Spandidos Publications Logo
  • About
    • About Spandidos
    • Aims and Scopes
    • Abstracting and Indexing
    • Editorial Policies
    • Reprints and Permissions
    • Job Opportunities
    • Terms and Conditions
    • Contact
  • Journals
    • All Journals
    • Oncology Letters
      • Oncology Letters
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Oncology
      • International Journal of Oncology
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Molecular and Clinical Oncology
      • Molecular and Clinical Oncology
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Experimental and Therapeutic Medicine
      • Experimental and Therapeutic Medicine
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Molecular Medicine
      • International Journal of Molecular Medicine
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Biomedical Reports
      • Biomedical Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Oncology Reports
      • Oncology Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Molecular Medicine Reports
      • Molecular Medicine Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • World Academy of Sciences Journal
      • World Academy of Sciences Journal
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Functional Nutrition
      • International Journal of Functional Nutrition
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Epigenetics
      • International Journal of Epigenetics
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Medicine International
      • Medicine International
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
  • Articles
  • Information
    • Information for Authors
    • Information for Reviewers
    • Information for Librarians
    • Information for Advertisers
    • Conferences
  • Language Editing
Spandidos Publications Logo
  • About
    • About Spandidos
    • Aims and Scopes
    • Abstracting and Indexing
    • Editorial Policies
    • Reprints and Permissions
    • Job Opportunities
    • Terms and Conditions
    • Contact
  • Journals
    • All Journals
    • Biomedical Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Experimental and Therapeutic Medicine
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Epigenetics
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Functional Nutrition
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Molecular Medicine
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Oncology
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Medicine International
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Molecular and Clinical Oncology
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Molecular Medicine Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Oncology Letters
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Oncology Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • World Academy of Sciences Journal
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
  • Articles
  • Information
    • For Authors
    • For Reviewers
    • For Librarians
    • For Advertisers
    • Conferences
  • Language Editing
Login Register Submit
  • This site uses cookies
  • You can change your cookie settings at any time by following the instructions in our Cookie Policy. To find out more, you may read our Privacy Policy.

    I agree
Search articles by DOI, keyword, author or affiliation
Search
Advanced Search
presentation
International Journal of Oncology
Join Editorial Board Propose a Special Issue
Print ISSN: 1019-6439 Online ISSN: 1791-2423
Journal Cover
April-2025 Volume 66 Issue 4

Full Size Image

Cover Legend PDF

Sign up for eToc alerts
Recommend to Library

Journals

International Journal of Molecular Medicine

International Journal of Molecular Medicine

International Journal of Molecular Medicine is an international journal devoted to molecular mechanisms of human disease.

International Journal of Oncology

International Journal of Oncology

International Journal of Oncology is an international journal devoted to oncology research and cancer treatment.

Molecular Medicine Reports

Molecular Medicine Reports

Covers molecular medicine topics such as pharmacology, pathology, genetics, neuroscience, infectious diseases, molecular cardiology, and molecular surgery.

Oncology Reports

Oncology Reports

Oncology Reports is an international journal devoted to fundamental and applied research in Oncology.

Experimental and Therapeutic Medicine

Experimental and Therapeutic Medicine

Experimental and Therapeutic Medicine is an international journal devoted to laboratory and clinical medicine.

Oncology Letters

Oncology Letters

Oncology Letters is an international journal devoted to Experimental and Clinical Oncology.

Biomedical Reports

Biomedical Reports

Explores a wide range of biological and medical fields, including pharmacology, genetics, microbiology, neuroscience, and molecular cardiology.

Molecular and Clinical Oncology

Molecular and Clinical Oncology

International journal addressing all aspects of oncology research, from tumorigenesis and oncogenes to chemotherapy and metastasis.

World Academy of Sciences Journal

World Academy of Sciences Journal

Multidisciplinary open-access journal spanning biochemistry, genetics, neuroscience, environmental health, and synthetic biology.

International Journal of Functional Nutrition

International Journal of Functional Nutrition

Open-access journal combining biochemistry, pharmacology, immunology, and genetics to advance health through functional nutrition.

International Journal of Epigenetics

International Journal of Epigenetics

Publishes open-access research on using epigenetics to advance understanding and treatment of human disease.

Medicine International

Medicine International

An International Open Access Journal Devoted to General Medicine.

Journal Cover
April-2025 Volume 66 Issue 4

Full Size Image

Cover Legend PDF

Sign up for eToc alerts
Recommend to Library

  • Article
  • Citations
    • Cite This Article
    • Download Citation
    • Create Citation Alert
    • Remove Citation Alert
    • Cited By
  • Similar Articles
    • Related Articles (in Spandidos Publications)
    • Similar Articles (Google Scholar)
    • Similar Articles (PubMed)
  • Purchase PDF
Review

Current developments of pharmacotherapy targeting heme oxygenase 1 in cancer (Review)

  • Authors:
    • Xiaohu Ouyang
    • Jingbo Wang
    • Xiaoyuan Qiu
    • Desheng Hu
    • Jing Cui
  • View Affiliations / Copyright

    Affiliations: Department of Integrated Traditional Chinese and Western Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430022, P.R. China, Health Management Center, Hubei Provincial Hospital of Integrated Chinese & Western Medicine, Wuhan, Hubei 430015, P.R. China
  • Article Number: 26
    |
    Published online on: February 18, 2025
       https://doi.org/10.3892/ijo.2025.5732
  • Expand metrics +
Metrics: Total Views: 0 (Spandidos Publications: | PMC Statistics: )
Metrics: Total PDF Downloads: 0 (Spandidos Publications: | PMC Statistics: )
Cited By (CrossRef): 0 citations Loading Articles...

This article is mentioned in:



Abstract

Malignant tumors are non-communicable diseases that impact human health and quality of life. Identifying and targeting the underlying genetic drivers is a challenge. Heme oxygenase-1 (HO-1), a stress-inducible enzyme also known as heat shock protein 32, plays a crucial role in maintaining cellular homeostasis. It mitigates oxidative stress-induced damage and exhibits anti-apoptotic properties. HO-1 is expressed in a wide range of malignancies and is associated with tumor growth. However, the precise role of HO-1 in tumor development remains controversial. Drugs, both naturally occurring and chemically synthesized, can inhibit tumor growth by modulating HO-1 expression in cancer cells. The present review aimed to discuss biological functions of HO-1 pharmacological therapies targeting HO-1.
View Figures

Figure 1

Figure 2

Figure 3

View References

1 

Bray F, Laversanne M, Sung H, Ferlay J, Siegel RL, Soerjomataram I and Jemal A: Global cancer statistics 2022: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J Clin. 74:229–263. 2024. View Article : Google Scholar : PubMed/NCBI

2 

Tenhunen R, Marver HS and Schmid R: Microsomal heme oxygenase. Characterization of the enzyme. J Biol Chem. 244:6388–6394. 1969. View Article : Google Scholar : PubMed/NCBI

3 

Keyse SM and Tyrrell RM: Heme oxygenase is the major 32-kDa stress protein induced in human skin fibroblasts by UVA radiation, hydrogen peroxide, and sodium arsenite. Proc Natl Acad Sci USA. 86:99–103. 1989. View Article : Google Scholar : PubMed/NCBI

4 

Maines MD, Trakshel GM and Kutty RK: Characterization of two constitutive forms of rat liver microsomal heme oxygenase. Only one molecular species of the enzyme is inducible. J Biol Chem. 261:411–419. 1986. View Article : Google Scholar : PubMed/NCBI

5 

Shibahara S, Müller R, Taguchi H and Yoshida T: Cloning and expression of cDNA for rat heme oxygenase. Proc Natl Acad Sci USA. 82:7865–7869. 1985. View Article : Google Scholar : PubMed/NCBI

6 

Kim HP, Wang X, Galbiati F, Ryter SW and Choi AM: Caveolae compartmentalization of heme oxygenase-1 in endothelial cells. FASEB J. 18:1080–1089. 2004. View Article : Google Scholar : PubMed/NCBI

7 

Bindu S, Pal C, Dey S, Goyal M, Alam A, Iqbal MS, Dutta S, Sarkar S, Kumar R, Maity P and Bandyopadhyay U: Translocation of heme oxygenase-1 to mitochondria is a novel cytoprotective mechanism against non-steroidal anti-inflammatory drug-induced mitochondrial oxidative stress, apoptosis, and gastric mucosal injury. J Biol Chem. 286:39387–39402. 2011. View Article : Google Scholar : PubMed/NCBI

8 

Lin Q, Weis S, Yang G, Weng YH, Helston R, Rish K, Smith A, Bordner J, Polte T, Gaunitz F and Dennery PA: Heme oxygenase-1 protein localizes to the nucleus and activates transcription factors important in oxidative stress. J Biol Chem. 282:20621–20633. 2007. View Article : Google Scholar : PubMed/NCBI

9 

Tenhunen R, Marver HS and Schmid R: The enzymatic conversion of heme to bilirubin by microsomal heme oxygenase. Proc Natl Acad Sci USA. 61:748–755. 1967. View Article : Google Scholar

10 

Jozkowicz A, Huk I, Nigisch A, Weigel G, Weidinger F and Dulak J: Effect of prostaglandin-J(2) on VEGF synthesis depends on the induction of heme oxygenase-1. Antioxid Redox Signal. 4:577–585. 2002. View Article : Google Scholar : PubMed/NCBI

11 

Li Volti G, Tibullo D, Vanella L, Giallongo C, Di Raimondo F, Forte S, Di Rosa M, Signorelli SS and Barbagallo I: The heme oxygenase system in hematological malignancies. Antioxid Redox Signal. 27:363–377. 2017. View Article : Google Scholar : PubMed/NCBI

12 

Acharya R, Deb PK and attanayak SP: An azomethine derivative, 1-(4-nitrophenyl)-N-phenylmethanimine (BCS2) ameliorated 7,12-dimethylbenz(a)anthracene-induced mammary carcinoma through Nrf2-keap1-HO-1 pathway. Curr Med Chem. Jan 6–2025.(Epub ahead of print). View Article : Google Scholar

13 

Sadiq A, Chen P and Fert-Bober J: Silencing PADI-2 induces antitumor effects by downregulating NF-κB, Nrf2/HO-1 and AKT1 in A549 lung cancer cells. Int Immunopharmacol. 146:1138302025. View Article : Google Scholar : PubMed/NCBI

14 

Becker JC, Fukui H, Imai Y, Sekikawa A, Kimura T, Yamagishi H, Yoshitake N, Pohle T, Domschke W and Fujimori T: Colonic expression of heme oxygenase-1 is associated with a better long-term survival in patients with colorectal cancer. Scand J Gastroenterol. 42:852–858. 2007. View Article : Google Scholar : PubMed/NCBI

