You can change your cookie settings at any time by following the instructions in our Cookie Policy. To find out more, you may read our Privacy Policy.
I agree
International Journal of Molecular Medicine is an international journal devoted to molecular mechanisms of human disease.
International Journal of Oncology is an international journal devoted to oncology research and cancer treatment.
Covers molecular medicine topics such as pharmacology, pathology, genetics, neuroscience, infectious diseases, molecular cardiology, and molecular surgery.
Oncology Reports is an international journal devoted to fundamental and applied research in Oncology.
Experimental and Therapeutic Medicine is an international journal devoted to laboratory and clinical medicine.
Oncology Letters is an international journal devoted to Experimental and Clinical Oncology.
Explores a wide range of biological and medical fields, including pharmacology, genetics, microbiology, neuroscience, and molecular cardiology.
International journal addressing all aspects of oncology research, from tumorigenesis and oncogenes to chemotherapy and metastasis.
Multidisciplinary open-access journal spanning biochemistry, genetics, neuroscience, environmental health, and synthetic biology.
Open-access journal combining biochemistry, pharmacology, immunology, and genetics to advance health through functional nutrition.
Publishes open-access research on using epigenetics to advance understanding and treatment of human disease.
An International Open Access Journal Devoted to General Medicine.
![]() |
![]() |
![]() |
![]() |
|
Jassim A, Rahrmann EP, Simons BD and Gilbertson RJ: Cancers make their own luck: Theories of cancer origins. Nat Rev Cancer. 23:710–724. 2023. View Article : Google Scholar : PubMed/NCBI | |
|
Mattiuzzi C and Lippi G: Cancer statistics: A comparison between World Health Organization (WHO) and Global Burden of Disease (GBD). Eur J Public Health. 30:1026–1027. 2020. View Article : Google Scholar | |
|
Wang J, Yang J, Narang A, He J, Wolfgang C, Li K and Zheng L: Consensus, debate, and prospective on pancreatic cancer treatments. J Hematol Oncol. 17:922024. View Article : Google Scholar : PubMed/NCBI | |
|
Long GV, Swetter SM, Menzies AM, Gershenwald JE and Scolyer RA: Cutaneous melanoma. Lancet. 402:485–502. 2023. View Article : Google Scholar : PubMed/NCBI | |
|
Joshi SS and Badgwell BD: Current treatment and recent progress in gastric cancer. CA Cancer J Clin. 71:264–279. 2021. View Article : Google Scholar : PubMed/NCBI | |
|
de Visser KE and Joyce JA: The evolving tumor microenvironment: From cancer initiation to metastatic outgrowth. Cancer Cell. 41:374–403. 2023. View Article : Google Scholar : PubMed/NCBI | |
|
Gonçalves AC, Richiardone E, Jorge J, Polónia B, Xavier CPR, Salaroglio IC, Riganti C, Vasconcelos MH, Corbet C and Sarmento-Ribeiro AB: Impact of cancer metabolism on therapy resistance-clinical implications. Drug Resist Updat. 59:1007972021. View Article : Google Scholar | |
|
Kalli M, Poskus MD, Stylianopoulos T and Zervantonakis IK: Beyond matrix stiffness: Targeting force-induced cancer drug resistance. Trends Cancer. 9:937–954. 2023. View Article : Google Scholar : PubMed/NCBI | |
|
Chen D, Gu X, Nurzat Y, Xu L, Li X, Wu L, Jiao H, Gao P, Zhu X, Yan D, et al: Writers, readers, and erasers RNA modifications and drug resistance in cancer. Mol Cancer. 23:1782024. View Article : Google Scholar : PubMed/NCBI | |
|
He J, Qiu Z, Fan J, Xie X, Sheng Q and Sui X: Drug tolerant persister cell plasticity in cancer: A revolutionary strategy for more effective anticancer therapies. Signal Transduct Target Ther. 9:2092024. View Article : Google Scholar : PubMed/NCBI | |
|
Nussinov R, Tsai C-J and Jang H: Anticancer drug resistance: An update and perspective. Drug Resist Updat. 59:1007962021. View Article : Google Scholar : PubMed/NCBI | |
|
Polak R, Zhang ET and Kuo CJ: Cancer organoids 2.0: Modelling the complexity of the tumour immune microenvironment. Nat Rev Cancer. 24:523–539. 2024. View Article : Google Scholar : PubMed/NCBI | |
|
Hessmann E, Buchholz SM, Demir IE, Singh SK, Gress TM, Ellenrieder V and Neesse A: Microenvironmental determinants of pancreatic cancer. Physiol Rev. 100:1707–1751. 2020. View Article : Google Scholar : PubMed/NCBI | |
|
Koenderman L and Vrisekoop N: Neutrophils in cancer: From biology to therapy. Cell Mol Immunol. 22:4–23. 2025. View Article : Google Scholar : | |
|
Liu S, Wu W, Du Y, Yin H, Chen Q, Yu W, Wang W, Yu J, Liu L, Lou W and Pu N: The evolution and heterogeneity of neutrophils in cancers: Origins, subsets, functions, orchestrations and clinical applications. Mol Cancer. 22:1482023. View Article : Google Scholar : PubMed/NCBI | |
|
Zhang J, Gu J, Wang X, Ji C, Yu D, Wang M, Pan J, Santos HA, Zhang H and Zhang X: Engineering and targeting neutrophils for cancer therapy. Adv Mater. 36:e23103182024. View Article : Google Scholar : PubMed/NCBI | |
|
van Vlerken-Ysla L, Tyurina YY, Kagan VE and Gabrilovich DI: Functional states of myeloid cells in cancer. Cancer Cell. 41:490–504. 2023. View Article : Google Scholar : PubMed/NCBI | |
|
Que H, Fu Q, Lan T, Tian X and Wei X: Tumor-associated neutrophils and neutrophil-targeted cancer therapies. Biochim Biophys Acta Rev Cancer. 1877:1887622022. View Article : Google Scholar : PubMed/NCBI | |
|
Xue R, Zhang Q, Cao Q, Kong R, Xiang X, Liu H, Feng M, Wang F, Cheng J, Li Z, et al: Liver tumour immune microenvironment subtypes and neutrophil heterogeneity. Nature. 612:141–147. 2022. View Article : Google Scholar : PubMed/NCBI | |
|
Jaillon S, Ponzetta A, Di Mitri D, Santoni A, Bonecchi R and Mantovani A: Neutrophil diversity and plasticity in tumour progression and therapy. Nat Rev Cancer. 20:485–503. 2020. View Article : Google Scholar : PubMed/NCBI | |
|
Mantovani A, Cassatella MA, Costantini C and Jaillon S: Neutrophils in the activation and regulation of innate and adaptive immunity. Nat Rev Immunol. 11:519–531. 2011. View Article : Google Scholar : PubMed/NCBI | |
|
Fridlender ZG, Sun J, Kim S, Kapoor V, Cheng G, Ling L, Worthen GS and Albelda SM: Polarization of tumor-associated neutrophil phenotype by TGF-beta: 'N1' versus 'N2' TAN. Cancer Cell. 16:183–194. 2009. View Article : Google Scholar : PubMed/NCBI | |
|
Shaul ME and Fridlender ZG: Tumour-associated neutrophils in patients with cancer. Nat Rev Clin Oncol. 16:601–620. 2019. View Article : Google Scholar : PubMed/NCBI | |
|
