Spandidos Publications Logo
  • About
    • About Spandidos
    • Aims and Scopes
    • Abstracting and Indexing
    • Editorial Policies
    • Reprints and Permissions
    • Job Opportunities
    • Terms and Conditions
    • Contact
  • Journals
    • All Journals
    • Oncology Letters
      • Oncology Letters
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Oncology
      • International Journal of Oncology
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Molecular and Clinical Oncology
      • Molecular and Clinical Oncology
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Experimental and Therapeutic Medicine
      • Experimental and Therapeutic Medicine
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Molecular Medicine
      • International Journal of Molecular Medicine
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Biomedical Reports
      • Biomedical Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Oncology Reports
      • Oncology Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Molecular Medicine Reports
      • Molecular Medicine Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • World Academy of Sciences Journal
      • World Academy of Sciences Journal
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Functional Nutrition
      • International Journal of Functional Nutrition
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Epigenetics
      • International Journal of Epigenetics
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Medicine International
      • Medicine International
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
  • Articles
  • Information
    • Information for Authors
    • Information for Reviewers
    • Information for Librarians
    • Information for Advertisers
    • Conferences
  • Language Editing
Spandidos Publications Logo
  • About
    • About Spandidos
    • Aims and Scopes
    • Abstracting and Indexing
    • Editorial Policies
    • Reprints and Permissions
    • Job Opportunities
    • Terms and Conditions
    • Contact
  • Journals
    • All Journals
    • Biomedical Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Experimental and Therapeutic Medicine
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Epigenetics
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Functional Nutrition
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Molecular Medicine
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Oncology
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Medicine International
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Molecular and Clinical Oncology
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Molecular Medicine Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Oncology Letters
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Oncology Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • World Academy of Sciences Journal
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
  • Articles
  • Information
    • For Authors
    • For Reviewers
    • For Librarians
    • For Advertisers
    • Conferences
  • Language Editing
Login Register Submit
  • This site uses cookies
  • You can change your cookie settings at any time by following the instructions in our Cookie Policy. To find out more, you may read our Privacy Policy.

    I agree
Search articles by DOI, keyword, author or affiliation
Search
Advanced Search
presentation
International Journal of Oncology
Join Editorial Board Propose a Special Issue
Print ISSN: 1019-6439 Online ISSN: 1791-2423
Journal Cover
April-2025 Volume 66 Issue 4

Full Size Image

Cover Legend PDF

Sign up for eToc alerts
Recommend to Library

Journals

International Journal of Molecular Medicine

International Journal of Molecular Medicine

International Journal of Molecular Medicine is an international journal devoted to molecular mechanisms of human disease.

International Journal of Oncology

International Journal of Oncology

International Journal of Oncology is an international journal devoted to oncology research and cancer treatment.

Molecular Medicine Reports

Molecular Medicine Reports

Covers molecular medicine topics such as pharmacology, pathology, genetics, neuroscience, infectious diseases, molecular cardiology, and molecular surgery.

Oncology Reports

Oncology Reports

Oncology Reports is an international journal devoted to fundamental and applied research in Oncology.

Experimental and Therapeutic Medicine

Experimental and Therapeutic Medicine

Experimental and Therapeutic Medicine is an international journal devoted to laboratory and clinical medicine.

Oncology Letters

Oncology Letters

Oncology Letters is an international journal devoted to Experimental and Clinical Oncology.

Biomedical Reports

Biomedical Reports

Explores a wide range of biological and medical fields, including pharmacology, genetics, microbiology, neuroscience, and molecular cardiology.

Molecular and Clinical Oncology

Molecular and Clinical Oncology

International journal addressing all aspects of oncology research, from tumorigenesis and oncogenes to chemotherapy and metastasis.

World Academy of Sciences Journal

World Academy of Sciences Journal

Multidisciplinary open-access journal spanning biochemistry, genetics, neuroscience, environmental health, and synthetic biology.

International Journal of Functional Nutrition

International Journal of Functional Nutrition

Open-access journal combining biochemistry, pharmacology, immunology, and genetics to advance health through functional nutrition.

International Journal of Epigenetics

International Journal of Epigenetics

Publishes open-access research on using epigenetics to advance understanding and treatment of human disease.

Medicine International

Medicine International

An International Open Access Journal Devoted to General Medicine.

Journal Cover
April-2025 Volume 66 Issue 4

Full Size Image

Cover Legend PDF

Sign up for eToc alerts
Recommend to Library

  • Article
  • Citations
    • Cite This Article
    • Download Citation
    • Create Citation Alert
    • Remove Citation Alert
    • Cited By
  • Similar Articles
    • Related Articles (in Spandidos Publications)
    • Similar Articles (Google Scholar)
    • Similar Articles (PubMed)
  • Download PDF
  • Download XML
  • View XML
Review Open Access

Tumor‑associated neutrophils: Critical regulators in cancer progression and therapeutic resistance (Review)

  • Authors:
    • Rui Hou
    • Xi Wu
    • Cenzhu Wang
    • Hanfang Fan
    • Yuhan Zhang
    • Hanchi Wu
    • Huiyu Wang
    • Junli Ding
    • Huning Jiang
    • Junying Xu
  • View Affiliations / Copyright

    Affiliations: Department of Oncology, The Affiliated Wuxi People's Hospital of Nanjing Medical University, Wuxi People's Hospital, Wuxi Medical Center, Nanjing Medical University, Wuxi, Nanjing 214023, P.R. China
    Copyright: © Hou et al. This is an open access article distributed under the terms of Creative Commons Attribution License.
  • Article Number: 28
    |
    Published online on: February 25, 2025
       https://doi.org/10.3892/ijo.2025.5734
  • Expand metrics +
Metrics: Total Views: 0 (Spandidos Publications: | PMC Statistics: )
Metrics: Total PDF Downloads: 0 (Spandidos Publications: | PMC Statistics: )
Cited By (CrossRef): 0 citations Loading Articles...

This article is mentioned in:



Abstract

Cancer is the second leading cause of death among humans worldwide. Despite remarkable improvements in cancer therapies, drug resistance remains a significant challenge. The tumor microenvironment (TME) is intimately associated with therapeutic resistance. Tumor‑associated neutrophils (TANs) are a crucial component of the TME, which, along with other immune cells, play a role in tumorigenesis, development and metastasis. In the current review, the roles of TANs in the TME, as well as the mechanisms of neutrophil‑mediated resistance to cancer therapy, including immunotherapy, chemotherapy, radiotherapy and targeted therapy, were summarized. Furthermore, strategies for neutrophil therapy were discussed and TANs were explored as potential targets for cancer treatment. In conclusion, the need to explore the precise roles, recruitment pathways and mechanisms of action of TANs was highlighted for the purpose of developing therapies that precisely target TANs and reverse drug resistance.
View Figures

Figure 1

Figure 2

Figure 3

Figure 4

View References

1 

Jassim A, Rahrmann EP, Simons BD and Gilbertson RJ: Cancers make their own luck: Theories of cancer origins. Nat Rev Cancer. 23:710–724. 2023. View Article : Google Scholar : PubMed/NCBI

2 

Mattiuzzi C and Lippi G: Cancer statistics: A comparison between World Health Organization (WHO) and Global Burden of Disease (GBD). Eur J Public Health. 30:1026–1027. 2020. View Article : Google Scholar

3 

Wang J, Yang J, Narang A, He J, Wolfgang C, Li K and Zheng L: Consensus, debate, and prospective on pancreatic cancer treatments. J Hematol Oncol. 17:922024. View Article : Google Scholar : PubMed/NCBI

4 

Long GV, Swetter SM, Menzies AM, Gershenwald JE and Scolyer RA: Cutaneous melanoma. Lancet. 402:485–502. 2023. View Article : Google Scholar : PubMed/NCBI

5 

Joshi SS and Badgwell BD: Current treatment and recent progress in gastric cancer. CA Cancer J Clin. 71:264–279. 2021. View Article : Google Scholar : PubMed/NCBI

6 

de Visser KE and Joyce JA: The evolving tumor microenvironment: From cancer initiation to metastatic outgrowth. Cancer Cell. 41:374–403. 2023. View Article : Google Scholar : PubMed/NCBI

7 

Gonçalves AC, Richiardone E, Jorge J, Polónia B, Xavier CPR, Salaroglio IC, Riganti C, Vasconcelos MH, Corbet C and Sarmento-Ribeiro AB: Impact of cancer metabolism on therapy resistance-clinical implications. Drug Resist Updat. 59:1007972021. View Article : Google Scholar

8 

Kalli M, Poskus MD, Stylianopoulos T and Zervantonakis IK: Beyond matrix stiffness: Targeting force-induced cancer drug resistance. Trends Cancer. 9:937–954. 2023. View Article : Google Scholar : PubMed/NCBI

9 

Chen D, Gu X, Nurzat Y, Xu L, Li X, Wu L, Jiao H, Gao P, Zhu X, Yan D, et al: Writers, readers, and erasers RNA modifications and drug resistance in cancer. Mol Cancer. 23:1782024. View Article : Google Scholar : PubMed/NCBI

