzmann A, Mahauad-Fernandez WD, Hansen AS, Gouw AM and Felsher DW: The MYC oncogene - the grand orchestrator of cancer growth and immune evasion. Nat Rev Clin Oncol. 19:23–36. 2022. View Article : Google Scholar | |
|
Huang H, Bhat A, Woodnutt G and Lappe R: Targeting the ANGPT-TIE2 pathway in malignancy. Nat Rev Cancer. 10:575–585. 2010. View Article : Google Scholar : PubMed/NCBI | |
|
Eklund L, Kangas J and Saharinen P: Angiopoietin-Tie signalling in the cardiovascular and lymphatic systems. Clin Sci (Lond). 131:87–103. 2017. View Article : Google Scholar | |
|
Guo L, Li SY, Ji FY, Zhao YF, Zhong Y, Lv XJ, Wu XL and Qian GS: Role of Angptl4 in vascular permeability and inflammation. Inflamm Res. 63:13–22. 2014. View Article : Google Scholar | |
|
Aryal B, Price NL, Suarez Y and Fernández-Hernando C: ANGPTL4 in Metabolic and Cardiovascular Disease. Trends Mol Med. 25:723–734. 2019. View Article : Google Scholar : PubMed/NCBI | |
|
Tan MJ, Teo Z, Sng MK, Zhu P and Tan NS: Emerging roles of angiopoietin-like 4 in human cancer. Mol Cancer Res. 10:677–688. 2012. View Article : Google Scholar : PubMed/NCBI | |
|
La Paglia L, Listì A, Caruso S, Amodeo V, Passiglia F, Bazan V and Fanale D: Potential role of ANGPTL4 in the cross talk between metabolism and cancer through PPAR signaling pathway. PPAR Res. 2017:81872352017. View Article : Google Scholar : PubMed/NCBI | |
|
Kersten S: Angiopoietin-like 3 in lipoprotein metabolism. Nat Rev Endocrinol. 13:731–739. 2017. View Article : Google Scholar : PubMed/NCBI | |
|
Sylvers-Davie KL and Davies BSJ: Regulation of lipoprotein metabolism by ANGPTL3, ANGPTL4, and ANGPTL8. Am J Physiol Endocrinol Metab. 321:E493–E508. 2021. View Article : Google Scholar : PubMed/NCBI | |
|
Yang J, Song QY, Niu SX, Chen HJ, Petersen RB, Zhang Y and Huang K: Emerging roles of angiopoietin-like proteins in inflammation: Mechanisms and potential as pharmacological targets. J Cell Physiol. 237:98–117. 2022. View Article : Google Scholar | |
|
Thorin E, Labbé P, Lambert M, Mury P, Dagher O, Miquel G and Thorin-Trescases N: Angiopoietin-like proteins: Cardiovascular biology and therapeutic targeting for the prevention of cardiovascular diseases. Can J Cardiol. 39:1736–1756. 2023. View Article : Google Scholar : PubMed/NCBI | |
|
Kersten S: Role and mechanism of the action of angiopoietin-like protein ANGPTL4 in plasma lipid metabolism. J Lipid Res. 62:1001502021. View Article : Google Scholar : PubMed/NCBI | |
|
Zuo Y, He Z, Chen Y and Dai L: Dual role of ANGPTL4 in inflammation. Inflamm Res. 72:1303–1313. 2023. View Article : Google Scholar : PubMed/NCBI | |
|
Kim I, Kim HG, Kim H, Kim HH, Park SK, Uhm CS, Lee ZH and Koh GY: Hepatic expression, synthesis and secretion of a novel fibrinogen/angiopoietin-related protein that prevents endothelial-cell apoptosis. Biochem J. 346:603–610. 2000. View Article : Google Scholar : PubMed/NCBI | |
|
Yoon JC, Chickering TW, Rosen ED, Dussault B, Qin Y, Soukas A, Friedman JM, Holmes WE and Spiegelman BM: Peroxisome proliferator-activated receptor gamma target gene encoding a novel angiopoietin-related protein associated with adipose differentiation. Mol Cell Biol. 20:5343–5349. 2000. View Article : Google Scholar : PubMed/NCBI | |
|
Kersten S, Mandard S, Tan NS, Escher P, Metzger D, Chambon P, Gonzalez FJ, Desvergne B and Wahli W: Characterization of the fasting-induced adipose factor FIAF, a novel peroxisome proliferator-activated receptor target gene. J Biol Chem. 275:28488–28493. 2000. View Article : Google Scholar : PubMed/NCBI | |
|
Górecka M, Krzemiński K, Buraczewska M, Kozacz A, Dąbrowski J and Ziemba AW: Effect of mountain ultra-marathon running on plasma angiopoietin-like protein 4 and lipid profile in healthy trained men. Eur J Appl Physiol. 120:117–125. 2020. View Article : Google Scholar : | |
|
Li L, Foo BJW, Kwok KW, Sakamoto N, Mukae H, Izumikawa K, Mandard S, Quenot JP, Lagrost L, The WK, et al: Antibody treatment against angiopoietin-like 4 reduces pulmonary edema and injury in secondary pneumococcal pneumonia. mBio. 10:e024692019. View Article : Google Scholar : PubMed/NCBI | |
|
Sodhi A, Ma T, Menon D, Deshpande M, Jee K, Dinabandhu A, Vancel J, Lu D and Montaner S: Angiopoietin-like 4 binds neuropilins and cooperates with VEGF to induce diabetic macular edema. J Clin Invest. 129:4593–4608. 2019. View Article : Google Scholar : PubMed/NCBI | |
|
Kersten S, Lichtenstein L, Steenbergen E, Mudde K, Hendriks HF, Hesselink MK, Schrauwen P and Müller M: Caloric restriction and exercise increase plasma ANGPTL4 levels in humans via elevated free fatty acids. Arterioscler Thromb Vasc Biol. 29:969–974. 2009. View Article : Google Scholar : PubMed/NCBI | |
|
Singh AK, Aryal B, Chaube B, Rotllan N, Varela L, Horvath TL, Suárez Y and Fernández-Hernando C: Brown adipose tissue derived ANGPTL4 controls glucose and lipid metabolism and regulates thermogenesis. Mol Metab. 11:59–69. 2018. View Article : Google Scholar : PubMed/NCBI | |
|
Shu L, Wang C, Ding Z, Tang J, Zhu Y, Wu L, Wang Z, Zhang T, Wang T, Xu Y and Sun L: A novel regulated network mediated by downregulation HIF1A-AS2 lncRNA impairs placental angiogenesis by promoting ANGPTL4 expression in preeclampsia. Front Cell Dev Biol. 10:8370002022. View Article : Google Scholar : PubMed/NCBI | |
|
Spitler KM, Shetty SK, Cushing EM, Sylvers-Davie KL and Davies BSJ: Chronic high-fat feeding and prolonged fasting in liver-specific ANGPTL4 knockout mice. Am J Physiol Endocrinol Metab. 321:E464–E478. 2021. View Article : Google Scholar : PubMed/NCBI | |
|
Alex S, Lichtenstein L, Dijk W, Mensink RP, Tan NS and Kersten S: ANGPTL4 is produced by entero-endocrine cells in the human intestinal tract. Histochem Cell Biol. 141:383–391. 2014. View Article : Google Scholar | |