15 

Goswami B, Rajappa M, Sharma M and Sharma A: Inflammation: its role and interplay in the development of cancer, with special focus on gynecological malignancies. Int J Gynecol Cancer. 18:591–599. 2008. View Article : Google Scholar : PubMed/NCBI

16 

Wang Y, Chen M, Yu H, Yuan G, Luo L, Xu X, Xu Y, Sui X, Leung EL and Wu Q: The role and mechanisms of action of natural compounds in the prevention and treatment of cancer and cancer metastasis. Front Biosci (Landmark Ed). 27:1922022. View Article : Google Scholar : PubMed/NCBI

17 

Wei Z, Chen J, Zuo F, Guo J, Sun X, Liu D and Liu C: Traditional Chinese medicine has great potential as candidate drugs for lung cancer: A review. J Ethnopharmacol. 300:1157482023. View Article : Google Scholar : PubMed/NCBI

18 

Xu Y, Cai Q, Zhao C, Zhang W, Xu X, Lin H, Lin Y, Chen D, Lin S, Jia P, et al: Gegen qinlian decoction attenuates colitis-associated colorectal cancer via suppressing TLR4 signaling pathway based on network pharmacology and in vivo/in vitro experimental validation. Pharmaceuticals (Basel). 18:122024. View Article : Google Scholar : PubMed/NCBI

19 

Zhang T, Yuan J, Ju X, Zhou J, Zhai X, Chu C, Tan M, Ju G, Gu J and Xu D: Modified shenqi dihuang decoction inhibits prostate cancer metastasis by disrupting TCA cycle energy metabolism via NF-kB/p65-mediated OGDH regulation. Phytomedicine. 138:1564052025.(Epub ahead of print). View Article : Google Scholar : PubMed/NCBI

20 

Wang W, Lin F, Shi S, Yu Y, Lin M, Lian W, Chen B and Qi X: Investigating the role of quercetin, an active ingredient in bazhen decoction, in targeting CXCL8 to inhibit macrophage M2 polarization and reshape the immunological microenvironment of colorectal cancer. Chem Biol Drug Des. 105:e700472025. View Article : Google Scholar : PubMed/NCBI

21 

Singh M, Sharma P, Singh PK, Singh TG and Saini B: Medicinal potential of heterocyclic compounds from diverse natural sources for the management of cancer. Mini Rev Med Chem. 20:942–957. 2020. View Article : Google Scholar : PubMed/NCBI

22 

Morse D and Choi AMK: Heme oxygenase-1: From bench to bedside. Am J Respir Crit Care Med. 172:660–670. 2005. View Article : Google Scholar : PubMed/NCBI

23 

Detsika MG, Theochari E, Palamaris K, Gakiopoulou H and Lianos EA: Effect of heme oxygenase-1 depletion on complement regulatory proteins expression in the rat. Antioxidants (Basel). 12:612022. View Article : Google Scholar : PubMed/NCBI

24 

Onyiah JC, Sheikh SZ, Maharshak N, Otterbein LE and Plevy SE: Heme oxygenase-1 and carbon monoxide regulate intestinal homeostasis and mucosal immune responses to the enteric microbiota. Gut Microbes. 5:220–224. 2014. View Article : Google Scholar : PubMed/NCBI

25 

Waza AA, Hamid Z, Ali S, Bhat SA and Bhat MA: A review on heme oxygenase-1 induction: Is it a necessary evil. Inflamm Res. 67:579–588. 2018. View Article : Google Scholar : PubMed/NCBI

26 

Kutty RK, Nagineni CN, Kutty G, Hooks JJ, Chader GJ and Wiggert B: Increased expression of heme oxygenase-1 in human retinal pigment epithelial cells by transforming growth factor-beta. J Cell Physiol. 159:371–378. 1994. View Article : Google Scholar : PubMed/NCBI

27 

Bian C, Zhong M, Nisar MF, Wu Y, Ouyang M, Bartsch JW and Zhong JL: A novel heme oxygenase-1 splice variant, 14 kDa HO-1, promotes cell proliferation and increases relative telomere length. Biochem Biophys Res Commun. 500:429–434. 2018. View Article : Google Scholar : PubMed/NCBI

28 

Durante W: Targeting heme oxygenase-1 in the arterial response to injury and disease. Antioxidants (Basel). 9:8292020. View Article : Google Scholar : PubMed/NCBI

29 

Huber WJ III and Backes WL: Expression and characterization of full-length human heme oxygenase-1: The presence of intact membrane-binding region leads to increased binding affinity for NADPH cytochrome P450 reductase. Biochemistry. 46:12212–12219. 2007. View Article : Google Scholar : PubMed/NCBI

30 

Jung NH, Kim HP, Kim BR, Cha SH, Kim GA, Ha H, Na YE and Cha YN: Evidence for heme oxygenase-1 association with caveolin-1 and −2 in mouse mesangial cells. IUBMB Life. 55:525–532. 2003. View Article : Google Scholar : PubMed/NCBI

31 

Slebos DJ, Ryter SW, van der Toorn M, Liu F, Guo F, Baty CJ, Karlsson JM, Watkins SC, Kim HP, Wang X, et al: Mitochondrial localization and function of heme oxygenase-1 in cigarette smoke-induced cell death. Am J Respir Cell Mol Biol. 36:409–417. 2007. View Article : Google Scholar : PubMed/NCBI

32 

Nitti M, Ivaldo C, Traverso N and Furfaro AL: Clinical significance of heme oxygenase 1 in tumor progression. Antioxidants (Basel). 10:7892021. View Article : Google Scholar : PubMed/NCBI

33 

Signorelli SS, Li Volsi G, Fiore V, Mangiafico M, Barbagallo I, Parenti R, Rizzo M and Li Volti G: Plasma heme oxygenase-1 is decreased in peripheral artery disease patients. Mol Med Rep. 14:3459–3463. 2016. View Article : Google Scholar : PubMed/NCBI

34 

Alam J, Stewart D, Touchard C, Boinapally S, Choi AM and Cook JL: Nrf2, a Cap'n'Collar transcription factor, regulates induction of the heme oxygenase-1 gene. J Biol Chem. 274:26071–26078. 1999. View Article : Google Scholar : PubMed/NCBI

35 

Khalil HS, Langdon SP, Kankia IH, Bown J and Deeni YY: NRF2 regulates HER2 and HER3 signaling pathway to modulate sensitivity to targeted immunotherapies. Oxid Med Cell Longev. 2016:41487912016. View Article : Google Scholar : PubMed/NCBI

36 

Kang MI, Kobayashi A, Wakabayashi N, Kim SG and Yamamoto M: Scaffolding of Keap1 to the actin cytoskeleton controls the function of Nrf2 as key regulator of cytoprotective phase 2 genes. Proc Natl Acad Sci USA. 101:2046–2051. 2004. View Article : Google Scholar : PubMed/NCBI

37 

Zipper LM and Mulcahy RT: The keap1 BTB/POZ dimerization function is required to sequester Nrf2 in cytoplasm. J Biol Chem. 277:36544–36552. 2002. View Article : Google Scholar : PubMed/NCBI

38 

Itoh K, Wakabayashi N, Katoh Y, Ishii T, O'Connor T and Yamamoto M: Keap1 regulates both cytoplasmic-nuclear shuttling and degradation of Nrf2 in response to electrophiles. Genes Cells. 8:379–391. 2003. View Article : Google Scholar : PubMed/NCBI

39 

Itoh K, Wakabayashi N, Katoh Y, Ishii T, Igarashi K, Engel JD and Yamamoto M: Keap1 represses nuclear activation of antioxidant responsive elements by Nrf2 through binding to the amino-terminal Neh2 domain. Genes Dev. 13:76–86. 1999. View Article : Google Scholar : PubMed/NCBI

40 

Xia MH, Yan XY, Zhou L, Xu L, Zhang LC, Yi HW and Su J: p62 suppressed VK3-induced oxidative damage through keap1/Nrf2 pathway in human ovarian cancer cells. J Cancer. 11:1299–1307. 2020. View Article : Google Scholar : PubMed/NCBI

41 

Alam J and Cook JL: How many transcription factors does it take to turn on the heme oxygenase-1 gene? Am J Respir Cell Mol Biol. 36:166–174. 2007. View Article : Google Scholar : PubMed/NCBI

42 

Kim H, Yin K, Falcon DM and Xue X: The interaction of Hemin and Sestrin2 modulates oxidative stress and colon tumor growth. Toxicol Appl Pharmacol. 374:77–85. 2019. View Article : Google Scholar : PubMed/NCBI

43 

Lu JJ, Abudukeyoumu A, Zhang X, Liu LB, Li MQ and Xie F: Heme oxygenase 1: A novel oncogene in multiple gynecological cancers. Int J Biol Sci. 17:2252–2261. 2021. View Article : Google Scholar : PubMed/NCBI

44 

Kitamuro T, Takahashi K, Ogawa K, Udono-Fujimori R, Takeda K, Furuyama K, Nakayama M, Sun J, Fujita H, Hida W, et al: Bach1 functions as a hypoxia-inducible repressor for the heme oxygenase-1 gene in human cells. J Biol Chem. 278:9125–9133. 2003. View Article : Google Scholar : PubMed/NCBI

45 

Igarashi K and Sun J: The heme-Bach1 pathway in the regulation of oxidative stress response and erythroid differentiation. Antioxid Redox Signal. 8:107–118. 2006. View Article : Google Scholar : PubMed/NCBI

46 

Sun J, Brand M, Zenke Y, Tashiro S, Groudine M and Igarashi K: Heme regulates the dynamic exchange of Bach1 and NF-E2-related factors in the Maf transcription factor network. Proc Natl Acad Sci USA. 101:1461–1466. 2004. View Article : Google Scholar : PubMed/NCBI

47 

Alam J, Killeen E, Gong P, Naquin R, Hu B, Stewart D, Ingelfinger JR and Nath KA: Heme activates the heme oxygenase-1 gene in renal epithelial cells by stabilizing Nrf2. Am J Physiol Renal Physiol. 284:F743–F752. 2003. View Article : Google Scholar : PubMed/NCBI

48 

Sudan K, Vijayan V, Madyaningrana K, Gueler F, Igarashi K, Foresti R, Motterlini R and Immenschuh S: TLR4 activation alters labile heme levels to regulate BACH1 and heme oxygenase-1 expression in macrophages. Free Radic Biol Med. 137:131–142. 2019. View Article : Google Scholar : PubMed/NCBI