10 

He J, Qiu Z, Fan J, Xie X, Sheng Q and Sui X: Drug tolerant persister cell plasticity in cancer: A revolutionary strategy for more effective anticancer therapies. Signal Transduct Target Ther. 9:2092024. View Article : Google Scholar : PubMed/NCBI

11 

Nussinov R, Tsai C-J and Jang H: Anticancer drug resistance: An update and perspective. Drug Resist Updat. 59:1007962021. View Article : Google Scholar : PubMed/NCBI

12 

Polak R, Zhang ET and Kuo CJ: Cancer organoids 2.0: Modelling the complexity of the tumour immune microenvironment. Nat Rev Cancer. 24:523–539. 2024. View Article : Google Scholar : PubMed/NCBI

13 

Hessmann E, Buchholz SM, Demir IE, Singh SK, Gress TM, Ellenrieder V and Neesse A: Microenvironmental determinants of pancreatic cancer. Physiol Rev. 100:1707–1751. 2020. View Article : Google Scholar : PubMed/NCBI

14 

Koenderman L and Vrisekoop N: Neutrophils in cancer: From biology to therapy. Cell Mol Immunol. 22:4–23. 2025. View Article : Google Scholar :

15 

Liu S, Wu W, Du Y, Yin H, Chen Q, Yu W, Wang W, Yu J, Liu L, Lou W and Pu N: The evolution and heterogeneity of neutrophils in cancers: Origins, subsets, functions, orchestrations and clinical applications. Mol Cancer. 22:1482023. View Article : Google Scholar : PubMed/NCBI

16 

Zhang J, Gu J, Wang X, Ji C, Yu D, Wang M, Pan J, Santos HA, Zhang H and Zhang X: Engineering and targeting neutrophils for cancer therapy. Adv Mater. 36:e23103182024. View Article : Google Scholar : PubMed/NCBI

17 

van Vlerken-Ysla L, Tyurina YY, Kagan VE and Gabrilovich DI: Functional states of myeloid cells in cancer. Cancer Cell. 41:490–504. 2023. View Article : Google Scholar : PubMed/NCBI

18 

Que H, Fu Q, Lan T, Tian X and Wei X: Tumor-associated neutrophils and neutrophil-targeted cancer therapies. Biochim Biophys Acta Rev Cancer. 1877:1887622022. View Article : Google Scholar : PubMed/NCBI

19 

Xue R, Zhang Q, Cao Q, Kong R, Xiang X, Liu H, Feng M, Wang F, Cheng J, Li Z, et al: Liver tumour immune microenvironment subtypes and neutrophil heterogeneity. Nature. 612:141–147. 2022. View Article : Google Scholar : PubMed/NCBI

20 

Jaillon S, Ponzetta A, Di Mitri D, Santoni A, Bonecchi R and Mantovani A: Neutrophil diversity and plasticity in tumour progression and therapy. Nat Rev Cancer. 20:485–503. 2020. View Article : Google Scholar : PubMed/NCBI

21 

Mantovani A, Cassatella MA, Costantini C and Jaillon S: Neutrophils in the activation and regulation of innate and adaptive immunity. Nat Rev Immunol. 11:519–531. 2011. View Article : Google Scholar : PubMed/NCBI

22 

Fridlender ZG, Sun J, Kim S, Kapoor V, Cheng G, Ling L, Worthen GS and Albelda SM: Polarization of tumor-associated neutrophil phenotype by TGF-beta: 'N1' versus 'N2' TAN. Cancer Cell. 16:183–194. 2009. View Article : Google Scholar : PubMed/NCBI

23 

Shaul ME and Fridlender ZG: Tumour-associated neutrophils in patients with cancer. Nat Rev Clin Oncol. 16:601–620. 2019. View Article : Google Scholar : PubMed/NCBI

24 

Salcher S, Sturm G, Horvath L, Untergasser G, Kuempers C, Fotakis G, Panizzolo E, Martowicz A, Trebo M, Pall G, et al: High-resolution single-cell atlas reveals diversity and plasticity of tissue-resident neutrophils in non-small cell lung cancer. Cancer Cell. 40:1503–1520.e8. 2022. View Article : Google Scholar : PubMed/NCBI

25 

Ng MSF, Kwok I, Tan L, Shi C, Cerezo-Wallis D, Tan Y, Leong K, Calvo GF, Yang K, Zhang Y, et al: Deterministic reprogramming of neutrophils within tumors. Science. 383:eadf64932024. View Article : Google Scholar : PubMed/NCBI

26 

Wu Y, Ma J, Yang X, Nan F, Zhang T, Ji S, Rao D, Feng H, Gao K, Gu X, et al: Neutrophil profiling illuminates anti-tumor antigen-presenting potency. Cell. 187:1422–1439.e24. 2024. View Article : Google Scholar : PubMed/NCBI

27 

Wang L, Liu Y, Dai Y, Tang X, Yin T, Wang C, Wang T, Dong L, Shi M, Qin J, et al: Single-cell RNA-seq analysis reveals BHLHE40-driven pro-tumour neutrophils with hyperactivated glycolysis in pancreatic tumour microenvironment. Gut. 72:958–971. 2023. View Article : Google Scholar

28 

Xia L, Oyang L, Lin J, Tan S, Han Y, Wu N, Yi P, Tang L, Pan Q, Rao S, et al: The cancer metabolic reprogramming and immune response. Mol Cancer. 20:282021. View Article : Google Scholar : PubMed/NCBI

29 

Tian S, Chu Y, Hu J, Ding X, Liu Z, Fu D, Yuan Y, Deng Y, Wang G, Wang L and Wang Z: Tumour-associated neutrophils secrete AGR2 to promote colorectal cancer metastasis via its receptor CD98hc-xCT. Gut. 71:2489–2501. 2022. View Article : Google Scholar : PubMed/NCBI

30 

Tie Y, Tang F, Wei YQ and Wei XW: Immunosuppressive cells in cancer: Mechanisms and potential therapeutic targets. J Hematol Oncol. 15:612022. View Article : Google Scholar : PubMed/NCBI

31 

Lianyuan T, Gang L, Ming T, Dianrong X, Chunhui Y, Zhaolai M and Bin J: Tumor associated neutrophils promote the metastasis of pancreatic ductal adenocarcinoma. Cancer Biol Ther. 21:937–945. 2020. View Article : Google Scholar : PubMed/NCBI

32 

Amorim C, Docasar CL, Guimarães-Bastos D, Frony AC, Barja-Fidalgo C, Renovato-Martins M and Moraes JA: Extracellular vesicles derived from MDA-MB-231 cells trigger neutrophils to a pro-tumor profile. Cells. 11:18752022. View Article : Google Scholar : PubMed/NCBI

33 

Qin F, Liu X, Chen J, Huang S, Wei W, Zou Y, Liu X, Deng K, Mo S, Chen J, et al: Anti-TGF-β attenuates tumor growth via polarization of tumor associated neutrophils towards an anti-tumor phenotype in colorectal cancer. J Cancer. 11:2580–2592. 2020. View Article : Google Scholar :

34 

Peng H, Shen J, Long X, Zhou X, Zhang J, Xu X, Huang T, Xu H, Sun S, Li C, et al: Local release of TGF-β inhibitor modulates tumor-associated neutrophils and enhances pancreatic cancer response to combined irreversible electroporation and immunotherapy. Adv Sci (Weinh). 9:e21052402022. View Article : Google Scholar

35 

Tan Q, Ma X, Yang B, Liu Y, Xie Y, Wang X, Yuan W and Ma J: Periodontitis pathogen Porphyromonas gingivalis promotes pancreatic tumorigenesis via neutrophil elastase from tumor-associated neutrophils. Gut Microbes. 14:20737852022. View Article : Google Scholar : PubMed/NCBI

36 

Li S, Cong X, Gao H, Lan X, Li Z, Wang W, Song S, Wang Y, Li C, Zhang H, et al: Tumor-associated neutrophils induce EMT by IL-17a to promote migration and invasion in gastric cancer cells. J Exp Clin Cancer Res. 38:62019. View Article : Google Scholar : PubMed/NCBI

37 

Zhang J, Yu D, Ji C, Wang M, Fu M, Qian Y and Zhang X, Ji R, Li C, Gu J and Zhang X: Exosomal miR-4745-5p/3911 from N2-polarized tumor-associated neutrophils promotes gastric cancer metastasis by regulating SLIT2. Mol Cancer. 23:1982024. View Article : Google Scholar : PubMed/NCBI

38 

Bodac A, Mayet A, Rana S, Pascual J, Bowler AD, Roh V, Fournier N, Craciun L, Demetter P, Radtke F and Meylan E: Bcl-xL targeting eliminates ageing tumor-promoting neutrophils and inhibits lung tumor growth. EMBO Mol Med. 16:158–184. 2024. View Article : Google Scholar : PubMed/NCBI

39 

Zhang S, Sun L, Zuo J and Feng D: Tumor associated neutrophils governs tumor progression through an IL-10/STAT3/PD-L1 feedback signaling loop in lung cancer. Transl Oncol. 40:1018662024. View Article : Google Scholar