|
Kuo T, Chen TC, Yan S, Foo F, Ching C, McQueen A and Wang JC: Repression of glucocorticoid-stimulated angiopoietin-like 4 gene transcription by insulin. J Lipid Res. 55:919–928. 2014. View Article : Google Scholar : PubMed/NCBI | |
|
Inoue T, Kohro T, Tanaka T, Kanki Y, Li G, Poh HM, Mimura I, Kobayashi M, Taguchi A, Maejima T, et al: Cross-enhancement of ANGPTL4 transcription by HIF1 alpha and PPAR beta/delta is the result of the conformational proximity of two response elements. Genome Biol. 15:R632014. View Article : Google Scholar : PubMed/NCBI | |
|
Kaddatz K, Adhikary T, Finkernagel F, Meissner W, Müller-Brüsselbach S and Müller R: Transcriptional profiling identifies functional interactions of TGF β and PPAR β/δ signaling: Synergistic induction of ANGPTL4 transcription. J Biol Chem. 285:29469–29479. 2010. View Article : Google Scholar : PubMed/NCBI | |
|
Zhu C, Teng L, Lai Y, Yao X, Fang Y, Wang Z, Lin S, Zhang H, Li Q, Li Y, et al: Adipose-derived stem cells promote glycolysis and peritoneal metastasis via TGF-β1/SMAD3/ANGPTL4 axis in colorectal cancer. Cell Mol Life Sci. 81:1892024. View Article : Google Scholar | |
|
Gong X, Hou Z, Endsley MP, Gronseth EI, Rarick KR, Jorns JM, Yang Q, Du Z, Yan K, Bordas ML, et al: Interaction of tumor cells and astrocytes promotes breast cancer brain metastases through TGF-β2/ANGPTL4 axes. NPJ Precis Oncol. 3:242019. View Article : Google Scholar | |
|
Ding S, Lin Z, Zhang X, Jia X, Li H, Fu Y, Wang X, Zhu G, Lu G, Xiao W and Gong W: Deficiency of angiopoietin-like 4 enhances CD8(+) T cell bioactivity via metabolic reprogramming for impairing tumour progression. Immunology. 170:28–46. 2023. View Article : Google Scholar : PubMed/NCBI | |
|
Kolb R, Kluz P, Tan ZW, Borcherding N, Bormann N, Vishwakarma A, Balcziak L, Zhu P, Davies BS, Gourronc F, et al: Obesity-associated inflammation promotes angiogenesis and breast cancer via angiopoietin-like 4. Oncogene. 38:2351–2363. 2019. View Article : Google Scholar : | |
|
Avalle L, Raggi L, Monteleone E, Savino A, Viavattene D, Statello L, Camperi A, Stabile SA, Salemme V, De Marzo N, et al: STAT3 induces breast cancer growth via ANGPTL4, MMP13 and STC1 secretion by cancer associated fibroblasts. Oncogene. 41:1456–1467. 2022. View Article : Google Scholar : PubMed/NCBI | |
|
Li YK, Gao AB, Zeng T, Liu D, Zhang QF, Ran XM, Tang ZZ, Li Y, Liu J, Zhang T, et al: ANGPTL4 accelerates ovarian serous cystadenocarcinoma carcinogenesis and angiogenesis in the tumor microenvironment by activating the JAK2/STAT3 pathway and interacting with ESM1. J Transl Med. 22:462024. View Article : Google Scholar : PubMed/NCBI | |
|
Xu J, Wu F, Zhu Y, Wu T, Cao T, Gao W, Liu M, Qian W, Feng G, Xi X and Hou S: ANGPTL4 regulates ovarian cancer progression by activating the ERK1/2 pathway. Cancer Cell Int. 24:542024. View Article : Google Scholar : PubMed/NCBI | |
|
Wu Y, Gao J and Liu X: Deregulation of angiopoietin-like 4 slows ovarian cancer progression through vascular endothelial growth factor receptor 2 phosphorylation. Cancer Cell Int. 21:1712021. View Article : Google Scholar : PubMed/NCBI | |
|
Wen L, Zhang Y, Yang B, Han F, Ebadi AG and Toughani M: Knockdown of angiopoietin-like protein 4 suppresses the development of colorectal cancer. Cell Mol Biol (Noisy-le-grand). 66:117–124. 2020. View Article : Google Scholar : PubMed/NCBI | |
|
Chen JW, Luo YJ, Yang ZF, Wen LQ and Huang L: Knockdown of angiopoietin-like 4 inhibits the development of human gastric cancer. Oncol Rep. 39:1739–1746. 2018.PubMed/NCBI | |
|
Bai Y, Cui G, Sun X, Wei M, Liu Y, Guo J and Yang Y: ANGPTL4 stabilizes bone morphogenetic protein 7 through deubiquitination and promotes HCC proliferation via the SMAD/MAPK pathway. DNA Cell Biol. 43:395–400. 2024. View Article : Google Scholar : PubMed/NCBI | |
|
Bai Y, Cui G, Sun X, Wei M, Liu Y, Guo J and Yang Y: Angiopoietin-related protein 4-Transcript 3 increases the proliferation, invasion, and migration of hepatocellular carcinoma cells and inhibits apoptosis. DNA Cell Biol. 43:175–184. 2024. View Article : Google Scholar : PubMed/NCBI | |
|
Hu Q, Chen S, Li Y, Hu T, Hu J, Wang C, Yang F, Yang X, Zhou F, Liu Z, et al: ANGPTL4, a direct target of hsa-miR-133a-3p, accelerates lung adenocarcinoma lipid metabolism, proliferation and invasion. Aging (Albany NY). 16:8348–8360. 2023. | |
|
Fang Y, Li X, Cheng H, Zhang L and Hao J: ANGPTL4 regulates lung adenocarcinoma pyroptosis and apoptosis via NLRP3\ASC\ Caspase 8 signaling pathway to promote resistance to gefitinib. J Oncol. 2022:36235702022. View Article : Google Scholar | |
|
Zhang T, Kastrenopoulou A, Larrouture Q, Athanasou NA and Knowles HJ: Angiopoietin-like 4 promotes osteosarcoma cell proliferation and migration and stimulates osteoclastogenesis. BMC Cancer. 18:5362018. View Article : Google Scholar : PubMed/NCBI | |
|
Yang L, Wang Y, Sun R, Zhang Y, Fu Y, Zheng Z, Ji Z and Zhao D: ANGPTL4 promotes the proliferation of papillary thyroid cancer via AKT pathway. Onco Targets Ther. 13:2299–2309. 2020. View Article : Google Scholar : PubMed/NCBI | |
|
Izraely S, Ben-Menachem S, Sagi-Assif O, Meshel T, Marzese DM, Ohe S, Zubrilov I, Pasmanik-Chor M, Hoon DSB and Witz IP: ANGPTL4 promotes the progression of cutaneous melanoma to brain metastasis. Oncotarget. 8:75778–75796. 2017. View Article : Google Scholar : PubMed/NCBI | |
|
Hsieh HY, Jou YC, Tung CL, Tsai YS, Wang YH, Chi CL, Lin RI, Hung SK, Chuang YM, Wu SF, et al: Epigenetic silencing of the dual-role signal mediator, ANGPTL4 in tumor tissues and its overexpression in the urothelial carcinoma microenvironment. Oncogene. 37:673–686. 2018. View Article : Google Scholar | |