49 

Ali FF, Abdelzaher WY, Ibrahim RA and Elroby Ali DM: Amelioration of estrogen-induced endometrial hyperplasia in female rats by hemin via heme-oxygenase-1 expression, suppression of iNOS, p38 MAPK, and Ki67. Can J Physiol Pharmacol. 97:1159–1168. 2019. View Article : Google Scholar : PubMed/NCBI

50 

Alam J, Igarashi K, Immenschuh S, Shibahara S and Tyrrell RM: Regulation of heme oxygenase-1 gene transcription: Recent advances and highlights from the international conference (Uppsala, 2003) on heme oxygenase. Antioxid Redox Signal. 6:924–933. 2004. View Article : Google Scholar : PubMed/NCBI

51 

Morse D, Lin L, Choi AMK and Ryter SW: Heme oxygenase-1, a critical arbitrator of cell death pathways in lung injury and disease. Free Radic Biol Med. 47:1–12. 2009. View Article : Google Scholar : PubMed/NCBI

52 

Trakshel GM, Kutty RK and Maines MD: Purification and characterization of the major constitutive form of testicular heme oxygenase. The noninducible isoform. J Biol Chem. 261:11131–11137. 1986. View Article : Google Scholar : PubMed/NCBI

53 

Hayashi S, Omata Y, Sakamoto H, Higashimoto Y, Hara T, Sagara Y and Noguchi M: Characterization of rat heme oxygenase-3 gene. Implication of processed pseudogenes derived from heme oxygenase-2 gene. Gene. 336:241–250. 2004. View Article : Google Scholar : PubMed/NCBI

54 

Abraham NG and Kappas A: Pharmacological and clinical aspects of heme oxygenase. Pharmacol Rev. 60:79–127. 2008. View Article : Google Scholar : PubMed/NCBI

55 

Ryter SW, Alam J and Choi AMK: Heme oxygenase-1/carbon monoxide: From basic science to therapeutic applications. Physiol Rev. 86:583–650. 2006. View Article : Google Scholar : PubMed/NCBI

56 

O'Rourke SA, Shanley LC and Dunne A: The Nrf2-HO-1 system and inflammaging. Front Immunol. 15:14570102024. View Article : Google Scholar : PubMed/NCBI

57 

Tenhunen R, Ross ME, Marver HS and Schmid R: Reduced nicotinamide-adenine dinucleotide phosphate dependent biliverdin reductase: Partial purification and characterization. Biochemistry. 9:298–303. 1970. View Article : Google Scholar : PubMed/NCBI

58 

Motterlini R and Otterbein LE: The therapeutic potential of carbon monoxide. Nat Rev Drug Discov. 9:728–743. 2010. View Article : Google Scholar : PubMed/NCBI

59 

Knauert M, Vangala S, Haslip M and Lee PJ: Therapeutic applications of carbon monoxide. Oxid Med Cell Longev. 2013:3608152013. View Article : Google Scholar : PubMed/NCBI

60 

Li MH, Jang JH, Na HK, Cha YN and Surh YJ: Carbon monoxide produced by heme oxygenase-1 in response to nitrosative stress induces expression of glutamate-cysteine ligase in PC12 cells via activation of phosphatidylinositol 3-kinase and Nrf2 signaling. J Biol Chem. 282:28577–28586. 2007. View Article : Google Scholar : PubMed/NCBI

61 

Vitek L and Tiribelli C: Bilirubin, intestinal integrity, the microbiome, and inflammation. N Engl J Med. 383:684–686. 2020. View Article : Google Scholar : PubMed/NCBI

62 

Maruhashi T, Kihara Y and Higashi Y: Bilirubin and endothelial function. J Atheroscler Thromb. 26:688–696. 2019. View Article : Google Scholar : PubMed/NCBI

63 

Baylor JL and Butler MW: Immune challenge-induced oxidative damage may be mitigated by biliverdin. J Exp Biol. 222:jeb2000552019. View Article : Google Scholar : PubMed/NCBI

64 

Kajarabille N and Latunde-Dada GO: Programmed cell-death by ferroptosis: Antioxidants as mitigators. Int J Mol Sci. 20:49682019. View Article : Google Scholar : PubMed/NCBI

65 

Ryter SW and Choi AMK: Targeting heme oxygenase-1 and carbon monoxide for therapeutic modulation of inflammation. Transl Res. 167:7–34. 2016. View Article : Google Scholar : PubMed/NCBI

66 

Ryter SW: Heme oxgenase-1, a cardinal modulator of regulated cell death and inflammation. Cells. 10:5152021. View Article : Google Scholar : PubMed/NCBI

67 

Dennery PA: Signaling function of heme oxygenase proteins. Antioxid Redox Signal. 20:1743–1753. 2014. View Article : Google Scholar : PubMed/NCBI

68 

Wang X, Wang Y, Kim HP, Nakahira K, Ryter SW and Choi AMK: Carbon monoxide protects against hyperoxia-induced endothelial cell apoptosis by inhibiting reactive oxygen species formation. J Biol Chem. 282:1718–1726. 2007. View Article : Google Scholar : PubMed/NCBI

69 

Suttner DM, Sridhar K, Lee CS, Tomura T, Hansen TN and Dennery PA: Protective effects of transient HO-1 overexpression on susceptibility to oxygen toxicity in lung cells. Am J Physiol. 276:L443–L451. 1999.PubMed/NCBI

70 

Boname JM, Bloor S, Wandel MP, Nathan JA, Antrobus R, Dingwell KS, Thurston TL, Smith DL, Smith JC, Randow F and Lehner PJ: Cleavage by signal peptide peptidase is required for the degradation of selected tail-anchored proteins. J Cell Biol. 205:847–862. 2014. View Article : Google Scholar : PubMed/NCBI

71 

Mascaro M, Alonso EN, Alonso EG, Lacunza E, Curino AC and Facchinetti MM: Nuclear localization of heme oxygenase-1 in pathophysiological conditions: Does it explain the dual role in cancer? Antioxidants (Basel). 10:872021. View Article : Google Scholar : PubMed/NCBI

72 

Biswas C, Shah N, Muthu M, La P, Fernando AP, Sengupta S, Yang G and Dennery PA: Nuclear heme oxygenase-1 (HO-1) modulates subcellular distribution and activation of Nrf2, impacting metabolic and anti-oxidant defenses. J Biol Chem. 289:26882–26894. 2014. View Article : Google Scholar : PubMed/NCBI

73 

Yu D, Sun R, Shen D, Ge L, Xue T and Cao Y: Nuclear heme oxygenase-1 improved the hypoxia-mediated dysfunction of blood-spinal cord barrier via the miR-181c-5p/SOX5 signaling pathway. Neuroreport. 32:112–120. 2021. View Article : Google Scholar : PubMed/NCBI

74 

Gandini NA, Alonso EN, Fermento ME, Mascaró M, Abba MC, Coló GP, Arévalo J, Ferronato MJ, Guevara JA, Núñez M, et al: Heme oxygenase-1 has an antitumor role in breast cancer. Antioxid Redox Signal. 30:2030–2049. 2019. View Article : Google Scholar : PubMed/NCBI

75 

Converso DP, Taillé C, Carreras MC, Jaitovich A, Poderoso JJ and Boczkowski J: HO-1 is located in liver mitochondria and modulates mitochondrial heme content and metabolism. FASEB J. 20:1236–1238. 2006. View Article : Google Scholar : PubMed/NCBI

76 

Matsushima M, Nose H, Tsuzuki H, Takekoshi M, Kusatsugu Y, Taniguchi H, Ohdachi T, Hashimoto N, Sato M and Kawabe T: Decrease in cholesterol in the cell membrane is essential for Nrf2 activation by quercetin. J Nutr Biochem. 116:1093292023. View Article : Google Scholar : PubMed/NCBI

77 

Fahrer J, Wittmann S, Wolf AC and Kostka T: Heme oxygenase-1 and its role in colorectal cancer. Antioxidants (Basel). 12:19892023. View Article : Google Scholar : PubMed/NCBI

78 

Nitti M, Piras S, Marinari UM, Moretta L, Pronzato MA and Furfaro AL: HO-1 induction in cancer progression: A matter of cell adaptation. Antioxidants (Basel). 6:292017. View Article : Google Scholar : PubMed/NCBI

79 

Jagadeesh ASV, Fang X, Kim SH, Guillen-Quispe YN, Zheng J, Surh YJ and Kim SJ: Non-canonical vs canonical functions of heme oxygenase-1 in cancer. J Cancer Prev. 27:7–15. 2022. View Article : Google Scholar : PubMed/NCBI

80 

Gao Y, Wan L, Li M, Wang B and Ma Y: NRF2/HO-1 axis, BIRC5, and TP53 expression in ESCC and its correlation with clinical pathological characteristics and prognosis. Int J Biol Markers. 38:174–184. 2023. View Article : Google Scholar : PubMed/NCBI

81 

Dennery PA: Heme oxygenase in neonatal lung injury and repair. Antioxid Redox Signal. 21:1881–1892. 2014. View Article : Google Scholar : PubMed/NCBI

82 

Loboda A, Damulewicz M, Pyza E, Jozkowicz A and Dulak J: Role of Nrf2/HO-1 system in development, oxidative stress response and diseases: An evolutionarily conserved mechanism. Cell Mol Life Sci. 73:3221–3247. 2016. View Article : Google Scholar : PubMed/NCBI

83 

Tossetta G and Marzioni D: Natural and synthetic compounds in ovarian cancer: A focus on NRF2/KEAP1 pathway. Pharmacol Res. 183:1063652022. View Article : Google Scholar : PubMed/NCBI

84 

Rejhová A, Opattová A, Čumová A, Slíva D and Vodička P: Natural compounds and combination therapy in colorectal cancer treatment. Eur J Med Chem. 144:582–594. 2018. View Article : Google Scholar : PubMed/NCBI

85 

Wang H, Guo S, Kim SJ, Shao F, Ho JWK, Wong KU, Miao Z, Hao D, Zhao M, Xu J, et al: Cisplatin prevents breast cancer metastasis through blocking early EMT and retards cancer growth together with paclitaxel. Theranostics. 11:2442–2459. 2021. View Article : Google Scholar : PubMed/NCBI

86 

Lang W, Zhang J, Xiao X, Cheng M, Zheng X, Gong H, Ali I, Zhao Y, Jia F, Wang Z, et al: Forsythiaside A ameliorates inflammation by regulating the autophagy in methotrexate-induced intestinal mucositis. Comb Chem High Throughput Screen. January 29–2025.(Epub ahead of print). View Article : Google Scholar : PubMed/NCBI