Salcher S, Sturm G, Horvath L, Untergasser G, Kuempers C, Fotakis G, Panizzolo E, Martowicz A, Trebo M, Pall G, et al: High-resolution single-cell atlas reveals diversity and plasticity of tissue-resident neutrophils in non-small cell lung cancer. Cancer Cell. 40:1503–1520.e8. 2022. View Article : Google Scholar : PubMed/NCBI | |
|
Ng MSF, Kwok I, Tan L, Shi C, Cerezo-Wallis D, Tan Y, Leong K, Calvo GF, Yang K, Zhang Y, et al: Deterministic reprogramming of neutrophils within tumors. Science. 383:eadf64932024. View Article : Google Scholar : PubMed/NCBI | |
|
Wu Y, Ma J, Yang X, Nan F, Zhang T, Ji S, Rao D, Feng H, Gao K, Gu X, et al: Neutrophil profiling illuminates anti-tumor antigen-presenting potency. Cell. 187:1422–1439.e24. 2024. View Article : Google Scholar : PubMed/NCBI | |
|
Wang L, Liu Y, Dai Y, Tang X, Yin T, Wang C, Wang T, Dong L, Shi M, Qin J, et al: Single-cell RNA-seq analysis reveals BHLHE40-driven pro-tumour neutrophils with hyperactivated glycolysis in pancreatic tumour microenvironment. Gut. 72:958–971. 2023. View Article : Google Scholar | |
|
Xia L, Oyang L, Lin J, Tan S, Han Y, Wu N, Yi P, Tang L, Pan Q, Rao S, et al: The cancer metabolic reprogramming and immune response. Mol Cancer. 20:282021. View Article : Google Scholar : PubMed/NCBI | |
|
Tian S, Chu Y, Hu J, Ding X, Liu Z, Fu D, Yuan Y, Deng Y, Wang G, Wang L and Wang Z: Tumour-associated neutrophils secrete AGR2 to promote colorectal cancer metastasis via its receptor CD98hc-xCT. Gut. 71:2489–2501. 2022. View Article : Google Scholar : PubMed/NCBI | |
|
Tie Y, Tang F, Wei YQ and Wei XW: Immunosuppressive cells in cancer: Mechanisms and potential therapeutic targets. J Hematol Oncol. 15:612022. View Article : Google Scholar : PubMed/NCBI | |
|
Lianyuan T, Gang L, Ming T, Dianrong X, Chunhui Y, Zhaolai M and Bin J: Tumor associated neutrophils promote the metastasis of pancreatic ductal adenocarcinoma. Cancer Biol Ther. 21:937–945. 2020. View Article : Google Scholar : PubMed/NCBI | |
|
Amorim C, Docasar CL, Guimarães-Bastos D, Frony AC, Barja-Fidalgo C, Renovato-Martins M and Moraes JA: Extracellular vesicles derived from MDA-MB-231 cells trigger neutrophils to a pro-tumor profile. Cells. 11:18752022. View Article : Google Scholar : PubMed/NCBI | |
|
Qin F, Liu X, Chen J, Huang S, Wei W, Zou Y, Liu X, Deng K, Mo S, Chen J, et al: Anti-TGF-β attenuates tumor growth via polarization of tumor associated neutrophils towards an anti-tumor phenotype in colorectal cancer. J Cancer. 11:2580–2592. 2020. View Article : Google Scholar : | |
|
Peng H, Shen J, Long X, Zhou X, Zhang J, Xu X, Huang T, Xu H, Sun S, Li C, et al: Local release of TGF-β inhibitor modulates tumor-associated neutrophils and enhances pancreatic cancer response to combined irreversible electroporation and immunotherapy. Adv Sci (Weinh). 9:e21052402022. View Article : Google Scholar | |
|
Tan Q, Ma X, Yang B, Liu Y, Xie Y, Wang X, Yuan W and Ma J: Periodontitis pathogen Porphyromonas gingivalis promotes pancreatic tumorigenesis via neutrophil elastase from tumor-associated neutrophils. Gut Microbes. 14:20737852022. View Article : Google Scholar : PubMed/NCBI | |
|
Li S, Cong X, Gao H, Lan X, Li Z, Wang W, Song S, Wang Y, Li C, Zhang H, et al: Tumor-associated neutrophils induce EMT by IL-17a to promote migration and invasion in gastric cancer cells. J Exp Clin Cancer Res. 38:62019. View Article : Google Scholar : PubMed/NCBI | |
|
Zhang J, Yu D, Ji C, Wang M, Fu M, Qian Y and Zhang X, Ji R, Li C, Gu J and Zhang X: Exosomal miR-4745-5p/3911 from N2-polarized tumor-associated neutrophils promotes gastric cancer metastasis by regulating SLIT2. Mol Cancer. 23:1982024. View Article : Google Scholar : PubMed/NCBI | |
|
Bodac A, Mayet A, Rana S, Pascual J, Bowler AD, Roh V, Fournier N, Craciun L, Demetter P, Radtke F and Meylan E: Bcl-xL targeting eliminates ageing tumor-promoting neutrophils and inhibits lung tumor growth. EMBO Mol Med. 16:158–184. 2024. View Article : Google Scholar : PubMed/NCBI | |
|
Zhang S, Sun L, Zuo J and Feng D: Tumor associated neutrophils governs tumor progression through an IL-10/STAT3/PD-L1 feedback signaling loop in lung cancer. Transl Oncol. 40:1018662024. View Article : Google Scholar | |
|
Huang X, Nepovimova E, Adam V, Sivak L, Heger Z, Valko M, Wu Q and Kuca K: Neutrophils in cancer immunotherapy: Friends or foes? Mol Cancer. 23:1072024. View Article : Google Scholar : PubMed/NCBI | |
|
Bird L: Neutrophils become pro-angiogenic in tumours. Nat Rev Immunol. 24:1572024. View Article : Google Scholar : PubMed/NCBI | |
|
Maas RR, Soukup K, Fournier N, Massara M, Galland S, Kornete M, Wischnewski V, Lourenco J, Croci D, Álvarez-Prado ÁF, et al: The local microenvironment drives activation of neutrophils in human brain tumors. Cell. 186:4546–4566.e27. 2023. View Article : Google Scholar : PubMed/NCBI | |
|
Qu X, Zhuang G, Yu L, Meng G and Ferrara N: Induction of Bv8 expression by granulocyte colony-stimulating factor in CD11b+Gr1+ cells: Key role of Stat3 signaling. J Biol Chem. 287:19574–19584. 2012. View Article : Google Scholar : PubMed/NCBI | |
|
Fetz AE, Radic MZ and Bowlin GL: Neutrophils in biomaterial-guided tissue regeneration: Matrix reprogramming for angiogenesis. Tissue Eng Part B Rev. 27:95–106. 2021. View Article : Google Scholar | |
|
Vannitamby A, Seow HJ, Anderson G, Vlahos R, Thompson M, Steinfort D, Irving LB and Bozinovski S: Tumour-associated neutrophils and loss of epithelial PTEN can promote corticosteroid-insensitive MMP-9 expression in the chronically inflamed lung microenvironment. Thorax. 72:1140–1143. 2017. View Article : Google Scholar : PubMed/NCBI | |
|
Mizuno R, Kawada K, Itatani Y, Ogawa R, Kiyasu Y and Sakai Y: The role of tumor-associated neutrophils in colorectal cancer. Int J Mol Sci. 20:5292019. View Article : Google Scholar : PubMed/NCBI | |
|
Wang Y, Liu F, Chen L, Fang C, Li S, Yuan S, Qian X, Yin Y, Yu B, Fu B, et al: Neutrophil extracellular traps (NETs) promote non-small cell lung cancer metastasis by suppressing lncRNA MIR503HG to activate the NF-κB/NLRP3 inflammasome pathway. Front Immunol. 13:8675162022. View Article : Google Scholar | |
|
Adrover JM, McDowell SAC, He XY, Quail DF and Egeblad M: NETworking with cancer: The bidirectional interplay between cancer and neutrophil extracellular traps. Cancer Cell. 41:505–526. 2023. View Article : Google Scholar : PubMed/NCBI | |
|
Chu C, Wang X, Yang C, Chen F, Shi L, Xu W, Wang K, Liu B, Wang C, Sun D and Ding W: Neutrophil extracellular traps drive intestinal microvascular endothelial ferroptosis by impairing Fundc1-dependent mitophagy. Redox Biol. 67:1029062023. View Article : Google Scholar : PubMed/NCBI | |