|
Hui B, Ji H, Xu Y, Wang J, Ma Z, Zhang C, Wang K and Zhou Y: RREB1-induced upregulation of the lncRNA AGAP2-AS1 regulates the proliferation and migration of pancreatic cancer partly through suppressing ANKRD1 and ANGPTL4. Cell Death Dis. 10:2072019. View Article : Google Scholar : PubMed/NCBI | |
|
Lin S, Miao Y, Zheng X, Dong Y, Yang Q, Yang Q, Du S, Xu J, Zhou S and Yuan T: ANGPTL4 negatively regulates the progression of osteosarcoma by remodeling branched-chain amino acid metabolism. Cell Death Discov. 8:2252022. View Article : Google Scholar : PubMed/NCBI | |
|
Qian P, Li J, Zhang X, Li F, Bei S, Li H, Sun Q and Feng L: LMX1A inhibits C-Myc expression through ANGPTL4 to exert tumor suppressive role in gastric cancer. PLoS One. 14:e02216402019. View Article : Google Scholar : PubMed/NCBI | |
|
Jin Z, De U, Tithi TI, Kleberg J, Nataraj A, Jolley E, Carelock ME, Davies BS, Zhang W and Kolb R: ANGPTL4 suppresses clear cell renal cell carcinoma via inhibition of lysosomal acid lipase. Cancer Res Commun. 4:2242–2254. 2024. View Article : Google Scholar : PubMed/NCBI | |
|
Xu S, Fang Y, Chang L, Bian Y, Wang Y, Ding J, Wang Y, Zhang Y, Pu J and Wang K: STAT2-induced linc02231 promotes tumorigenesis and angiogenesis through modulation of hnRNPA1/ANGPTL4 in colorectal cancer. J Gene Med. 25:e35062023. View Article : Google Scholar : PubMed/NCBI | |
|
Hübers C, Abdul Pari AA, Grieshober D, Petkov M, Schmidt A, Messmer T, Heyer CM, Schölch S, Kapel SS, Gengenbacher N, et al: Primary tumor-derived systemic nANGPTL4 inhibits metastasis. J Exp Med. 220:e202025952023. View Article : Google Scholar | |
|
Niu Y, Bao L, Chen Y, Wang C, Luo M, Zhang B, Zhou M, Wang JE, Fang YV, Kumar A, et al: HIF2-induced long noncoding RNA RAB11B-AS1 promotes hypoxia-mediated angiogenesis and breast cancer metastasis. Cancer Res. 80:964–975. 2020. View Article : Google Scholar : PubMed/NCBI | |
|
Shen CJ, Chang KY, Lin BW, Lin WT, Su CM, Tsai JP, Liao YH, Hung LY, Chang WC and Chen BK: Oleic acid-induced NOX4 is dependent on ANGPTL4 expression to promote human colorectal cancer metastasis. Theranostics. 10:7083–7099. 2020. View Article : Google Scholar : PubMed/NCBI | |
|
Shen CJ, Chan RH, Lin BW, Li NC, Huang YH, Chang WC and Chen BK: Oleic acid-induced metastasis of KRAS/p53-mutant colorectal cancer relies on concurrent KRAS activation and IL-8 expression bypassing EGFR activation. Theranostics. 13:4650–4666. 2023. View Article : Google Scholar : PubMed/NCBI | |
|
Bajwa P, Kordylewicz K, Bilecz A, Lastra RR, Wroblewski K, Rinkevich Y, Lengyel E and Kenny HA: Cancer-associated mesothelial cell-derived ANGPTL4 and STC1 promote the early steps of ovarian cancer metastasis. JCI Insight. 8:e1630192023. View Article : Google Scholar : PubMed/NCBI | |
|
Hefni E, Menon D, Ma T, Asiedu EB, Sultan A, Meiller T, Schneider A, Sodhi A and Montaner S: Angiopoietin-like 4 induces head and neck squamous cell carcinoma cell migration through the NRP1/ABL1/PXN pathway. Cell Signal. 108:1106972023. View Article : Google Scholar : PubMed/NCBI | |
|
Hao H, Guo Z, Li Z, Li J, Jiang S, Fu J, Jiao Y, Deng X, Han S and Li P: Modified Bu-Fei decoction inhibits lung metastasis via suppressing angiopoietin-like 4. Phytomedicine. 106:1544092022. View Article : Google Scholar : PubMed/NCBI | |
|
Xiao J, Cao S, Wang J, Li P, Cheng Q, Zhou X, Dong J, Li Y, Zhao X, Xu Z and Yang L: Leptin-mediated suppression of lipoprotein lipase cleavage enhances lipid uptake and facilitates lymph node metastasis in gastric cancer. Cancer Commun (Lond). 44:855–878. 2024. View Article : Google Scholar : PubMed/NCBI | |
|
Chiang KH, Shieh JM, Shen CJ, Chang TW, Wu PT, Hsu JY, Tsai JP, Chang WC and Chen BK: Epidermal growth factor-induced COX-2 regulates metastasis of head and neck squamous cell carcinoma through upregulation of angiopoietin-like 4. Cancer Sci. 111:2004–2015. 2020. View Article : Google Scholar : PubMed/NCBI | |
|
Cai YC, Yang H, Wang KF, Chen TH, Jiang WQ and Shi YX: ANGPTL4 overexpression inhibits tumor cell adhesion and migration and predicts favorable prognosis of triple-negative breast cancer. BMC Cancer. 20:8782020. View Article : Google Scholar : PubMed/NCBI | |
|
Zhang K, Zhai Z, Yu S and Tao Y: DNA methylation mediated down-regulation of ANGPTL4 promotes colorectal cancer metastasis by activating the ERK pathway. J Cancer. 12:5473–5485. 2021. View Article : Google Scholar : PubMed/NCBI | |
|
Jiang F, Wang GJ, Huang P, Chen S, Xiao H, Zhang L and Zou H: Geiparvarin inhibits OS metastasis through upregulation of ANGPTL4 expression by inhibiting miRNA-3912-3p expression. Evid Based Complement Alternat Med. 2022:46636842022.PubMed/NCBI | |
|
Katanasaka Y, Kodera Y, Kitamura Y, Morimoto T, Tamura T and Koizumi F: Epidermal growth factor receptor variant type III markedly accelerates angiogenesis and tumor growth via inducing c-myc mediated angiopoietin-like 4 expression in malignant glioma. Mol Cancer. 12:312013. View Article : Google Scholar : PubMed/NCBI | |
|
Xiao W, Tan D, Xiong X, Liu J and Xu J: Large volume collapse observed in the phase transition in cubic PbCrO3 perovskite. Proc Natl Acad Sci USA. 107:14026–14029. 2010. View Article : Google Scholar : PubMed/NCBI | |
|
Hu K, Babapoor-Farrokhran S, Rodrigues M, Deshpande M, Puchner B, Kashiwabuchi F, Hassan SJ, Asnaghi L, Handa JT, Merbs S, et al: Hypoxia-inducible factor 1 upregulation of both VEGF and ANGPTL4 is required to promote the angiogenic phenotype in uveal melanoma. Oncotarget. 7:7816–7828. 2016. View Article : Google Scholar : PubMed/NCBI | |
|