87 

Green DR: The coming decade of cell death research: Five riddles. Cell. 177:1094–1107. 2019. View Article : Google Scholar : PubMed/NCBI

88 

Bedoui S, Herold MJ and Strasser A: Emerging connectivity of programmed cell death pathways and its physiological implications. Nat Rev Mol Cell Biol. 21:678–695. 2020. View Article : Google Scholar : PubMed/NCBI

89 

Sun Z, Ding C, Wang Y, Lu T and Song W: Plasma-activated medium inhibited the proliferation and migration of non-small cell lung cancer A549 cells in 3D culture. Int J Mol Sci. 25:132622024. View Article : Google Scholar : PubMed/NCBI

90 

Wang C, You Z, Zhou G, Dong J, Tong S and Sun G: Amarogentin suppresses cell proliferation and EMT process through inducing ferroptosis in colorectal cancer. BMC Gastroenterol. 25:462025. View Article : Google Scholar : PubMed/NCBI

91 

Kerr JF, Wyllie AH and Currie AR: Apoptosis: A basic biological phenomenon with wide-ranging implications in tissue kinetics. Br J Cancer. 26:239–257. 1972. View Article : Google Scholar : PubMed/NCBI

92 

Galluzzi L, Vitale I, Aaronson SA, Abrams JM, Adam D, Agostinis P, Alnemri ES, Altucci L, Amelio I, Andrews DW, et al: Molecular mechanisms of cell death: Recommendations of the nomenclature committee on cell death 2018. Cell Death Differ. 25:486–541. 2018. View Article : Google Scholar : PubMed/NCBI

93 

Sharma P, Sharma V, Ahluwalia TS, Dogra N, Kumar S and Singh S: Let-7a induces metabolic reprogramming in breast cancer cells via targeting mitochondrial encoded ND4. Cancer Cell Int. 21:6292021. View Article : Google Scholar : PubMed/NCBI

94 

Nagata S: Apoptosis and clearance of apoptotic cells. Annu Rev Immunol. 36:489–517. 2018. View Article : Google Scholar : PubMed/NCBI

95 

Panda PK, Paschoalini Mafra AC, Bastos ACS, Cao L, Serra Bonet M, Brashears CB, Chen EY, Benedict-Hamilton HM, Ehrhardt W, Bomalaski J, et al: Bcl-Xl protects ASS1-deficient cancers from arginine starvation induced apoptosis. Clin Cancer Res. February 3–2025.(Epub ahead of print). View Article : Google Scholar : PubMed/NCBI

96 

Gu Z, Deng M, Luo Q, Lin S, Yu J, Li C, Wang X, Chen L, Liu T, Li Y and He B: Harnessing HDAC-targeted oleanolic acid derivatives for combined anti-cancer and hepatoprotective effects. Int J Biol Macromol. 297:1397612025.(Epub ahead of print). View Article : Google Scholar : PubMed/NCBI

97 

Chen Y, Liu X, Chen B, Zhu F, Wang Z, Cheong KL, Ye S, Zhong S and Chen J: Selenium nanoparticles decorated by fucoidan induce ferroptosis in HepG2 cells. Int J Biol Macromol. 289:1388412025. View Article : Google Scholar : PubMed/NCBI

98 

Chen YT, Lin CW, Su CW, Yang WE, Chuang CY, Su SC, Hsieh MJ and Yang SF: Magnolol triggers caspase-mediated apoptotic cell death in human oral cancer cells through JNK1/2 and p38 pathways. Biomedicines. 9:12952021. View Article : Google Scholar : PubMed/NCBI

99 

Hsieh MJ, Lin CC, Lo YS, Chuang YC, Ho HY and Chen MK: Chrysosplenol D triggers apoptosis through heme oxygenase-1 and mitogen-activated protein kinase signaling in oral squamous cell carcinoma. Cancers (Basel). 13:43272021. View Article : Google Scholar : PubMed/NCBI

100 

Ho HY, Chen PJ, Chuang YC, Lo YS, Lin CC, Hsieh MJ and Chen MK: Picrasidine I triggers heme oxygenase-1-induced apoptosis in nasopharyngeal carcinoma cells via ERK and Akt signaling pathways. Int J Mol Sci. 23:61032022. View Article : Google Scholar : PubMed/NCBI

101 

Su SC, Chen YT, Hsieh YH, Yang WE, Su CW, Chiu WY, Yang SF and Lin CW: Gambogic acid induces HO-1 expression and cell apoptosis through p38 signaling in oral squamous cell carcinoma. Am J Chin Med. 50:1663–1679. 2022. View Article : Google Scholar : PubMed/NCBI

102 

DiMarco-Crook C, Rakariyatham K, Li Z, Du Z, Zheng J, Wu X and Xiao H: Synergistic anticancer effects of curcumin and 3′,4′-didemethylnobiletin in combination on colon cancer cells. J Food Sci. 85:1292–1301. 2020. View Article : Google Scholar : PubMed/NCBI

103 

Elsherbiny NM, Eisa NH, El-Sherbiny M and Said E: Chemo-preventive effect of crocin against experimentally-induced hepatocarcinogenesis via regulation of apoptotic and Nrf2 signaling pathways. Environ Toxicol Pharmacol. 80:1034942020. View Article : Google Scholar : PubMed/NCBI

104 

Chuang CY, Lin CW, Su CW, Chen YT, Yang WE, Yang SF and Su SC: Deoxyshikonin mediates heme oxygenase-1 induction and apoptotic response via p38 signaling in tongue cancer cell lines. Int J Mol Sci. 23:71152022. View Article : Google Scholar : PubMed/NCBI

105 

Zhao X, Dong W, Gao Y, Shin DS, Ye Q, Su L, Jiang F, Zhao B and Miao J: Novel indolyl-chalcone derivatives inhibit A549 lung cancer cell growth through activating Nrf-2/HO-1 and inducing apoptosis in vitro and in vivo. Sci Rep. 7:39192017. View Article : Google Scholar : PubMed/NCBI

106 

Sui X, Gao B and Zhang L, Wang Y, Ma J, Wu X, Zhou C, Liu M and Zhang L: Scutellaria barbata D.Don and Hedyotis diffusa Willd herb pair combined with cisplatin synergistically inhibits ovarian cancer progression through modulating oxidative stress via NRF2-FTH1 autophagic degradation pathway. J Ovarian Res. 17:2462024. View Article : Google Scholar : PubMed/NCBI

107 

Chien MH, Yang WE, Yang YC, Ku CC, Lee WJ, Tsai MY, Lin CW and Yang SF: Dual targeting of the p38 MAPK-HO-1 axis and cIAP1/XIAP by demethoxycurcumin triggers caspase-mediated apoptotic cell death in oral squamous cell carcinoma cells. Cancers (Basel). 12:7032020. View Article : Google Scholar : PubMed/NCBI

108 

Su CW, Chuang CY, Chen YT, Yang WE, Pan YP, Lin CW and Yang SF: FLLL32 triggers caspase-mediated apoptotic cell death in human oral cancer cells by regulating the p38 pathway. Int J Mol Sci. 22:118602021. View Article : Google Scholar : PubMed/NCBI

109 

Harmse L, Gangat N, Martins-Furness C, Dam J and de Koning CB: Copper-imidazo[1,2-a]pyridines induce intrinsic apoptosis and modulate the expression of mutated p53, haem-oxygenase-1 and apoptotic inhibitory proteins in HT-29 colorectal cancer cells. Apoptosis. 24:623–643. 2019. View Article : Google Scholar : PubMed/NCBI

110 

Acquaviva R, Tomasello B, Di Giacomo C, Santangelo R, La Mantia A, Naletova I, Sarpietro M.G, Castelli F and Malfa GA: Protocatechuic acid, a simple plant secondary metabolite, induced apoptosis by promoting oxidative stress through HO-1 downregulation and p21 upregulation in colon cancer cells. Biomolecules. 11:14852021. View Article : Google Scholar : PubMed/NCBI

111 

Yang IH, Ahn CH, Cho NP, Jin B, Lee W, Jung YC, Hong SD, Shin JA and Cho SD: Heme oxygenase-1 is a key molecule underlying differential response of TW-37-induced apoptosis in human mucoepidermoid carcinoma cells. Molecules. 24:17002019. View Article : Google Scholar : PubMed/NCBI

112 

Guo Y, Fang Q, Ma D, Yu K, Cheng B, Tang S, Lu T, Wang W and Wang J: Up-regulation of HO-1 promotes resistance of B-cell acute lymphocytic leukemia cells to HDAC4/5 inhibitor LMK-235 via the Smad7 pathway. Life Sci. 207:386–394. 2018. View Article : Google Scholar : PubMed/NCBI

113 

Li X, Guo Y, Kuang X, Zhao L, Li H, Cheng B, Wang W, Zhang Z, Liu P and Wang J: Histone deacetylase inhibitor LMK-235-mediated HO-1 expression induces apoptosis in multiple myeloma cells via the JNK/AP-1 signaling pathway. Life Sci. 223:146–157. 2019. View Article : Google Scholar : PubMed/NCBI

114 

Jia XB, Zhang Q, Xu L, Yao WJ and Wei L: Lotus leaf flavonoids induce apoptosis of human lung cancer A549 cells through the ROS/p38 MAPK pathway. Biol Res. 54:72021. View Article : Google Scholar : PubMed/NCBI

115 

Yan S, Yue Y, Wang J, Li W, Sun M, Zeng L and Wang X: Banxia Xiexin decoction, a traditional Chinese medicine, alleviates colon cancer in nude mice. Ann Transl Med. 7:3752019. View Article : Google Scholar : PubMed/NCBI

116 

Sun X, Li J, Li Y, Wang S and Li Q: Apatinib, a novel tyrosine kinase inhibitor, promotes ROS-dependent apoptosis and autophagy via the Nrf2/HO-1 pathway in ovarian cancer cells. Oxid Med Cell Longev. 2020:31451822020. View Article : Google Scholar : PubMed/NCBI

117 

Li J, Xiong C, Xu P, Luo Q and Zhang R: Puerarin induces apoptosis in prostate cancer cells via inactivation of the Keap1/Nrf2/ARE signaling pathway. Bioengineered. 12:402–413. 2021. View Article : Google Scholar : PubMed/NCBI

