Spandidos Publications Logo
  • About
    • About Spandidos
    • Aims and Scopes
    • Abstracting and Indexing
    • Editorial Policies
    • Reprints and Permissions
    • Job Opportunities
    • Terms and Conditions
    • Contact
  • Journals
    • All Journals
    • Oncology Letters
      • Oncology Letters
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Oncology
      • International Journal of Oncology
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Molecular and Clinical Oncology
      • Molecular and Clinical Oncology
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Experimental and Therapeutic Medicine
      • Experimental and Therapeutic Medicine
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Molecular Medicine
      • International Journal of Molecular Medicine
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Biomedical Reports
      • Biomedical Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Oncology Reports
      • Oncology Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Molecular Medicine Reports
      • Molecular Medicine Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • World Academy of Sciences Journal
      • World Academy of Sciences Journal
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Functional Nutrition
      • International Journal of Functional Nutrition
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Epigenetics
      • International Journal of Epigenetics
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Medicine International
      • Medicine International
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
  • Articles
  • Information
    • Information for Authors
    • Information for Reviewers
    • Information for Librarians
    • Information for Advertisers
    • Conferences
  • Language Editing
Spandidos Publications Logo
  • About
    • About Spandidos
    • Aims and Scopes
    • Abstracting and Indexing
    • Editorial Policies
    • Reprints and Permissions
    • Job Opportunities
    • Terms and Conditions
    • Contact
  • Journals
    • All Journals
    • Biomedical Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Experimental and Therapeutic Medicine
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Epigenetics
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Functional Nutrition
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Molecular Medicine
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Oncology
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Medicine International
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Molecular and Clinical Oncology
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Molecular Medicine Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Oncology Letters
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Oncology Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • World Academy of Sciences Journal
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
  • Articles
  • Information
    • For Authors
    • For Reviewers
    • For Librarians
    • For Advertisers
    • Conferences
  • Language Editing
Login Register Submit
  • This site uses cookies
  • You can change your cookie settings at any time by following the instructions in our Cookie Policy. To find out more, you may read our Privacy Policy.

    I agree
Search articles by DOI, keyword, author or affiliation
Search
Advanced Search
presentation
International Journal of Oncology
Join Editorial Board Propose a Special Issue
Print ISSN: 1019-6439 Online ISSN: 1791-2423
Journal Cover
May-2025 Volume 66 Issue 5

Full Size Image

Cover Legend PDF

Sign up for eToc alerts
Recommend to Library

Journals

International Journal of Molecular Medicine

International Journal of Molecular Medicine

International Journal of Molecular Medicine is an international journal devoted to molecular mechanisms of human disease.

International Journal of Oncology

International Journal of Oncology

International Journal of Oncology is an international journal devoted to oncology research and cancer treatment.

Molecular Medicine Reports

Molecular Medicine Reports

Covers molecular medicine topics such as pharmacology, pathology, genetics, neuroscience, infectious diseases, molecular cardiology, and molecular surgery.

Oncology Reports

Oncology Reports

Oncology Reports is an international journal devoted to fundamental and applied research in Oncology.

Experimental and Therapeutic Medicine

Experimental and Therapeutic Medicine

Experimental and Therapeutic Medicine is an international journal devoted to laboratory and clinical medicine.

Oncology Letters

Oncology Letters

Oncology Letters is an international journal devoted to Experimental and Clinical Oncology.

Biomedical Reports

Biomedical Reports

Explores a wide range of biological and medical fields, including pharmacology, genetics, microbiology, neuroscience, and molecular cardiology.

Molecular and Clinical Oncology

Molecular and Clinical Oncology

International journal addressing all aspects of oncology research, from tumorigenesis and oncogenes to chemotherapy and metastasis.

World Academy of Sciences Journal

World Academy of Sciences Journal

Multidisciplinary open-access journal spanning biochemistry, genetics, neuroscience, environmental health, and synthetic biology.