|
Zheng F, Ma L, Li X, Wang Z, Gao R, Peng C, Kang B, Wang Y, Luo T, Wu J, et al: Neutrophil extracellular traps induce glomerular endothelial cell dysfunction and pyroptosis in diabetic kidney disease. Diabetes. 71:2739–2750. 2022. View Article : Google Scholar : PubMed/NCBI | |
|
Ngo AT, Skidmore A, Oberg J, Yarovoi I, Sarkar A, Levine N, Bochenek V, Zhao G, Rauova L, Kowalska MA, et al: Platelet factor 4 limits neutrophil extracellular trap- and cell-free DNA-induced thrombogenicity and endothelial injury. JCI Insight. 8:e1710542023. View Article : Google Scholar : PubMed/NCBI | |
|
Teijeira Á, Garasa S, Gato M, Alfaro C, Migueliz I, Cirella A, de Andrea C, Ochoa MC, Otano I, Etxeberria I, et al: CXCR1 and CXCR2 chemokine receptor agonists produced by tumors induce neutrophil extracellular traps that interfere with immune cytotoxicity. Immunity. 52:856–871.e8. 2020. View Article : Google Scholar : PubMed/NCBI | |
|
Cristinziano L, Modestino L, Antonelli A, Marone G, Simon HU, Varricchi G and Galdiero MR: Neutrophil extracellular traps in cancer. Semin Cancer Biol. 79:91–104. 2022. View Article : Google Scholar | |
|
Pan JJ, Xie SZ, Zheng X, Xu JF, Xu H, Yin RQ, Luo YL, Shen L, Chen ZR, Chen YR, et al: Acetyl-CoA metabolic accumulation promotes hepatocellular carcinoma metastasis via enhancing CXCL1-dependent infiltration of tumor-associated neutrophils. Cancer Lett. 592:2169032024. View Article : Google Scholar : PubMed/NCBI | |
|
Sun B, Qin W, Song M, Liu L, Yu Y, Qi X and Sun H: neutrophil suppresses tumor cell proliferation via fas/fas ligand pathway mediated cell cycle arrested. Int J Biol Sci. 14:2103–2113. 2018. View Article : Google Scholar : | |
|
Blaisdell A, Crequer A, Columbus D, Daikoku T, Mittal K, Dey SK and Erlebacher A: Neutrophils oppose uterine epithelial carcinogenesis via debridement of hypoxic tumor cells. Cancer Cell. 28:785–799. 2015. View Article : Google Scholar : PubMed/NCBI | |
|
Gershkovitz M, Caspi Y, Fainsod-Levi T, Katz B, Michaeli J, Khawaled S, Lev S, Polyansky L, Shaul ME, Sionov RV, et al: TRPM2 mediates neutrophil killing of disseminated tumor cells. Cancer Res. 78:2680–2690. 2018. View Article : Google Scholar : PubMed/NCBI | |
|
Li Y, Wu S, Zhao Y, Dinh T, Jiang D, Selfridge JE, Myers G, Wang Y, Zhao X, Tomchuck S, et al: Neutrophil extracellular traps induced by chemotherapy inhibit tumor growth in murine models of colorectal cancer. J Clin Invest. 134:e1750312024. View Article : Google Scholar : PubMed/NCBI | |
|
Antuamwine BB, Bosnjakovic R, Hofmann-Vega F, Wang X, Theodosiou T, Iliopoulos I and Brandau S: N1 versus N2 and PMN-MDSC: A critical appraisal of current concepts on tumor-associated neutrophils and new directions for human oncology. Immunol Rev. 314:250–279. 2023. View Article : Google Scholar | |
|
Koga Y, Matsuzaki A, Suminoe A, Hattori H and Hara T: Neutrophil-derived TNF-related apoptosis-inducing ligand (TRAIL): A novel mechanism of antitumor effect by neutrophils. Cancer Res. 64:1037–1043. 2004. View Article : Google Scholar : PubMed/NCBI | |
|
Cui C, Chakraborty K, Tang XA, Zhou G, Schoenfelt KQ, Becker KM, Hoffman A, Chang YF, Blank A, Reardon CA, et al: Neutrophil elastase selectively kills cancer cells and attenuates tumorigenesis. Cell. 184:3163–3177.e21. 2021. View Article : Google Scholar : PubMed/NCBI | |
|
Hirschhorn D, Budhu S, Kraehenbuehl L, Gigoux M, Schröder D, Chow A, Ricca JM, Gasmi B, De Henau O, Mangarin LMB, et al: T cell immunotherapies engage neutrophils to eliminate tumor antigen escape variants. Cell. 186:1432–1447.e17. 2023. View Article : Google Scholar : PubMed/NCBI | |
|
Zhou Z, Wang P, Sun R, Li J, Hu Z, Xin H, Luo C, Zhou J, Fan J and Zhou S: Tumor-associated neutrophils and macrophages interaction contributes to intrahepatic cholangiocarcinoma progression by activating STAT3. J Immunother Cancer. 9:e0019462021. View Article : Google Scholar : PubMed/NCBI | |
|
Singhal S, Rao AS, Stadanlick J, Bruns K, Sullivan NT, Bermudez A, Honig-Frand A, Krouse R, Arambepola S, Guo E, et al: Human tumor-associated macrophages and neutrophils regulate antitumor antibody efficacy through lethal and sublethal trogocytosis. Cancer Res. 84:1029–1047. 2024. View Article : Google Scholar : PubMed/NCBI | |
|
Wu L and Zhang XH: Tumor-associated neutrophils and macrophages-heterogenous but not chaotic. Front Immunol. 11:5539672020. View Article : Google Scholar : PubMed/NCBI | |
|
Haider P, Kral-Pointner JB, Mayer J, Richter M, Kaun C, Brostjan C, Eilenberg W, Fischer MB, Speidl WS, Hengstenberg C, et al: Neutrophil extracellular trap degradation by differently polarized macrophage subsets. Arterioscler Thromb Vasc Biol. 40:2265–2278. 2020. View Article : Google Scholar : PubMed/NCBI | |
|
Prame Kumar K, Nicholls AJ and Wong CHY: Partners in crime: Neutrophils and monocytes/macrophages in inflammation and disease. Cell Tissue Res. 371:551–565. 2018. View Article : Google Scholar : PubMed/NCBI | |
|
Borella R, De Biasi S, Paolini A, Boraldi F, Lo Tartaro D, Mattioli M, Fidanza L, Neroni A, Caro-Maldonado A, Meschiari M, et al: Metabolic reprograming shapes neutrophil functions in severe COVID-19. Eur J Immunol. 52:484–502. 2022. View Article : Google Scholar | |
|
Cannarile MA, Weisser M, Jacob W, Jegg AM, Ries CH and Rüttinger D: Colony-stimulating factor 1 receptor (CSF1R) inhibitors in cancer therapy. J Immunother Cancer. 5:532017. View Article : Google Scholar : PubMed/NCBI | |
|
Cho H, Seo Y, Loke KM, Kim SW, Oh SM, Kim JH, Soh J, Kim HS, Lee H, Kim J, et al: Cancer-stimulated CAFs enhance monocyte differentiation and protumoral TAM Activation via IL6 and GM-CSF Secretion. Clin Cancer Res. 24:5407–5421. 2018. View Article : Google Scholar : PubMed/NCBI | |
|
Schmidt E, Distel L, Erber R, Büttner-Herold M, Rosahl MC, Ott OJ, Strnad V, Hack CC, Hartmann A, Hecht M, et al: Tumor-associated neutrophils are a negative prognostic factor in early luminal breast cancers lacking immunosuppressive macrophage recruitment. Cancers (Basel). 16:31602024. View Article : Google Scholar : PubMed/NCBI | |
|
Puerta-Arias JD, Mejía SP and González Á: The role of the interleukin-17 axis and neutrophils in the pathogenesis of endemic and systemic mycoses. Front Cell Infect Microbiol. 10:5953012020. View Article : Google Scholar | |
|
Murata K, Murao A, Aziz M and Wang P: Extracellular CIRP induces novel Nectin-2+ (CD112+) neutrophils to promote Th1 differentiation in sepsis. J Immunol. 210:310–321. 2023. View Article : Google Scholar | |