118 

Li X, Mu J, Lin Y, Zhao J and Meng X: Combination of cyanidin-3-O-glucoside and cisplatin induces oxidative stress and apoptosis in HeLa cells by reducing activity of endogenous antioxidants, increasing bax/bcl-2 mRNA expression ratio, and downregulating Nrf2 expression. J Food Biochem. 45:e138062021. View Article : Google Scholar : PubMed/NCBI

119 

Yang Y, Tian Z, Guo R and Ren F: Nrf2 inhibitor, brusatol in combination with trastuzumab exerts synergistic antitumor activity in HER2-positive cancers by inhibiting Nrf2/HO-1 and HER2-AKT/ERK1/2 pathways. Oxid Med Cell Longev. 2020:98675952020. View Article : Google Scholar : PubMed/NCBI

120 

Mondal P, Natesh J, Penta D and Meeran SM: Extract of Murraya koenigii selectively causes genomic instability by altering redox-status via targeting PI3K/AKT/Nrf2/caspase-3 signaling pathway in human non-small cell lung cancer. Phytomedicine. 104:1542722022. View Article : Google Scholar : PubMed/NCBI

121 

Kuang X, Xiong J, Wang W, Li X, Lu T, Fang Q and Wang J: PIM inhibitor SMI-4a induces cell apoptosis in B-cell acute lymphocytic leukemia cells via the HO-1-mediated JAK2/STAT3 pathway. Life Sci. 219:248–256. 2019. View Article : Google Scholar : PubMed/NCBI

122 

Zhou Z, Fang Q, Li P, Ma D, Zhe N, Ren M, Chen B, He Z and Wang J, Zhong Q and Wang J: Entinostat combined with fludarabine synergistically enhances the induction of apoptosis in TP53 mutated CLL cells via the HDAC1/HO-1 pathway. Life Sci. 232:1165832019. View Article : Google Scholar : PubMed/NCBI

123 

Wang LH, Li Y, Yang SN, Wang FY, Hou Y, Cui W, Chen K, Cao Q, Wang S, Zhang TY, et al: Gambogic acid synergistically potentiates cisplatin-induced apoptosis in non-small-cell lung cancer through suppressing NF-κB and MAPK/HO-1 signalling. Br J Cancer. 110:341–352. 2014. View Article : Google Scholar : PubMed/NCBI

124 

Dixon SJ, Lemberg KM, Lamprecht MR, Skouta R, Zaitsev EM, Gleason CE, Patel DN, Bauer AJ, Cantley AM, Yang WS, et al: Ferroptosis: An iron-dependent form of nonapoptotic cell death. Cell. 149:1060–1072. 2012. View Article : Google Scholar : PubMed/NCBI

125 

Qi YL, Wang HR, Chen LL, Duan YT, Yang SY and Zhu HL: Recent advances in small-molecule fluorescent probes for studying ferroptosis. Chem Soc Rev. 51:7752–7778. 2022. View Article : Google Scholar : PubMed/NCBI

126 

Imai H, Matsuoka M, Kumagai T, Sakamoto T and Koumura T: Lipid peroxidation-dependent cell death regulated by GPx4 and ferroptosis. Curr Top Microbiol Immunol. 403:143–170. 2017.PubMed/NCBI

127 

Hou W, Xie Y, Song X, Sun X, Lotze MT, Zeh HJ III, Kang R and Tang D: Autophagy promotes ferroptosis by degradation of ferritin. Autophagy. 12:1425–1428. 2016. View Article : Google Scholar : PubMed/NCBI

128 

Wen SY, Gao RR, Chen YY, Wang YJ, Wang XT and Liu HX: Brassinin from Brassica campestris L. inhibits colorectal cancer by inducing p62/NRF2/GPX4-regulated ferroptosis. Animal Model Exp Med. Jan 23–2025.(Epub ahead of print). View Article : Google Scholar

129 

Liu J, Zhou S, Chen J, Lin H, Li Y, Zhang X, Chen S, Lv X and Zhao H: Nrf2 inhibition and NCOA4-mediated ferritinophagy activation synergistically exacerbated S-3′-hydroxy-7′,2′, 4′-trimethoxyisoxane induced ferroptosis in lung cancer cells. Chem Biol Interact. 406:1113532025. View Article : Google Scholar : PubMed/NCBI

130 

Zhang JJ, Ni P, Song Y, Gao MJ, Guo XY and Zhao BQ: Effective protective mechanisms of HO-1 in diabetic complications: A narrative review. Cell Death Discov. 10:4332024. View Article : Google Scholar : PubMed/NCBI

131 

Zhang Y and Xie J: Targeting ferroptosis regulators by natural products in colorectal cancer. Front Pharmacol. 15:13747222024. View Article : Google Scholar : PubMed/NCBI

132 

Chen L, Shen Q, Liu Y, Zhang Y, Sun L, Ma X, Song N and Xie J: Homeostasis and metabolism of iron and other metal ions in neurodegenerative diseases. Signal Transduct Target Ther. 10:312025. View Article : Google Scholar : PubMed/NCBI

133 

Malfa GA, Tomasello B, Acquaviva R, Genovese C, La Mantia A, Cammarata FP, Ragusa M, Renis M and Di Giacomo C: Betula etnensis Raf. (Betulaceae) extract induced HO-1 expression and ferroptosis cell death in human colon cancer cells. Int J Mol Sci. 20:27232019. View Article : Google Scholar : PubMed/NCBI

134 

Lin H, Chen X, Zhang C, Yang T, Deng Z, Song Y, Huang L, Li F, Li Q, Lin S and Jin D: EF24 induces ferroptosis in osteosarcoma cells through HMOX1. Biomed Pharmacother. 136:1112022021. View Article : Google Scholar : PubMed/NCBI

135 

Li R, Zhang J, Zhou Y, Gao Q, Wang R, Fu Y, Zheng L and Yu H: Transcriptome investigation and in vitro verification of curcumin-induced HO-1 as a feature of ferroptosis in breast cancer cells. Oxid Med Cell Longev. 2020:34698402020. View Article : Google Scholar : PubMed/NCBI

136 

Han S, Lin F, Qi Y, Liu C, Zhou L, Xia Y, Chen K, Xing J, Liu Z, Yu W, et al: HO-1 contributes to luteolin-triggered ferroptosis in clear cell renal cell carcinoma via increasing the labile iron pool and promoting lipid peroxidation. Oxid Med Cell Longev. 2022:38462172022. View Article : Google Scholar : PubMed/NCBI

137 

Zhang Y, Zhang H, Mu J, Han M, Cao Z, Dong F, Wang T, Pan L, Luo W, Li J, et al: Eupalinolide B inhibits hepatic carcinoma by inducing ferroptosis and ROS-ER-JNK pathway. Acta Biochim Biophys Sin (Shanghai). 54:974–986. 2022. View Article : Google Scholar : PubMed/NCBI

138 

Lai X, Sun Y, Zhang X, Wang D, Wang J, Wang H, Zhao Y, Liu X, Xu X, Song H, et al: Honokiol induces ferroptosis by upregulating HMOX1 in acute myeloid leukemia cells. Front Pharmacol. 13:8977912022. View Article : Google Scholar : PubMed/NCBI

139 

He X, Yao Q, Fan D, Duan L, You Y, Liang W, Zhou Z, Teng S, Liang Z, Hall DD, et al: Cephalosporin antibiotics specifically and selectively target nasopharyngeal carcinoma through HMOX1-induced ferroptosis. Life Sci. 277:1194572021. View Article : Google Scholar : PubMed/NCBI

140 

Feng C, Wu Y, Chen Y, Xiong X, Li P, Peng X, Li C, Weng W, Zhu Y, Zhou D and Li Y: Arsenic trioxide increases apoptosis of SK-N-BE (2) cells partially by inducing GPX4-mediated ferroptosis. Mol Biol Rep. 49:6573–6580. 2022. View Article : Google Scholar : PubMed/NCBI

141 

Chen P, Li X, Zhang R, Liu S, Xiang Y, Zhang M, Chen X, Pan T, Yan L, Feng J, et al: Combinative treatment of β-elemene and cetuximab is sensitive to KRAS mutant colorectal cancer cells by inducing ferroptosis and inhibiting epithelial-mesenchymal transformation. Theranostics. 10:5107–5119. 2020. View Article : Google Scholar : PubMed/NCBI

142 

Du J, Wang L, Huang X, Zhang N, Long Z, Yang Y, Zhong F, Zheng B, Lan W, Lin W and Ma W: Shuganning injection, a traditional Chinese patent medicine, induces ferroptosis and suppresses tumor growth in triple-negative breast cancer cells. Phytomedicine. 85:1535512021. View Article : Google Scholar : PubMed/NCBI

143 

Xiaohu O, Wang J, Qiu X, Song S, Li J, Luo S, Chen Q and Hu D: Sophora alopecuroide-Taraxacum decoction (STD) inhibits non-small cell lung cancer via inducing ferroptosis and modulating tumor immune microenvironment. Heliyon. 10:e395642024. View Article : Google Scholar : PubMed/NCBI

144 

Wei R, Zhao Y, Wang J, Yang X, Li S, Wang Y, Yang X, Fei J, Hao X, Zhao Y, et al: Tagitinin C induces ferroptosis through PERK-Nrf2-HO-1 signaling pathway in colorectal cancer cells. Int J Biol Sci. 17:2703–2717. 2021. View Article : Google Scholar : PubMed/NCBI

145 

Shi H, Hou B, Li H, Zhou H and Du B: Cyclophosphamide induces the ferroptosis of tumor cells through heme oxygenase-1. Front Pharmacol. 13:8394642022. View Article : Google Scholar : PubMed/NCBI

146 

Guan D, Zhou W, Wei H, Wang T, Zheng K, Yang C, Feng R, Xu R, Fu Y, Li C, et al: Ferritinophagy-mediated ferroptosis and activation of keap1/Nrf2/HO-1 pathway were conducive to emt inhibition of gastric cancer cells in action of 2,2′-di-pyridineketone hydrazone dithiocarbamate butyric acid ester. Oxid Med Cell Longev. 2022:39206642022. View Article : Google Scholar : PubMed/NCBI

147 

Villalpando-Rodriguez GE, Blankstein AR, Konzelman C and Gibson SB: Lysosomal destabilizing drug siramesine and the dual tyrosine kinase inhibitor lapatinib induce a synergistic ferroptosis through reduced heme oxygenase-1 (HO-1) levels. Oxid Med Cell Longev. 2019:95612812019. View Article : Google Scholar : PubMed/NCBI