International Journal of Functional Nutrition

International Journal of Functional Nutrition

Open-access journal combining biochemistry, pharmacology, immunology, and genetics to advance health through functional nutrition.

International Journal of Epigenetics

International Journal of Epigenetics

Publishes open-access research on using epigenetics to advance understanding and treatment of human disease.

Medicine International

Medicine International

An International Open Access Journal Devoted to General Medicine.

Journal Cover
May-2025 Volume 66 Issue 5

Full Size Image

Cover Legend PDF

Sign up for eToc alerts
Recommend to Library

  • Article
  • Citations
    • Cite This Article
    • Download Citation
    • Create Citation Alert
    • Remove Citation Alert
    • Cited By
  • Similar Articles
    • Related Articles (in Spandidos Publications)
    • Similar Articles (Google Scholar)
    • Similar Articles (PubMed)
  • Download PDF
  • Download XML
  • View XML
Review Open Access

Targeting ncRNAs to overcome metabolic reprogramming‑mediated drug resistance in cancer (Review)

  • Authors:
    • Junxin Li
    • Yanyu Li
    • Lin Fu
    • Huiling Chen
    • Fei Du
    • Zhongshu Wang
    • Yan Zhang
    • Yu Huang
    • Jidong Miao
    • Yi Xiao
  • View Affiliations / Copyright

    Affiliations: Department of Pharmacy, Zigong Fourth People's Hospital, Zigong, Sichuan 643000, P.R. China, Department of Pharmacy, The Fourth Affiliated Hospital of Southwest Medical University, Meishan, Sichuan 64200, P.R. China, Department of Oncology, Zigong Fourth People's Hospital, Zigong, Sichuan 643000, P.R. China
    Copyright: © Li et al. This is an open access article distributed under the terms of Creative Commons Attribution License.
  • Article Number: 35
    |
    Published online on: March 19, 2025
       https://doi.org/10.3892/ijo.2025.5741
  • Expand metrics +
Metrics: Total Views: 0 (Spandidos Publications: | PMC Statistics: )
Metrics: Total PDF Downloads: 0 (Spandidos Publications: | PMC Statistics: )
Cited By (CrossRef): 0 citations Loading Articles...

This article is mentioned in:



Abstract

The emergence of resistance to antitumor drugs in cancer cells presents a notable obstacle in cancer therapy. Metabolic reprogramming is characterized by enhanced glycolysis, disrupted lipid metabolism, glutamine dependence and mitochondrial dysfunction. In addition to promoting tumor growth and metastasis, metabolic reprogramming mediates drug resistance through diverse molecular mechanisms, offering novel opportunities for therapeutic intervention. Non‑coding RNAs (ncRNAs), a diverse class of RNA molecules that lack protein‑coding function, represent a notable fraction of the human genome. Due to their distinct expression profiles and multifaceted roles in various cancers, ncRNAs have relevance in cancer pathophysiology. ncRNAs orchestrate metabolic abnormalities associated with drug resistance in cancer cells. The present review provides a comprehensive analysis of the mechanisms by which metabolic reprogramming drives drug resistance, with an emphasis on the regulatory roles of ncRNAs in glycolysis, lipid metabolism, mitochondrial dysfunction and glutamine metabolism. Furthermore, the present review aimed to discuss the potential of ncRNAs as biomarkers for predicting chemotherapy responses, as well as emerging strategies to target ncRNAs that modulate metabolism, particularly in the context of combination therapy with anti‑cancer drugs.
View Figures

Figure 1

Figure 2

Figure 3

Figure 4

Figure 5

Figure 6

Figure 7

Figure 8

View References

1 

Bray F, Laversanne M, Sung H, Ferlay J, Siegel RL, Soerjomataram I and Jemal A: Global cancer statistics 2022: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J Clin. 74:229–263. 2024. View Article : Google Scholar : PubMed/NCBI

2 

Bukhari SNA: Emerging nanotherapeutic approaches to overcome drug resistance in cancers with update on clinical trials. Pharmaceutics. 14:8662022. View Article : Google Scholar : PubMed/NCBI