|
Parackova Z, Bloomfield M, Klocperk A and Sediva A: Neutrophils mediate Th17 promotion in COVID-19 patients. J Leukoc Biol. 109:73–76. 2021. View Article : Google Scholar | |
|
Mishalian I, Bayuh R, Eruslanov E, Michaeli J, Levy L, Zolotarov L, Singhal S, Albelda SM, Granot Z and Fridlender ZG: Neutrophils recruit regulatory T-cells into tumors via secretion of CCL17-a new mechanism of impaired antitumor immunity. Int J Cancer. 135:1178–1186. 2014. View Article : Google Scholar : PubMed/NCBI | |
|
Luo H, Ikenaga N, Nakata K, Higashijima N, Zhong P, Kubo A, Wu C, Tsutsumi C, Shimada Y, Hayashi M, et al: Tumor-associated neutrophils upregulate Nectin2 expression, creating the immunosuppressive microenvironment in pancreatic ductal adenocarcinoma. J Exp Clin Cancer Res. 43:2582024. View Article : Google Scholar : PubMed/NCBI | |
|
Sun R, Xiong Y, Liu H, Gao C, Su L, Weng J, Yuan X, Zhang D and Feng J: Tumor-associated neutrophils suppress antitumor immunity of NK cells through the PD-L1/PD-1 axis. Transl Oncol. 13:1008252020. View Article : Google Scholar : PubMed/NCBI | |
|
Tumino N, Besi F, Di Pace AL, Mariotti FR, Merli P, Li Pira G, Galaverna F, Pitisci A, Ingegnere T, Pelosi A, et al: PMN-MDSC are a new target to rescue graft-versus-leukemia activity of NK cells in haplo-HSC transplantation. Leukemia. 34:932–937. 2020. View Article : Google Scholar : | |
|
Pelosi A, Besi F, Tumino N, Merli P, Quatrini L, Li Pira G, Algeri M, Moretta L and Vacca P: NK Cells and PMN-MDSCs in the graft from G-CSF mobilized haploidentical donors display distinct gene expression profiles from those of the non-mobilized counterpart. Front Immunol. 12:6573292021. View Article : Google Scholar : PubMed/NCBI | |
|
Mouchemore KA and Anderson RL: Immunomodulatory effects of G-CSF in cancer: Therapeutic implications. Semin Immunol. 54:1015122021. View Article : Google Scholar : PubMed/NCBI | |
|
Ogura K, Sato-Matsushita M, Yamamoto S, Hori T, Sasahara M, Iwakura Y, Saiki I, Tahara H and Hayakawa Y: NK cells control tumor-promoting function of neutrophils in mice. Cancer Immunol Res. 6:348–357. 2018. View Article : Google Scholar : PubMed/NCBI | |
|
Li X, Xie G, Chen J, Wang Y, Zhai J and Shen L: Tumour cell-derived serglycin promotes IL-8 secretion of CAFs in gastric cancer. Br J Cancer. 131:271–282. 2024. View Article : Google Scholar : PubMed/NCBI | |
|
Song M, He J, Pan QZ, Yang J, Zhao J, Zhang YJ, Huang Y, Tang Y, Wang Q, He J, et al: Cancer-associated fibroblast-mediated cellular crosstalk supports hepatocellular carcinoma progression. Hepatology. 73:1717–1735. 2021. View Article : Google Scholar : PubMed/NCBI | |
|
Li C, Chen T, Liu J, Wang Y, Zhang C, Guo L, Shi D, Zhang T, Wang X and Li J: FGF19-Induced inflammatory CAF promoted neutrophil extracellular trap formation in the liver metastasis of colorectal cancer. Adv Sci (Weinh). 10:e23026132023. View Article : Google Scholar : PubMed/NCBI | |
|
Dudeck J, Kotrba J, Immler R, Hoffmann A, Voss M, Alexaki VI, Morton L, Jahn SR, Katsoulis-Dimitriou K, Winzer S, et al: Directional mast cell degranulation of tumor necrosis factor into blood vessels primes neutrophil extravasation. Immunity. 54:468–483.e5. 2021. View Article : Google Scholar : PubMed/NCBI | |
|
Li JY, Chen YP, Li YQ, Liu N and Ma J: Chemotherapeutic and targeted agents can modulate the tumor microenvironment and increase the efficacy of immune checkpoint blockades. Mol Cancer. 20:272021. View Article : Google Scholar : PubMed/NCBI | |
|
Oliveira G and Wu CJ: Dynamics and specificities of T cells in cancer immunotherapy. Nat Rev Cancer. 23:295–316. 2023. View Article : Google Scholar : PubMed/NCBI | |
|
Yi M, Zheng X, Niu M, Zhu S, Ge H and Wu K: Combination strategies with PD-1/PD-L1 blockade: Current advances and future directions. Mol Cancer. 21:282022. View Article : Google Scholar : PubMed/NCBI | |
|
Chu X, Tian W, Wang Z, Zhang J and Zhou R: Co-inhibition of TIGIT and PD-1/PD-L1 in cancer immunotherapy: Mechanisms and clinical trials. Mol Cancer. 22:932023. View Article : Google Scholar : PubMed/NCBI | |
|
Wu M, Huang Q, Xie Y, Wu X, Ma H, Zhang Y and Xia Y: Improvement of the anticancer efficacy of PD-1/PD-L1 blockade via combination therapy and PD-L1 regulation. J Hematol Oncol. 15:242022. View Article : Google Scholar : PubMed/NCBI | |
|
Gjuka D, Adib E, Garrison K, Chen J, Zhang Y, Li W, Boutz D, Lamb C, Tanno Y, Nassar A, et al: Enzyme-mediated depletion of methylthioadenosine restores T cell function in MTAP-deficient tumors and reverses immunotherapy resistance. Cancer Cell. 41:1774–1787.e9. 2023. View Article : Google Scholar | |
|
Niederlova V, Tsyklauri O, Kovar M and Stepanek O: IL-2-driven CD8+ T cell phenotypes: Implications for immunotherapy. Trends Immunol. 44:890–901. 2023. View Article : Google Scholar : PubMed/NCBI | |
|
Si J, Shi X, Sun S, Zou B, Li Y, An D, Lin X, Gao Y, Long F, Pang B, et al: Hematopoietic progenitor kinase1 (HPK1) mediates T cell dysfunction and is a druggable target for T cell-based immunotherapies. Cancer Cell. 38:551–566.e11. 2020. View Article : Google Scholar : PubMed/NCBI | |
|
Miao S, Rodriguez BL and Gibbons DL: The multifaceted role of neutrophils in NSCLC in the era of immune checkpoint inhibitors. Cancers (Basel). 16:25072024. View Article : Google Scholar : PubMed/NCBI | |
|
Xu P, Zhang X, Chen K, Zhu M, Jia R, Zhou Q, Yang J, Dai J, Jin Y and Shi K: Tumor cell-derived microparticles induced by methotrexate augment T-cell antitumor responses by downregulating expression of PD-1 in neutrophils. Cancer Immunol Res. 11:501–514. 2023. View Article : Google Scholar : PubMed/NCBI | |
|
Meng Y, Ye F, Nie P, Zhao Q, An L, Wang W, Qu S, Shen Z, Cao Z, Zhang X, et al: Immunosuppressive CD10+ALPL+ neutrophils promote resistance to anti-PD-1 therapy in HCC by mediating irreversible exhaustion of T cells. J Hepatol. 79:1435–1449. 2023. View Article : Google Scholar : PubMed/NCBI | |
|
Xie P, Yu M, Zhang B, Yu Q, Zhao Y, Wu M, Jin L, Yan J, Zhou B, Liu S, et al: CRKL dictates anti-PD-1 resistance by mediating tumor-associated neutrophil infiltration in hepatocellular carcinoma. J Hepatol. 81:93–107. 2024. View Article : Google Scholar : PubMed/NCBI | |
|
Michaeli J, Shaul ME, Mishalian I, Hovav AH, Levy L, Zolotriov L, Granot Z and Fridlender ZG: Tumor-associated neutrophils induce apoptosis of non-activated CD8 T-cells in a TNFα and NO-dependent mechanism, promoting a tumor-supportive environment. Oncoimmunology. 6:e13569652017. View Article : Google Scholar | |
