Spandidos Publications Logo
  • About
    • About Spandidos
    • Aims and Scopes
    • Abstracting and Indexing
    • Editorial Policies
    • Reprints and Permissions
    • Job Opportunities
    • Terms and Conditions
    • Contact
  • Journals
    • All Journals
    • Oncology Letters
      • Oncology Letters
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Oncology
      • International Journal of Oncology
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Molecular and Clinical Oncology
      • Molecular and Clinical Oncology
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Experimental and Therapeutic Medicine
      • Experimental and Therapeutic Medicine
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Molecular Medicine
      • International Journal of Molecular Medicine
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Biomedical Reports
      • Biomedical Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Oncology Reports
      • Oncology Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Molecular Medicine Reports
      • Molecular Medicine Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • World Academy of Sciences Journal
      • World Academy of Sciences Journal
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Functional Nutrition
      • International Journal of Functional Nutrition
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Epigenetics
      • International Journal of Epigenetics
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Medicine International
      • Medicine International
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
  • Articles
  • Information
    • Information for Authors
    • Information for Reviewers
    • Information for Librarians
    • Information for Advertisers
    • Conferences
  • Language Editing
Spandidos Publications Logo
  • About
    • About Spandidos
    • Aims and Scopes
    • Abstracting and Indexing
    • Editorial Policies
    • Reprints and Permissions
    • Job Opportunities
    • Terms and Conditions
    • Contact
  • Journals
    • All Journals
    • Biomedical Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Experimental and Therapeutic Medicine
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Epigenetics
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Functional Nutrition
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Molecular Medicine
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Oncology
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Medicine International
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Molecular and Clinical Oncology
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Molecular Medicine Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Oncology Letters
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Oncology Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • World Academy of Sciences Journal
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
  • Articles
  • Information
    • For Authors
    • For Reviewers
    • For Librarians
    • For Advertisers
    • Conferences
  • Language Editing
Login Register Submit
  • This site uses cookies
  • You can change your cookie settings at any time by following the instructions in our Cookie Policy. To find out more, you may read our Privacy Policy.

    I agree
Search articles by DOI, keyword, author or affiliation
Search
Advanced Search
presentation
International Journal of Oncology
Join Editorial Board Propose a Special Issue
Print ISSN: 1019-6439 Online ISSN: 1791-2423
Journal Cover
March-2025 Volume 66 Issue 3

Full Size Image

Cover Legend PDF

Sign up for eToc alerts
Recommend to Library

Journals

International Journal of Molecular Medicine

International Journal of Molecular Medicine

International Journal of Molecular Medicine is an international journal devoted to molecular mechanisms of human disease.

International Journal of Oncology

International Journal of Oncology

International Journal of Oncology is an international journal devoted to oncology research and cancer treatment.

Molecular Medicine Reports

Molecular Medicine Reports

Covers molecular medicine topics such as pharmacology, pathology, genetics, neuroscience, infectious diseases, molecular cardiology, and molecular surgery.

Oncology Reports

Oncology Reports

Oncology Reports is an international journal devoted to fundamental and applied research in Oncology.

Experimental and Therapeutic Medicine

Experimental and Therapeutic Medicine

Experimental and Therapeutic Medicine is an international journal devoted to laboratory and clinical medicine.

Oncology Letters

Oncology Letters

Oncology Letters is an international journal devoted to Experimental and Clinical Oncology.

Biomedical Reports

Biomedical Reports

Explores a wide range of biological and medical fields, including pharmacology, genetics, microbiology, neuroscience, and molecular cardiology.

Molecular and Clinical Oncology

Molecular and Clinical Oncology

International journal addressing all aspects of oncology research, from tumorigenesis and oncogenes to chemotherapy and metastasis.

World Academy of Sciences Journal

World Academy of Sciences Journal

Multidisciplinary open-access journal spanning biochemistry, genetics, neuroscience, environmental health, and synthetic biology.

International Journal of Functional Nutrition

International Journal of Functional Nutrition

Open-access journal combining biochemistry, pharmacology, immunology, and genetics to advance health through functional nutrition.

International Journal of Epigenetics

International Journal of Epigenetics

Publishes open-access research on using epigenetics to advance understanding and treatment of human disease.

Medicine International

Medicine International

An International Open Access Journal Devoted to General Medicine.

Journal Cover
March-2025 Volume 66 Issue 3

Full Size Image

Cover Legend PDF

Sign up for eToc alerts
Recommend to Library

  • Article
  • Citations
    • Cite This Article
    • Download Citation
    • Create Citation Alert
    • Remove Citation Alert
    • Cited By
  • Similar Articles
    • Related Articles (in Spandidos Publications)
    • Similar Articles (Google Scholar)
    • Similar Articles (PubMed)
  • Download PDF
  • Download XML
  • View XML
Review Open Access

Emerging role of bile acids in colorectal liver metastasis: From molecular mechanism to clinical significance (Review)

  • Authors:
    • Zhaoyu Li
    • Lingjun Deng
    • Mengting Cheng
    • Xiandong Ye
    • Nanyan Yang
    • Zaiwen Fan
    • Li Sun
  • View Affiliations / Copyright

    Affiliations: Peking University People's Hospital, Peking University Institute of Hematology, National Clinical Research Center for Hematologic Disease, Beijing Key Laboratory of Hematopoietic Stem Cell Transplantation, Beijing 100044, P.R. China, Department of Oncology, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong 510515, China, P.R. China, Department of Oncology, Air Force Medical Center of People's Liberation Army, Air Force Medical University, Beijing 100010, P.R. China
    Copyright: © Li et al. This is an open access article distributed under the terms of Creative Commons Attribution License.
  • Article Number: 24
    |
    Published online on: February 17, 2025
       https://doi.org/10.3892/ijo.2025.5730
  • Expand metrics +
Metrics: Total Views: 0 (Spandidos Publications: | PMC Statistics: )
Metrics: Total PDF Downloads: 0 (Spandidos Publications: | PMC Statistics: )
Cited By (CrossRef): 0 citations Loading Articles...

This article is mentioned in:



Abstract

Liver metastasis is the leading cause of colorectal cancer (CRC)‑related mortality. Microbiota dysbiosis serves a role in the pathogenesis of colorectal liver metastases. Bile acids (BAs), cholesterol metabolites synthesized by intestinal bacteria, contribute to the metastatic cascade of CRC, encompassing colorectal invasion, migration, angiogenesis, anoikis resistance and the establishment of a hepatic pre‑metastatic niche. BAs impact inflammation and modulate the immune landscape within the tumor microenvironment by activating signaling pathways, which are used by tumor cells to facilitate metastasis. Given the widespread distribution of BA‑activated receptors in both tumor and immune cells, strategies aimed at restoring BA homeostasis and blocking metastasis‑associated signaling are of importance in cancer therapy. The present study summarizes the specific role of BAs in each step of colorectal liver metastasis, elucidating the association between BA and CRC progression to highlight the potential of BAs as predictive biomarkers for colorectal liver metastasis and their therapeutic potential in developing novel treatment strategies.
View Figures

Figure 1

Figure 2

Figure 3

Figure 4

Figure 5

View References

1 

Bray F, Laversanne M, Sung H, Ferlay J, Siegel RL, Soerjomataram I and Jemal A: Global cancer statistics 2022: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J Clin. 74:229–263. 2024. View Article : Google Scholar : PubMed/NCBI

2 

Biller LH and Schrag D: Diagnosis and treatment of metastatic colorectal cancer: A review. JAMA. 325:669–685. 2021. View Article : Google Scholar : PubMed/NCBI

3 

Yu J, Green MD, Li S, Sun Y, Journey SN, Choi JE, Rizvi SM, Qin A, Waninger JJ, Lang X, et al: Liver metastasis restrains immunotherapy efficacy via macrophage-mediated T cell elimination. Nat Med. 27:152–164. 2021. View Article : Google Scholar : PubMed/NCBI

4 

Lee JC, Mehdizadeh S, Smith J, Young A, Mufazalov IA, Mowery CT, Daud A and Bluestone JA: Regulatory T cell control of systemic immunity and immunotherapy response in liver metastasis. Sci Immunol. 5:eaba07592020. View Article : Google Scholar : PubMed/NCBI