Mo F, Xu Y and Zhang J, Zhu L, Wang C, Chu X, Pan Y, Bai Y, Shao C and Zhang J: Effects of hypoxia and radiation-induced exosomes on migration of lung cancer cells and angiogenesis of umbilical vein endothelial Cells. Radiat Res. 194:71–80. 2020. View Article : Google Scholar : PubMed/NCBI | |
|
Chen S, Yang M and Chang S: LncRNA CCAL Promotes Angiogenesis Through Regulating the MiR-29b/ANGPTL4 Axis in Osteosarcoma. Cancer Manag Res. 12:10521–10530. 2020. View Article : Google Scholar : PubMed/NCBI | |
|
Okochi-Takada E, Hattori N, Tsukamoto T, Miyamoto K, Ando T, Ito S, Yamamura Y, Wakabayashi M, Nobeyama Y and Ushijima T: ANGPTL4 is a secreted tumor suppressor that inhibits angiogenesis. Oncogene. 33:2273–2278. 2014. View Article : Google Scholar | |
|
Yang YH, Wang Y, Lam KS, Yau MH, Cheng KK, Zhang J, Zhu W, Wu D and Xu A: Suppression of the Raf/MEK/ERK signaling cascade and inhibition of angiogenesis by the carboxyl terminus of angiopoietin-like protein 4. Arterioscler Thromb Vasc Biol. 28:835–840. 2008. View Article : Google Scholar : PubMed/NCBI | |
|
Ng KT, Xu A, Cheng Q, Guo DY, Lim ZX, Sun CK, Fung JH, Poon RT, Fan ST, Lo CM and Man K: Clinical relevance and therapeutic potential of angiopoietin-like protein 4 in hepatocellular carcinoma. Mol Cancer. 13:1962014. View Article : Google Scholar : PubMed/NCBI | |
|
Gong L, Huang D, Shi Y, Liang Z and Bu H: Regulated cell death in cancer: From pathogenesis to treatment. Chin Med J (Engl). 136:653–665. 2023. View Article : Google Scholar | |
|
Galluzzi L, Vitale I, Aaronson SA, Abrams JM, Adam D, Agostinis P, Alnemri ES, Altucci L, Amelio I, Andrews DW, et al: Molecular mechanisms of cell death: recommendations of the Nomenclature Committee on Cell Death 2018. Cell Death Differ. 25:486–541. 2018. View Article : Google Scholar : PubMed/NCBI | |
|
Moujalled D, Strasser A and Liddell JR: Molecular mechanisms of cell death in neurological diseases. Cell Death Differ. 28:2029–2044. 2021. View Article : Google Scholar : PubMed/NCBI | |
|
Liu Y, Ding W, Wang J, Ao X and Xue J: Non-coding RNA-mediated modulation of ferroptosis in cardiovascular diseases. Biomed Pharmacother. 164:1149932023. View Article : Google Scholar : PubMed/NCBI | |
|
Kerr JF, Wyllie AH and Currie AR: Apoptosis: a basic biological phenomenon with wide-ranging implications in tissue kinetics. Br J Cancer. 26:239–257. 1972. View Article : Google Scholar : PubMed/NCBI | |
|
Nuñez G, Benedict MA, Hu Y and Inohara N: Caspases: the proteases of the apoptotic pathway. Oncogene. 17:3237–3245. 1998. View Article : Google Scholar | |
|
Saraste A and Pulkki K: Morphologic and biochemical hallmarks of apoptosis. Cardiovasc Res. 45:528–537. 2000. View Article : Google Scholar : PubMed/NCBI | |
|
Lim MMK, Wee JWK, Soong JC, Chua D, Tan WR, Lizwan M, Li Y, Teo Z, Goh WWB, Zhu P and Tan NS: Targeting metabolic flexibility via angiopoietin-like 4 protein sensitizes metastatic cancer cells to chemotherapy drugs. Mol Cancer. 17:1522018. View Article : Google Scholar : PubMed/NCBI | |
|
Bai Y, Cui G, Sun X, Wei M, Liu Y, Guo J and Yang Y: Effect of deletion of ANGPTL4 gene on viability, migration and invasion ability and apoptosis of hepatocellular carcinoma cells. Discov Med. 36:173–181. 2024. View Article : Google Scholar : PubMed/NCBI | |
|
Li X, Chen T, Shi Q, Li J, Cai S, Zhou P, Zhong Y and Yao L: Angiopoietin-like 4 enhances metastasis and inhibits apoptosis via inducing bone morphogenetic protein 7 in colorectal cancer cells. Biochem Biophys Res Commun. 467:128–134. 2015. View Article : Google Scholar : PubMed/NCBI | |
|
Hsieh HY, Shen CH, Lin RI, Feng YM, Huang SY, Wang YH, Wu SF, Hsu CD and Chan MW: Cyproheptadine exhibits antitumor activity in urothelial carcinoma cells by targeting GSK3β to suppress mTOR and β-catenin signaling pathways. Cancer Lett. 370:56–65. 2016. View Article : Google Scholar | |
|
Sattari Fard F, Jalilzadeh N, Mehdizadeh A, Sajjadian F and Velaei K: Understanding and targeting anoikis in metastasis for cancer therapies. Cell Biol Int. 47:683–698. 2023. View Article : Google Scholar | |
|
Yuan Z, Li Y, Zhang S, Wang X, Dou H, Yu X, Zhang Z, Yang S and Xiao M: Extracellular matrix remodeling in tumor progression and immune escape: From mechanisms to treatments. Mol Cancer. 22:482023. View Article : Google Scholar : PubMed/NCBI | |
|
Chaojun L, Pengping L, Yanjun L, Fangyuan Z, Yaning H, Yingbo S, Qi C and Hui L: TJP3 promotes T cell immunity escape and chemoresistance in breast cancer: A comprehensive analysis of anoikis-based prognosis prediction and drug sensitivity stratification. Aging (Albany NY). 15:12890–12906. 2023. View Article : Google Scholar : PubMed/NCBI | |
|
Liao YH, Chiang KH, Shieh JM, Huang CR, Shen CJ, Huang WC and Chen BK: Epidermal growth factor-induced ANGPTL4 enhances anoikis resistance and tumour metastasis in head and neck squamous cell carcinoma. Oncogene. 36:2228–2242. 2017. View Article : Google Scholar : | |
|
Shen CJ, Chan SH, Lee CT, Huang WC, Tsai JP and Chen BK: Oleic acid-induced ANGPTL4 enhances head and neck squamous cell carcinoma anoikis resistance and metastasis via up-regulation of fibronectin. Cancer Lett. 386:110–122. 2017. View Article : Google Scholar | |
|
Zhu P, Tan MJ, Huang RL, Tan CK, Chong HC, Pal M, Lam CR, Boukamp P, Pan JY, Tan SH, et al: Angiopoietin-like 4 protein elevates the prosurvival intracellular O2(-):H2O2 ratio and confers anoikis resistance to tumors. Cancer Cell. 19:401–415. 2011. View Article : Google Scholar : PubMed/NCBI | |
|
Baba K, Kitajima Y, Miyake S, Nakamura J, Wakiyama K, Sato H, Okuyama K, Kitagawa H, Tanaka T, Hiraki M, et al: Hypoxia-induced ANGPTL4 sustains tumour growth and anoikis resistance through different mechanisms in scirrhous gastric cancer cell lines. Sci Rep. 7:111272017. View Article : Google Scholar : PubMed/NCBI | |