40 

Huang X, Nepovimova E, Adam V, Sivak L, Heger Z, Valko M, Wu Q and Kuca K: Neutrophils in cancer immunotherapy: Friends or foes? Mol Cancer. 23:1072024. View Article : Google Scholar : PubMed/NCBI

41 

Bird L: Neutrophils become pro-angiogenic in tumours. Nat Rev Immunol. 24:1572024. View Article : Google Scholar : PubMed/NCBI

42 

Maas RR, Soukup K, Fournier N, Massara M, Galland S, Kornete M, Wischnewski V, Lourenco J, Croci D, Álvarez-Prado ÁF, et al: The local microenvironment drives activation of neutrophils in human brain tumors. Cell. 186:4546–4566.e27. 2023. View Article : Google Scholar : PubMed/NCBI

43 

Qu X, Zhuang G, Yu L, Meng G and Ferrara N: Induction of Bv8 expression by granulocyte colony-stimulating factor in CD11b+Gr1+ cells: Key role of Stat3 signaling. J Biol Chem. 287:19574–19584. 2012. View Article : Google Scholar : PubMed/NCBI

44 

Fetz AE, Radic MZ and Bowlin GL: Neutrophils in biomaterial-guided tissue regeneration: Matrix reprogramming for angiogenesis. Tissue Eng Part B Rev. 27:95–106. 2021. View Article : Google Scholar

45 

Vannitamby A, Seow HJ, Anderson G, Vlahos R, Thompson M, Steinfort D, Irving LB and Bozinovski S: Tumour-associated neutrophils and loss of epithelial PTEN can promote corticosteroid-insensitive MMP-9 expression in the chronically inflamed lung microenvironment. Thorax. 72:1140–1143. 2017. View Article : Google Scholar : PubMed/NCBI

46 

Mizuno R, Kawada K, Itatani Y, Ogawa R, Kiyasu Y and Sakai Y: The role of tumor-associated neutrophils in colorectal cancer. Int J Mol Sci. 20:5292019. View Article : Google Scholar : PubMed/NCBI

47 

Wang Y, Liu F, Chen L, Fang C, Li S, Yuan S, Qian X, Yin Y, Yu B, Fu B, et al: Neutrophil extracellular traps (NETs) promote non-small cell lung cancer metastasis by suppressing lncRNA MIR503HG to activate the NF-κB/NLRP3 inflammasome pathway. Front Immunol. 13:8675162022. View Article : Google Scholar

48 

Adrover JM, McDowell SAC, He XY, Quail DF and Egeblad M: NETworking with cancer: The bidirectional interplay between cancer and neutrophil extracellular traps. Cancer Cell. 41:505–526. 2023. View Article : Google Scholar : PubMed/NCBI

49 

Chu C, Wang X, Yang C, Chen F, Shi L, Xu W, Wang K, Liu B, Wang C, Sun D and Ding W: Neutrophil extracellular traps drive intestinal microvascular endothelial ferroptosis by impairing Fundc1-dependent mitophagy. Redox Biol. 67:1029062023. View Article : Google Scholar : PubMed/NCBI

50 

Zheng F, Ma L, Li X, Wang Z, Gao R, Peng C, Kang B, Wang Y, Luo T, Wu J, et al: Neutrophil extracellular traps induce glomerular endothelial cell dysfunction and pyroptosis in diabetic kidney disease. Diabetes. 71:2739–2750. 2022. View Article : Google Scholar : PubMed/NCBI

51 

Ngo AT, Skidmore A, Oberg J, Yarovoi I, Sarkar A, Levine N, Bochenek V, Zhao G, Rauova L, Kowalska MA, et al: Platelet factor 4 limits neutrophil extracellular trap- and cell-free DNA-induced thrombogenicity and endothelial injury. JCI Insight. 8:e1710542023. View Article : Google Scholar : PubMed/NCBI

52 

Teijeira Á, Garasa S, Gato M, Alfaro C, Migueliz I, Cirella A, de Andrea C, Ochoa MC, Otano I, Etxeberria I, et al: CXCR1 and CXCR2 chemokine receptor agonists produced by tumors induce neutrophil extracellular traps that interfere with immune cytotoxicity. Immunity. 52:856–871.e8. 2020. View Article : Google Scholar : PubMed/NCBI

53 

Cristinziano L, Modestino L, Antonelli A, Marone G, Simon HU, Varricchi G and Galdiero MR: Neutrophil extracellular traps in cancer. Semin Cancer Biol. 79:91–104. 2022. View Article : Google Scholar

54 

Pan JJ, Xie SZ, Zheng X, Xu JF, Xu H, Yin RQ, Luo YL, Shen L, Chen ZR, Chen YR, et al: Acetyl-CoA metabolic accumulation promotes hepatocellular carcinoma metastasis via enhancing CXCL1-dependent infiltration of tumor-associated neutrophils. Cancer Lett. 592:2169032024. View Article : Google Scholar : PubMed/NCBI

55 

Sun B, Qin W, Song M, Liu L, Yu Y, Qi X and Sun H: neutrophil suppresses tumor cell proliferation via fas/fas ligand pathway mediated cell cycle arrested. Int J Biol Sci. 14:2103–2113. 2018. View Article : Google Scholar :

56 

Blaisdell A, Crequer A, Columbus D, Daikoku T, Mittal K, Dey SK and Erlebacher A: Neutrophils oppose uterine epithelial carcinogenesis via debridement of hypoxic tumor cells. Cancer Cell. 28:785–799. 2015. View Article : Google Scholar : PubMed/NCBI

57 

Gershkovitz M, Caspi Y, Fainsod-Levi T, Katz B, Michaeli J, Khawaled S, Lev S, Polyansky L, Shaul ME, Sionov RV, et al: TRPM2 mediates neutrophil killing of disseminated tumor cells. Cancer Res. 78:2680–2690. 2018. View Article : Google Scholar : PubMed/NCBI

58 

Li Y, Wu S, Zhao Y, Dinh T, Jiang D, Selfridge JE, Myers G, Wang Y, Zhao X, Tomchuck S, et al: Neutrophil extracellular traps induced by chemotherapy inhibit tumor growth in murine models of colorectal cancer. J Clin Invest. 134:e1750312024. View Article : Google Scholar : PubMed/NCBI

59 

Antuamwine BB, Bosnjakovic R, Hofmann-Vega F, Wang X, Theodosiou T, Iliopoulos I and Brandau S: N1 versus N2 and PMN-MDSC: A critical appraisal of current concepts on tumor-associated neutrophils and new directions for human oncology. Immunol Rev. 314:250–279. 2023. View Article : Google Scholar

60 

Koga Y, Matsuzaki A, Suminoe A, Hattori H and Hara T: Neutrophil-derived TNF-related apoptosis-inducing ligand (TRAIL): A novel mechanism of antitumor effect by neutrophils. Cancer Res. 64:1037–1043. 2004. View Article : Google Scholar : PubMed/NCBI

61 

Cui C, Chakraborty K, Tang XA, Zhou G, Schoenfelt KQ, Becker KM, Hoffman A, Chang YF, Blank A, Reardon CA, et al: Neutrophil elastase selectively kills cancer cells and attenuates tumorigenesis. Cell. 184:3163–3177.e21. 2021. View Article : Google Scholar : PubMed/NCBI

62 

Hirschhorn D, Budhu S, Kraehenbuehl L, Gigoux M, Schröder D, Chow A, Ricca JM, Gasmi B, De Henau O, Mangarin LMB, et al: T cell immunotherapies engage neutrophils to eliminate tumor antigen escape variants. Cell. 186:1432–1447.e17. 2023. View Article : Google Scholar : PubMed/NCBI

63 

Zhou Z, Wang P, Sun R, Li J, Hu Z, Xin H, Luo C, Zhou J, Fan J and Zhou S: Tumor-associated neutrophils and macrophages interaction contributes to intrahepatic cholangiocarcinoma progression by activating STAT3. J Immunother Cancer. 9:e0019462021. View Article : Google Scholar : PubMed/NCBI

64 

Singhal S, Rao AS, Stadanlick J, Bruns K, Sullivan NT, Bermudez A, Honig-Frand A, Krouse R, Arambepola S, Guo E, et al: Human tumor-associated macrophages and neutrophils regulate antitumor antibody efficacy through lethal and sublethal trogocytosis. Cancer Res. 84:1029–1047. 2024. View Article : Google Scholar : PubMed/NCBI

65 

Wu L and Zhang XH: Tumor-associated neutrophils and macrophages-heterogenous but not chaotic. Front Immunol. 11:5539672020. View Article : Google Scholar : PubMed/NCBI

66 

Haider P, Kral-Pointner JB, Mayer J, Richter M, Kaun C, Brostjan C, Eilenberg W, Fischer MB, Speidl WS, Hengstenberg C, et al: Neutrophil extracellular trap degradation by differently polarized macrophage subsets. Arterioscler Thromb Vasc Biol. 40:2265–2278. 2020. View Article : Google Scholar : PubMed/NCBI

67 

Prame Kumar K, Nicholls AJ and Wong CHY: Partners in crime: Neutrophils and monocytes/macrophages in inflammation and disease. Cell Tissue Res. 371:551–565. 2018. View Article : Google Scholar : PubMed/NCBI