5 

Jones BV, Begley M, Hill C, Gahan CG and Marchesi JR: Functional and comparative metagenomic analysis of bile salt hydrolase activity in the human gut microbiome. Proc Natl Acad Sci USA. 105:13580–13585. 2008. View Article : Google Scholar : PubMed/NCBI

6 

Ridlon JM and Gaskins HR: Another renaissance for bile acid gastrointestinal microbiology. Nat Rev Gastroenterol Hepatol. 21:348–364. 2024. View Article : Google Scholar : PubMed/NCBI

7 

Russell DW: The enzymes, regulation, and genetics of bile acid synthesis. Annu Rev Biochem. 72:137–174. 2003. View Article : Google Scholar : PubMed/NCBI

8 

Thibaut MM and Bindels LB: Crosstalk between bile acid-activated receptors and microbiome in entero-hepatic inflammation. Trends Mol Med. 28:223–236. 2022. View Article : Google Scholar : PubMed/NCBI

9 

Wahlstrom A, Sayin SI, Marschall HU and Backhed F: Intestinal crosstalk between bile acids and microbiota and its impact on host metabolism. Cell Metab. 24:41–50. 2016. View Article : Google Scholar : PubMed/NCBI

10 

Hao Z, Liu X, He H, Wei Z, Shu X, Wang J, Sun B, Zhou H, Wang J, Niu Y, et al: CYP2E1 deficit mediates cholic acid-induced malignant growth in hepatocellular carcinoma cells. Mol Med. 30:792024. View Article : Google Scholar : PubMed/NCBI

11 

Chen W, Ding M, Ji L, Yao J, Guo Y, Yan W, Yu S, Shen Q, Huang M, Zheng Y, et al: Bile acids promote the development of HCC by activating inflammasome. Hepatol Commun. 7:e02172023. View Article : Google Scholar : PubMed/NCBI

12 

Yao Y, Li X, Xu B, Luo L, Guo Q, Wang X, Sun L, Zhang Z and Li P: Cholecystectomy promotes colon carcinogenesis by activating the Wnt signaling pathway by increasing the deoxycholic acid level. Cell Commun Signal. 20:712022. View Article : Google Scholar : PubMed/NCBI

13 

Sánchez B: Bile acid-microbiota crosstalk in gastrointestinal inflammation and carcinogenesis: A role for bifidobacteria and lactobacilli? Nat Rev Gastroenterol Hepatol. 15:2052018. View Article : Google Scholar : PubMed/NCBI

14 

Režen T, Rozman D, Kovács T, Kovács P, Sipos A, Bai P and Mikó E: The role of bile acids in carcinogenesis. Cell Mol Life Sci. 79:2432022. View Article : Google Scholar

15 

Liu Y, Zhang S, Zhou W, Hu D, Xu H and Ji G: secondary bile acids and tumorigenesis in colorectal cancer. Front Oncol. 12:8137452022. View Article : Google Scholar : PubMed/NCBI

16 

Caliceti C, Punzo A, Silla A, Simoni P, Roda G and Hrelia S: New insights into bile acids related signaling pathways in the onset of colorectal cancer. Nutrients. 14:29642022. View Article : Google Scholar : PubMed/NCBI

17 

Cai J, Sun L and Gonzalez FJ: Gut microbiota-derived bile acids in intestinal immunity, inflammation, and tumorigenesis. Cell Host Microbe. 30:289–300. 2022. View Article : Google Scholar : PubMed/NCBI

18 

Sipe LM, Chaib M, Pingili AK, Pierre JF and Makowski L: Microbiome, bile acids, and obesity: How microbially modified metabolites shape anti-tumor immunity. Immunol Rev. 295:220–239. 2020. View Article : Google Scholar : PubMed/NCBI

19 

Wang J, Zhu N, Su X and Yang R: Gut microbiota: A double-edged sword in immune checkpoint blockade immunotherapy against tumors. Cancer Lett. 582:2165822024. View Article : Google Scholar

20 

Imray CH, Radley S, Davis A, Barker G, Hendrickse CW, Donovan IA, Lawson AM, Baker PR and Neoptolemos JP: Faecal unconjugated bile acids in patients with colorectal cancer or polyps. Gut. 33:1239–1245. 1992. View Article : Google Scholar : PubMed/NCBI

21 

Bayerdörffer E, Mannes GA, Ochsenkühn T, Dirschedl P, Wiebecke B and Paumgartner G: Unconjugated secondary bile acids in the serum of patients with colorectal adenomas. Gut. 36:268–273. 1995. View Article : Google Scholar : PubMed/NCBI

22 

Dermadi D, Valo S, Ollila S, Soliymani R, Sipari N, Pussila M, Sarantaus L, Linden J, Baumann M and Nyström M: Western diet deregulates bile acid homeostasis, cell proliferation, and tumorigenesis in colon. Cancer Res. 77:3352–3363. 2017. View Article : Google Scholar : PubMed/NCBI

23 

Ocvirk S and O'Keefe SJD: Dietary fat, bile acid metabolism and colorectal cancer. Semin Cancer Biol. 73:347–355. 2021. View Article : Google Scholar

24 

O'Keefe SJ, Li JV, Lahti L, Ou J, Carbonero F, Mohammed K, Posma JM, Kinross J, Wahl E, Ruder E, et al: Fat, fibre and cancer risk in African Americans and rural Africans. Nat Commun. 6:63422015. View Article : Google Scholar : PubMed/NCBI

25 

Ma Y, Zhang Y, Qu R, Zhou X, Sun L, Wang K, Jiang C, Zhang Z and Fu W: Promotion of deoxycholic acid effect on colonic cancer cell lines in vitro by altering the mucosal microbiota. Microorganisms. 10:24862022. View Article : Google Scholar : PubMed/NCBI

26 

Wirbel J, Pyl PT, Kartal E, Zych K, Kashani A, Milanese A, Fleck JS, Voigt AY, Palleja A, Ponnudurai R, et al: Meta-analysis of fecal metagenomes reveals global microbial signatures that are specific for colorectal cancer. Nat Med. 25:679–689. 2019. View Article : Google Scholar : PubMed/NCBI

27 

Ridlon JM, Harris SC, Bhowmik S, Kang DJ and Hylemon PB: Consequences of bile salt biotransformations by intestinal bacteria. Gut Microbes. 7:22–39. 2016. View Article : Google Scholar : PubMed/NCBI

28 

Xie YH, Gao QY, Cai GX, Sun XM, Sun XM, Zou TH, Chen HM, Yu SY, Qiu YW, Gu WQ, et al: Fecal clostridium symbiosum for noninvasive detection of early and advanced colorectal cancer: Test and validation studies. EBioMedicine. 25:32–40. 2017. View Article : Google Scholar : PubMed/NCBI

29 

Sun L, Zhang Y, Cai J, Rimal B, Rocha ER, Coleman JP, Zhang C, Nichols RG, Luo Y, Kim B, et al: Bile salt hydrolase in non-enterotoxigenic Bacteroides potentiates colorectal cancer. Nat Commun. 14:7552023. View Article : Google Scholar : PubMed/NCBI

30 

Inagaki T, Choi M, Moschetta A, Peng L, Cummins CL, McDonald JG, Luo G, Jones SA, Goodwi n B, Richardson JA, et al: Fibroblast growth factor 15 functions as an enterohepatic signal to regulate bile acid homeostasis. Cell Metab. 2:217–225. 2005. View Article : Google Scholar : PubMed/NCBI

31 

Kim I, Ahn SH, Inagaki T, Choi M, Ito S, Guo GL, Kliewer SA and Gonzalez FJ: Differential regulation of bile acid homeostasis by the farnesoid X receptor in liver and intestine. J Lipid Res. 48:2664–2672. 2007. View Article : Google Scholar : PubMed/NCBI

32 

Lax S, Schauer G, Prein K, Kapitan M, Silbert D, Berghold A, Berger A and Trauner M: Expression of the nuclear bile acid receptor/farnesoid X receptor is reduced in human colon carcinoma compared to nonneoplastic mucosa independent from site and may be associated with adverse prognosis. Int J Cancer. 130:2232–2239. 2012. View Article : Google Scholar

33 

Fu T, Coulter S, Yoshihara E, Oh TG, Fang S, Cayabyab F, Zhu Q, Zhang T, Leblanc M, Liu S, et al: FXR regulates intestinal cancer stem cell proliferation. Cell. 176:1098–1112 e18. 2019. View Article : Google Scholar : PubMed/NCBI