3 

Vasan N, Baselga J and Hyman DM: A view on drug resistance in cancer. Nature. 575:299–309. 2019. View Article : Google Scholar : PubMed/NCBI

4 

Mattiuzzi C and Lippi G: Current cancer epidemiology. J Epidemiol Glob Health. 9:217–222. 2019. View Article : Google Scholar : PubMed/NCBI

5 

Tufail M, Hu JJ, Liang J, He CY, Wan WD, Huang YQ, Jiang CH, Wu H and Li N: Hallmarks of cancer resistance. iScience. 27:1099792024. View Article : Google Scholar : PubMed/NCBI

6 

Kubik J, Humeniuk E, Adamczuk G, Madej-Czerwonka B and Korga-Plewko A: Targeting energy metabolism in cancer treatment. Int J Mol Sci. 23:55722022. View Article : Google Scholar : PubMed/NCBI

7 

Pavlova NN, Zhu J and Thompson CB: The hallmarks of cancer metabolism: Still emerging. Cell Metab. 34:355–377. 2022. View Article : Google Scholar : PubMed/NCBI

8 

Warburg O, Wind F and Negelein E: The metabolism of tumors in the body. J Gen Physiol. 8:519–530. 1927. View Article : Google Scholar : PubMed/NCBI

9 

Paul S, Ghosh S and Kumar S: Tumor glycolysis, an essential sweet tooth of tumor cells. Semin Cancer Biol. 86:1216–1230. 2022. View Article : Google Scholar : PubMed/NCBI

10 

Yoo HC, Yu YC, Sung Y and Han JM: Glutamine reliance in cell metabolism. Exp Mol Med. 52:1496–1516. 2020. View Article : Google Scholar : PubMed/NCBI

11 

Pavlova NN and Thompson CB: The emerging hallmarks of cancer metabolism. Cell Metab. 23:27–47. 2016. View Article : Google Scholar : PubMed/NCBI

12 

Stine ZE, Schug ZT, Salvino JM and Dang CV: Targeting cancer metabolism in the era of precision oncology. Nat Rev Drug Discov. 21:141–162. 2022. View Article : Google Scholar

13 

Landau BR, Laszlo J, Stengle J and Burk D: Certain metabolic and pharmacologic effects in cancer patients given infusions of 2-deoxy-D-glucose. J Natl Cancer Inst. 21:485–494. 1958.PubMed/NCBI

14 

Slack FJ and Chinnaiyan AM: The role of non-coding RNAs in oncology. Cell. 179:1033–1055. 2019. View Article : Google Scholar : PubMed/NCBI

15 

Nemeth K, Bayraktar R, Ferracin M and Calin GA: Non-coding RNAs in disease: From mechanisms to therapeutics. Nat Rev Genet. 25:211–232. 2024. View Article : Google Scholar

16 

Sanchez-Mejias A and Tay Y: Competing endogenous RNA networks: Tying the essential knots for cancer biology and therapeutics. J Hematol Oncol. 8:302015. View Article : Google Scholar : PubMed/NCBI

17 

Lin W, Zhou Q, Wang CQ, Zhu L, Bi C, Zhang S, Wang X and Jin H: LncRNAs regulate metabolism in cancer. Int J Biol Sci. 16:1194–1206. 2020. View Article : Google Scholar : PubMed/NCBI

18 

Shih JW, Wang LY, Hung CL, Kung HJ and Hsieh CL: Non-coding RNAs in castration-resistant prostate cancer: Regulation of androgen receptor signaling and cancer metabolism. Int J Mol Sci. 16:28943–28978. 2015. View Article : Google Scholar : PubMed/NCBI

19 

Xu S, Wang L, Zhao Y, Mo T, Wang B, Lin J and Yang H: Metabolism-regulating non-coding RNAs in breast cancer: Roles, mechanisms and clinical applications. J Biomed Sci. 31:252024. View Article : Google Scholar : PubMed/NCBI