68 

Borella R, De Biasi S, Paolini A, Boraldi F, Lo Tartaro D, Mattioli M, Fidanza L, Neroni A, Caro-Maldonado A, Meschiari M, et al: Metabolic reprograming shapes neutrophil functions in severe COVID-19. Eur J Immunol. 52:484–502. 2022. View Article : Google Scholar

69 

Cannarile MA, Weisser M, Jacob W, Jegg AM, Ries CH and Rüttinger D: Colony-stimulating factor 1 receptor (CSF1R) inhibitors in cancer therapy. J Immunother Cancer. 5:532017. View Article : Google Scholar : PubMed/NCBI

70 

Cho H, Seo Y, Loke KM, Kim SW, Oh SM, Kim JH, Soh J, Kim HS, Lee H, Kim J, et al: Cancer-stimulated CAFs enhance monocyte differentiation and protumoral TAM Activation via IL6 and GM-CSF Secretion. Clin Cancer Res. 24:5407–5421. 2018. View Article : Google Scholar : PubMed/NCBI

71 

Schmidt E, Distel L, Erber R, Büttner-Herold M, Rosahl MC, Ott OJ, Strnad V, Hack CC, Hartmann A, Hecht M, et al: Tumor-associated neutrophils are a negative prognostic factor in early luminal breast cancers lacking immunosuppressive macrophage recruitment. Cancers (Basel). 16:31602024. View Article : Google Scholar : PubMed/NCBI

72 

Puerta-Arias JD, Mejía SP and González Á: The role of the interleukin-17 axis and neutrophils in the pathogenesis of endemic and systemic mycoses. Front Cell Infect Microbiol. 10:5953012020. View Article : Google Scholar

73 

Murata K, Murao A, Aziz M and Wang P: Extracellular CIRP induces novel Nectin-2+ (CD112+) neutrophils to promote Th1 differentiation in sepsis. J Immunol. 210:310–321. 2023. View Article : Google Scholar

74 

Parackova Z, Bloomfield M, Klocperk A and Sediva A: Neutrophils mediate Th17 promotion in COVID-19 patients. J Leukoc Biol. 109:73–76. 2021. View Article : Google Scholar

75 

Mishalian I, Bayuh R, Eruslanov E, Michaeli J, Levy L, Zolotarov L, Singhal S, Albelda SM, Granot Z and Fridlender ZG: Neutrophils recruit regulatory T-cells into tumors via secretion of CCL17-a new mechanism of impaired antitumor immunity. Int J Cancer. 135:1178–1186. 2014. View Article : Google Scholar : PubMed/NCBI

76 

Luo H, Ikenaga N, Nakata K, Higashijima N, Zhong P, Kubo A, Wu C, Tsutsumi C, Shimada Y, Hayashi M, et al: Tumor-associated neutrophils upregulate Nectin2 expression, creating the immunosuppressive microenvironment in pancreatic ductal adenocarcinoma. J Exp Clin Cancer Res. 43:2582024. View Article : Google Scholar : PubMed/NCBI

77 

Sun R, Xiong Y, Liu H, Gao C, Su L, Weng J, Yuan X, Zhang D and Feng J: Tumor-associated neutrophils suppress antitumor immunity of NK cells through the PD-L1/PD-1 axis. Transl Oncol. 13:1008252020. View Article : Google Scholar : PubMed/NCBI

78 

Tumino N, Besi F, Di Pace AL, Mariotti FR, Merli P, Li Pira G, Galaverna F, Pitisci A, Ingegnere T, Pelosi A, et al: PMN-MDSC are a new target to rescue graft-versus-leukemia activity of NK cells in haplo-HSC transplantation. Leukemia. 34:932–937. 2020. View Article : Google Scholar :

79 

Pelosi A, Besi F, Tumino N, Merli P, Quatrini L, Li Pira G, Algeri M, Moretta L and Vacca P: NK Cells and PMN-MDSCs in the graft from G-CSF mobilized haploidentical donors display distinct gene expression profiles from those of the non-mobilized counterpart. Front Immunol. 12:6573292021. View Article : Google Scholar : PubMed/NCBI

80 

Mouchemore KA and Anderson RL: Immunomodulatory effects of G-CSF in cancer: Therapeutic implications. Semin Immunol. 54:1015122021. View Article : Google Scholar : PubMed/NCBI

81 

Ogura K, Sato-Matsushita M, Yamamoto S, Hori T, Sasahara M, Iwakura Y, Saiki I, Tahara H and Hayakawa Y: NK cells control tumor-promoting function of neutrophils in mice. Cancer Immunol Res. 6:348–357. 2018. View Article : Google Scholar : PubMed/NCBI

82 

Li X, Xie G, Chen J, Wang Y, Zhai J and Shen L: Tumour cell-derived serglycin promotes IL-8 secretion of CAFs in gastric cancer. Br J Cancer. 131:271–282. 2024. View Article : Google Scholar : PubMed/NCBI

83 

Song M, He J, Pan QZ, Yang J, Zhao J, Zhang YJ, Huang Y, Tang Y, Wang Q, He J, et al: Cancer-associated fibroblast-mediated cellular crosstalk supports hepatocellular carcinoma progression. Hepatology. 73:1717–1735. 2021. View Article : Google Scholar : PubMed/NCBI

84 

Li C, Chen T, Liu J, Wang Y, Zhang C, Guo L, Shi D, Zhang T, Wang X and Li J: FGF19-Induced inflammatory CAF promoted neutrophil extracellular trap formation in the liver metastasis of colorectal cancer. Adv Sci (Weinh). 10:e23026132023. View Article : Google Scholar : PubMed/NCBI

85 

Dudeck J, Kotrba J, Immler R, Hoffmann A, Voss M, Alexaki VI, Morton L, Jahn SR, Katsoulis-Dimitriou K, Winzer S, et al: Directional mast cell degranulation of tumor necrosis factor into blood vessels primes neutrophil extravasation. Immunity. 54:468–483.e5. 2021. View Article : Google Scholar : PubMed/NCBI

86 

Li JY, Chen YP, Li YQ, Liu N and Ma J: Chemotherapeutic and targeted agents can modulate the tumor microenvironment and increase the efficacy of immune checkpoint blockades. Mol Cancer. 20:272021. View Article : Google Scholar : PubMed/NCBI

87 

Oliveira G and Wu CJ: Dynamics and specificities of T cells in cancer immunotherapy. Nat Rev Cancer. 23:295–316. 2023. View Article : Google Scholar : PubMed/NCBI

88 

Yi M, Zheng X, Niu M, Zhu S, Ge H and Wu K: Combination strategies with PD-1/PD-L1 blockade: Current advances and future directions. Mol Cancer. 21:282022. View Article : Google Scholar : PubMed/NCBI

89 

Chu X, Tian W, Wang Z, Zhang J and Zhou R: Co-inhibition of TIGIT and PD-1/PD-L1 in cancer immunotherapy: Mechanisms and clinical trials. Mol Cancer. 22:932023. View Article : Google Scholar : PubMed/NCBI

90 

Wu M, Huang Q, Xie Y, Wu X, Ma H, Zhang Y and Xia Y: Improvement of the anticancer efficacy of PD-1/PD-L1 blockade via combination therapy and PD-L1 regulation. J Hematol Oncol. 15:242022. View Article : Google Scholar : PubMed/NCBI

91 

Gjuka D, Adib E, Garrison K, Chen J, Zhang Y, Li W, Boutz D, Lamb C, Tanno Y, Nassar A, et al: Enzyme-mediated depletion of methylthioadenosine restores T cell function in MTAP-deficient tumors and reverses immunotherapy resistance. Cancer Cell. 41:1774–1787.e9. 2023. View Article : Google Scholar

92 

Niederlova V, Tsyklauri O, Kovar M and Stepanek O: IL-2-driven CD8+ T cell phenotypes: Implications for immunotherapy. Trends Immunol. 44:890–901. 2023. View Article : Google Scholar : PubMed/NCBI

93 

Si J, Shi X, Sun S, Zou B, Li Y, An D, Lin X, Gao Y, Long F, Pang B, et al: Hematopoietic progenitor kinase1 (HPK1) mediates T cell dysfunction and is a druggable target for T cell-based immunotherapies. Cancer Cell. 38:551–566.e11. 2020. View Article : Google Scholar : PubMed/NCBI

94 

Miao S, Rodriguez BL and Gibbons DL: The multifaceted role of neutrophils in NSCLC in the era of immune checkpoint inhibitors. Cancers (Basel). 16:25072024. View Article : Google Scholar : PubMed/NCBI

95 

Xu P, Zhang X, Chen K, Zhu M, Jia R, Zhou Q, Yang J, Dai J, Jin Y and Shi K: Tumor cell-derived microparticles induced by methotrexate augment T-cell antitumor responses by downregulating expression of PD-1 in neutrophils. Cancer Immunol Res. 11:501–514. 2023. View Article : Google Scholar : PubMed/NCBI