34 

Selmin OI, Fang C, Lyon AM, Doetschman TC, Thompson PA, Martinez JD, Smith JW, Lance PM and Romagnolo DF: Inactivation of adenomatous polyposis coli reduces bile acid/farnesoid X receptor expression through Fxr gene CpG methylation in mouse colon tumors and human colon cancer cells. J Nutr. 146:236–242. 2016. View Article : Google Scholar

35 

Kim DH and Lee JW: Tumor suppressor p53 regulates bile acid homeostasis via small heterodimer partner. Proc Natl Acad Sci USA. 108:12266–12270. 2011. View Article : Google Scholar : PubMed/NCBI

36 

Kühn T, Stepien M, López-Nogueroles M, Damms-Machado A, Sookthai D, Johnson T, Roca M, Hüsing A, Maldonado SG, Cross AJ, et al: Prediagnostic plasma bile acid levels and colon cancer risk: A prospective study. J Natl Cancer Inst. 112:516–524. 2020. View Article : Google Scholar :

37 

Ajouz H, Mukherji D and Shamseddine A: Secondary bile acids: An underrecognized cause of colon cancer. World J Surg Oncol. 12:1642014. View Article : Google Scholar : PubMed/NCBI

38 

Zeng H, Claycombe KJ and Reindl KM: Butyrate and deoxycholic acid play common and distinct roles in HCT116 human colon cell proliferation. J Nutr Biochem. 26:1022–1028. 2015. View Article : Google Scholar : PubMed/NCBI

39 

Liu L, Yang M, Dong W, Liu T, Song X, Gu Y, Wang S, Liu Y, Abla Z, Qiao X, et al: Gut dysbiosis and abnormal bile acid metabolism in colitis-associated cancer. Gastroenterol Res Pract. 2021:66459702021. View Article : Google Scholar : PubMed/NCBI

40 

Cao Y, Deng S, Yan L, Gu J, Yang J, Yang M, Liu L and Cai K: A nomogram based on pretreatment levels of serum bilirubin and total bile acid levels predicts survival in colorectal cancer patients. BMC Cancer. 21:852021. View Article : Google Scholar : PubMed/NCBI

41 

Tang S, Chen Y, Tian S and Wang Y: Predictive nomogram for the prediction of early recurrence of colorectal cancer. Int J Gen Med. 14:4857–4866. 2021. View Article : Google Scholar : PubMed/NCBI

42 

Cai Y, Shen X, Lu L, Yan H, Huang H, Gaule P, Muca E, Theriot CM, Rattray Z, Rattray NJW, et al: Bile acid distributions, sex-specificity, and prognosis in colorectal cancer. Biol Sex Differ. 13:612022. View Article : Google Scholar : PubMed/NCBI

43 

Jia W, Xie G and Jia W: Bile acid-microbiota crosstalk in gastrointestinal inflammation and carcinogenesis. Nat Rev Gastroenterol Hepatol. 15:111–128. 2018. View Article : Google Scholar

44 

Morris MT, Jain A, Sun B, Kurbatov V, Muca E, Zeng Z, Jin Y, Roper J, Lu J, Paty PB, et al: Multi-omic analysis reveals metabolic pathways that characterize right-sided colon cancer liver metastasis. Cancer Lett. 574:2163842023. View Article : Google Scholar : PubMed/NCBI

45 

Engstrand J, Nilsson H, Strömberg C, Jonas E and Freedman J: Colorectal cancer liver metastases-a population-based study on incidence, management and survival. BMC Cancer. 18:782018. View Article : Google Scholar

46 

Liu W, Wang HW, Wang K and Xing BC: The primary tumor location impacts survival outcome of colorectal liver metastases after hepatic resection: A systematic review and meta-analysis. Eur J Surg Oncol. 45:1349–1356. 2019. View Article : Google Scholar : PubMed/NCBI

47 

Lee CK, Jeong SH, Jang C, Bae H, Kim YH, Park I, Kim SK and Koh GY: Tumor metastasis to lymph nodes requires YAP-dependent metabolic adaptation. Science. 363:644–649. 2019. View Article : Google Scholar : PubMed/NCBI

48 

Kawarabayashi N, Seki S, Hatsuse K, Kinoshita M, Takigawa T, Tsujimoto H, Kawabata T, Nakashima H, Shono S and Mochizuki H: Immunosuppression in the livers of mice with obstructive jaundice participates in their susceptibility to bacterial infection and tumor metastasis. Shock. 33:500–506. 2010. View Article : Google Scholar

49 

Zheng Z, Wei J, Hou X, Jia F, Zhang Z, Guo H, Yuan F, He F, Ke Z, Wang Y and Zhao L: A high hepatic uptake of conjugated bile acids promotes colorectal cancer-associated liver metastasis. Cells. 11:38102022. View Article : Google Scholar : PubMed/NCBI

50 

Lambert AW, Pattabiraman DR and Weinberg RA: Emerging biological principles of metastasis. Cell. 168:670–691. 2017. View Article : Google Scholar : PubMed/NCBI

51 

Debruyne PR, Bruyneel EA, Karaguni IM, Li X, Flatau G, Müller O, Zimber A, Gespach C and Mareel MM: Bile acids stimulate invasion and haptotaxis in human colorectal cancer cells through activation of multiple oncogenic signaling pathways. Oncogene. 21:6740–6750. 2002. View Article : Google Scholar : PubMed/NCBI

52 

Dongre A and Weinberg RA: New insights into the mechanisms of epithelial-mesenchymal transition and implications for cancer. Nat Rev Mol Cell Biol. 20:69–84. 2019. View Article : Google Scholar

53 

Song X, An Y, Chen D, Zhang W, Wu X, Li C, Wang S, Dong W, Wang B, Liu T, et al: Microbial metabolite deoxycholic acid promotes vasculogenic mimicry formation in intestinal carcinogenesis. Cancer Sci. 113:459–477. 2022. View Article : Google Scholar :

54 

Stefani C, Miricescu D, Stanescu-Spinu II, Nica RI, Greabu M, Totan AR and Jinga M: Growth factors, PI3K/AKT/mTOR and MAPK signaling pathways in colorectal cancer pathogenesis: Where are we now? Int J Mol Sci. 22:102602021. View Article : Google Scholar : PubMed/NCBI

55 

Centuori SM, Gomes CJ, Trujillo J, Borg J, Brownlee J, Putnam CW and Martinez JD: Deoxycholic acid mediates non-canonical EGFR-MAPK activation through the induction of calcium signaling in colon cancer cells. Biochim Biophys Acta. 1861:663–670. 2016. View Article : Google Scholar : PubMed/NCBI

56 

Centuori SM and Martinez JD: Differential regulation of EGFR-MAPK signaling by deoxycholic acid (DCA) and ursodeoxycholic acid (UDCA) in colon cancer. Dig Dis Sci. 59:2367–2380. 2014. View Article : Google Scholar : PubMed/NCBI

57 

Lee J, Hong EM, Kim JH, Kim JH, Jung JH, Park SW and Koh DH: Ursodeoxycholic acid inhibits epithelial-mesenchymal transition, suppressing invasiveness of bile duct cancer cells: An in vitro study. Oncol Lett. 24:4482022. View Article : Google Scholar : PubMed/NCBI

58 

Yu J, Li S, Guo J, Xu Z, Zheng J and Sun X: Farnesoid X receptor antagonizes Wnt/β-catenin signaling in colorectal tumorigenesis. Cell Death Dis. 11:6402020. View Article : Google Scholar

59 

Zhang D, Weng S, Cui C, Dong L and Shen X: Decreased expression of farnesoid X receptor may indicate poor prognosis in patients with colorectal cancer. Transl Cancer Res. 9:4290–4296. 2020. View Article : Google Scholar : PubMed/NCBI

60 

Li S, Xu Z, Guo J, Zheng J, Sun X and Yu J: Farnesoid X receptor activation induces antitumour activity in colorectal cancer by suppressing JAK2/STAT3 signalling via transactivation of SOCS3 gene. J Cell Mol Med. 24:14549–14560. 2020. View Article : Google Scholar : PubMed/NCBI

61 

Farhana L, Nangia-Makker P, Arbit E, Shango K, Sarkar S, Mahmud H, Hadden T, Yu Y and Majumdar AP: Bile acid: A potential inducer of colon cancer stem cells. Stem Cell Res Ther. 7:1812016. View Article : Google Scholar : PubMed/NCBI