|
San TT, Khaenam P, Prachayasittikul V, Sripa B, Kunkeaw N and Chan-On W: Curcumin enhances chemotherapeutic effects and suppresses ANGPTL4 in anoikis-resistant cholangiocarcinoma cells. Heliyon. 6:e032552020. View Article : Google Scholar : PubMed/NCBI | |
|
Zhang Z, Cao L, Li J, Liang X, Liu Y, Liu H, Du J, Qu Z, Cui M, Liu S, et al: Acquisition of anoikis resistance reveals a synoikis-like survival style in BEL7402 hepatoma cells. Cancer Lett. 267:106–115. 2008. View Article : Google Scholar : PubMed/NCBI | |
|
Ness C, Garred Ø, Eide NA, Kumar T, Olstad OK, Bærland TP, Petrovski G, Moe MC and Noer A: Multicellular tumor spheroids of human uveal melanoma induce genes associated with anoikis resistance, lipogenesis, and SSXs. Mol Vis. 23:680–694. 2017.PubMed/NCBI | |
|
Stockwell BR, Friedmann Angeli JP, Bayir H, Bush AI, Conrad M, Dixon SJ, Fulda S, Gascón S, Hatzios SK, Kagan VE, et al: Ferroptosis: A regulated cell death nexus linking metabolism, redox biology, and disease. Cell. 171:273–285. 2017. View Article : Google Scholar : PubMed/NCBI | |
|
Agmon E, Solon J, Bassereau P and Stockwell BR: Modeling the effects of lipid peroxidation during ferroptosis on membrane properties. Sci Rep. 8:51552018. View Article : Google Scholar : PubMed/NCBI | |
|
Tang D and Kroemer G: Ferroptosis. Curr Biol. 30:R1292–R1297. 2020. View Article : Google Scholar : PubMed/NCBI | |
|
Tang D, Chen X, Kang R and Kroemer G: Ferroptosis: Molecular mechanisms and health implications. Cell Res. 31:107–125. 2021. View Article : Google Scholar : | |
|
Li D and Li Y: The interaction between ferroptosis and lipid metabolism in cancer. Signal Transduct Target Ther. 5:1082020. View Article : Google Scholar : PubMed/NCBI | |
|
Pope LE and Dixon SJ: Regulation of ferroptosis by lipid metabolism. Trends Cell Biol. 33:1077–1087. 2023. View Article : Google Scholar : PubMed/NCBI | |
|
Jiang X, Stockwell BR and Conrad M: Ferroptosis: Mechanisms, biology and role in disease. Nat Rev Mol Cell Biol. 22:266–282. 2021. View Article : Google Scholar : PubMed/NCBI | |
|
Zhang Y, Liu X, Zeng L, Zhao X, Chen Q, Pan Y, Bai Y, Shao C and Zhang J: Exosomal protein angiopoietin-like 4 mediated radioresistance of lung cancer by inhibiting ferroptosis under hypoxic microenvironment. Br J Cancer. 127:1760–1772. 2022. View Article : Google Scholar : PubMed/NCBI | |
|
Yang WH, Huang Z, Wu J, Ding CC, Murphy SK and Chi JT: A TAZ-ANGPTL4-NOX2 axis regulates ferroptotic cell death and chemoresistance in epithelial ovarian cancer. Mol Cancer Res. 18:79–90. 2020. View Article : Google Scholar : | |
|
Broz P, Pelegrín P and Shao F: The gasdermins, a protein family executing cell death and inflammation. Nat Rev Immunol. 20:143–157. 2020. View Article : Google Scholar | |
|
Wei X, Xie F, Zhou X, Wu Y, Yan H, Liu T, Huang J, Wang F, Zhou F and Zhang L: Role of pyroptosis in inflammation and cancer. Cell Mol Immunol. 19:971–992. 2022. View Article : Google Scholar : PubMed/NCBI | |
|
Strowig T, Henao-Mejia J, Elinav E and Flavell R: Inflammasomes in health and disease. Nature. 481:278–286. 2012. View Article : Google Scholar : PubMed/NCBI | |
|
Fang Y, Tian S, Pan Y, Li W, Wang Q, Tang Y, Yu T, Wu X, Shi Y, Ma P and Shu Y: Pyroptosis: A new frontier in cancer. Biomed Pharmacother. 121:1095952020. View Article : Google Scholar | |
|
Man SM, Karki R and Kanneganti TD: Molecular mechanisms and functions of pyroptosis, inflammatory caspases and inflammasomes in infectious diseases. Immunol Rev. 277:61–75. 2017. View Article : Google Scholar : PubMed/NCBI | |
|
Shi J, Zhao Y, Wang K, Shi X, Wang Y, Huang H, Zhuang Y, Cai T, Wang F and Shao F: Cleavage of GSDMD by inflammatory caspases determines pyroptotic cell death. Nature. 526:660–665. 2015. View Article : Google Scholar : PubMed/NCBI | |
|
Huang Y, Xu W and Zhou R: NLRP3 inflammasome activation and cell death. Cell Mol Immunol. 18:2114–2127. 2021. View Article : Google Scholar : PubMed/NCBI | |
|
Sharma BR and Kanneganti TD: NLRP3 inflammasome in cancer and metabolic diseases. Nat Immunol. 22:550–559. 2021. View Article : Google Scholar : PubMed/NCBI | |
|
Sun B, Bai L, Li Q, Sun Y, Li M, Wang J, Shi X and Zhao M: Knockdown of angiopoietin-like 4 suppresses sepsis-induced acute lung injury by blocking the NF-κB pathway activation and hindering macrophage M1 polarization and pyroptosis. Toxicol In Vitro. 94:1057092024. View Article : Google Scholar | |
|
DeBerardinis RJ, Lum JJ, Hatzivassiliou G and Thompson CB: The biology of cancer: metabolic reprogramming fuels cell growth and proliferation. Cell Metab. 7:11–20. 2008. View Article : Google Scholar : PubMed/NCBI | |
|
Kaelin WG Jr and Thompson CB: Q&A: Cancer: Clues from cell metabolism. Nature. 465:562–564. 2010. View Article : Google Scholar : PubMed/NCBI | |
|
Martínez-Reyes I and Chandel NS: Cancer metabolism: Looking forward. Nat Rev Cancer. 21:669–680. 2021. View Article : Google Scholar : PubMed/NCBI | |
|
Xia L, Oyang L, Lin J, Tan S, Han Y, Wu N, Yi P, Tang L, Pan Q, Rao S, et al: The cancer metabolic reprogramming and immune response. Mol Cancer. 20:282021. View Article : Google Scholar : PubMed/NCBI | |
|
Pan C, Li B and Simon MC: Moonlighting functions of metabolic enzymes and metabolites in cancer. Mol Cell. 81:3760–3774. 2021. View Article : Google Scholar : PubMed/NCBI | |
|
Hsu PP and Sabatini DM: Cancer cell metabolism: Warburg and beyond. Cell. 134:703–707. 2008. View Article : Google Scholar : PubMed/NCBI | |
|
Fendt SM: 100 years of the Warburg effect: A cancer metabolism endeavor. Cell. 187:3824–3828. 2024. View Article : Google Scholar : PubMed/NCBI | |