96 

Meng Y, Ye F, Nie P, Zhao Q, An L, Wang W, Qu S, Shen Z, Cao Z, Zhang X, et al: Immunosuppressive CD10+ALPL+ neutrophils promote resistance to anti-PD-1 therapy in HCC by mediating irreversible exhaustion of T cells. J Hepatol. 79:1435–1449. 2023. View Article : Google Scholar : PubMed/NCBI

97 

Xie P, Yu M, Zhang B, Yu Q, Zhao Y, Wu M, Jin L, Yan J, Zhou B, Liu S, et al: CRKL dictates anti-PD-1 resistance by mediating tumor-associated neutrophil infiltration in hepatocellular carcinoma. J Hepatol. 81:93–107. 2024. View Article : Google Scholar : PubMed/NCBI

98 

Michaeli J, Shaul ME, Mishalian I, Hovav AH, Levy L, Zolotriov L, Granot Z and Fridlender ZG: Tumor-associated neutrophils induce apoptosis of non-activated CD8 T-cells in a TNFα and NO-dependent mechanism, promoting a tumor-supportive environment. Oncoimmunology. 6:e13569652017. View Article : Google Scholar

99 

Wang TT, Zhao YL, Peng LS, Chen N, Chen W, Lv YP, Mao FY, Zhang JY, Cheng P, Teng YS, et al: Tumour-activated neutrophils in gastric cancer foster immune suppression and disease progression through GM-CSF-PD-L1 pathway. Gut. 66:1900–1911. 2017. View Article : Google Scholar : PubMed/NCBI

100 

Kaltenmeier C, Yazdani HO, Morder K, Geller DA, Simmons RL and Tohme S: Neutrophil extracellular traps promote T cell exhaustion in the tumor microenvironment. Front Immunol. 12:7852222021. View Article : Google Scholar : PubMed/NCBI

101 

Xia Y, He J, Zhang H, Wang H, Tetz G, Maguire CA, Wang Y, Onuma A, Genkin D, Tetz V, et al: AAV-mediated gene transfer of DNase I in the liver of mice with colorectal cancer reduces liver metastasis and restores local innate and adaptive immune response. Mol Oncol. 14:2920–2935. 2020. View Article : Google Scholar : PubMed/NCBI

102 

Zhang H, Wang Y, Onuma A, He J, Wang H, Xia Y, Lal R, Cheng X, Kasumova G, Hu Z, et al: Neutrophils extracellular traps inhibition improves PD-1 blockade immunotherapy in colorectal cancer. Cancers (Basel). 13:53332021. View Article : Google Scholar : PubMed/NCBI

103 

Peng JJ, Wang L, Li Z, Ku CL and Ho PC: Metabolic challenges and interventions in CAR T cell therapy. Sci Immunol. 8:eabq30162023. View Article : Google Scholar : PubMed/NCBI

104 

Albelda SM: CAR T cell therapy for patients with solid tumours: Key lessons to learn and unlearn. Nat Rev Clin Oncol. 21:47–66. 2024. View Article : Google Scholar

105 

Bulliard Y, Andersson BS, Baysal MA, Damiano J and Tsimberidou AM: Reprogramming T cell differentiation and exhaustion in CAR-T cell therapy. J Hematol Oncol. 16:1082023. View Article : Google Scholar : PubMed/NCBI

106 

Pan K, Farrukh H, Chittepu VCSR, Xu H, Pan CX and Zhu Z: CAR race to cancer immunotherapy: from CAR T, CAR NK to CAR macrophage therapy. J Exp Clin Cancer Res. 41:1192022. View Article : Google Scholar : PubMed/NCBI

107 

Hong M, Clubb JD and Chen YY: Engineering CAR-T cells for next-generation cancer therapy. Cancer Cell. 38:473–488. 2020. View Article : Google Scholar : PubMed/NCBI

108 

Zhang H, Yu P, Tomar VS, Chen X, Atherton MJ, Lu Z, Zhang HG, Li S, Ortiz A, Gui J, et al: Targeting PARP11 to avert immunosuppression and improve CAR T therapy in solid tumors. Nat Cancer. 3:808–820. 2022. View Article : Google Scholar : PubMed/NCBI

109 

The Lancet Oncology: CAR T-cell therapy for solid tumours. Lancet Oncol. 22:8932021. View Article : Google Scholar : PubMed/NCBI

110 

Li X, Zhu T, Wang R, Chen J, Tang L, Huo W, Huang X and Cao Q: Genetically programmable vesicles for enhancing CAR-T therapy against solid tumors. Adv Mater. 35:e22111382023. View Article : Google Scholar : PubMed/NCBI

111 

Krishnan SR and Bebawy M: Circulating biosignatures in multiple myeloma and their role in multidrug resistance. Mol Cancer. 22:792023. View Article : Google Scholar : PubMed/NCBI

112 

Wen X, Huang Z, Yang X, He X, Li L, Chen H, Wang K, Guo Q and Liu J: Development of an aptamer capable of multidrug resistance reversal for tumor combination chemotherapy. Proc Natl Acad Sci USA. 121:e23211161212024. View Article : Google Scholar : PubMed/NCBI

113 

Mousset A, Lecorgne E, Bourget I, Lopez P, Jenovai K, Cherfils-Vicini J, Dominici C, Rios G, Girard-Riboulleau C, Liu B, et al: Neutrophil extracellular traps formed during chemotherapy confer treatment resistance via TGF-β activation. Cancer Cell. 41:757–775.e10. 2023. View Article : Google Scholar

114 

Saw PE, Chen J and Song E: ChemoNETosis: A road to tumor therapeutic resistance. Cancer Cell. 41:655–657. 2023. View Article : Google Scholar : PubMed/NCBI

115 

Yang Y, Yu S, Lv C and Tian Y: NETosis in tumour microenvironment of liver: From primary to metastatic hepatic carcinoma. Ageing Res Rev. 97:1022972024. View Article : Google Scholar : PubMed/NCBI

116 

Kong X, Zhang Y, Xiang L, You Y, Duan Y, Zhao Y, Li S, Wu R, Zhang J, Zhou L and Duan L: Fusobacterium nucleatum-triggered neutrophil extracellular traps facilitate colorectal carcinoma progression. J Exp Clin Cancer Res. 42:2362023. View Article : Google Scholar : PubMed/NCBI

117 

Zhang Y, Yang Y, Hu X, Wang Z, Li L and Chen P: PADs in cancer: Current and future. Biochim Biophys Acta Rev Cancer. 1875:1884922021. View Article : Google Scholar

118 

Zhan X, Wu R, Kong XH, You Y, He K, Sun XY, Huang Y, Chen WX and Duan L: Elevated neutrophil extracellular traps by HBV-mediated S100A9-TLR4/RAGE-ROS cascade facilitate the growth and metastasis of hepatocellular carcinoma. Cancer Commun (Lond). 43:225–245. 2023. View Article : Google Scholar

119 

Mousset A, Bellone L, Gaggioli C and Albrengues J: NETscape or NEThance: Tailoring anti-cancer therapy. Trends Cancer. 10:655–667. 2024. View Article : Google Scholar : PubMed/NCBI

120 

Ramachandran IR, Condamine T, Lin C, Herlihy SE, Garfall A, Vogl DT, Gabrilovich DI and Nefedova Y: Bone marrow PMN-MDSCs and neutrophils are functionally similar in protection of multiple myeloma from chemotherapy. Cancer Lett. 371:117–124. 2016. View Article : Google Scholar :

121 

Tamura K, Miyato H, Kanamaru R, Sadatomo A, Takahashi K, Ohzawa H, Koyanagi T, Saga Y, Takei Y, Fujiwara H, et al: Neutrophil extracellular traps (NETs) reduce the diffusion of doxorubicin which may attenuate its ability to induce apoptosis of ovarian cancer cells. Heliyon. 8:e097302022. View Article : Google Scholar : PubMed/NCBI

122 

Goenka A, Khan F, Verma B, Sinha P, Dmello CC, Jogalekar MP, Gangadaran P and Ahn BC: Tumor microenvironment signaling and therapeutics in cancer progression. Cancer Commun (Lond). 43:525–561. 2023. View Article : Google Scholar : PubMed/NCBI

123 

Zhang R, Dong M, Tu J, Li F, Deng Q, Xu J, He X, Ding J, Xia J, Sheng D, et al: PMN-MDSCs modulated by CCL20 from cancer cells promoted breast cancer cell stemness through CXCL2-CXCR2 pathway. Signal Transduct Target Ther. 8:972023. View Article : Google Scholar : PubMed/NCBI

124 

Kang J, La Manna F, Bonollo F, Sampson N, Alberts IL, Mingels C, Afshar-Oromieh A, Thalmann GN and Karkampouna S: Tumor microenvironment mechanisms and bone metastatic disease progression of prostate cancer. Cancer Lett. 530:156–169. 2022. View Article : Google Scholar : PubMed/NCBI

125 

Capucetti A, Albano F and Bonecchi R: Multiple roles for chemokines in neutrophil biology. Front Immunol. 11:12592020. View Article : Google Scholar : PubMed/NCBI