62 

Pezeshkian Z, Nobili S, Peyravian N, Shojaee B, Nazari H, Soleimani H, Asadzadeh-Aghdaei H, Ashrafian Bonab M, Nazemalhosseini-Mojarad E and Mini E: Insights into the role of matrix metalloproteinases in precancerous conditions and in colorectal cancer. Cancers (Basel). 13:62262021. View Article : Google Scholar : PubMed/NCBI

63 

Li S, Ung TT, Nguyen TT, Sah DK, Park SY and Jung YD: Cholic acid stimulates MMP-9 in human colon cancer cells via activation of MAPK, AP-1, and NF-κB activity. Int J Mol Sci. 21:34202020. View Article : Google Scholar

64 

Peng Z, Chen J, Drachenberg CB, Raufman JP and Xie G: Farnesoid X receptor represses matrix metalloproteinase 7 expression, revealing this regulatory axis as a promising therapeutic target in colon cancer. J Biol Chem. 294:8529–8542. 2019. View Article : Google Scholar : PubMed/NCBI

65 

Halvorsen B, Staff AC, Ligaarden S, Prydz K and Kolset SO: Lithocholic acid and sulphated lithocholic acid differ in the ability to promote matrix metalloproteinase secretion in the human colon cancer cell line CaCo-2. Biochem J. 349(Pt 1): 189–193. 2000. View Article : Google Scholar : PubMed/NCBI

66 

Dass K, Ahmad A, Azmi AS, Sarkar SH and Sarkar FH: Evolving role of uPA/uPAR system in human cancers. Cancer Treat Rev. 34:122–136. 2008. View Article : Google Scholar

67 

Pai R, Tarnawski AS and Tran T: Deoxycholic acid activates beta-catenin signaling pathway and increases colon cell cancer growth and invasiveness. Mol Biol Cell. 15:2156–2163. 2004. View Article : Google Scholar : PubMed/NCBI

68 

Baek MK, Park JS, Park JH, Kim MH, Kim HD, Bae WK, Chung IJ, Shin BA and Jung YD: Lithocholic acid upregulates uPAR and cell invasiveness via MAPK and AP-1 signaling in colon cancer cells. Cancer Lett. 290:123–128. 2010. View Article : Google Scholar

69 

Takeda A, Stoeltzing O, Ahmad SA, Reinmuth N, Liu W, Parikh A, Fan F, Akagi M and Ellis LM: Role of angiogenesis in the development and growth of liver metastasis. Ann Surg Oncol. 9:610–616. 2002. View Article : Google Scholar : PubMed/NCBI

70 

Li S, Nguyen TT, Ung TT, Sah DK, Park SY, Lakshmanan VK and Jung YD: Piperine attenuates lithocholic acid-stimulated interleukin-8 by suppressing Src/EGFR and reactive oxygen species in human colorectal cancer cells. Antioxidants (Basel). 11:5302022. View Article : Google Scholar : PubMed/NCBI

71 

Nguyen TT, Lian S, Ung TT, Xia Y, Han JY and Jung YD: Lithocholic acid stimulates IL-8 expression in human colorectal cancer cells via activation of Erk1/2 MAPK and suppression of STAT3 activity. J Cell Biochem. 118:2958–2967. 2017. View Article : Google Scholar : PubMed/NCBI

72 

Sun J, Mustafi R, Cerda S, Chumsangsri A, Xia YR, Li YC and Bissonnette M: Lithocholic acid down-regulation of NF-kappaB activity through vitamin D receptor in colonic cancer cells. J Steroid Biochem Mol Biol. 111:37–40. 2008. View Article : Google Scholar : PubMed/NCBI

73 

Cianchi F, Cortesini C, Bechi P, Fantappiè O, Messerini L, Vannacci A, Sardi I, Baroni G, Boddi V, Mazzanti R and Masini E: Up-regulation of cyclooxygenase 2 gene expression correlates with tumor angiogenesis in human colorectal cancer. Gastroenterology. 121:1339–1347. 2001. View Article : Google Scholar : PubMed/NCBI

74 

Oshio H, Abe T, Onogawa T, Ohtsuka H, Sato T, Ii T, Fukase K, Muto M, Katayose Y, Oikawa M, et al: Peroxisome proliferator-activated receptor alpha activates cyclooxygenase-2 gene transcription through bile acid transport in human colorectal cancer cell lines. J Gastroenterol. 43:538–549. 2008. View Article : Google Scholar : PubMed/NCBI

75 

Khare S, Mustafi R, Cerda S, Yuan W, Jagadeeswaran S, Dougherty U, Tretiakova M, Samarel A, Cohen G, Wang J, et al: Ursodeoxycholic acid suppresses Cox-2 expression in colon cancer: Roles of Ras, p38, and CCAAT/enhancer-binding protein. Nutr Cancer. 60:389–400. 2008. View Article : Google Scholar : PubMed/NCBI

76 

Buchheit CL, Weigel KJ and Schafer ZT: Cancer cell survival during detachment from the ECM: Multiple barriers to tumour progression. Nat Rev Cancer. 14:632–641. 2014. View Article : Google Scholar : PubMed/NCBI

77 

Hawk MA and Schafer ZT: Mechanisms of redox metabolism and cancer cell survival during extracellular matrix detachment. J Biol Chem. 293:7531–7537. 2018. View Article : Google Scholar : PubMed/NCBI

78 

Elia I, Doglioni G and Fendt SM: Metabolic hallmarks of metastasis formation. Trends Cell Biol. 28:673–684. 2018. View Article : Google Scholar : PubMed/NCBI

79 

Wang YN, Zeng ZL, Lu J, Wang Y, Liu ZX, He MM, Zhao Q, Wang ZX, Li T, Lu YX, et al: CPT1A-mediated fatty acid oxidation promotes colorectal cancer cell metastasis by inhibiting anoikis. Oncogene. 37:6025–6040. 2018. View Article : Google Scholar : PubMed/NCBI

80 

Zhong X, He X, Wang Y, Hu Z, Huang H, Zhao S, Wei P and Li D: Warburg effect in colorectal cancer: The emerging roles in tumor microenvironment and therapeutic implications. J Hematol Oncol. 15:1602022. View Article : Google Scholar : PubMed/NCBI

81 

Wang Z, Pang J, Wang L, Dong Q and Jin D: CEBPB regulates the bile acid receptor FXR to accelerate colon cancer progression by modulating aerobic glycolysis. J Clin Lab Anal. 36:e247032022. View Article : Google Scholar : PubMed/NCBI

82 

Schafer ZT, Grassian AR, Song L, Jiang Z, Gerhart-Hines Z, Irie HY, Gao S, Puigserver P and Brugge JS: Antioxidant and oncogene rescue of metabolic defects caused by loss of matrix attachment. Nature. 461:109–113. 2009. View Article : Google Scholar : PubMed/NCBI

83 

Carino A, Marchianò S, Biagioli M, Scarpelli P, Bordoni M, Di Giorgio C, Roselli R, Fiorucci C, Monti MC, Distrutti E, et al: The bile acid activated receptors GPBAR1 and FXR exert antagonistic effects on autophagy. FASEB J. 35:e212712021. View Article : Google Scholar

84 

Seok S, Fu T, Choi SE, Li Y, Zhu R, Kumar S, Sun X, Yoon G, Kang Y, Zhong W, et al: Transcriptional regulation of autophagy by an FXR-CREB axis. Nature. 516:108–111. 2014. View Article : Google Scholar : PubMed/NCBI

85 

Shasha T, Gruijs M and van Egmond M: Mechanisms of colorectal liver metastasis development. Cell Mol Life Sci. 79:6072022. View Article : Google Scholar : PubMed/NCBI

86 

Ma C, Han M, Heinrich B, Fu Q, Zhang Q, Sandhu M, Agdashian D, Terabe M, Berzofsky JA, Fako V, et al: Gut microbiome-mediated bile acid metabolism regulates liver cancer via NKT cells. Science. 360:eaan59312018. View Article : Google Scholar : PubMed/NCBI

87 

Shen Y, Lu C, Song Z, Qiao C, Wang J, Chen J, Zhang C, Zeng X, Ma Z, Chen T, et al: Ursodeoxycholic acid reduces antitumor immunosuppression by inducing CHIP-mediated TGF-β degradation. Nat Commun. 13:34192022. View Article : Google Scholar