|
Paul S, Ghosh S and Kumar S: Tumor glycolysis, an essential sweet tooth of tumor cells. Semin Cancer Biol. 86(Pt 3): 1216–1230. 2022. View Article : Google Scholar : PubMed/NCBI | |
|
Zheng X, Liu R, Zhou C, Yu H, Luo W, Zhu J, Liu J, Zhang Z, Xie N, Peng X, et al: ANGPTL4-mediated promotion of glycolysis facilitates the colonization of fusobacterium nucleatum in colorectal cancer. Cancer Res. 81:6157–6170. 2021. View Article : Google Scholar : PubMed/NCBI | |
|
Mizuno S, Seishima R, Yamasaki J, Hattori K, Ogiri M, Matsui S, Shigeta K, Okabayashi K, Nagano O, Li L and Kitagawa Y: Angiopoietin-like 4 promotes glucose metabolism by regulating glucose transporter expression in colorectal cancer. J Cancer Res Clin Oncol. 148:1351–1361. 2022. View Article : Google Scholar : PubMed/NCBI | |
|
Hanahan D and Weinberg RA: Hallmarks of cancer: The next generation. Cell. 144:646–674. 2011. View Article : Google Scholar : PubMed/NCBI | |
|
Hanahan D: Hallmarks of cancer: New dimensions. Cancer Discov. 12:31–46. 2022. View Article : Google Scholar : PubMed/NCBI | |
|
Currie E, Schulze A, Zechner R, Walther TC and Farese RV Jr: Cellular fatty acid metabolism and cancer. Cell Metab. 18:153–161. 2013. View Article : Google Scholar : PubMed/NCBI | |
|
Jin Z, Chai YD and Hu S: Fatty acid metabolism and cancer. Adv Exp Med Biol. 1280:231–241. 2021. View Article : Google Scholar : PubMed/NCBI | |
|
Lee JY, Nam M, Son HY, Hyun K, Jang SY, Kim JW, Kim MW, Jung Y, Jang E, Yoon SJ, et al: Polyunsaturated fatty acid biosynthesis pathway determines ferroptosis sensitivity in gastric cancer. Proc Natl Acad Sci USA. 117:32433–32442. 2020. View Article : Google Scholar : PubMed/NCBI | |
|
Pham DV and Park PH: Adiponectin triggers breast cancer cell death via fatty acid metabolic reprogramming. J Exp Clin Cancer Res. 41:92022. View Article : Google Scholar : PubMed/NCBI | |
|
Dijk W and Kersten S: Regulation of lipoprotein lipase by Angptl4. Trends Endocrinol Metab. 25:146–155. 2014. View Article : Google Scholar : PubMed/NCBI | |
|
Georgiadi A, Lichtenstein L, Degenhardt T, Boekschoten MV, van Bilsen M, Desvergne B, Müller M and Kersten S: Induction of cardiac Angptl4 by dietary fatty acids is mediated by peroxisome proliferator-activated receptor beta/delta and protects against fatty acid-induced oxidative stress. Circ Res. 106:1712–1721. 2010. View Article : Google Scholar : PubMed/NCBI | |
|
Zhang R and Zhang K: An updated ANGPTL3-4-8 model as a mechanism of triglyceride partitioning between fat and oxidative tissues. Prog Lipid Res. 85:1011402022. View Article : Google Scholar : | |
|
Lichtenstein L, Mattijssen F, de Wit NJ, Georgiadi A, Hooiveld GJ, van der Meer R, He Y, Qi L, Köster A, Tamsma JT, et al: Angptl4 protects against severe proinflammatory effects of saturated fat by inhibiting fatty acid uptake into mesenteric lymph node macrophages. Cell Metab. 12:580–592. 2010. View Article : Google Scholar : PubMed/NCBI | |
|
Xiao S, Nai-Dong W, Jin-Xiang Y, Long T, Xiu-Rong L, Hong G, Jie-Cheng Y and Fei Z: ANGPTL4 regulate glutamine metabolism and fatty acid oxidation in nonsmall cell lung cancer cells. J Cell Mol Med. 26:1876–1885. 2022. View Article : Google Scholar : PubMed/NCBI | |
|
Blücher C, Iberl S, Schwagarus N, Müller S, Liebisch G, Höring M, Hidrobo MS, Ecker J, Spindler N, Dietrich A, et al: Secreted factors from adipose tissue reprogram tumor lipid metabolism and induce motility by modulating PPARα/ANGPTL4 and FAK. Mol Cancer Res. 18:1849–1862. 2020. View Article : Google Scholar | |
|
Cai Z, Li Y, Ma M, Wang L, Wang H, Liu M and Jiang C: Adipocytes promote pancreatic cancer migration and invasion through fatty acid metabolic reprogramming. Oncol Rep. 50:1412023. View Article : Google Scholar : PubMed/NCBI | |
|
Lieu EL, Nguyen T, Rhyne S and Kim J: Amino acids in cancer. Exp Mol Med. 52:15–30. 2020. View Article : Google Scholar : PubMed/NCBI | |
|
Lippert TH, Ruoff HJ and Volm M: Intrinsic and acquired drug resistance in malignant tumors. The main reason for therapeutic failure. Arzneimittelforschung. 58:261–264. 2008.PubMed/NCBI | |
|
Olivares-Urbano MA, Griñán-Lisón C, Marchal JA and Núñez MI: CSC Radioresistance: A therapeutic challenge to improve radiotherapy effectiveness in cancer. Cells. 9:16512020. View Article : Google Scholar : PubMed/NCBI | |
|
Fekir K, Dubois-Pot-Schneider H, Désert R, Daniel Y, Glaise D, Rauch C, Morel F, Fromenty B, Musso O, Cabillic F and Corlu A: Retrodifferentiation of Human Tumor Hepatocytes to Stem Cells Leads to Metabolic Reprogramming and Chemoresistance. Cancer Res. 79:1869–1883. 2019. View Article : Google Scholar : PubMed/NCBI | |
|
Li C, Wang Q, Luo Y and Xiang J: TAZ regulates the cisplatin resistance of epithelial ovarian cancer cells via the ANGPTL4/SOX2 axis. Anal Cell Pathol (Amst). 2022:56321642022.PubMed/NCBI | |
|
Zhou S, Wang R and Xiao H: Adipocytes induce the resistance of ovarian cancer to carboplatin through ANGPTL4. Oncol Rep. 44:927–938. 2020. View Article : Google Scholar : PubMed/NCBI | |
|
Tsai YT, Wu AC, Yang WB, Kao TJ, Chuang JY, Chang WC and Hsu TI: ANGPTL4 induces TMZ resistance of glioblastoma by promoting cancer stemness enrichment via the EGFR/AKT/4E-BP1 cascade. Int J Mol Sci. 20:56252019. View Article : Google Scholar : PubMed/NCBI | |
|
Gordon ER, Wright CA, James M and Cooper SJ: Transcriptomic and functional analysis of ANGPTL4 overexpression in pancreatic cancer nominates targets that reverse chemoresistance. BMC Cancer. 23:5242023. View Article : Google Scholar : PubMed/NCBI | |
|