126 

Rajarathnam K, Schnoor M, Richardson RM and Rajagopal S: How do chemokines navigate neutrophils to the target site: Dissecting the structural mechanisms and signaling pathways. Cell Signal. 54:69–80. 2019. View Article : Google Scholar :

127 

Bianchi A, De Castro Silva I, Deshpande NU, Singh S, Mehra S, Garrido VT, Guo X, Nivelo LA, Kolonias DS, Saigh SJ, et al: Cell-Autonomous Cxcl1 Sustains Tolerogenic Circuitries and Stromal Inflammation via Neutrophil-Derived TNF in Pancreatic Cancer. Cancer Discov. 13:1428–1453. 2023. View Article : Google Scholar : PubMed/NCBI

128 

Chao T, Furth EE and Vonderheide RH: CXCR2-Dependent accumulation of tumor-associated neutrophils regulates T-cell immunity in pancreatic ductal adenocarcinoma. Cancer Immunol Res. 4:968–982. 2016. View Article : Google Scholar : PubMed/NCBI

129 

Corsaro A, Tremonti B, Bajetto A, Barbieri F, Thellung S and Florio T: Chemokine signaling in tumors: potential role of CXC chemokines and their receptors as glioblastoma therapeutic targets. Expert Opin Ther Targets. 28:937–952. 2024. View Article : Google Scholar : PubMed/NCBI

130 

Powell D, Lou M, Barros Becker F and Huttenlocher A: Cxcr1 mediates recruitment of neutrophils and supports proliferation of tumor-initiating astrocytes in vivo. Sci Rep. 8:132852018. View Article : Google Scholar : PubMed/NCBI

131 

Jablonska J, Wu CF, Andzinski L, Leschner S and Weiss S: CXCR2-mediated tumor-associated neutrophil recruitment is regulated by IFN-β. Int J Cancer. 134:1346–1358. 2014. View Article : Google Scholar

132 

Haider C, Hnat J, Wagner R, Huber H, Timelthaler G, Grubinger M, Coulouarn C, Schreiner W, Schlangen K, Sieghart W, et al: Transforming growth factor-β and Axl induce CXCL5 and neutrophil recruitment in hepatocellular carcinoma. Hepatology. 69:222–236. 2019. View Article : Google Scholar

133 

Zhou SL, Yin D, Hu ZQ, Luo CB, Zhou ZJ, Xin HY, Yang XR, Shi YH, Wang Z, Huang XW, et al: A positive feedback loop between cancer stem-like cells and tumor-associated neutrophils controls hepatocellular carcinoma progression. Hepatology. 70:1214–1230. 2019. View Article : Google Scholar : PubMed/NCBI

134 

Zhou SL, Zhou ZJ, Hu ZQ, Huang XW, Wang Z, Chen EB, Fan J, Cao Y, Dai Z and Zhou J: Tumor-associated neutrophils recruit macrophages and T-regulatory cells to promote progression of hepatocellular carcinoma and resistance to sorafenib. Gastroenterology. 150:1646–1658.e17. 2016. View Article : Google Scholar : PubMed/NCBI

135 

He J, Zhou M, Yin J, Wan J, Chu J, Jia J, Sheng J, Wang C, Yin H and He F: METTL3 restrains papillary thyroid cancer progression via m6A/c-Rel/IL-8-mediated neutrophil infiltration. Mol Ther. 29:1821–1837. 2021. View Article : Google Scholar : PubMed/NCBI

136 

Schimek V, Strasser K, Beer A, Göber S, Walterskirchen N, Brostjan C, Müller C, Bachleitner-Hofmann T, Bergmann M, Dolznig H and Oehler R: Tumour cell apoptosis modulates the colorectal cancer immune microenvironment via interleukin-8-dependent neutrophil recruitment. Cell Death Dis. 13:1132022. View Article : Google Scholar : PubMed/NCBI

137 

Bellomo G, Rainer C, Quaranta V, Astuti Y, Raymant M, Boyd E, Stafferton R, Campbell F, Ghaneh P, Halloran CM, et al: Chemotherapy-induced infiltration of neutrophils promotes pancreatic cancer metastasis via Gas6/AXL signalling axis. Gut. 71:2284–2299. 2022. View Article : Google Scholar : PubMed/NCBI

138 

Nywening TM, Belt BA, Cullinan DR, Panni RZ, Han BJ, Sanford DE, Jacobs RC, Ye J, Patel AA, Gillanders WE, et al: Targeting both tumour-associated CXCR2+ neutrophils and CCR2+ macrophages disrupts myeloid recruitment and improves chemotherapeutic responses in pancreatic ductal adenocarcinoma. Gut. 67:1112–1123. 2018. View Article : Google Scholar

139 

Cheng Y, Ma XL, Wei YQ and Wei XW: Potential roles and targeted therapy of the CXCLs/CXCR2 axis in cancer and inflammatory diseases. Biochim Biophys Acta Rev Cancer. 1871:289–312. 2019. View Article : Google Scholar : PubMed/NCBI

140 

Schott AF, Goldstein LJ, Cristofanilli M, Ruffini PA, McCanna S, Reuben JM, Perez RP, Kato G and Wicha M: Phase Ib pilot study to evaluate reparixin in combination with weekly paclitaxel in patients with HER-2-negative metastatic breast cancer. Clin Cancer Res. 23:5358–5365. 2017. View Article : Google Scholar : PubMed/NCBI

141 

Jiang H, Cui J, Chu H, Xu T, Xie M, Jing X, Xu J, Zhou J and Shu Y: Targeting IL8 as a sequential therapy strategy to overcome chemotherapy resistance in advanced gastric cancer. Cell Death Discov. 8:2352022. View Article : Google Scholar : PubMed/NCBI

142 

Cheng Y, Mo F, Li Q, Han X, Shi H, Chen S, Wei Y and Wei X: Targeting CXCR2 inhibits the progression of lung cancer and promotes therapeutic effect of cisplatin. Mol Cancer. 20:622021. View Article : Google Scholar : PubMed/NCBI

143 

Kiri S and Ryba T: Cancer, metastasis, and the epigenome. Mol Cancer. 23:1542024. View Article : Google Scholar : PubMed/NCBI

144 

Fang Y, Wang S, Han S, Zhao Y, Yu C, Liu H and Li N: Targeted protein degrader development for cancer: Advances, challenges, and opportunities. Trends Pharmacol Sci. 44:303–317. 2023. View Article : Google Scholar : PubMed/NCBI

145 

Liu ZL, Chen HH, Zheng LL, Sun LP and Shi L: Angiogenic signaling pathways and anti-angiogenic therapy for cancer. Signal Transduct Target Ther. 8:1982023. View Article : Google Scholar : PubMed/NCBI

146 

Zhang T, Jia Y, Yu Y, Zhang B, Xu F and Guo H: Targeting the tumor biophysical microenvironment to reduce resistance to immunotherapy. Adv Drug Deliv Rev. 186:1143192022. View Article : Google Scholar : PubMed/NCBI

147 

Yang M, Mu Y, Yu X, Gao D, Zhang W, Li Y, Liu J, Sun C and Zhuang J: Survival strategies: How tumor hypoxia microenvironment orchestrates angiogenesis. Biomed Pharmacother. 176:1167832024. View Article : Google Scholar : PubMed/NCBI

148 

Li H, Qiu Z, Li F and Wang C: The relationship between MMP-2 and MMP-9 expression levels with breast cancer incidence and prognosis. Oncol Lett. 14:5865–5870. 2017.PubMed/NCBI

149 

Negri L and Ferrara N: The prokineticins: Neuromodulators and mediators of inflammation and myeloid cell-dependent angiogenesis. Physiol Rev. 98:1055–1082. 2018. View Article : Google Scholar : PubMed/NCBI

150 

Shojaei F and Ferrara N: Refractoriness to antivascular endothelial growth factor treatment: Role of myeloid cells. Cancer Res. 68:5501–5504. 2008. View Article : Google Scholar : PubMed/NCBI

151 

Shojaei F, Wu X, Zhong C, Yu L, Liang XH, Yao J, Blanchard D, Bais C, Peale FV, van Bruggen N, et al: Bv8 regulates myeloid-cell-dependent tumour angiogenesis. Nature. 450:825–831. 2007. View Article : Google Scholar : PubMed/NCBI

152 

Majidpoor J and Mortezaee K: Angiogenesis as a hallmark of solid tumors-clinical perspectives. Cell Oncol (Dordr). 44:715–737. 2021. View Article : Google Scholar : PubMed/NCBI

153 

Chung AS, Wu X, Zhuang G, Ngu H, Kasman I, Zhang J, Vernes JM, Jiang Z, Meng YG, Peale FV, et al: An interleukin-17-mediated paracrine network promotes tumor resistance to anti-angiogenic therapy. Nat Med. 19:1114–1123. 2013. View Article : Google Scholar : PubMed/NCBI

154 

Li TJ, Jiang YM, Hu YF, Huang L, Yu J, Zhao LY, Deng HJ, Mou TY, Liu H, Yang Y, et al: Interleukin-17-producing neutrophils link inflammatory stimuli to disease progression by promoting angiogenesis in gastric cancer. Clin Cancer Res. 23:1575–1585. 2017. View Article : Google Scholar