88 

Cong J, Liu P, Han Z, Ying W, Li C, Yang Y, Wang S, Yang J, Cao F, Shen J, et al: Bile acids modified by the intestinal microbiota promote colorectal cancer growth by suppressing CD8(+) T cell effector functions. Immunity. 57:876–889.e811. 2024. View Article : Google Scholar

89 

Sun L, Yang N, Liu Z, Ye X, Cheng M, Deng L, Zhang J, Wu J, Shi M and Liao W: Cholestasis-induced phenotypic transformation of neutrophils contributes to immune escape of colorectal cancer liver metastasis. J Biomed Sci. 31:662024. View Article : Google Scholar : PubMed/NCBI

90 

Liu QL, Zhou H, Zhou ZG and Chen HN: Colorectal cancer liver metastasis: genomic evolution and crosstalk with the liver microenvironment. Cancer Metastasis Rev. 42:575–587. 2023. View Article : Google Scholar : PubMed/NCBI

91 

Plundrich D, Chikhladze S, Fichtner-Feigl S, Feuerstein R and Briquez PS: Molecular mechanisms of tumor immunomodulation in the microenvironment of colorectal cancer. Int J Mol Sci. 23:27822022. View Article : Google Scholar : PubMed/NCBI

92 

Pan Y, Yu Y, Wang X and Zhang T: Tumor-associated macrophages in tumor immunity. Front Immunol. 11:5830842020. View Article : Google Scholar : PubMed/NCBI

93 

Zhao S, Mi Y, Guan B, Zheng B, Wei P, Gu Y, Zhang Z, Cai S, Xu Y, Li X, et al: Tumor-derived exosomal miR-934 induces macrophage M2 polarization to promote liver metastasis of colorectal cancer. J Hematol Oncol. 13:1562020. View Article : Google Scholar : PubMed/NCBI

94 

Sun R, Zhang Z, Bao R, Guo X, Gu Y, Yang W, Wei J, Chen X, Tong L, Meng J, et al: Loss of SIRT5 promotes bile acid-induced immunosuppressive microenvironment and hepatocarcinogenesis. J Hepatol. 77:453–466. 2022. View Article : Google Scholar : PubMed/NCBI

95 

Kawamata Y, Fujii R, Hosoya M, Harada M, Yoshida H, Miwa M, Fukusumi S, Habata Y, Itoh T, Shintani Y, et al: A G protein-coupled receptor responsive to bile acids. J Biol Chem. 278:9435–9440. 2003. View Article : Google Scholar : PubMed/NCBI

96 

Zhao L, Zhang H, Liu X, Xue S, Chen D, Zou J and Jiang H: TGR5 deficiency activates antitumor immunity in non-small cell lung cancer via restraining M2 macrophage polarization. Acta Pharm Sin B. 12:787–800. 2022. View Article : Google Scholar : PubMed/NCBI

97 

Rao J, Yang C, Yang S, Lu H, Hu Y, Lu L and Cheng Fand Wang X: Deficiency of TGR5 exacerbates immune-mediated cholestatic hepatic injury by stabilizing the beta-catenin destruction complex. Int Immunol. 32:321–334. 2020. View Article : Google Scholar : PubMed/NCBI

98 

Shao J, Ge T, Tang C, Wang G, Pang L and Chen Z: Synergistic anti-inflammatory effect of gut microbiota and lithocholic acid on liver fibrosis. Inflamm Res. 71:1389–1401. 2022. View Article : Google Scholar : PubMed/NCBI

99 

Cao H, Xu M, Dong W, Deng B, Wang S, Zhang Y, Wang S, Luo S, Wang W, Qi Y, et al: Secondary bile acid-induced dysbiosis promotes intestinal carcinogenesis. Int J Cancer. 140:2545–2556. 2017. View Article : Google Scholar : PubMed/NCBI

100 

Hedrick CC and Malanchi I: Neutrophils in cancer: Heterogeneous and multifaceted. Nat Rev Immunol. 22:173–187. 2022. View Article : Google Scholar

101 

Zheng W, Wu J, Peng Y, Sun J, Cheng P and Huang Q: Tumor-associated neutrophils in colorectal cancer development, progression and immunotherapy. Cancers (Basel). 14:47552022. View Article : Google Scholar : PubMed/NCBI

102 

Lin N, Li J, Yao X, Zhang X, Liu G, Zhang Z and Weng S: Prognostic value of neutrophil-to-lymphocyte ratio in colorectal cancer liver metastasis: A meta-analysis of results from multivariate analysis. Int J Surg. 107:1069592022. View Article : Google Scholar : PubMed/NCBI

103 

O'Brien KM, Allen KM, Rockwell CE, Towery K, Luyendyk JP and Copple BL: IL-17A synergistically enhances bile acid-induced inflammation during obstructive cholestasis. Am J Pathol. 183:1498–1507. 2013. View Article : Google Scholar : PubMed/NCBI

104 

Labiano I, Agirre-Lizaso A, Olaizola P, Echebarria A, Huici-Izagirre M, Olaizola I, Esparza-Baquer A, Sharif O, Hijona E, Milkiewicz P, et al: TREM-2 plays a protective role in cholestasis by acting as a negative regulator of inflammation. J Hepatol. 77:991–1004. 2022. View Article : Google Scholar : PubMed/NCBI

105 

Thibaut MM, Sboarina M, Roumain M, Pötgens SA, Neyrinck AM, Destrée F, Gillard J, Leclercq IA, Dachy G, Demoulin JB, et al: Inflammation-induced cholestasis in cancer cachexia. J Cachexia Sarcopenia Muscle. 12:70–90. 2021. View Article : Google Scholar

106 

Cui C, Lan P and Fu L: The role of myeloid-derived suppressor cells in gastrointestinal cancer. Cancer Commun (Lond). 41:442–471. 2021. View Article : Google Scholar : PubMed/NCBI

107 

Zeng X, Zhou J, Xiong Z, Sun H, Yang W, Mok MTS, Wang J, Li J, Liu M, Tang W, et al: Cell cycle-related kinase reprograms the liver immune microenvironment to promote cancer metastasis. Cell Mol Immunol. 18:1005–1015. 2021. View Article : Google Scholar :

108 

Zhang H, Liu Y, Bian Z, Huang S, Han X, You Z, Wang Q, Qiu D, Miao Q, Peng Y, et al: The critical role of myeloid-derived suppressor cells and FXR activation in immune-mediated liver injury. J Autoimmun. 53:55–66. 2014. View Article : Google Scholar : PubMed/NCBI

109 

Chang S, Kim YH, Kim YJ, Kim YW, Moon S, Lee YY, Jung JS, Kim Y, Jung HE, Kim TJ, et al: Taurodeoxycholate increases the number of myeloid-derived suppressor cells that ameliorate sepsis in mice. Front Immunol. 9:19842018. View Article : Google Scholar : PubMed/NCBI

110 

Alfaro C, Teijeira A, Onate C, Pérez G, Sanmamed MF, Andueza MP, Alignani D, Labiano S, Azpilikueta A, Rodriguez-Paulete A, et al: Tumor-Produced interleukin-8 attracts human myeloid-derived suppressor cells and elicits extrusion of neutrophil extracellular traps (NETs). Clin Cancer Res. 22:3924–3936. 2016. View Article : Google Scholar : PubMed/NCBI

111 

Schalper KA, Carleton M, Zhou M, Chen T, Feng Y, Huang SP, Walsh AM, Baxi V, Pandya D, Baradet T, et al: Elevated serum interleukin-8 is associated with enhanced intratumor neutrophils and reduced clinical benefit of immune-checkpoint inhibitors. Nat Med. 26:688–692. 2020. View Article : Google Scholar : PubMed/NCBI

112 

Gardner A and Ruffell B: Dendritic cells and cancer immunity. Trends Immunol. 37:855–865. 2016. View Article : Google Scholar : PubMed/NCBI

113 

Campbell C, McKenney PT, Konstantinovsky D, Isaeva OI, Schizas M, Verter J, Mai C, Jin WB, Guo CJ, Violante S, et al: Bacterial metabolism of bile acids promotes generation of peripheral regulatory T cells. Nature. 581:475–479. 2020. View Article : Google Scholar : PubMed/NCBI