148 

Cui Z, Wang H, Li S, Qin T, Shi H, Ma J, Li L, Yu G, Jiang T and Li C: Dihydroartemisinin enhances the inhibitory effect of sorafenib on HepG2 cells by inducing ferroptosis and inhibiting energy metabolism. J Pharmacol Sci. 148:73–85. 2022. View Article : Google Scholar : PubMed/NCBI

149 

Lou JS, Zhao LP, Huang ZH, Chen XY, Xu JT, Tai WC, Tsim KWK, Chen YT and Xie T: Ginkgetin derived from Ginkgo biloba leaves enhances the therapeutic effect of cisplatin via ferroptosis-mediated disruption of the Nrf2/HO-1 axis in EGFR wild-type non-small-cell lung cancer. Phytomedicine. 80:1533702021. View Article : Google Scholar : PubMed/NCBI

150 

Li S, Zhang Y, Zhang J, Yu B, Wang W, Jia B, Chang J and Liu J: Neferine exerts ferroptosis-inducing effect and antitumor effect on thyroid cancer through Nrf2/HO-1/NQO1 inhibition. J Oncol. 2022:79337752022.PubMed/NCBI

151 

Chen J, Zhou S, Zhang X and Zhao H: S-3′-hydroxy-7′, 2′, 4′-trimethoxyisoxane, a novel ferroptosis inducer, promotes NSCLC cell death through inhibiting Nrf2/HO-1 signaling pathway. Front Pharmacol. 13:9736112022. View Article : Google Scholar : PubMed/NCBI

152 

Jing T, Guo Y and Wei Y: Carboxymethylated pachyman induces ferroptosis in ovarian cancer by suppressing NRF1/HO-1 signaling. Oncol Lett. 23:1612022. View Article : Google Scholar : PubMed/NCBI

153 

Zhu X, Chen X, Qiu L, Zhu J and Wang J: Norcantharidin induces ferroptosis via the suppression of NRF2/HO-1 signaling in ovarian cancer cells. Oncol Lett. 24:3592022. View Article : Google Scholar : PubMed/NCBI

154 

Han L, Li L and Wu G: Induction of ferroptosis by carnosic acid-mediated inactivation of Nrf2/HO-1 potentiates cisplatin responsiveness in OSCC cells. Mol Cell Probes. 64:1018212022. View Article : Google Scholar : PubMed/NCBI

155 

Zychlinsky A, Prevost MC and Sansonetti PJ: Shigella flexneri induces apoptosis in infected macrophages. Nature. 358:167–169. 1992. View Article : Google Scholar : PubMed/NCBI

156 

D'Souza CA and Heitman J: Dismantling the cryptococcus coat. Trends Microbiol. 9:112–113. 2001. View Article : Google Scholar : PubMed/NCBI

157 

Wang X, He S, Cheng P and Pu K: A dual-locked tandem fluorescent probe for imaging of pyroptosis in cancer chemo-immunotherapy. Adv Mater. 35:e22065102023. View Article : Google Scholar : PubMed/NCBI

158 

Jorgensen I and Miao EA: Pyroptotic cell death defends against intracellular pathogens. Immunol Rev. 265:130–142. 2015. View Article : Google Scholar : PubMed/NCBI

159 

Yu P, Zhang X, Liu N, Tang L, Peng C and Chen X: Pyroptosis: Mechanisms and diseases. Signal Transduct Target Ther. 6:1282021. View Article : Google Scholar : PubMed/NCBI

160 

Zhendong Y, Changjun C, Haocheng H, Qibin L, Dailing C, Linsong T, Xuecheng S, Gong M and Lei Z: Regulation of macrophage polarization and pyroptosis by 4-methylcatechol alleviates collagen-induced arthritis via Nrf2/HO-1 and NF-κB/NLRP3 signaling pathways. Int Immunopharmacol. 146:1138552025. View Article : Google Scholar : PubMed/NCBI

161 

Ghaith WZ, Wadie W and El-Yamany MF: Crosstalk between SIRT1/Nrf2 signaling and NLRP3 inflammasome/pyroptosis as a mechanistic approach for the neuroprotective effect of linagliptin in Parkinson's disease. Int Immunopharmacol. 145:1137162025. View Article : Google Scholar : PubMed/NCBI

162 

Okasha AH, Hegab II, Seleem MA, Azzam AR, Ibrahim S, Ghalwash AA and El-Gohary RM: Effects of Fisetin and Nicorandil on adjuvant-induced rheumatoid arthritis in rats: Emerging role of TLR4/NF-κB-induced pyroptosis, Nrf-2/HO-1, and OPG/RANKL pathways. Cytokine. 187:1568762025. View Article : Google Scholar : PubMed/NCBI

163 

Wayal V, Wang SD and Hsieh CC: Novel bioactive peptides alleviate western diet-induced MAFLD in C57BL/6J mice by inhibiting NLRP3 inflammasome activation and pyroptosis via TLR4/NF-κB and Keap1/Nrf2/HO-1 signaling pathways. Int Immunopharmacol. 148:1141772025. View Article : Google Scholar : PubMed/NCBI

164 

Hong C, Wang L, Zhou X, Zou L, Xiang X, Deng H, Li Q, Wu Y, Liu L and Li T: Protective effects of mdivi-1 on cognition disturbance following sepsis in mice via alleviating microglia activation and polarization. CNS Neurosci Ther. 31:e701492025. View Article : Google Scholar : PubMed/NCBI

165 

Shi H, Qiao F, Lu W, Huang K, Wen Y, Ye L and Chen Y: Baicalin improved hepatic injury of NASH by regulating NRF2/HO-1/NRLP3 pathway. Eur J Pharmacol. 934:1752702022. View Article : Google Scholar : PubMed/NCBI

166 

Zhang B, Wan S, Liu H, Qiu Q, Chen H, Chen Z, Wang L and Liu X: Naringenin alleviates renal ischemia reperfusion injury by suppressing ER stress-induced pyroptosis and apoptosis through activating Nrf2/HO-1 signaling pathway. Oxid Med Cell Longev. 2022:59924362022. View Article : Google Scholar : PubMed/NCBI

167 

Yan Z, Qi W, Zhan J, Lin Z, Lin J, Xue X, Pan X and Zhou Y: Activating Nrf2 signalling alleviates osteoarthritis development by inhibiting inflammasome activation. J Cell Mol Med. 24:13046–13057. 2020. View Article : Google Scholar : PubMed/NCBI

168 

Liu Y, Zhou J, Luo Y, Li J, Shang L, Zhou F and Yang S: Honokiol alleviates LPS-induced acute lung injury by inhibiting NLRP3 inflammasome-mediated pyroptosis via Nrf2 activation in vitro and in vivo. Chin Med. 16:1272021. View Article : Google Scholar : PubMed/NCBI

169 

Levine B and Kroemer G: Autophagy in the pathogenesis of disease. Cell. 132:27–42. 2008. View Article : Google Scholar : PubMed/NCBI

170 

Kroemer G, Marino G and Levine B: Autophagy and the integrated stress response. Mol Cell. 40:280–293. 2010. View Article : Google Scholar : PubMed/NCBI

171 

Mizushima N and Komatsu M: Autophagy: Renovation of cells and tissues. Cell. 147:728–741. 2011. View Article : Google Scholar : PubMed/NCBI

172 

Nam HJ: Autophagy modulators in cancer: Focus on cancer treatment. Life (Basel). 11:8392021.PubMed/NCBI

173 

Fleming A, Noda T, Yoshimori T and Rubinsztein DC: Chemical modulators of autophagy as biological probes and potential therapeutics. Nat Chem Biol. 7:9–17. 2011. View Article : Google Scholar : PubMed/NCBI

174 

Xu Y and Wan W: Acetylation in the regulation of autophagy. Autophagy. 19:379–387. 2023. View Article : Google Scholar : PubMed/NCBI

175 

Sun Y, Xu M, Duan Q, Bryant JL and Xu X: The role of autophagy in the progression of HIV infected cardiomyopathy. Front Cell Dev Biol. 12:13725732024. View Article : Google Scholar : PubMed/NCBI

176 

Satarker S, Wilson J, Kolathur KK, Mudgal J, Lewis SA, Arora D and Nampoothiri M: Spermidine as an epigenetic regulator of autophagy in neurodegenerative disorders. Eur J Pharmacol. 979:1768232024. View Article : Google Scholar : PubMed/NCBI

177 

Meyer N, Zielke S, Michaelis JB, Linder B, Warnsmann V, Rakel S, Osiewacz HD, Fulda S, Mittelbronn M, Münch C, et al: AT 101 induces early mitochondrial dysfunction and HMOX1 (heme oxygenase 1) to trigger mitophagic cell death in glioma cells. Autophagy. 14:1693–1709. 2018. View Article : Google Scholar : PubMed/NCBI

178 

So KY, Kim SH, Jung KT, Lee HY and Oh SH: MAPK/JNK1 activation protects cells against cadmium-induced autophagic cell death via differential regulation of catalase and heme oxygenase-1 in oral cancer cells. Toxicol Appl Pharmacol. 332:81–91. 2017. View Article : Google Scholar : PubMed/NCBI

179 

Shi Y, Zhang B, Feng X, Qu F, Wang S, Wu L, Wang X, Liu Q, Wang P and Zhang K: Apoptosis and autophagy induced by DVDMs-PDT on human esophageal cancer Eca-109 cells. Photodiagnosis Photodyn Ther. 24:198–205. 2018. View Article : Google Scholar : PubMed/NCBI

180 

Wang Y, Zhang J, Huang ZH, Huang XH, Zheng WB, Yin XF, Li YL, Li B and He QY: Isodeoxyelephantopin induces protective autophagy in lung cancer cells via Nrf2-p62-keap1 feedback loop. Cell Death Dis. 8:e28762017. View Article : Google Scholar : PubMed/NCBI

181 

Tan Q, Wang H, Hu Y, Hu M, Li X, Aodengqimuge Ma Y, Wei C and Song L: Src/STAT3-dependent heme oxygenase-1 induction mediates chemoresistance of breast cancer cells to doxorubicin by promoting autophagy. Cancer Sci. 106:1023–1032. 2015. View Article : Google Scholar : PubMed/NCBI

182 

Galluzzi L, Kepp O, Chan FK and Kroemer G: Necroptosis: Mechanisms and relevance to disease. Annu Rev Pathol. 12:103–130. 2017. View Article : Google Scholar : PubMed/NCBI

183 

Wu X, Gu R, Tang M, Mu X, He W and Nie X: Elucidating the dual roles of apoptosis and necroptosis in diabetic wound healing: Implications for therapeutic intervention. Burns Trauma. 13:tkae0612025. View Article : Google Scholar : PubMed/NCBI