Li H, Ge C, Zhao F, Yan M, Hu C, Jia D, Tian H, Zhu M, Chen T, Jiang G, et al: Hypoxia-inducible factor 1 alpha-activated angiopoietin-like protein 4 contributes to tumor metastasis via vascular cell adhesion molecule-1/integrin β1 signaling in human hepatocellular carcinoma. Hepatology. 54:910–919. 2011. View Article : Google Scholar : PubMed/NCBI | |
|
Adhikary T, Brandt DT, Kaddatz K, Stockert J, Naruhn S, Meissner W, Finkernagel F, Obert J, Lieber S, Scharfe M, et al: Inverse PPARβ/δ agonists suppress oncogenic signaling to the ANGPTL4 gene and inhibit cancer cell invasion. Oncogene. 32:5241–5252. 2013. View Article : Google Scholar | |
|
Tian L, Zhou J, Casimiro MC, Liang B, Ojeifo JO, Wang M, Hyslop T, Wang C and Pestell RG: Activating peroxisome proliferator-activated receptor gamma mutant promotes tumor growth in vivo by enhancing angiogenesis. Cancer Res. 69:9236–9244. 2009. View Article : Google Scholar : PubMed/NCBI | |
|
Kim SH, Park YY, Kim SW, Lee JS, Wang D and DuBois RN: ANGPTL4 induction by prostaglandin E2 under hypoxic conditions promotes colorectal cancer progression. Cancer Res. 71:7010–7020. 2011. View Article : Google Scholar : PubMed/NCBI | |
|
Fresno Vara JA, Casado E, de Castro J, Cejas P, Belda-Iniesta C and González-Barón M: PI3K/Akt signalling pathway and cancer. Cancer Treat Rev. 30:193–204. 2004. View Article : Google Scholar : PubMed/NCBI | |
|
Pitt JM, Marabelle A, Eggermont A, Soria JC, Kroemer G and Zitvogel L: Targeting the tumor microenvironment: Removing obstruction to anticancer immune responses and immunotherapy. Ann Oncol. 27:1482–1492. 2016. View Article : Google Scholar : PubMed/NCBI | |
|
Zhou S, Tu J, Ding S, Lu G, Lin Z, Ding Y, Deng B, Zhang Y, Xiao W and Gong W: High expression of angiopoietin-like protein 4 in advanced colorectal cancer and its association with regulatory T Cells and M2 macrophages. Pathol Oncol Res. 26:1269–1278. 2020. View Article : Google Scholar | |
|
Long F, Wang W, Li S, Wang B, Hu X, Wang J, Xu Y, Liu M, Zhou J, Si H, et al: The potential crosstalk between tumor and plasma cells and its association with clinical outcome and immunotherapy response in bladder cancer. J Transl Med. 21:2982023. View Article : Google Scholar : PubMed/NCBI | |
|
Li F and Ding J: Sialylation is involved in cell fate decision during development, reprogramming and cancer progression. Protein Cell. 10:550–565. 2019. View Article : Google Scholar : | |
|
Ma X, Li M, Wang X, Qi G, Wei L and Zhang D: Sialylation in the gut: From mucosal protection to disease pathogenesis. Carbohydr Polym. 343:1224712024. View Article : Google Scholar : PubMed/NCBI | |
|
Calabrese V, Zirino F, Vienna FG, Siligato R, Cernaro V and Santoro D: Insight into the role of angiopoietin-like protein 4 in podocypopathies (Review). World Acad Sci J. 6:292024. View Article : Google Scholar | |
|
Chugh SS and Clement LC: 'Idiopathic' minimal change nephrotic syndrome: A podocyte mystery nears the end. Am J Physiol Renal Physiol. 325:F685–F694. 2023. View Article : Google Scholar | |
|
Smith BAH, Deutzmann A, Correa KM, Delaveris CS, Dhanasekaran R, Dove CG, Sullivan DK, Wisnovsky S, Stark JC, Pluvinage JV, et al: MYC-driven synthesis of siglec ligands is a glycoimmune checkpoint. Proc Natl Acad Sci USA. 120:e22153761202023. View Article : Google Scholar : PubMed/NCBI | |
|
Stanczak MA and Läubli H: Siglec receptors as new immune checkpoints in cancer. Mol Aspects Med. 90:1011122023. View Article : Google Scholar | |
|
Zhao J, Liu J, Wu N, Zhang H, Zhang S, Li L and Wang M: ANGPTL4 overexpression is associated with progression and poor prognosis in breast cancer. Oncol Lett. 20:2499–2505. 2020. View Article : Google Scholar : PubMed/NCBI | |
|
Nie D, Zheng Q, Liu L, Mao X and Li Z: Up-regulated of angiopoietin-like protein 4 predicts poor prognosis in cervical cancer. J Cancer. 10:1896–1901. 2019. View Article : Google Scholar : PubMed/NCBI | |
|
Aung TM, Ciin MN, Silsirivanit A, Jusakul A, Lert-Itthiporn W, Proungvitaya T, Roytrakul S and Proungvitaya S: Serum angiopoietin-like protein 4: A potential prognostic biomarker for prediction of vascular invasion and lymph node metastasis in cholangiocarcinoma patients. Front Public Health. 10:8369852022. View Article : Google Scholar : PubMed/NCBI | |
|
Wang FT, Li XP, Pan MS, Hassan M, Sun W and Fan YZ: Identification of the prognostic value of elevated ANGPTL4 expression in gallbladder cancer-associated fibroblasts. Cancer Med. 10:6035–6047. 2021. View Article : Google Scholar : PubMed/NCBI | |
|
Shibata K, Nakayama T, Hirakawa H, Hidaka S and Nagayasu T: Clinicopathological significance of angiopoietin-like protein 4 expression in oesophageal squamous cell carcinoma. J Clin Pathol. 63:1054–1058. 2010. View Article : Google Scholar : PubMed/NCBI | |
|
Tanaka T, Imamura T, Irie A, Yoneda M, Imamura R, Kikuchi K, Kitagawa S, Kubo T, Ogi H and Nakayama H: Association of high cellular expression and plasma concentration of angiopoietin-like 4 with tongue cancer lung metastasis and poor prognosis. Oncol Lett. 24:2992022. View Article : Google Scholar : PubMed/NCBI | |
|
Dong D, Jia L, Zhou Y, Ren L, Li J and Zhang J: Serum level of ANGPTL4 as a potential biomarker in renal cell carcinoma. Urol Oncol. 35:279–285. 2017. View Article : Google Scholar : PubMed/NCBI | |
|
Kubo H, Kitajima Y, Kai K, Nakamura J, Miyake S, Yanagihara K, Morito K, Tanaka T, Shida M and Noshiro H: Regulation and clinical significance of the hypoxia-induced expression of ANGPTL4 in gastric cancer. Oncol Lett. 11:1026–1034. 2016. View Article : Google Scholar : PubMed/NCBI | |
|
Sukonina V, Lookene A, Olivecrona T and Olivecrona G: Angiopoietin-like protein 4 converts lipoprotein lipase to inactive monomers and modulates lipase activity in adipose tissue. Proc Natl Acad Sci USA. 103:17450–17455. 2006. View Article : Google Scholar : PubMed/NCBI | |