155 

Lee JM, McNamee CJ, Toloza E, Negrao MV, Lin J, Shum E, Cummings AL, Kris MG, Sepesi B, Bara I, et al: Neoadjuvant targeted therapy in resectable NSCLC: Current and future perspectives. J Thorac Oncol. 18:1458–1477. 2023. View Article : Google Scholar : PubMed/NCBI

156 

Napolitano S, Martini G, Ciardiello D, Del Tufo S, Martinelli E, Troiani T and Ciardiello F: Targeting the EGFR signalling pathway in metastatic colorectal cancer. Lancet Gastroenterol Hepatol. 9:664–676. 2024. View Article : Google Scholar : PubMed/NCBI

157 

Damare R, Engle K and Kumar G: Targeting epidermal growth factor receptor and its downstream signaling pathways by natural products: A mechanistic insight. Phytother Res. 38:2406–2447. 2024. View Article : Google Scholar : PubMed/NCBI

158 

Wang X, Jiang W, Du Y, Zhu D, Zhang J, Fang C, Yan F and Chen ZS: Targeting feedback activation of signaling transduction pathways to overcome drug resistance in cancer. Drug Resist Updat. 65:1008842022. View Article : Google Scholar : PubMed/NCBI

159 

Kim GT, Hahn KW, Yoon SY, Sohn KY and Kim JW: PLAG exerts anti-metastatic effects by interfering with neutrophil elastase/PAR2/EGFR signaling in A549 lung cancer orthotopic model. Cancers (Basel). 12:5602020. View Article : Google Scholar : PubMed/NCBI

160 

Swain SM, Shastry M and Hamilton E: Targeting HER2-positive breast cancer: Advances and future directions. Nat Rev Drug Discov. 22:101–126. 2023. View Article : Google Scholar

161 

Sato T, Takahashi S, Mizumoto T, Harao M, Akizuki M, Takasugi M, Fukutomi T and Yamashita J: Neutrophil elastase and cancer. Surg Oncol. 15:217–222. 2006. View Article : Google Scholar

162 

Schlessinger J: Common and distinct elements in cellular signaling via EGF and FGF receptors. Science. 306:1506–1507. 2004. View Article : Google Scholar : PubMed/NCBI

163 

Singh JK, Farnie G, Bundred NJ, Simões BM, Shergill A, Landberg G, Howell SJ and Clarke RB: Targeting CXCR1/2 significantly reduces breast cancer stem cell activity and increases the efficacy of inhibiting HER2 via HER2-dependent and -independent mechanisms. Clin Cancer Res. 19:643–656. 2013. View Article : Google Scholar

164 

Slamon DJ, Leyland-Jones B, Shak S, Fuchs H, Paton V, Bajamonde A, Fleming T, Eiermann W, Wolter J, Pegram M, et al: Use of chemotherapy plus a monoclonal antibody against HER2 for metastatic breast cancer that overexpresses HER2. N Engl J Med. 344:783–792. 2001. View Article : Google Scholar : PubMed/NCBI

165 

Singhal A, Li BT and O'Reilly EM: Targeting KRAS in cancer. Nat Med. 30:969–983. 2024. View Article : Google Scholar : PubMed/NCBI

166 

Biller LH and Schrag D: Diagnosis and treatment of metastatic colorectal cancer: A review. JAMA. 325:669–685. 2021. View Article : Google Scholar : PubMed/NCBI

167 

Zhu G, Pei L, Xia H, Tang Q and Bi F: Role of oncogenic KRAS in the prognosis, diagnosis and treatment of colorectal cancer. Mol Cancer. 20:1432021. View Article : Google Scholar : PubMed/NCBI

168 

Shang A, Gu C, Zhou C, Yang Y, Chen C, Zeng B, Wu J, Lu W, Wang W, Sun Z and Li D: Exosomal KRAS mutation promotes the formation of tumor-associated neutrophil extracellular traps and causes deterioration of colorectal cancer by inducing IL-8 expression. Cell Commun Signal. 18:522020. View Article : Google Scholar : PubMed/NCBI

169 

Pickup MW, Owens P, Gorska AE, Chytil A, Ye F, Shi C, Weaver VM, Kalluri R, Moses HL and Novitskiy SV: Development of aggressive pancreatic ductal adenocarcinomas depends on granulocyte colony stimulating factor secretion in carcinoma cells. Cancer Immunol Res. 5:718–729. 2017. View Article : Google Scholar : PubMed/NCBI

170 

Nolan E, Bridgeman VL, Ombrato L, Karoutas A, Rabas N, Sewnath CAN, Vasquez M, Rodrigues FS, Horswell S, Faull P, et al: Radiation exposure elicits a neutrophil-driven response in healthy lung tissue that enhances metastatic colonization. Nat Cancer. 3:173–187. 2022. View Article : Google Scholar : PubMed/NCBI

171 

Wisdom AJ, Hong CS, Lin AJ, Xiang Y, Cooper DE, Zhang J, Xu ES, Kuo HC, Mowery YM, Carpenter DJ, et al: Neutrophils promote tumor resistance to radiation therapy. Proc Natl Acad Sci USA. 116:18584–18589. 2019. View Article : Google Scholar : PubMed/NCBI

172 

Zheng X, Song X, Zhu G, Pan D, Li H, Hu J, Xiao K, Gong Q, Gu Z, Luo K and Li W: Nanomedicine combats drug resistance in lung cancer. Adv Mater. 36:e23089772024. View Article : Google Scholar

173 

Xu K, Guo H, Xia A, Wang Z, Wang S and Wang Q: Non-coding RNAs in radiotherapy resistance: Roles and therapeutic implications in gastrointestinal cancer. Biomed Pharmacother. 161:1144852023. View Article : Google Scholar : PubMed/NCBI

174 

Wu Y, Song Y, Wang R and Wang T: Molecular mechanisms of tumor resistance to radiotherapy. Mol Cancer. 22:962023. View Article : Google Scholar : PubMed/NCBI

175 

An L, Li M and Jia Q: Mechanisms of radiotherapy resistance and radiosensitization strategies for esophageal squamous cell carcinoma. Mol Cancer. 22:1402023. View Article : Google Scholar : PubMed/NCBI

176 

Peng J, Yin X, Yun W, Meng X and Huang Z: Radiotherapyinduced tumor physical microenvironment remodeling to overcome immunotherapy resistance. Cancer Lett. 559:2161082023. View Article : Google Scholar

177 

Beckers C, Pruschy M and Vetrugno I: Tumor hypoxia and radiotherapy: A major driver of resistance even for novel radiotherapy modalities. Semin Cancer Biol. 98:19–30. 2024. View Article : Google Scholar

178 

Wang X, Li X, Wu Y, Hong J and Zhang M: The prognostic significance of tumor-associated neutrophils and circulating neutrophils in glioblastoma (WHO CNS5 classification). BMC Cancer. 23:202023. View Article : Google Scholar : PubMed/NCBI

179 

Jeon HY, Ham SW, Kim JK, Jin X, Lee SY, Shin YJ, Choi CY, Sa JK, Kim SH, Chun T, et al: Ly6G+ inflammatory cells enable the conversion of cancer cells to cancer stem cells in an irradiated glioblastoma model. Cell Death Differ. 26:2139–2156. 2019. View Article : Google Scholar : PubMed/NCBI

180 

Ruiz-Fernández de Córdoba B, Moreno H, Valencia K, Perurena N, Ruedas P, Walle T, Pezonaga-Torres A, Hinojosa J, Guruceaga E, Pineda-Lucena A, et al: Tumor ENPP1 (CD203a)/ haptoglobin axis exploits myeloid-derived suppressor cells to promote post-radiotherapy local recurrence in breast cancer. Cancer Discov. 12:1356–1377. 2022. View Article : Google Scholar

181 

Ancey PB, Contat C, Boivin G, Sabatino S, Pascual J, Zangger N, Perentes JY, Peters S, Abel ED, Kirsch DG, et al: GLUT1 expression in tumor-associated neutrophils promotes lung cancer growth and resistance to radiotherapy. Cancer Res. 81:2345–2357. 2021. View Article : Google Scholar : PubMed/NCBI

182 

Shinde-Jadhav S, Mansure JJ, Rayes RF, Marcq G, Ayoub M, Skowronski R, Kool R, Bourdeau F, Brimo F, Spicer J and Kassouf W: Role of neutrophil extracellular traps in radiation resistance of invasive bladder cancer. Nat Commun. 12:27762021. View Article : Google Scholar : PubMed/NCBI

183 

Li H, Zeng J, You Q, Zhang M, Shi Y, Yang X, Gu W, Liu Y, Hu N, Wang Y, et al: X-ray-activated nanoscintillators integrated with tumor-associated neutrophils polarization for improved radiotherapy in metastatic colorectal cancer. Biomaterials. 316:1230312025. View Article : Google Scholar

184 

Rys RN and Calcinotto A: Senescent neutrophils: A hidden role in cancer progression. Trends Cell Biol. S0962-8924(24)00187-9. 2024.Epub ahead of print. View Article : Google Scholar : PubMed/NCBI