|
Wang TT, Zhao YL, Peng LS, Chen N, Chen W, Lv YP, Mao FY, Zhang JY, Cheng P, Teng YS, et al: Tumour-activated neutrophils in gastric cancer foster immune suppression and disease progression through GM-CSF-PD-L1 pathway. Gut. 66:1900–1911. 2017. View Article : Google Scholar : PubMed/NCBI | |
|
Kaltenmeier C, Yazdani HO, Morder K, Geller DA, Simmons RL and Tohme S: Neutrophil extracellular traps promote T cell exhaustion in the tumor microenvironment. Front Immunol. 12:7852222021. View Article : Google Scholar : PubMed/NCBI | |
|
Xia Y, He J, Zhang H, Wang H, Tetz G, Maguire CA, Wang Y, Onuma A, Genkin D, Tetz V, et al: AAV-mediated gene transfer of DNase I in the liver of mice with colorectal cancer reduces liver metastasis and restores local innate and adaptive immune response. Mol Oncol. 14:2920–2935. 2020. View Article : Google Scholar : PubMed/NCBI | |
|
Zhang H, Wang Y, Onuma A, He J, Wang H, Xia Y, Lal R, Cheng X, Kasumova G, Hu Z, et al: Neutrophils extracellular traps inhibition improves PD-1 blockade immunotherapy in colorectal cancer. Cancers (Basel). 13:53332021. View Article : Google Scholar : PubMed/NCBI | |
|
Peng JJ, Wang L, Li Z, Ku CL and Ho PC: Metabolic challenges and interventions in CAR T cell therapy. Sci Immunol. 8:eabq30162023. View Article : Google Scholar : PubMed/NCBI | |
|
Albelda SM: CAR T cell therapy for patients with solid tumours: Key lessons to learn and unlearn. Nat Rev Clin Oncol. 21:47–66. 2024. View Article : Google Scholar | |
|
Bulliard Y, Andersson BS, Baysal MA, Damiano J and Tsimberidou AM: Reprogramming T cell differentiation and exhaustion in CAR-T cell therapy. J Hematol Oncol. 16:1082023. View Article : Google Scholar : PubMed/NCBI | |
|
Pan K, Farrukh H, Chittepu VCSR, Xu H, Pan CX and Zhu Z: CAR race to cancer immunotherapy: from CAR T, CAR NK to CAR macrophage therapy. J Exp Clin Cancer Res. 41:1192022. View Article : Google Scholar : PubMed/NCBI | |
|
Hong M, Clubb JD and Chen YY: Engineering CAR-T cells for next-generation cancer therapy. Cancer Cell. 38:473–488. 2020. View Article : Google Scholar : PubMed/NCBI | |
|
Zhang H, Yu P, Tomar VS, Chen X, Atherton MJ, Lu Z, Zhang HG, Li S, Ortiz A, Gui J, et al: Targeting PARP11 to avert immunosuppression and improve CAR T therapy in solid tumors. Nat Cancer. 3:808–820. 2022. View Article : Google Scholar : PubMed/NCBI | |
|
The Lancet Oncology: CAR T-cell therapy for solid tumours. Lancet Oncol. 22:8932021. View Article : Google Scholar : PubMed/NCBI | |
|
Li X, Zhu T, Wang R, Chen J, Tang L, Huo W, Huang X and Cao Q: Genetically programmable vesicles for enhancing CAR-T therapy against solid tumors. Adv Mater. 35:e22111382023. View Article : Google Scholar : PubMed/NCBI | |
|
Krishnan SR and Bebawy M: Circulating biosignatures in multiple myeloma and their role in multidrug resistance. Mol Cancer. 22:792023. View Article : Google Scholar : PubMed/NCBI | |
|
Wen X, Huang Z, Yang X, He X, Li L, Chen H, Wang K, Guo Q and Liu J: Development of an aptamer capable of multidrug resistance reversal for tumor combination chemotherapy. Proc Natl Acad Sci USA. 121:e23211161212024. View Article : Google Scholar : PubMed/NCBI | |
|
Mousset A, Lecorgne E, Bourget I, Lopez P, Jenovai K, Cherfils-Vicini J, Dominici C, Rios G, Girard-Riboulleau C, Liu B, et al: Neutrophil extracellular traps formed during chemotherapy confer treatment resistance via TGF-β activation. Cancer Cell. 41:757–775.e10. 2023. View Article : Google Scholar | |
|
Saw PE, Chen J and Song E: ChemoNETosis: A road to tumor therapeutic resistance. Cancer Cell. 41:655–657. 2023. View Article : Google Scholar : PubMed/NCBI | |
|
Yang Y, Yu S, Lv C and Tian Y: NETosis in tumour microenvironment of liver: From primary to metastatic hepatic carcinoma. Ageing Res Rev. 97:1022972024. View Article : Google Scholar : PubMed/NCBI | |
|
Kong X, Zhang Y, Xiang L, You Y, Duan Y, Zhao Y, Li S, Wu R, Zhang J, Zhou L and Duan L: Fusobacterium nucleatum-triggered neutrophil extracellular traps facilitate colorectal carcinoma progression. J Exp Clin Cancer Res. 42:2362023. View Article : Google Scholar : PubMed/NCBI | |
|
Zhang Y, Yang Y, Hu X, Wang Z, Li L and Chen P: PADs in cancer: Current and future. Biochim Biophys Acta Rev Cancer. 1875:1884922021. View Article : Google Scholar | |
|
Zhan X, Wu R, Kong XH, You Y, He K, Sun XY, Huang Y, Chen WX and Duan L: Elevated neutrophil extracellular traps by HBV-mediated S100A9-TLR4/RAGE-ROS cascade facilitate the growth and metastasis of hepatocellular carcinoma. Cancer Commun (Lond). 43:225–245. 2023. View Article : Google Scholar | |
|
Mousset A, Bellone L, Gaggioli C and Albrengues J: NETscape or NEThance: Tailoring anti-cancer therapy. Trends Cancer. 10:655–667. 2024. View Article : Google Scholar : PubMed/NCBI | |
|
Ramachandran IR, Condamine T, Lin C, Herlihy SE, Garfall A, Vogl DT, Gabrilovich DI and Nefedova Y: Bone marrow PMN-MDSCs and neutrophils are functionally similar in protection of multiple myeloma from chemotherapy. Cancer Lett. 371:117–124. 2016. View Article : Google Scholar : | |
|
Tamura K, Miyato H, Kanamaru R, Sadatomo A, Takahashi K, Ohzawa H, Koyanagi T, Saga Y, Takei Y, Fujiwara H, et al: Neutrophil extracellular traps (NETs) reduce the diffusion of doxorubicin which may attenuate its ability to induce apoptosis of ovarian cancer cells. Heliyon. 8:e097302022. View Article : Google Scholar : PubMed/NCBI | |
|
Goenka A, Khan F, Verma B, Sinha P, Dmello CC, Jogalekar MP, Gangadaran P and Ahn BC: Tumor microenvironment signaling and therapeutics in cancer progression. Cancer Commun (Lond). 43:525–561. 2023. View Article : Google Scholar : PubMed/NCBI | |
|
Zhang R, Dong M, Tu J, Li F, Deng Q, Xu J, He X, Ding J, Xia J, Sheng D, et al: PMN-MDSCs modulated by CCL20 from cancer cells promoted breast cancer cell stemness through CXCL2-CXCR2 pathway. Signal Transduct Target Ther. 8:972023. View Article : Google Scholar : PubMed/NCBI | |
|
Kang J, La Manna F, Bonollo F, Sampson N, Alberts IL, Mingels C, Afshar-Oromieh A, Thalmann GN and Karkampouna S: Tumor microenvironment mechanisms and bone metastatic disease progression of prostate cancer. Cancer Lett. 530:156–169. 2022. View Article : Google Scholar : PubMed/NCBI | |
|
Capucetti A, Albano F and Bonecchi R: Multiple roles for chemokines in neutrophil biology. Front Immunol. 11:12592020. View Article : Google Scholar : PubMed/NCBI | |
|
Rajarathnam K, Schnoor M, Richardson RM and Rajagopal S: How do chemokines navigate neutrophils to the target site: Dissecting the structural mechanisms and signaling pathways. Cell Signal. 54:69–80. 2019. View Article : Google Scholar : | |