184 

Tonnus W, Meyer C, Paliege A, Belavgeni A, von Mässenhausen A, Bornstein SR, Hugo C, Becker JU and Linkermann A: The pathological features of regulated necrosis. J Pathol. 247:697–707. 2019. View Article : Google Scholar : PubMed/NCBI

185 

Orozco S and Oberst A: RIPK3 in cell death and inflammation: The good, the bad, and the ugly. Immunol Rev. 277:102–112. 2017. View Article : Google Scholar : PubMed/NCBI

186 

Chen J, Kos R, Garssen J and Redegeld F: Molecular insights into the mechanism of necroptosis: The necrosome as a potential therapeutic target. Cells. 8:14862019. View Article : Google Scholar : PubMed/NCBI

187 

Zhang T, Shen Y, Zhu R, Shan W, Li Y, Yan M and Zhang Y: Benzo[a]pyrene exposure promotes RIP1-mediated necroptotic death of osteocytes and the JNK/IL-18 pathway activation via generation of reactive oxygen species. Toxicology. 476:1532442022. View Article : Google Scholar : PubMed/NCBI

188 

Huang HJ, Wang HT, Yeh TY, Lin BW, Shiao YJ, Lo YL and Lin AMY: Neuroprotective effect of selumetinib on acrolein-induced neurotoxicity. Sci Rep. 11:124972021. View Article : Google Scholar : PubMed/NCBI

189 

Luo A and Chen Y: Label-free interactome analysis revealed an essential role of CUL3-KEAP1 complex in mediating the ubiquitination and degradation of PHD2. J Proteome Res. 19:260–268. 2020. View Article : Google Scholar : PubMed/NCBI

190 

Chen D, Wu YX, Qiu YB, Wan BB, Liu G, Chen JL, Lu MD and Pang QF: Hyperoside suppresses hypoxia-induced A549 survival and proliferation through ferrous accumulation via AMPK/HO-1 axis. Phytomedicine. 67:1531382020. View Article : Google Scholar : PubMed/NCBI

191 

Romeo G, Ciaffaglione V, Amata E, Dichiara M, Calabrese L, Vanella L, Sorrenti V, Grosso S, D'Amico AG, D'Agata V, et al: Combination of heme oxygenase-1 inhibition and sigma receptor modulation for anticancer activity. Molecules. 26:38602021. View Article : Google Scholar : PubMed/NCBI

192 

Ghimire K, Awasthi BP, Yadav K, Lee J, Kim H, Jeong BS and Kim JA: Prostate cancer-selective anticancer action of an oxindole derivative via HO-1-mediated disruption of metabolic reprogramming. Chem Biol Interact. 408:1113932025.(Epub ahead of print). View Article : Google Scholar : PubMed/NCBI

193 

Castruccio Castracani C, Longhitano L, Distefano A, Di Rosa M, Pittalà V, Lupo G, Caruso M, Corona D, Tibullo D and Li Volti G: Heme Oxygenase-1 and carbon monoxide regulate growth and progression in glioblastoma cells. Mol Neurobiol. 57:2436–2446. 2020. View Article : Google Scholar : PubMed/NCBI

194 

Sorrenti V, D'Amico AG, Barbagallo I, Consoli V, Grosso S and Vanella L: Tin mesoporphyrin selectively reduces non-small-cell lung cancer cell line a549 proliferation by interfering with heme oxygenase and glutathione systems. Biomolecules. 11:9172021. View Article : Google Scholar : PubMed/NCBI

195 

Zhao Y, Xiao W, Peng W, Huang Q, Wu K, Evans CE, Liu X and Jin H: Oridonin-loaded nanoparticles inhibit breast cancer progression through regulation of ROS-related Nrf2 signaling pathway. Front Bioeng Biotechnol. 9:6005792021. View Article : Google Scholar : PubMed/NCBI

196 

Talmadge JE and Fidler IJ: AACR centennial series: The biology of cancer metastasis: historical perspective. Cancer Res. 70:5649–5669. 2010. View Article : Google Scholar : PubMed/NCBI

197 

Wirtz D, Konstantopoulos K and Searson PC: The physics of cancer: The role of physical interactions and mechanical forces in metastasis. Nat Rev Cancer. 11:512–522. 2011. View Article : Google Scholar : PubMed/NCBI

198 

Luu Hoang KN, Anstee JE and Arnold JN: The diverse roles of heme oxygenase-1 in tumor progression. Front Immunol. 12:6583152021. View Article : Google Scholar : PubMed/NCBI

199 

SenGupta S, Parent CA and Bear JE: The principles of directed cell migration. Nat Rev Mol Cell Biol. 22:529–547. 2021. View Article : Google Scholar : PubMed/NCBI

200 

Lavoie H, Gagnon J and Therrien M: ERK signalling: A master regulator of cell behaviour, life and fate. Nat Rev Mol Cell Biol. 21:607–632. 2020. View Article : Google Scholar : PubMed/NCBI

201 

Samson SC, Khan AM and Mendoza MC: ERK signaling for cell migration and invasion. Front Mol Biosci. 9:9984752022. View Article : Google Scholar : PubMed/NCBI

202 

Wattanathamsan O and Pongrakhananon V: Emerging role of microtubule-associated proteins on cancer metastasis. Front Pharmacol. 13:9354932022. View Article : Google Scholar : PubMed/NCBI

203 

Bonner K and Quick QA: Microtubule actin crosslinking factor 1, a brain tumor oncoprotein (Review). Mol Clin Oncol. 22:152024. View Article : Google Scholar : PubMed/NCBI

204 

Li R, Zeng X, Yang M, Xu X, Feng J, Bao L, Xue B, Wang X and Huang Y: Antidiabetic agent DPP-4i facilitates murine breast cancer metastasis by oncogenic ROS-NRF2-HO-1 axis via a positive NRF2-HO-1 feedback loop. Front Oncol. 11:6798162021. View Article : Google Scholar : PubMed/NCBI

205 

Du MW, Zhu XL, Zhang DX, Chen XZ, Yang LH, Xiao JZ, Fang WJ, Xue XC, Pan WH, Liao WQ and Yang T: X-Paste improves wound healing in diabetes via NF-E2-related factor/HO-1 signaling pathway. World J Diabetes. 15:1299–1316. 2024. View Article : Google Scholar : PubMed/NCBI

206 

Cao Y, Zhang H, Tang J and Wang R: Ferulic acid mitigates growth and invasion of esophageal squamous cell carcinoma through inducing ferroptotic cell death. Dis Markers. 2022:46079662022. View Article : Google Scholar : PubMed/NCBI

207 

He L, Zhang T, Sun W, Qin Y, Wang Z, Dong W and Zhang H: The DPP-IV inhibitor saxagliptin promotes the migration and invasion of papillary thyroid carcinoma cells via the NRF2/HO1 pathway. Med Oncol. 37:972020. View Article : Google Scholar : PubMed/NCBI

208 

Yang PW, Xu PL, Cheng CS, Jiao JY, Wu Y, Dong S, Xie J and Zhu XY: Integrating network pharmacology and experimental models to investigate the efficacy of QYHJ on pancreatic cancer. J Ethnopharmacol. 297:1155162022. View Article : Google Scholar : PubMed/NCBI

209 

Lim GE, Sung JY, Yu S, Kim Y, Shim J, Kim HJ, Cho ML, Lee JS and Kim YN: Pygenic acid A (PA) sensitizes metastatic breast cancer cells to anoikis and inhibits metastasis in vivo. Int J Mol Sci. 21:84442020. View Article : Google Scholar : PubMed/NCBI

210 

Chou YT, Hsu FF, Hu DY, Chen YC, Hsu YH, Hsu JT and Chau LY: Identification of danthron as an isoform-specific inhibitor of HEME OXYGENASE-1/cytochrome P450 reductase interaction with anti-tumor activity. J Biomed Sci. 25:62018. View Article : Google Scholar : PubMed/NCBI

211 

Jang HY, Hong OY, Youn HJ, Kim MG, Kim CH, Jung SH and Kim JS: 15d-PGJ2 inhibits NF-κB and AP-1-mediated MMP-9 expression and invasion of breast cancer cell by means of a heme oxygenase-1-dependent mechanism. BMB Rep. 53:212–217. 2020. View Article : Google Scholar : PubMed/NCBI

212 

Poprac P, Jomova K, Simunkova M, Kollar V, Rhodes CJ and Valko M: Targeting free radicals in oxidative stress-related human diseases. Trends Pharmacol Sci. 38:592–607. 2017. View Article : Google Scholar : PubMed/NCBI

213 

Sies H: Hydrogen peroxide as a central redox signaling molecule in physiological oxidative stress: Oxidative eustress. Redox Biol. 11:613–619. 2017. View Article : Google Scholar : PubMed/NCBI

214 

Seiva FRF, Agneis MLG, de Almeida MR, Caputo WL, de Souza MC, das Neves KA, Oliveira ÉN, Justulin LA Jr and Chuffa LGA: In silico analysis of non-conventional oxidative stress-related enzymes and their potential relationship with carcinogenesis. Antioxidants (Basel). 13:12792024. View Article : Google Scholar : PubMed/NCBI

215 

Shokeir AA, Hussein AM, Barakat N, Abdelaziz A, Elgarba M and Awadalla A: Activation of nuclear factor erythroid 2-related factor 2 (Nrf2) and Nrf-2-dependent genes by ischaemic pre-conditioning and post-conditioning: New adaptive endogenous protective responses against renal ischaemia/reperfusion injury. Acta Physiol (Oxf). 210:342–353. 2014. View Article : Google Scholar : PubMed/NCBI

216 

Zedan AMG, Sakran MI, Bahattab O, Hawsawi YM, Al-Amer O, Oyouni AAA, Nasr Eldeen SK and El-Magd MA: Oriental hornet (Vespa orientalis) larval extracts induce antiproliferative, antioxidant, anti-inflammatory, and anti-migratory effects on MCF7 cells. Molecules. 26:33032021. View Article : Google Scholar : PubMed/NCBI

217 

Mizunoe Y, Kobayashi M, Sudo Y, Watanabe S, Yasukawa H, Natori D, Hoshino A, Negishi A, Okita N, Komatsu M and Higami Y: Trehalose protects against oxidative stress by regulating the Keap1-Nrf2 and autophagy pathways. Redox Biol. 15:115–124. 2018. View Article : Google Scholar : PubMed/NCBI