185 

Treffers LW, Ten Broeke T, Rösner T, Jansen JHM, van Houdt M, Kahle S, Schornagel K, Verkuijlen PJJH, Prins JM, Franke K, et al: IgA-mediated killing of tumor cells by neutrophils is enhanced by CD47-SIRPα checkpoint inhibition. Cancer Immunol Res. 8:120–130. 2020. View Article : Google Scholar

186 

Brandsma AM, Ten Broeke T, Nederend M, Meulenbroek LA, van Tetering G, Meyer S, Jansen JH, Beltrán Buitrago MA, Nagelkerke SQ, Németh I, et al: Simultaneous targeting of FcγRs and FcαRI enhances tumor cell killing. Cancer Immunol Res. 3:1316–1324. 2015. View Article : Google Scholar : PubMed/NCBI

187 

Borrok MJ, Luheshi NM, Beyaz N, Davies GC, Legg JW, Wu H, Dall'Acqua WF and Tsui P: Enhancement of antibody-dependent cell-mediated cytotoxicity by endowing IgG with FcαRI (CD89) binding. MAbs. 7:743–751. 2015. View Article : Google Scholar :

188 

Kumbhojkar N, Prakash S, Fukuta T, Adu-Berchie K, Kapate N, An R, Darko S, Chandran Suja V, Park KS, Gottlieb AP, et al: Neutrophils bearing adhesive polymer micropatches as a drug-free cancer immunotherapy. Nat Biomed Eng. 8:579–592. 2024. View Article : Google Scholar : PubMed/NCBI

189 

Quaas A, Pamuk A, Klein S, Quantius J, Rehkaemper J, Bar utcu AG, Rueschoff J, Zander T, Gebauer F, Hillmer A, et al: Sex-specific prognostic effect of CD66b-positive tumor-infiltrating neutrophils (TANs) in gastric and esophageal adenocarcinoma. Gastric Cancer. 24:1213–1226. 2021. View Article : Google Scholar : PubMed/NCBI

190 

Peng H, Wu X, Liu S, He M, Tang C, Wen Y, Xie C, Zhong R, Li C, Xiong S, et al: Cellular dynamics in tumour microenvironment along with lung cancer progression underscore spatial and evolutionary heterogeneity of neutrophil. Clin Transl Med. 13:e13402023. View Article : Google Scholar : PubMed/NCBI

191 

Zhang J, Zhang M, Lou J, Wu L, Zhang S, Liu X, Ke Y, Zhao S, Song Z, Bai X, et al: Machine learning integration with single-cell transcriptome sequencing datasets reveals the impact of tumor-associated neutrophils on the immune microenvironment and immunotherapy outcomes in gastric cancer. Int J Mol Sci. 25:127152024. View Article : Google Scholar : PubMed/NCBI

192 

Ye L, Zhang T, Kang Z, Guo G, Sun Y, Lin K, Huang Q, Shi X, Ni Z, Ding N, et al: Tumor-infiltrating immune cells act as a marker for prognosis in colorectal cancer. Front Immunol. 10:23682019. View Article : Google Scholar : PubMed/NCBI

193 

Nøst TH, Alcala K, Urbarova I, Byrne KS, Guida F, Sandanger TM and Johansson M: Systemic inflammation markers and cancer incidence in the UK Biobank. Eur J Epidemiol. 36:841–848. 2021. View Article : Google Scholar : PubMed/NCBI

194 

Mosca M, Nigro MC, Pagani R, De Giglio A and Di Federico A: Neutrophil-to-lymphocyte ratio (NLR) in NSCLC, gastrointestinal, and other solid tumors: Immunotherapy and beyond. Biomolecules. 13:18032023. View Article : Google Scholar : PubMed/NCBI

195 

Cupp MA, Cariolou M, Tzoulaki I, Aune D, Evangelou E and Berlanga-Taylor AJ: Neutrophil to lymphocyte ratio and cancer prognosis: An umbrella review of systematic reviews and meta-analyses of observational studies. BMC Med. 18:3602020. View Article : Google Scholar : PubMed/NCBI

196 

Ethier JL, Desautels D, Templeton A, Shah PS and Amir E: Prognostic role of neutrophil-to-lymphocyte ratio in breast cancer: A systematic review and meta-analysis. Breast Cancer Res. 19:22017. View Article : Google Scholar : PubMed/NCBI

197 

Pecqueux M, Brückner F, Oehme F, Hempel S, Baenke F, Riediger C, Distler M, Weitz J and Kahlert C: Preoperative IL-8 levels as prognostic indicators of overall survival: An extended follow-up in a prospective cohort with colorectal liver metastases. BMC Cancer. 24:902024. View Article : Google Scholar : PubMed/NCBI

198 

Hsu YJ, Chern YJ, Wu ZE, Yu YL, Liao CK, Tsai WS, You JF and Lee CW: The oncologic outcome and prognostic factors for solitary colorectal liver metastasis after liver resection. J Gastrointest Surg. 28:267–275. 2024. View Article : Google Scholar : PubMed/NCBI

199 

Huang W, Jiang Y, Xiong W, Sun Z, Chen C, Yuan Q, Zhou K, Han Z, Feng H, Chen H, et al: Noninvasive imaging of the tumor immune microenvironment correlates with response to immunotherapy in gastric cancer. Nat Commun. 13:50952022. View Article : Google Scholar : PubMed/NCBI

200 

Tan S, Zheng Q, Zhang W, Zhou M, Xia C and Feng W: Prognostic value of inflammatory markers NLR, PLR, and LMR in gastric cancer patients treated with immune checkpoint inhibitors: A meta-analysis and systematic review. Front Immunol. 15:14087002024. View Article : Google Scholar : PubMed/NCBI

201 

He G, Zhang H, Zhou J, Wang B, Chen Y, Kong Y, Xie X, Wang X, Fei R, Wei L, et al: Peritumoural neutrophils negatively regulate adaptive immunity via the PD-L1/PD-1 signalling pathway in hepatocellular carcinoma. J Exp Clin Cancer Res. 34:1412015. View Article : Google Scholar : PubMed/NCBI

Related Articles

  • Abstract
  • View
  • Download
  • Twitter
Copy and paste a formatted citation
Spandidos Publications style
Hou R, Wu X, Wang C, Fan H, Zhang Y, Wu H, Wang H, Ding J, Jiang H, Xu J, Xu J, et al: Tumor‑associated neutrophils: Critical regulators in cancer progression and therapeutic resistance (Review). Int J Oncol 66: 28, 2025.
APA
Hou, R., Wu, X., Wang, C., Fan, H., Zhang, Y., Wu, H. ... Xu, J. (2025). Tumor‑associated neutrophils: Critical regulators in cancer progression and therapeutic resistance (Review). International Journal of Oncology, 66, 28. https://doi.org/10.3892/ijo.2025.5734
MLA
Hou, R., Wu, X., Wang, C., Fan, H., Zhang, Y., Wu, H., Wang, H., Ding, J., Jiang, H., Xu, J."Tumor‑associated neutrophils: Critical regulators in cancer progression and therapeutic resistance (Review)". International Journal of Oncology 66.4 (2025): 28.
Chicago
Hou, R., Wu, X., Wang, C., Fan, H., Zhang, Y., Wu, H., Wang, H., Ding, J., Jiang, H., Xu, J."Tumor‑associated neutrophils: Critical regulators in cancer progression and therapeutic resistance (Review)". International Journal of Oncology 66, no. 4 (2025): 28. https://doi.org/10.3892/ijo.2025.5734
Copy and paste a formatted citation
x
Spandidos Publications style
Hou R, Wu X, Wang C, Fan H, Zhang Y, Wu H, Wang H, Ding J, Jiang H, Xu J, Xu J, et al: Tumor‑associated neutrophils: Critical regulators in cancer progression and therapeutic resistance (Review). Int J Oncol 66: 28, 2025.
APA
Hou, R., Wu, X., Wang, C., Fan, H., Zhang, Y., Wu, H. ... Xu, J. (2025). Tumor‑associated neutrophils: Critical regulators in cancer progression and therapeutic resistance (Review). International Journal of Oncology, 66, 28. https://doi.org/10.3892/ijo.2025.5734
MLA
Hou, R., Wu, X., Wang, C., Fan, H., Zhang, Y., Wu, H., Wang, H., Ding, J., Jiang, H., Xu, J."Tumor‑associated neutrophils: Critical regulators in cancer progression and therapeutic resistance (Review)". International Journal of Oncology 66.4 (2025): 28.
Chicago
Hou, R., Wu, X., Wang, C., Fan, H., Zhang, Y., Wu, H., Wang, H., Ding, J., Jiang, H., Xu, J."Tumor‑associated neutrophils: Critical regulators in cancer progression and therapeutic resistance (Review)". International Journal of Oncology 66, no. 4 (2025): 28. https://doi.org/10.3892/ijo.2025.5734
Follow us
  • Twitter
  • LinkedIn
  • Facebook
About
  • Spandidos Publications
  • Careers
  • Cookie Policy
  • Privacy Policy
How can we help?
  • Help
  • Live Chat
  • Contact
  • Email to our Support Team