|
Bianchi A, De Castro Silva I, Deshpande NU, Singh S, Mehra S, Garrido VT, Guo X, Nivelo LA, Kolonias DS, Saigh SJ, et al: Cell-Autonomous Cxcl1 Sustains Tolerogenic Circuitries and Stromal Inflammation via Neutrophil-Derived TNF in Pancreatic Cancer. Cancer Discov. 13:1428–1453. 2023. View Article : Google Scholar : PubMed/NCBI | |
|
Chao T, Furth EE and Vonderheide RH: CXCR2-Dependent accumulation of tumor-associated neutrophils regulates T-cell immunity in pancreatic ductal adenocarcinoma. Cancer Immunol Res. 4:968–982. 2016. View Article : Google Scholar : PubMed/NCBI | |
|
Corsaro A, Tremonti B, Bajetto A, Barbieri F, Thellung S and Florio T: Chemokine signaling in tumors: potential role of CXC chemokines and their receptors as glioblastoma therapeutic targets. Expert Opin Ther Targets. 28:937–952. 2024. View Article : Google Scholar : PubMed/NCBI | |
|
Powell D, Lou M, Barros Becker F and Huttenlocher A: Cxcr1 mediates recruitment of neutrophils and supports proliferation of tumor-initiating astrocytes in vivo. Sci Rep. 8:132852018. View Article : Google Scholar : PubMed/NCBI | |
|
Jablonska J, Wu CF, Andzinski L, Leschner S and Weiss S: CXCR2-mediated tumor-associated neutrophil recruitment is regulated by IFN-β. Int J Cancer. 134:1346–1358. 2014. View Article : Google Scholar | |
|
Haider C, Hnat J, Wagner R, Huber H, Timelthaler G, Grubinger M, Coulouarn C, Schreiner W, Schlangen K, Sieghart W, et al: Transforming growth factor-β and Axl induce CXCL5 and neutrophil recruitment in hepatocellular carcinoma. Hepatology. 69:222–236. 2019. View Article : Google Scholar | |
|
Zhou SL, Yin D, Hu ZQ, Luo CB, Zhou ZJ, Xin HY, Yang XR, Shi YH, Wang Z, Huang XW, et al: A positive feedback loop between cancer stem-like cells and tumor-associated neutrophils controls hepatocellular carcinoma progression. Hepatology. 70:1214–1230. 2019. View Article : Google Scholar : PubMed/NCBI | |
|
Zhou SL, Zhou ZJ, Hu ZQ, Huang XW, Wang Z, Chen EB, Fan J, Cao Y, Dai Z and Zhou J: Tumor-associated neutrophils recruit macrophages and T-regulatory cells to promote progression of hepatocellular carcinoma and resistance to sorafenib. Gastroenterology. 150:1646–1658.e17. 2016. View Article : Google Scholar : PubMed/NCBI | |
|
He J, Zhou M, Yin J, Wan J, Chu J, Jia J, Sheng J, Wang C, Yin H and He F: METTL3 restrains papillary thyroid cancer progression via m6A/c-Rel/IL-8-mediated neutrophil infiltration. Mol Ther. 29:1821–1837. 2021. View Article : Google Scholar : PubMed/NCBI | |
|
Schimek V, Strasser K, Beer A, Göber S, Walterskirchen N, Brostjan C, Müller C, Bachleitner-Hofmann T, Bergmann M, Dolznig H and Oehler R: Tumour cell apoptosis modulates the colorectal cancer immune microenvironment via interleukin-8-dependent neutrophil recruitment. Cell Death Dis. 13:1132022. View Article : Google Scholar : PubMed/NCBI | |
|
Bellomo G, Rainer C, Quaranta V, Astuti Y, Raymant M, Boyd E, Stafferton R, Campbell F, Ghaneh P, Halloran CM, et al: Chemotherapy-induced infiltration of neutrophils promotes pancreatic cancer metastasis via Gas6/AXL signalling axis. Gut. 71:2284–2299. 2022. View Article : Google Scholar : PubMed/NCBI | |
|
Nywening TM, Belt BA, Cullinan DR, Panni RZ, Han BJ, Sanford DE, Jacobs RC, Ye J, Patel AA, Gillanders WE, et al: Targeting both tumour-associated CXCR2+ neutrophils and CCR2+ macrophages disrupts myeloid recruitment and improves chemotherapeutic responses in pancreatic ductal adenocarcinoma. Gut. 67:1112–1123. 2018. View Article : Google Scholar | |
|
Cheng Y, Ma XL, Wei YQ and Wei XW: Potential roles and targeted therapy of the CXCLs/CXCR2 axis in cancer and inflammatory diseases. Biochim Biophys Acta Rev Cancer. 1871:289–312. 2019. View Article : Google Scholar : PubMed/NCBI | |
|
Schott AF, Goldstein LJ, Cristofanilli M, Ruffini PA, McCanna S, Reuben JM, Perez RP, Kato G and Wicha M: Phase Ib pilot study to evaluate reparixin in combination with weekly paclitaxel in patients with HER-2-negative metastatic breast cancer. Clin Cancer Res. 23:5358–5365. 2017. View Article : Google Scholar : PubMed/NCBI | |
|
Jiang H, Cui J, Chu H, Xu T, Xie M, Jing X, Xu J, Zhou J and Shu Y: Targeting IL8 as a sequential therapy strategy to overcome chemotherapy resistance in advanced gastric cancer. Cell Death Discov. 8:2352022. View Article : Google Scholar : PubMed/NCBI | |
|
Cheng Y, Mo F, Li Q, Han X, Shi H, Chen S, Wei Y and Wei X: Targeting CXCR2 inhibits the progression of lung cancer and promotes therapeutic effect of cisplatin. Mol Cancer. 20:622021. View Article : Google Scholar : PubMed/NCBI | |
|
Kiri S and Ryba T: Cancer, metastasis, and the epigenome. Mol Cancer. 23:1542024. View Article : Google Scholar : PubMed/NCBI | |
|
Fang Y, Wang S, Han S, Zhao Y, Yu C, Liu H and Li N: Targeted protein degrader development for cancer: Advances, challenges, and opportunities. Trends Pharmacol Sci. 44:303–317. 2023. View Article : Google Scholar : PubMed/NCBI | |
|
Liu ZL, Chen HH, Zheng LL, Sun LP and Shi L: Angiogenic signaling pathways and anti-angiogenic therapy for cancer. Signal Transduct Target Ther. 8:1982023. View Article : Google Scholar : PubMed/NCBI | |
|
Zhang T, Jia Y, Yu Y, Zhang B, Xu F and Guo H: Targeting the tumor biophysical microenvironment to reduce resistance to immunotherapy. Adv Drug Deliv Rev. 186:1143192022. View Article : Google Scholar : PubMed/NCBI | |
|
Yang M, Mu Y, Yu X, Gao D, Zhang W, Li Y, Liu J, Sun C and Zhuang J: Survival strategies: How tumor hypoxia microenvironment orchestrates angiogenesis. Biomed Pharmacother. 176:1167832024. View Article : Google Scholar : PubMed/NCBI | |
|
Li H, Qiu Z, Li F and Wang C: The relationship between MMP-2 and MMP-9 expression levels with breast cancer incidence and prognosis. Oncol Lett. 14:5865–5870. 2017.PubMed/NCBI | |
|
Negri L and Ferrara N: The prokineticins: Neuromodulators and mediators of inflammation and myeloid cell-dependent angiogenesis. Physiol Rev. 98:1055–1082. 2018. View Article : Google Scholar : PubMed/NCBI | |
|
Shojaei F and Ferrara N: Refractoriness to antivascular endothelial growth factor treatment: Role of myeloid cells. Cancer Res. 68:5501–5504. 2008. View Article : Google Scholar : PubMed/NCBI | |
|
Shojaei F, Wu X, Zhong C, Yu L, Liang XH, Yao J, Blanchard D, Bais C, Peale FV, van Bruggen N, et al: Bv8 regulates myeloid-cell-dependent tumour angiogenesis. Nature. 450:825–831. 2007. View Article : Google Scholar : PubMed/NCBI | |