20 

Keyvani-Ghamsari S, Khorsandi K, Rasul A and Zaman MK: Current understanding of epigenetics mechanism as a novel target in reducing cancer stem cells resistance. Clin Epigenetics. 13:1202021. View Article : Google Scholar : PubMed/NCBI

21 

Zeng Z, Fu M, Hu Y, Wei Y, Wei X and Luo M: Regulation and signaling pathways in cancer stem cells: Implications for targeted therapy for cancer. Mol Cancer. 22:1722023. View Article : Google Scholar : PubMed/NCBI

22 

Yuan Y, Li H, Pu W, Chen L, Guo D, Jiang H, He B, Qin S, Wang K, Li N, et al: Cancer metabolism and tumor microenvironment: Fostering each other? Sci China Life Sci. 65:236–279. 2022. View Article : Google Scholar

23 

Lin X, Wu Z, Hu H, Luo ML and Song E: Non-coding RNAs rewire cancer metabolism networks. Semin Cancer Biol. 75:116–126. 2021. View Article : Google Scholar : PubMed/NCBI

24 

Zhang D, Guo Q, You K, Zhang Y, Zheng Y and Wei T: m6A-modified circARHGAP12 promotes the aerobic glycolysis of doxorubicin-resistance osteosarcoma by targeting c-Myc. J Orthop Surg Res. 19:332024. View Article : Google Scholar

25 

Zhang Q, Wu J, Zhang X, Cao L, Wu Y and Miao X: Transcription factor ELK1 accelerates aerobic glycolysis to enhance osteosarcoma chemoresistance through miR-134/PTBP1 signaling cascade. Aging (Albany NY). 13:6804–6819. 2021. View Article : Google Scholar : PubMed/NCBI

26 

He W, Liang B, Wang C, Li S, Zhao Y, Huang Q, Liu Z, Yao Z, Wu Q, Liao W, et al: MSC-regulated lncRNA MACC1-AS1 promotes stemness and chemoresistance through fatty acid oxidation in gastric cancer. Oncogene. 38:4637–4654. 2019. View Article : Google Scholar : PubMed/NCBI

27 

Ge X, Pan MH, Wang L, Li W, Jiang C, He J, Abouzid K, Liu LZ, Shi Z and Jiang BH: Hypoxia-mediated mitochondria apoptosis inhibition induces temozolomide treatment resistance through miR-26a/Bad/Bax axis. Cell Death Dis. 9:11282018. View Article : Google Scholar : PubMed/NCBI

28 

Ding C, Yi X, Chen X, Wu Z, You H, Chen X, Zhang G, Sun Y, Bu X, Wu X, et al: Warburg effect-promoted exosomal circ_0072083 releasing up-regulates NANGO expression through multiple pathways and enhances temozolomide resistance in glioma. J Exp Clin Cancer Res. 40:1642021. View Article : Google Scholar : PubMed/NCBI

29 

Sun X, Sun G, Huang Y, Hao Y, Tang X, Zhang N, Zhao L, Zhong R and Peng Y: 3-Bromopyruvate regulates the status of glycolysis and BCNU sensitivity in human hepatocellular carcinoma cells. Biochem Pharmacol. 177:1139882020. View Article : Google Scholar : PubMed/NCBI

30 

Liu R, Chen Y, Liu G, Li C, Song Y, Cao Z, Li W, Hu J, Lu C and Liu Y: PI3K/AKT pathway as a key link modulates the multidrug resistance of cancers. Cell Death Dis. 11:7972020. View Article : Google Scholar : PubMed/NCBI

31 

Castellví A, Pequerul R, Barracco V, Juanhuix J, Parés X and Farrés J: Structural and biochemical evidence that ATP inhibits the cancer biomarker human aldehyde dehydrogenase 1A3. Commun Biol. 5:3542022. View Article : Google Scholar : PubMed/NCBI