|
Mysling S, Kristensen KK, Larsson M, Kovrov O, Bensadouen A, Jørgensen TJ, Olivecrona G, Young SG and Ploug M: The angiopoietin-like protein ANGPTL4 catalyzes unfolding of the hydrolase domain in lipoprotein lipase and the endothelial membrane protein GPIHBP1 counteracts this unfolding. Elife. 5:e209582016. View Article : Google Scholar : PubMed/NCBI | |
|
Yoshida K, Shimizugawa T, Ono M and Furukawa H: Angiopoietin-like protein 4 is a potent hyperlipidemia-inducing factor in mice and inhibitor of lipoprotein lipase. J Lipid Res. 43:1770–1772. 2002. View Article : Google Scholar : PubMed/NCBI | |
|
Dijk W, Beigneux AP, Larsson M, Bensadoun A, Young SG and Kersten S: Angiopoietin-like 4 promotes intracellular degradation of lipoprotein lipase in adipocytes. J Lipid Res. 57:1670–1683. 2016. View Article : Google Scholar : PubMed/NCBI | |
|
Reimund M, Kovrov O, Olivecrona G and Lookene A: Lipoprotein lipase activity and interactions studied in human plasma by isothermal titration calorimetry. J Lipid Res. 58:279–288. 2017. View Article : Google Scholar : | |
|
Kersten S: New insights into angiopoietin-like proteins in lipid metabolism and cardiovascular disease risk. Curr Opin Lipidol. 30:205–211. 2019. View Article : Google Scholar : PubMed/NCBI | |
|
Huang RL, Teo Z, Chong HC, Zhu P, Tan MJ, Tan CK, Lam CR, Sng MK, Leong DT, Tan SM, et al: ANGPTL4 modulates vascular junction integrity by integrin signaling and disruption of intercellular VE-cadherin and claudin-5 clusters. Blood. 118:3990–4002. 2011. View Article : Google Scholar : PubMed/NCBI | |
|
Cazes A, Galaup A, Chomel C, Bignon M, Bréchot N, Le Jan S, Weber H, Corvol P, Muller L, Germain S and Monnot C: Extracellular matrix-bound angiopoietin-like 4 inhibits endothelial cell adhesion, migration, and sprouting and alters actin cytoskeleton. Circ Res. 99:1207–1215. 2006. View Article : Google Scholar : PubMed/NCBI | |
|
Sheridan C: Amgen's angiopoietin blocker fails in ovarian cancer. Nat Biotechnol. 33:5–6. 2015. View Article : Google Scholar : PubMed/NCBI | |
|
Padua D, Zhang XH, Wang Q, Nadal C, Gerald WL, Gomis RR and Massagué J: TGFbeta primes breast tumors for lung metastasis seeding through angiopoietin-like 4. Cell. 133:66–77. 2008. View Article : Google Scholar : PubMed/NCBI | |
|
Simeon J, Thrush J and Bailey TA: Angiopoietin-like protein 4 is a chromatin-bound protein that enhances mammosphere formation in vitro and experimental triple-negative breast cancer brain and liver metastases in vivo. J Carcinog. 20:82021. View Article : Google Scholar : PubMed/NCBI | |
|
Nakayama T, Hirakawa H, Shibata K, Nazneen A, Abe K, Nagayasu T and Taguchi T: Expression of angiopoietin-like 4 (ANGPTL4) in human colorectal cancer: ANGPTL4 promotes venous invasion and distant metastasis. Oncol Rep. 25:929–935. 2011. View Article : Google Scholar : PubMed/NCBI | |
|
Yi J, Pan BZ, Xiong L and Song HZ: Clinical significance of angiopoietin-like protein 4 expression in tissue and serum of esophageal squamous cell carcinoma patients. Med Oncol. 30:6802013. View Article : Google Scholar : PubMed/NCBI | |
|
Nakayama T, Hirakawa H, Shibata K, Abe K, Nagayasu T and Taguchi T: Expression of angiopoietin-like 4 in human gastric cancer: ANGPTL4 promotes venous invasion. Oncol Rep. 24:599–606. 2010. View Article : Google Scholar : PubMed/NCBI | |
|
Ma T, Jham BC, Hu J, Friedman ER, Basile JR, Molinolo A, Sodhi A and Montaner S: Viral G protein-coupled receptor up-regulates Angiopoietin-like 4 promoting angiogenesis and vascular permeability in Kaposi's sarcoma. Proc Natl Acad Sci USA. 107:14363–14368. 2010. View Article : Google Scholar : PubMed/NCBI | |
|
Yang W, Khoury E, Guo Q, Prabhu SA, Emond A, Huang F, Gonçalves C, Zhan Y, Plourde D, Nichol JN, et al: MNK1 signaling induces an ANGPTL4-mediated gene signature to drive melanoma progression. Oncogene. 39:3650–3665. 2020. View Article : Google Scholar : PubMed/NCBI | |
|
Zhu X, Guo X, Wu S and Wei L: ANGPTL4 correlates with NSCLC progression and regulates epithelial-mesenchymal transition via ERK pathway. Lung. 194:637–646. 2016. View Article : Google Scholar : PubMed/NCBI | |
|
Lou H, Lin X, Wei G, Wu Z and Xiao Y: Construction of an Anoikis-related gene prognostic signature and identification of ANGPTL4 as a key oncogene in lung adenocarcinoma. Mol Biotechnol. 66:1290–1302. 2024. View Article : Google Scholar : PubMed/NCBI | |
|
Al-Kadash A, Alshaer W, Mahmoud IS, Wehaibi S and Zihlif M: Enhancing chemosensitivity of PANC1 pancreatic cancer cells to gemcitabine using ANGTPL4, Notch1 and NF-κβ1 siRNAs. Future Sci OA. 10:FSO9182024. View Article : Google Scholar | |
|
Hata S, Nomura T, Iwasaki K, Sato R, Yamasaki M, Sato F and Mimata H: Hypoxia-induced angiopoietin-like protein 4 as a clinical biomarker and treatment target for human prostate cancer. Oncol Rep. 38:120–128. 2017. View Article : Google Scholar : PubMed/NCBI | |
|
Tanaka T, Imamura T, Yoneda M, Irie A, Ogi H, Nagata M, Yoshida R, Fukuma D, Kawahara K, Shinohara M and Nakayama H: Enhancement of active MMP release and invasive activity of lymph node metastatic tongue cancer cells by elevated signaling via the TNF-α-TNFR1-NF-κB pathway and a possible involvement of angiopoietin-like 4 in lung metastasis. Int J Oncol. 49:1377–1384. 2016. View Article : Google Scholar : PubMed/NCBI | |
|
Yu Y, Zhang M, Liu J, Xu B, Yang J, Wang N, Yan S, Wang F, He X, Ji G, et al: Long Non-coding RNA PVT1 promotes cell proliferation and migration by silencing ANGPTL4 expression in cholangiocarcinoma. Mol Ther Nucleic Acids. 13:503–513. 2018. View Article : Google Scholar : PubMed/NCBI |