|
Majidpoor J and Mortezaee K: Angiogenesis as a hallmark of solid tumors-clinical perspectives. Cell Oncol (Dordr). 44:715–737. 2021. View Article : Google Scholar : PubMed/NCBI | |
|
Chung AS, Wu X, Zhuang G, Ngu H, Kasman I, Zhang J, Vernes JM, Jiang Z, Meng YG, Peale FV, et al: An interleukin-17-mediated paracrine network promotes tumor resistance to anti-angiogenic therapy. Nat Med. 19:1114–1123. 2013. View Article : Google Scholar : PubMed/NCBI | |
|
Li TJ, Jiang YM, Hu YF, Huang L, Yu J, Zhao LY, Deng HJ, Mou TY, Liu H, Yang Y, et al: Interleukin-17-producing neutrophils link inflammatory stimuli to disease progression by promoting angiogenesis in gastric cancer. Clin Cancer Res. 23:1575–1585. 2017. View Article : Google Scholar | |
|
Lee JM, McNamee CJ, Toloza E, Negrao MV, Lin J, Shum E, Cummings AL, Kris MG, Sepesi B, Bara I, et al: Neoadjuvant targeted therapy in resectable NSCLC: Current and future perspectives. J Thorac Oncol. 18:1458–1477. 2023. View Article : Google Scholar : PubMed/NCBI | |
|
Napolitano S, Martini G, Ciardiello D, Del Tufo S, Martinelli E, Troiani T and Ciardiello F: Targeting the EGFR signalling pathway in metastatic colorectal cancer. Lancet Gastroenterol Hepatol. 9:664–676. 2024. View Article : Google Scholar : PubMed/NCBI | |
|
Damare R, Engle K and Kumar G: Targeting epidermal growth factor receptor and its downstream signaling pathways by natural products: A mechanistic insight. Phytother Res. 38:2406–2447. 2024. View Article : Google Scholar : PubMed/NCBI | |
|
Wang X, Jiang W, Du Y, Zhu D, Zhang J, Fang C, Yan F and Chen ZS: Targeting feedback activation of signaling transduction pathways to overcome drug resistance in cancer. Drug Resist Updat. 65:1008842022. View Article : Google Scholar : PubMed/NCBI | |
|
Kim GT, Hahn KW, Yoon SY, Sohn KY and Kim JW: PLAG exerts anti-metastatic effects by interfering with neutrophil elastase/PAR2/EGFR signaling in A549 lung cancer orthotopic model. Cancers (Basel). 12:5602020. View Article : Google Scholar : PubMed/NCBI | |
|
Swain SM, Shastry M and Hamilton E: Targeting HER2-positive breast cancer: Advances and future directions. Nat Rev Drug Discov. 22:101–126. 2023. View Article : Google Scholar | |
|
Sato T, Takahashi S, Mizumoto T, Harao M, Akizuki M, Takasugi M, Fukutomi T and Yamashita J: Neutrophil elastase and cancer. Surg Oncol. 15:217–222. 2006. View Article : Google Scholar | |
|
Schlessinger J: Common and distinct elements in cellular signaling via EGF and FGF receptors. Science. 306:1506–1507. 2004. View Article : Google Scholar : PubMed/NCBI | |
|
Singh JK, Farnie G, Bundred NJ, Simões BM, Shergill A, Landberg G, Howell SJ and Clarke RB: Targeting CXCR1/2 significantly reduces breast cancer stem cell activity and increases the efficacy of inhibiting HER2 via HER2-dependent and -independent mechanisms. Clin Cancer Res. 19:643–656. 2013. View Article : Google Scholar | |
|
Slamon DJ, Leyland-Jones B, Shak S, Fuchs H, Paton V, Bajamonde A, Fleming T, Eiermann W, Wolter J, Pegram M, et al: Use of chemotherapy plus a monoclonal antibody against HER2 for metastatic breast cancer that overexpresses HER2. N Engl J Med. 344:783–792. 2001. View Article : Google Scholar : PubMed/NCBI | |
|
Singhal A, Li BT and O'Reilly EM: Targeting KRAS in cancer. Nat Med. 30:969–983. 2024. View Article : Google Scholar : PubMed/NCBI | |
|
Biller LH and Schrag D: Diagnosis and treatment of metastatic colorectal cancer: A review. JAMA. 325:669–685. 2021. View Article : Google Scholar : PubMed/NCBI | |
|
Zhu G, Pei L, Xia H, Tang Q and Bi F: Role of oncogenic KRAS in the prognosis, diagnosis and treatment of colorectal cancer. Mol Cancer. 20:1432021. View Article : Google Scholar : PubMed/NCBI | |
|
Shang A, Gu C, Zhou C, Yang Y, Chen C, Zeng B, Wu J, Lu W, Wang W, Sun Z and Li D: Exosomal KRAS mutation promotes the formation of tumor-associated neutrophil extracellular traps and causes deterioration of colorectal cancer by inducing IL-8 expression. Cell Commun Signal. 18:522020. View Article : Google Scholar : PubMed/NCBI | |
|
Pickup MW, Owens P, Gorska AE, Chytil A, Ye F, Shi C, Weaver VM, Kalluri R, Moses HL and Novitskiy SV: Development of aggressive pancreatic ductal adenocarcinomas depends on granulocyte colony stimulating factor secretion in carcinoma cells. Cancer Immunol Res. 5:718–729. 2017. View Article : Google Scholar : PubMed/NCBI | |
|
Nolan E, Bridgeman VL, Ombrato L, Karoutas A, Rabas N, Sewnath CAN, Vasquez M, Rodrigues FS, Horswell S, Faull P, et al: Radiation exposure elicits a neutrophil-driven response in healthy lung tissue that enhances metastatic colonization. Nat Cancer. 3:173–187. 2022. View Article : Google Scholar : PubMed/NCBI | |
|
Wisdom AJ, Hong CS, Lin AJ, Xiang Y, Cooper DE, Zhang J, Xu ES, Kuo HC, Mowery YM, Carpenter DJ, et al: Neutrophils promote tumor resistance to radiation therapy. Proc Natl Acad Sci USA. 116:18584–18589. 2019. View Article : Google Scholar : PubMed/NCBI | |
|
Zheng X, Song X, Zhu G, Pan D, Li H, Hu J, Xiao K, Gong Q, Gu Z, Luo K and Li W: Nanomedicine combats drug resistance in lung cancer. Adv Mater. 36:e23089772024. View Article : Google Scholar | |
|
Xu K, Guo H, Xia A, Wang Z, Wang S and Wang Q: Non-coding RNAs in radiotherapy resistance: Roles and therapeutic implications in gastrointestinal cancer. Biomed Pharmacother. 161:1144852023. View Article : Google Scholar : PubMed/NCBI | |
|
Wu Y, Song Y, Wang R and Wang T: Molecular mechanisms of tumor resistance to radiotherapy. Mol Cancer. 22:962023. View Article : Google Scholar : PubMed/NCBI | |
|
An L, Li M and Jia Q: Mechanisms of radiotherapy resistance and radiosensitization strategies for esophageal squamous cell carcinoma. Mol Cancer. 22:1402023. View Article : Google Scholar : PubMed/NCBI | |
|
Peng J, Yin X, Yun W, Meng X and Huang Z: Radiotherapyinduced tumor physical microenvironment remodeling to overcome immunotherapy resistance. Cancer Lett. 559:2161082023. View Article : Google Scholar | |
|
Beckers C, Pruschy M and Vetrugno I: Tumor hypoxia and radiotherapy: A major driver of resistance even for novel radiotherapy modalities. Semin Cancer Biol. 98:19–30. 2024. View Article : Google Scholar | |
|
Wang X, Li X, Wu Y, Hong J and Zhang M: The prognostic significance of tumor-associated neutrophils and circulating neutrophils in glioblastoma (WHO CNS5 classification). BMC Cancer. 23:202023. View Article : Google Scholar : PubMed/NCBI | |
|