114 

Hu J, Wang C, Huang X, Yi S, Pan S, Zhang Y, Yuan G, Cao Q, Ye X and Li H: Gut microbiota-mediated secondary bile acids regulate dendritic cells to attenuate autoimmune uveitis through TGR5 signaling. Cell Rep. 36:1097262021. View Article : Google Scholar : PubMed/NCBI

115 

Hu J, Zhang Y, Yi S, Wang C, Huang X, Pan S, Yang J, Yuan G, Tan S and Li H: Lithocholic acid inhibits dendritic cell activation by reducing intracellular glutathione via TGR5 signaling. Int J Biol Sci. 18:4545–4559. 2022. View Article : Google Scholar : PubMed/NCBI

116 

Tugues S, Burkhard SH, Ohs I, Vrohlings M, Nussbaum K, Vom Berg J, Kulig P and Becher B: New insights into IL-12-mediated tumor suppression. Cell Death Differ. 22:237–246. 2015. View Article : Google Scholar :

117 

Ichikawa R, Takayama T, Yoneno K, Kamada N, Kitazume MT, Higuchi H, Matsuoka K, Watanabe M, Itoh H, Kanai T, et al: Bile acids induce monocyte differentiation toward interleukin-12 hypo-producing dendritic cells via a TGR5-dependent pathway. Immunology. 136:153–162. 2012. View Article : Google Scholar : PubMed/NCBI

118 

Willart MA, van Nimwegen M, Grefhorst A, Hammad H, Moons L, Hoogsteden HC, Lambrecht BN and Kleinjan A: Ursodeoxycholic acid suppresses eosinophilic airway inflammation by inhibiting the function of dendritic cells through the nuclear farnesoid X receptor. Allergy. 67:1501–1510. 2012. View Article : Google Scholar : PubMed/NCBI

119 

Kennedy R and Celis E: Multiple roles for CD4+ T cells in anti-tumor immune responses. Immunol Rev. 222:129–144. 2008. View Article : Google Scholar : PubMed/NCBI

120 

Laheurte C, Dosset M, Vernerey D, Boullerot L, Gaugler B, Gravelin E, Kaulek V, Jacquin M, Cuche L, Eberst G, et al: Distinct prognostic value of circulating anti-telomerase CD4(+) Th1 immunity and exhausted PD-1(+)/TIM-3(+) T cells in lung cancer. Br J Cancer. 121:405–416. 2019. View Article : Google Scholar : PubMed/NCBI

121 

Ho TTB, Nasti A, Seki A, Komura T, Inui H, Kozaka T, Kitamura Y, Shiba K, Yamashita T, Yamashita T, et al: Combination of gemcitabine and anti-PD-1 antibody enhances the anticancer effect of M1 macrophages and the Th1 response in a murine model of pancreatic cancer liver metastasis. J Immunother Cancer. 8:e0013672020. View Article : Google Scholar : PubMed/NCBI

122 

De M, Ghosh S, Asad M, Banerjee I and Ali N: Combining doxorubicin with stearylamine-bearing liposomes elicits Th1 cytokine responses and cures metastasis in a mouse model. Cancer Immunol Immunother. 69:1725–1735. 2020. View Article : Google Scholar : PubMed/NCBI

123 

Pols TWH, Puchner T, Korkmaz HI, Vos M, Soeters MR and de Vries CJM: Lithocholic acid controls adaptive immune responses by inhibition of Th1 activation through the vitamin D receptor. PLoS One. 12:e01767152017. View Article : Google Scholar : PubMed/NCBI

124 

Tosolini M, Kirilovsky A, Mlecnik B, Fredriksen T, Mauger S, Bindea G, Berger A, Bruneval P, Fridman WH, Pagès F and Galon J: Clinical impact of different classes of infiltrating T cytotoxic and helper cells (Th1, th2, treg, th17) in patients with colorectal cancer. Cancer Res. 71:1263–1271. 2011. View Article : Google Scholar : PubMed/NCBI

125 

Liu X, Wang X, Yang Q, Luo L, Liu Z, Ren X, Lei K, Li S, Xie Z, Zheng G, et al: Th17 cells secrete TWEAK to trigger epithelial-mesenchymal transition and promote colorectal cancer liver metastasis. Cancer Res. 84:1352–1371. 2024. View Article : Google Scholar : PubMed/NCBI

126 

Hang S, Paik D, Yao L, Kim E, Trinath J, Lu J, Ha S, Nelson BN, Kelly SP, Wu L, et al: Bile acid metabolites control T(H)17 and T(reg) cell differentiation. Nature. 576:143–148. 2019. View Article : Google Scholar : PubMed/NCBI

127 

Paik D, Yao L, Zhang Y, Bae S, D'Agostino GD, Zhang M, Kim E, Franzosa EA, Avila-Pacheco J, Bisanz JE, et al: Human gut bacteria produce Τ(Η)17-modulating bile acid metabolites. Nature. 603:907–912. 2022. View Article : Google Scholar : PubMed/NCBI

128 

Xiao R, Lei K, Kuok H, Deng W, Zhuang Y, Tang Y, Guo Z, Qin H, Bai LP and Li T: Synthesis and identification of lithocholic acid 3-sulfate as RORγt ligand to inhibit Th17 cell differentiation. J Leukoc Biol. 112:835–843. 2022. View Article : Google Scholar : PubMed/NCBI

129 

Chung AS, Wu X, Zhuang G, Ngu H, Kasman I, Zhang J, Vernes JM, Jiang Z, Meng YG, Peale FV, et al: An interleukin-17-mediated paracrine network promotes tumor resistance to anti-angiogenic therapy. Nat Med. 19:1114–1123. 2013. View Article : Google Scholar : PubMed/NCBI

130 

Downs-Canner S, Berkey S, Delgoffe GM, Edwards RP, Curiel T, Odunsi K, Bartlett DL and Obermajer N: Suppressive IL-17A(+)Foxp3(+) and ex-Th17 IL-17A(neg)Foxp3(+) T(reg) cells are a source of tumour-associated T(reg) cells. Nat Commun. 8:146492017. View Article : Google Scholar : PubMed/NCBI

131 

Gopalakrishnan V, Spencer CN, Nezi L, Reuben A, Andrews MC, Karpinets TV, Prieto PA, Vicente D, Hoffman K, Wei SC, et al: Gut microbiome modulates response to anti-PD-1 immunotherapy in melanoma patients. Science. 359:97–103. 2018. View Article : Google Scholar

132 

Hurtado CG, Wan F, Housseau F and Sears CL: Roles for interleukin 17 and adaptive immunity in pathogenesis of colorectal cancer. Gastroenterology. 155:1706–1715. 2018. View Article : Google Scholar : PubMed/NCBI

133 

Shiri AM, Zhang T, Bedke T, Zazara DE, Zhao L, Lücke J, Sabihi M, Fazio A, Zhang S, Tauriello DVF, et al: IL-10 dampens antitumor immunity and promotes liver metastasis via PD-L1 induction. J Hepatol. 80:634–644. 2024. View Article : Google Scholar : PubMed/NCBI

134 

Ward-Hartstonge KA, McCall JL, McCulloch TR, Kamps AK, Girardin A, Cretney E, Munro FM and Kemp RA: Inclusion of BLIMP-1(+) effector regulatory T cells improves the Immunoscore in a cohort of New Zealand colorectal cancer patients: A pilot study. Cancer Immunol Immunother. 66:515–522. 2017. View Article : Google Scholar : PubMed/NCBI

135 

Ladoire S, Martin F and Ghiringhelli F: Prognostic role of FOXP3+ regulatory T cells infiltrating human carcinomas: the paradox of colorectal cancer. Cancer Immunol Immunother. 60:909–918. 2011. View Article : Google Scholar : PubMed/NCBI

136 

Song X, Sun X, Oh SF, Wu M, Zhang Y, Zheng W, Geva-Zatorsky N, Jupp R, Mathis D, Benoist C and Kasper DL: Microbial bile acid metabolites modulate gut RORγ(+) regulatory T cell homeostasis. Nature. 577:410–415. 2020. View Article : Google Scholar

137 

Pagès F, Berger A, Camus M, Sanchez-Cabo F, Costes A, Molidor R, Mlecnik B, Kirilovsky A, Nilsson M, Damotte D, et al: Effector memory T cells, early metastasis, and survival in colorectal cancer. N Engl J Med. 353:2654–2666. 2005. View Article : Google Scholar : PubMed/NCBI