218 

Song HC, Chen Y, Chen Y, Park J, Zheng M, Surh YJ, Kim UH, Park JW, Yu R, Chung HT and Joe Y: GSK-3β inhibition by curcumin mitigates amyloidogenesis via TFEB activation and anti-oxidative activity in human neuroblastoma cells. Free Radic Res. 54:918–930. 2020. View Article : Google Scholar : PubMed/NCBI

219 

Zhang L, Zhang J, Ye Z, Manevich Y, Ball LE, Bethard JR, Jiang YL, Broome AM, Dalton AC, Wang GY, et al: Isoflavone ME-344 disrupts redox homeostasis and mitochondrial function by targeting heme oxygenase 1. Cancer Res. 79:4072–4085. 2019. View Article : Google Scholar : PubMed/NCBI

220 

Dong J, Li Y, Xiao H, Luo D, Zhang S, Zhu C, Jiang M, Cui M, Lu L and Fan S: Cordycepin sensitizes breast cancer cells toward irradiation through elevating ROS production involving Nrf2. Toxicol Appl Pharmacol. 364:12–21. 2019. View Article : Google Scholar : PubMed/NCBI

221 

Liang X, Wang P, Yang C, Huang F, Wu H, Shi H and Wu X: Galangin inhibits gastric cancer growth through enhancing STAT3 mediated ROS production. Front Pharmacol. 12:6466282021. View Article : Google Scholar : PubMed/NCBI

222 

Binnewies M, Roberts EW, Kersten K, Chan V, Fearon DF, Merad M, Coussens LM, Gabrilovich DI, Ostrand-Rosenberg S, Hedrick CC, et al: Understanding the tumor immune microenvironment (TIME) for effective therapy. Nat Med. 24:541–550. 2018. View Article : Google Scholar : PubMed/NCBI

223 

Hanahan D and Weinberg RA: Hallmarks of cancer: The next generation. Cell. 144:646–674. 2011. View Article : Google Scholar : PubMed/NCBI

224 

Muliaditan T, Caron J, Okesola M, Opzoomer JW, Kosti P, Georgouli M, Gordon P, Lall S, Kuzeva DM, Pedro L, et al: Macrophages are exploited from an innate wound healing response to facilitate cancer metastasis. Nat Commun. 9:29512018. View Article : Google Scholar : PubMed/NCBI

225 

Was H, Dulak J and Jozkowicz A: Heme oxygenase-1 in tumor biology and therapy. Curr Drug Targets. 11:1551–1570. 2010. View Article : Google Scholar : PubMed/NCBI

226 

Hashimoto K, Nishimura S, Ito T, Kakinoki R and Akagi M: Immunohistochemical expression and clinicopathological assessment of PD-1, PD-L1, NY-ESO-1, and MAGE-A4 expression in highly aggressive soft tissue sarcomas. Eur J Histochem. 66:33932022. View Article : Google Scholar : PubMed/NCBI

227 

Muliaditan T, Opzoomer JW, Caron J, Okesola M, Kosti P, Lall S, Van Hemelrijck M, Dazzi F, Tutt A, Grigoriadis A, et al: Repurposing Tin mesoporphyrin as an immune checkpoint inhibitor shows therapeutic efficacy in preclinical models of cancer. Clin Cancer Res. 24:1617–1628. 2018. View Article : Google Scholar : PubMed/NCBI

228 

Spear S, Le Saux O, Mirza H.B, Iyer N, Tyson K, Grundland Freile F, Walton JB, Woodman C, Jarvis S, Ennis DP, et al: PTEN loss shapes macrophage dynamics in high-grade serous ovarian carcinoma. Cancer Res. 84:3772–3787. 2024. View Article : Google Scholar : PubMed/NCBI

229 

Yuan H, Xia P, Sun X, Ma J, Xu X, Fu C, Zhou H, Guan Y, Li Z, Zhao S, et al: Photothermal nanozymatic nanoparticles induce ferroptosis and apoptosis through tumor microenvironment manipulation for cancer therapy. Small. 18:e22021612022. View Article : Google Scholar : PubMed/NCBI

230 

Gong X, Liu Y, Liang K, Chen Z, Ding K, Qiu L, Wei J and Du H: Cucurbitacin I reverses tumor-associated macrophage polarization to affect cancer cell metastasis. Int J Mol Sci. 24:159202023. View Article : Google Scholar : PubMed/NCBI

231 

Magri S, Musca B, Pinton L, Orecchini E, Belladonna ML, Orabona C, Bonaudo C, Volpin F, Ciccarino P, Baro V, et al: The immunosuppression pathway of tumor-associated macrophages is controlled by heme oxygenase-1 in glioblastoma patients. Int J Cancer. 151:2265–2277. 2022. View Article : Google Scholar : PubMed/NCBI

232 

Liu XM, Li Z, Wang XY, Ding BW, Wang JQ, Qiao X, Feng YK, Hao JH and Xu JY: Self-assembled HO-1i-Pt(IV) nanomedicine targeting p38/MAPK and MDR pathways for cancer chemo-immunotherapy. J Control Release. 379:797–813. 2025.(Epub ahead of print). View Article : Google Scholar : PubMed/NCBI

233 

Dulak J and Jozkowicz A: Novel faces of heme oxygenase-1: Mechanisms and therapeutic potentials. Antioxid Redox Signal. 20:1673–1676. 2014. View Article : Google Scholar : PubMed/NCBI

234 

Wadowski P, Juszczak M and Woźniak K: NRF2 modulators of plant origin and their ability to overcome multidrug resistance in cancers. Int J Mol Sci. 25:115002024. View Article : Google Scholar : PubMed/NCBI

235 

Ekiert HM and Szopa A: Biological activities of natural products. Molecules. 25:57692020. View Article : Google Scholar : PubMed/NCBI

236 

Yagüe E, Sun H and Hu Y: East Wind, West Wind: Toward the modernization of traditional Chinese medicine. Front Neurosci. 16:10578172022. View Article : Google Scholar : PubMed/NCBI

237 

Chen Z, Yu T, Wang Y, Li J, Zhang B and Zhou L: Mechanistic insights into the role of traditional Chinese medicine in treating gastric cancer. Front Oncol. 14:14436862025. View Article : Google Scholar : PubMed/NCBI

238 

Liu Y, Fang C, Luo J, Gong C, Wang L and Zhu S: Traditional Chinese medicine for cancer treatment. Am J Chin Med. 52:583–604. 2024. View Article : Google Scholar : PubMed/NCBI

239 

Gorrini C, Harris IS and Mak TW: Modulation of oxidative stress as an anticancer strategy. Nat Rev Drug Discov. 12:931–947. 2013. View Article : Google Scholar : PubMed/NCBI

240 

Arnold JN, Magiera L, Kraman M and Fearon DT: Tumoral immune suppression by macrophages expressing fibroblast activation protein-α and heme oxygenase-1. Cancer Immunol Res. 2:121–126. 2014. View Article : Google Scholar : PubMed/NCBI

241 

Zheng Z, Ke L, Ye S, Shi P and Yao H: Pharmacological mechanisms of cryptotanshinone: Recent advances in cardiovascular, cancer, and neurological disease applications. Drug Des Devel Ther. 18:6031–6060. 2024. View Article : Google Scholar : PubMed/NCBI

242 

Chiang SK, Chen SE and Chang LC: A dual role of heme oxygenase-1 in cancer cells. Int J Mol Sci. 20:392018. View Article : Google Scholar : PubMed/NCBI

243 

Calò LA, Pagnin E, Davis PA, Armanini D, Mormino P, Rossi GP and Pessina AC: Oxidative stress-related proteins in a Conn's adenoma tissue. Relevance for aldosterone's prooxidative and proinflammatory activity. J Endocrinol Invest. 33:48–53. 2010. View Article : Google Scholar : PubMed/NCBI

244 

Zhang C, Deng Z, Wu J, Ding C, Li Z, Xu Z, Chen W, Yang K, Wei H, He T, et al: HO-1 impairs the efficacy of radiotherapy by redistributing cGAS and STING in tumors. J Clin Invest. 134:e1810442024. View Article : Google Scholar : PubMed/NCBI

Related Articles

  • Abstract
  • Purchase
  • Download
  • Twitter
Copy and paste a formatted citation
Spandidos Publications style
Ouyang X, Wang J, Qiu X, Hu D and Cui J: Current developments of pharmacotherapy targeting heme oxygenase 1 in cancer (Review). Int J Oncol 66: 26, 2025.
APA
Ouyang, X., Wang, J., Qiu, X., Hu, D., & Cui, J. (2025). Current developments of pharmacotherapy targeting heme oxygenase 1 in cancer (Review). International Journal of Oncology, 66, 26. https://doi.org/10.3892/ijo.2025.5732
MLA
Ouyang, X., Wang, J., Qiu, X., Hu, D., Cui, J."Current developments of pharmacotherapy targeting heme oxygenase 1 in cancer (Review)". International Journal of Oncology 66.4 (2025): 26.
Chicago
Ouyang, X., Wang, J., Qiu, X., Hu, D., Cui, J."Current developments of pharmacotherapy targeting heme oxygenase 1 in cancer (Review)". International Journal of Oncology 66, no. 4 (2025): 26. https://doi.org/10.3892/ijo.2025.5732
Copy and paste a formatted citation
x
Spandidos Publications style
Ouyang X, Wang J, Qiu X, Hu D and Cui J: Current developments of pharmacotherapy targeting heme oxygenase 1 in cancer (Review). Int J Oncol 66: 26, 2025.
APA
Ouyang, X., Wang, J., Qiu, X., Hu, D., & Cui, J. (2025). Current developments of pharmacotherapy targeting heme oxygenase 1 in cancer (Review). International Journal of Oncology, 66, 26. https://doi.org/10.3892/ijo.2025.5732
MLA
Ouyang, X., Wang, J., Qiu, X., Hu, D., Cui, J."Current developments of pharmacotherapy targeting heme oxygenase 1 in cancer (Review)". International Journal of Oncology 66.4 (2025): 26.
Chicago
Ouyang, X., Wang, J., Qiu, X., Hu, D., Cui, J."Current developments of pharmacotherapy targeting heme oxygenase 1 in cancer (Review)". International Journal of Oncology 66, no. 4 (2025): 26. https://doi.org/10.3892/ijo.2025.5732
Follow us
  • Twitter
  • LinkedIn
  • Facebook
About
  • Spandidos Publications
  • Careers
  • Cookie Policy
  • Privacy Policy
How can we help?
  • Help
  • Live Chat
  • Contact
  • Email to our Support Team