Jeon HY, Ham SW, Kim JK, Jin X, Lee SY, Shin YJ, Choi CY, Sa JK, Kim SH, Chun T, et al: Ly6G+ inflammatory cells enable the conversion of cancer cells to cancer stem cells in an irradiated glioblastoma model. Cell Death Differ. 26:2139–2156. 2019. View Article : Google Scholar : PubMed/NCBI | |
|
Ruiz-Fernández de Córdoba B, Moreno H, Valencia K, Perurena N, Ruedas P, Walle T, Pezonaga-Torres A, Hinojosa J, Guruceaga E, Pineda-Lucena A, et al: Tumor ENPP1 (CD203a)/ haptoglobin axis exploits myeloid-derived suppressor cells to promote post-radiotherapy local recurrence in breast cancer. Cancer Discov. 12:1356–1377. 2022. View Article : Google Scholar | |
|
Ancey PB, Contat C, Boivin G, Sabatino S, Pascual J, Zangger N, Perentes JY, Peters S, Abel ED, Kirsch DG, et al: GLUT1 expression in tumor-associated neutrophils promotes lung cancer growth and resistance to radiotherapy. Cancer Res. 81:2345–2357. 2021. View Article : Google Scholar : PubMed/NCBI | |
|
Shinde-Jadhav S, Mansure JJ, Rayes RF, Marcq G, Ayoub M, Skowronski R, Kool R, Bourdeau F, Brimo F, Spicer J and Kassouf W: Role of neutrophil extracellular traps in radiation resistance of invasive bladder cancer. Nat Commun. 12:27762021. View Article : Google Scholar : PubMed/NCBI | |
|
Li H, Zeng J, You Q, Zhang M, Shi Y, Yang X, Gu W, Liu Y, Hu N, Wang Y, et al: X-ray-activated nanoscintillators integrated with tumor-associated neutrophils polarization for improved radiotherapy in metastatic colorectal cancer. Biomaterials. 316:1230312025. View Article : Google Scholar | |
|
Rys RN and Calcinotto A: Senescent neutrophils: A hidden role in cancer progression. Trends Cell Biol. S0962-8924(24)00187-9. 2024.Epub ahead of print. View Article : Google Scholar : PubMed/NCBI | |
|
Treffers LW, Ten Broeke T, Rösner T, Jansen JHM, van Houdt M, Kahle S, Schornagel K, Verkuijlen PJJH, Prins JM, Franke K, et al: IgA-mediated killing of tumor cells by neutrophils is enhanced by CD47-SIRPα checkpoint inhibition. Cancer Immunol Res. 8:120–130. 2020. View Article : Google Scholar | |
|
Brandsma AM, Ten Broeke T, Nederend M, Meulenbroek LA, van Tetering G, Meyer S, Jansen JH, Beltrán Buitrago MA, Nagelkerke SQ, Németh I, et al: Simultaneous targeting of FcγRs and FcαRI enhances tumor cell killing. Cancer Immunol Res. 3:1316–1324. 2015. View Article : Google Scholar : PubMed/NCBI | |
|
Borrok MJ, Luheshi NM, Beyaz N, Davies GC, Legg JW, Wu H, Dall'Acqua WF and Tsui P: Enhancement of antibody-dependent cell-mediated cytotoxicity by endowing IgG with FcαRI (CD89) binding. MAbs. 7:743–751. 2015. View Article : Google Scholar : | |
|
Kumbhojkar N, Prakash S, Fukuta T, Adu-Berchie K, Kapate N, An R, Darko S, Chandran Suja V, Park KS, Gottlieb AP, et al: Neutrophils bearing adhesive polymer micropatches as a drug-free cancer immunotherapy. Nat Biomed Eng. 8:579–592. 2024. View Article : Google Scholar : PubMed/NCBI | |
|
Quaas A, Pamuk A, Klein S, Quantius J, Rehkaemper J, Bar utcu AG, Rueschoff J, Zander T, Gebauer F, Hillmer A, et al: Sex-specific prognostic effect of CD66b-positive tumor-infiltrating neutrophils (TANs) in gastric and esophageal adenocarcinoma. Gastric Cancer. 24:1213–1226. 2021. View Article : Google Scholar : PubMed/NCBI | |
|
Peng H, Wu X, Liu S, He M, Tang C, Wen Y, Xie C, Zhong R, Li C, Xiong S, et al: Cellular dynamics in tumour microenvironment along with lung cancer progression underscore spatial and evolutionary heterogeneity of neutrophil. Clin Transl Med. 13:e13402023. View Article : Google Scholar : PubMed/NCBI | |
|
Zhang J, Zhang M, Lou J, Wu L, Zhang S, Liu X, Ke Y, Zhao S, Song Z, Bai X, et al: Machine learning integration with single-cell transcriptome sequencing datasets reveals the impact of tumor-associated neutrophils on the immune microenvironment and immunotherapy outcomes in gastric cancer. Int J Mol Sci. 25:127152024. View Article : Google Scholar : PubMed/NCBI | |
|
Ye L, Zhang T, Kang Z, Guo G, Sun Y, Lin K, Huang Q, Shi X, Ni Z, Ding N, et al: Tumor-infiltrating immune cells act as a marker for prognosis in colorectal cancer. Front Immunol. 10:23682019. View Article : Google Scholar : PubMed/NCBI | |
|
Nøst TH, Alcala K, Urbarova I, Byrne KS, Guida F, Sandanger TM and Johansson M: Systemic inflammation markers and cancer incidence in the UK Biobank. Eur J Epidemiol. 36:841–848. 2021. View Article : Google Scholar : PubMed/NCBI | |
|
Mosca M, Nigro MC, Pagani R, De Giglio A and Di Federico A: Neutrophil-to-lymphocyte ratio (NLR) in NSCLC, gastrointestinal, and other solid tumors: Immunotherapy and beyond. Biomolecules. 13:18032023. View Article : Google Scholar : PubMed/NCBI | |
|
Cupp MA, Cariolou M, Tzoulaki I, Aune D, Evangelou E and Berlanga-Taylor AJ: Neutrophil to lymphocyte ratio and cancer prognosis: An umbrella review of systematic reviews and meta-analyses of observational studies. BMC Med. 18:3602020. View Article : Google Scholar : PubMed/NCBI | |
|
Ethier JL, Desautels D, Templeton A, Shah PS and Amir E: Prognostic role of neutrophil-to-lymphocyte ratio in breast cancer: A systematic review and meta-analysis. Breast Cancer Res. 19:22017. View Article : Google Scholar : PubMed/NCBI | |
|
Pecqueux M, Brückner F, Oehme F, Hempel S, Baenke F, Riediger C, Distler M, Weitz J and Kahlert C: Preoperative IL-8 levels as prognostic indicators of overall survival: An extended follow-up in a prospective cohort with colorectal liver metastases. BMC Cancer. 24:902024. View Article : Google Scholar : PubMed/NCBI | |
|
Hsu YJ, Chern YJ, Wu ZE, Yu YL, Liao CK, Tsai WS, You JF and Lee CW: The oncologic outcome and prognostic factors for solitary colorectal liver metastasis after liver resection. J Gastrointest Surg. 28:267–275. 2024. View Article : Google Scholar : PubMed/NCBI | |
|
Huang W, Jiang Y, Xiong W, Sun Z, Chen C, Yuan Q, Zhou K, Han Z, Feng H, Chen H, et al: Noninvasive imaging of the tumor immune microenvironment correlates with response to immunotherapy in gastric cancer. Nat Commun. 13:50952022. View Article : Google Scholar : PubMed/NCBI | |
|
Tan S, Zheng Q, Zhang W, Zhou M, Xia C and Feng W: Prognostic value of inflammatory markers NLR, PLR, and LMR in gastric cancer patients treated with immune checkpoint inhibitors: A meta-analysis and systematic review. Front Immunol. 15:14087002024. View Article : Google Scholar : PubMed/NCBI | |
|
He G, Zhang H, Zhou J, Wang B, Chen Y, Kong Y, Xie X, Wang X, Fei R, Wei L, et al: Peritumoural neutrophils negatively regulate adaptive immunity via the PD-L1/PD-1 signalling pathway in hepatocellular carcinoma. J Exp Clin Cancer Res. 34:1412015. View Article : Google Scholar : PubMed/NCBI |