138 

Licata LA, Nguyen CT, Burga RA, Falanga V, Espat NJ, Ayala A, Thorn M, Junghans RP and Katz SC: Biliary obstruction results in PD-1-dependent liver T cell dysfunction and acute inflammation mediated by Th17 cells and neutrophils. J Leukoc Biol. 94:813–823. 2013. View Article : Google Scholar : PubMed/NCBI

139 

Burks J, Olkhanud PB and Berzofsky JA: The role of NKT cells in gastrointestinal cancers. Oncoimmunology. 11:20096662021. View Article : Google Scholar

140 

Ji G, Ma L, Yao H, Ma S, Si X, Wang Y, Bao X, Ma L, Chen F, Ma C, et al: Precise delivery of obeticholic acid via nanoapproach for triggering natural killer T cell-mediated liver cancer immunotherapy. Acta Pharm Sin B. 10:2171–2182. 2020. View Article : Google Scholar : PubMed/NCBI

141 

Cheng P, Wu J, Zong G, Wang F, Deng R, Tao R, Qian C, Shan Y, Wang A, Zhao Y, et al: Capsaicin shapes gut microbiota and pre-metastatic niche to facilitate cancer metastasis to liver. Pharmacol Res. 188:1066432023. View Article : Google Scholar : PubMed/NCBI

142 

Huang WH, Zhou MW, Zhu YF, Xiang JB, Li ZY, Wang ZH, Zhou YM, Yang Y, Chen ZY and Gu XD: The role of hepatic stellate cells in promoting liver metastasis of colorectal carcinoma. Onco Targets Ther. 12:7573–7580. 2019. View Article : Google Scholar : PubMed/NCBI

143 

Eveno C, Hainaud P, Rampanou A, Bonnin P, Bakhouche S, Dupuy E, Contreres JO and Pocard M: Proof of prometastatic niche induction by hepatic stellate cells. J Surg Res. 194:496–504. 2015. View Article : Google Scholar

144 

Liu B, Wu T, Lin B, Liu X, Liu Y, Song G, Fan C and Ouyang G: Periostin-TGF-β feedforward loop contributes to tumour-stroma crosstalk in liver metastatic outgrowth of colorectal cancer. Br J Cancer. 130:358–368. 2024. View Article : Google Scholar

145 

Qi M, Fan S, Huang M, Pan J, Li Y, Miao Q, Lyu W, Li X, Deng L, Qiu S, et al: Targeting FAPalpha-expressing hepatic stellate cells overcomes resistance to antiangiogenics in colorectal cancer liver metastasis models. J Clin Invest. 132:e1573992022. View Article : Google Scholar

146 

Meadows V, Kennedy L, Ekser B, Kyritsi K, Kundu D, Zhou T, Chen L, Pham L, Wu N, Demieville J, et al: Mast cells regulate ductular reaction and intestinal inflammation in cholestasis through farnesoid X receptor signaling. Hepatology. 74:2684–2698. 2021. View Article : Google Scholar : PubMed/NCBI

147 

Yang J, Tang X, Liang Z, Chen M and Sun L: Taurocholic acid promotes hepatic stellate cell activation via S1PR2/p38 MAPK/YAP signaling under cholestatic conditions. Clin Mol Hepatol. 29:465–481. 2023. View Article : Google Scholar : PubMed/NCBI

148 

Saga K, Iwashita Y, Hidano S, Aso Y, Isaka K, Kido Y, Tada K, Takayama H, Masuda T, Hirashita T, et al: Secondary unconjugated bile acids induce hepatic stellate cell activation. Int J Mol Sci. 19:30432018. View Article : Google Scholar : PubMed/NCBI

149 

Nguyen PT, Kanno K, Pham QT, Kikuchi Y, Kakimoto M, Kobayashi T, Otani Y, Kishikawa N, Miyauchi M, Arihiro K, et al: Senescent hepatic stellate cells caused by deoxycholic acid modulates malignant behavior of hepatocellular carcinoma. J Cancer Res Clin Oncol. 146:3255–3268. 2020. View Article : Google Scholar : PubMed/NCBI

150 

Theivanthiran B, Yarla N, Haykal T, Nguyen YV, Cao L, Ferreira M, Holtzhausen A, Al-Rohil R, Salama AKS, Beasley GM, et al: Tumor-intrinsic NLRP3-HSP70-TLR4 axis drives premetastatic niche development and hyperprogression during anti-PD-1 immunotherapy. Sci Transl Med. 14:eabq70192022. View Article : Google Scholar : PubMed/NCBI

151 

Gong Z, Zhou J, Zhao S, Tian C, Wang P, Xu C, Chen Y, Cai W and Wu J: Chenodeoxycholic acid activates NLRP3 inflammasome and contributes to cholestatic liver fibrosis. Oncotarget. 7:83951–83963. 2016. View Article : Google Scholar : PubMed/NCBI

152 

Hao H, Cao L, Jiang C, Che Y, Zhang S, Takahashi S, Wang G and Gonzalez FJ: Farnesoid X receptor regulation of the NLRP3 inflammasome underlies cholestasis-associated sepsis. Cell Metab. 25:856–867.e5. 2017. View Article : Google Scholar : PubMed/NCBI

153 

Zhao S, Gong Z, Zhou J, Tian C, Gao Y, Xu C, Chen Y, Cai W and Wu J: Deoxycholic acid triggers NLRP3 inflammasome activation and aggravates DSS-Induced colitis in mice. Front Immunol. 7:5362016. View Article : Google Scholar : PubMed/NCBI

154 

Holtmann TM, Inzaugarat ME, Knorr J, Geisler L, Schulz M, Bieghs V, Frissen M, Feldstein AE, Tacke F, Trautwein C and Wree A: Bile acids activate NLRP3 inflammasome, promoting murine liver inflammation or fibrosis in a cell type-specific manner. Cells. 10:26182021. View Article : Google Scholar : PubMed/NCBI

155 

Guo C, Xie S, Chi Z, Zhang J, Liu Y, Zhang L, Zheng M, Zhang X, Xia D, Ke Y, et al: Bile acids control inflammation and metabolic disorder through inhibition of NLRP3 inflammasome. Immunity. 45:9442016. View Article : Google Scholar : PubMed/NCBI

156 

Sun L, Cai J and Gonzalez FJ: The role of farnesoid X receptor in metabolic diseases, and gastrointestinal and liver cancer. Nat Rev Gastroenterol Hepatol. 18:335–347. 2021. View Article : Google Scholar : PubMed/NCBI

157 

Chapman RW and Lynch KD: Obeticholic acid-a new therapy in PBC and NASH. Br Med Bull. 133:95–104. 2020. View Article : Google Scholar : PubMed/NCBI

158 

Zhang Y, Jackson JP, StClaire RL III, Freeman K, Brouwer KR and Edwards JE: Obeticholic acid, a selective farnesoid X receptor agonist, regulates bile acid homeostasis in sandwich-cultured human hepatocytes. Pharmacol Res Perspect. 5:e003292017. View Article : Google Scholar : PubMed/NCBI

159 

Lu L, Jiang YX, Liu XX, Jin JM, Gu WJ, Luan X, Guan YY and Zhang LJ: FXR agonist GW4064 enhances anti-PD-L1 immunotherapy in colorectal cancer. Oncoimmunology. 12:22170242023. View Article : Google Scholar : PubMed/NCBI

160 

Zhang T, Feng S, Li J, Wu Z, Deng Q, Yang W, Li J and Pan G: Farnesoid X receptor (FXR) agonists induce hepatocellular apoptosis and impair hepatic functions via FXR/SHP pathway. Arch Toxicol. 96:1829–1843. 2022. View Article : Google Scholar : PubMed/NCBI

161 

Yin Y, Wang M, Gu W and Chen L: Intestine-specific FXR agonists as potential therapeutic agents for colorectal cancer. Biochem Pharmacol. 186:1144302021. View Article : Google Scholar : PubMed/NCBI

162 

Ji G, Si X, Dong S, Xu Y, Li M, Yang B, Tang Z, Fang X, Huang L, Song W and Chen X: Manipulating liver bile acid signaling by nanodelivery of bile acid receptor modulators for liver cancer immunotherapy. Nano Lett. 21:6781–6791. 2021. View Article : Google Scholar : PubMed/NCBI

163 

Zhang Y, Jiang R, Zheng X, Lei S, Huang F, Xie G, Kwee S, Yu H, Farrar C, Sun B, et al: Ursodeoxycholic acid accelerates bile acid enterohepatic circulation. Br J Pharmacol. 176:2848–2863. 2019. View Article : Google Scholar : PubMed/NCBI

164 

Pearson T, Caporaso JG, Yellowhair M, Bokulich NA, Padi M, Roe DJ, Wertheim BC, Linhart M, Martinez JA, Bilagody C, et al: Effects of ursodeoxycholic acid on the gut microbiome and colorectal adenoma development. Cancer Med. 8:617–628. 2019. View Article : Google Scholar : PubMed/NCBI

165 

He Q, Wu J, Ke J, Zhang Q, Zeng W, Luo Z, Gong J, Chen Y, He Z and Lan P: Therapeutic role of ursodeoxycholic acid in colitis-associated cancer via gut microbiota modulation. Mol Ther. 31:585–598. 2023. View Article : Google Scholar : PubMed/NCBI

166 

Zhang H, Xu H, Zhang C, Tang Q and Bi F: Ursodeoxycholic acid suppresses the malignant progression of colorectal cancer through TGR5-YAP axis. Cell Death Discov. 7:2072021. View Article : Google Scholar : PubMed/NCBI

167 

Shah SA, Volkov Y, Arfin Q, Abdel-Latif MM and Kelleher D: Ursodeoxycholic acid inhibits interleukin 1 beta [corrected] and deoxycholic acid-induced activation of NF-kappaB and AP-1 in human colon cancer cells. Int J Cancer. 118:532–539. 2006. View Article : Google Scholar

168 

Zheng Z, Hou X, Bian Z, Jia W and Zhao L: Gut microbiota and colorectal cancer metastasis. Cancer Lett. 555:2160392023. View Article : Google Scholar

169 

Wang X, Zhu B, Hua Y, Sun R, Tan X, Chang X, Tang D and Gu J: Astragalus mongholicus Bunge and Curcuma aromatica Salisb. modulate gut microbiome and bile acid metabolism to inhibit colon cancer progression. Front Microbiol. 15:13956342024. View Article : Google Scholar : PubMed/NCBI

170 

Liu T, Song X, Khan S, Li Y, Guo Z, Li C, Wang S, Dong W, Liu W, Wang B and Cao H: The gut microbiota at the intersection of bile acids and intestinal carcinogenesis: An old story, yet mesmerizing. Int J Cancer. 146:1780–1790. 2020. View Article : Google Scholar

171 

Deng J, Yuan W, Tan Q, Wei X and Ma J: Non-absorbable antibiotic treatment inhibits colorectal cancer liver metastasis by modulating deoxycholic acid metabolism by intestinal microbes. J Cancer. 13:764–774. 2022. View Article : Google Scholar : PubMed/NCBI

172 

Fidelle M, Rauber C, Alves Costa Silva C, Tian AL, Lahmar I, de La Varende AM, Zhao L, Thelemaque C, Lebhar I, Messaoudene M, et al: A microbiota-modulated checkpoint directs immunosuppressive intestinal T cells into cancers. Science. 380:eabo22962023. View Article : Google Scholar : PubMed/NCBI

173 

Kaźmierczak-Siedlecka K, Daca A, Fic M, van de Wetering T, Folwarski M and Makarewicz W: Therapeutic methods of gut microbiota modification in colorectal cancer management-fecal microbiota transplantation, prebiotics, probiotics, and synbiotics. Gut Microbes. 11:1518–1530. 2020. View Article : Google Scholar

174 

Routy B, Le Chatelier E, Derosa L, Duong CPM, Alou MT, Daillère R, Fluckiger A, Messaoudene M, Rauber C, Roberti MP, et al: Gut microbiome influences efficacy of PD-1-based immunotherapy against epithelial tumors. Science. 359:91–97. 2018. View Article : Google Scholar

175 

Lan X, Ma J, Huang Z, Xu Y and Hu Y: Akkermansia muciniphila might improve anti-PD-1 therapy against HCC by changing host bile acid metabolism. J Gene Med. 26:e36392024. View Article : Google Scholar

176 

Chen D, Wu J, Jin D, Wang B and Cao H: Fecal microbiota transplantation in cancer management: Current status and perspectives. Int J Cancer. 145:2021–2031. 2019. View Article : Google Scholar :

177 

Fuchs CD and Trauner M: Role of bile acids and their receptors in gastrointestinal and hepatic pathophysiology. Nat Rev Gastroenterol Hepatol. 19:432–450. 2022. View Article : Google Scholar : PubMed/NCBI

178 

Kastelijn JB, van der Loos MA, Welsing PM, Dhondt E, Koopman M, Moons LM and Vleggaar FP: Clinical outcomes of biliary drainage of malignant biliary obstruction due to colorectal cancer metastases: A systematic review. Eur J Intern Med. 88:81–88. 2021. View Article : Google Scholar : PubMed/NCBI

179 

Sinha SR, Haileselassie Y, Nguyen LP, Tropini C, Wang M, Becker LS, Sim D, Jarr K, Spear ET, Singh G, et al: Dysbiosis-induced secondary bile acid deficiency promotes intestinal inflammation. Cell Host Microbe. 27:659–670 e5. 2020. View Article : Google Scholar : PubMed/NCBI

180 

Gadaleta RM, Garcia-Irigoyen O and Moschetta A: Bile acids and colon cancer: Is FXR the solution of the conundrum? Mol Aspects Med. 56:66–74. 2017. View Article : Google Scholar : PubMed/NCBI

Related Articles

  • Abstract
  • View
  • Download
  • Twitter
Copy and paste a formatted citation
Spandidos Publications style
Li Z, Deng L, Cheng M, Ye X, Yang N, Fan Z and Sun L: Emerging role of bile acids in colorectal liver metastasis: From molecular mechanism to clinical significance (Review). Int J Oncol 66: 24, 2025.
APA
Li, Z., Deng, L., Cheng, M., Ye, X., Yang, N., Fan, Z., & Sun, L. (2025). Emerging role of bile acids in colorectal liver metastasis: From molecular mechanism to clinical significance (Review). International Journal of Oncology, 66, 24. https://doi.org/10.3892/ijo.2025.5730
MLA
Li, Z., Deng, L., Cheng, M., Ye, X., Yang, N., Fan, Z., Sun, L."Emerging role of bile acids in colorectal liver metastasis: From molecular mechanism to clinical significance (Review)". International Journal of Oncology 66.3 (2025): 24.
Chicago
Li, Z., Deng, L., Cheng, M., Ye, X., Yang, N., Fan, Z., Sun, L."Emerging role of bile acids in colorectal liver metastasis: From molecular mechanism to clinical significance (Review)". International Journal of Oncology 66, no. 3 (2025): 24. https://doi.org/10.3892/ijo.2025.5730
Copy and paste a formatted citation
x
Spandidos Publications style
Li Z, Deng L, Cheng M, Ye X, Yang N, Fan Z and Sun L: Emerging role of bile acids in colorectal liver metastasis: From molecular mechanism to clinical significance (Review). Int J Oncol 66: 24, 2025.
APA
Li, Z., Deng, L., Cheng, M., Ye, X., Yang, N., Fan, Z., & Sun, L. (2025). Emerging role of bile acids in colorectal liver metastasis: From molecular mechanism to clinical significance (Review). International Journal of Oncology, 66, 24. https://doi.org/10.3892/ijo.2025.5730
MLA
Li, Z., Deng, L., Cheng, M., Ye, X., Yang, N., Fan, Z., Sun, L."Emerging role of bile acids in colorectal liver metastasis: From molecular mechanism to clinical significance (Review)". International Journal of Oncology 66.3 (2025): 24.
Chicago
Li, Z., Deng, L., Cheng, M., Ye, X., Yang, N., Fan, Z., Sun, L."Emerging role of bile acids in colorectal liver metastasis: From molecular mechanism to clinical significance (Review)". International Journal of Oncology 66, no. 3 (2025): 24. https://doi.org/10.3892/ijo.2025.5730
Follow us
  • Twitter
  • LinkedIn
  • Facebook
About
  • Spandidos Publications
  • Careers
  • Cookie Policy
  • Privacy Policy
How can we help?
  • Help
  • Live Chat
  • Contact
  • Email to our Support Team