32 

Hou GX, Liu PP, Zhang S, Yang M, Liao J, Yang J, Hu Y, Jiang WQ, Wen S and Huang P: Elimination of stem-like cancer cell side-population by auranofin through modulation of ROS and glycolysis. Cell Death Dis. 9:892018. View Article : Google Scholar : PubMed/NCBI

33 

Giddings EL, Champagne DP, Wu MH, Laffin JM, Thornton TM, Valenca-Pereira F, Culp-Hill R, Fortner KA, Romero N, East J, et al: Mitochondrial ATP fuels ABC transporter-mediated drug efflux in cancer chemoresistance. Nat Commun. 12:28042021. View Article : Google Scholar : PubMed/NCBI

34 

Lu S, Tian H, Li L, Li B, Yang M, Zhou L, Jiang H, Li Q, Wang W, Nice EC, et al: Nanoengineering a zeolitic imidazolate framework-8 capable of manipulating energy metabolism against cancer chemo-phototherapy resistance. Small. 18:e22049262022. View Article : Google Scholar : PubMed/NCBI

35 

Roberts DJ and Miyamoto S: Hexokinase II integrates energy metabolism and cellular protection: Akting on mitochondria and TORCing to autophagy. Cell Death Differ. 22:248–257. 2015. View Article : Google Scholar :

36 

Zhang Z, Deng X, Liu Y, Liu Y, Sun L and Chen F: PKM2, function and expression and regulation. Cell Biosci. 9:522019. View Article : Google Scholar : PubMed/NCBI

37 

Jang M, Kang HJ, Lee SY, Chung SJ, Kang S, Chi SW, Cho S, Lee SC, Lee CK, Park BC, et al: Glyceraldehyde-3-phosphate, a glycolytic intermediate, plays a key role in controlling cell fate via inhibition of caspase activity. Mol Cells. 28:559–563. 2009. View Article : Google Scholar : PubMed/NCBI

38 

Dong Q, Niu W, Mu M, Ye C, Wu P, Hu S and Niu C: Lycorine hydrochloride interferes with energy metabolism to inhibit chemoresistant glioblastoma multiforme cell growth through suppressing PDK3. Mol Cell Biochem. 480:355–369. 2025. View Article : Google Scholar

39 

Yalcin A, Clem BF, Imbert-Fernandez Y, Ozcan SC, Peker S, O'Neal J, Klarer AC, Clem AL, Telang S and Chesney J: 6-Phosphofructo-2-kinase (PFKFB3) promotes cell cycle progression and suppresses apoptosis via Cdk1-mediated phosphorylation of p27. Cell Death Dis. 5:e13372014. View Article : Google Scholar : PubMed/NCBI

40 

Shi L, Pan H, Liu Z, Xie J and Han W: Roles of PFKFB3 in cancer. Signal Transduct Target Ther. 2:170442017. View Article : Google Scholar : PubMed/NCBI

41 

Cantelmo AR, Conradi LC, Brajic A, Goveia J, Kalucka J, Pircher A, Chaturvedi P, Hol J, Thienpont B, Teuwen LA, et al: Inhibition of the glycolytic activator PFKFB3 in endothelium induces tumor vessel normalization, impairs metastasis, and improves chemotherapy. Cancer Cell. 30:968–985. 2016. View Article : Google Scholar : PubMed/NCBI

42 

Morais-Santos F, Granja S, Miranda-Gonçalves V, Moreira AH, Queirós S, Vilaça JL, Schmitt FC, Longatto-Filho A, Paredes J, Baltazar F and Pinheiro C: Targeting lactate transport suppresses in vivo breast tumour growth. Oncotarget. 6:19177–19189. 2015. View Article : Google Scholar : PubMed/NCBI

43 

Hraběta J, Belhajová M, Šubrtová H, Merlos Rodrigo MA, Heger Z and Eckschlager T: Drug sequestration in lysosomes as one of the mechanisms of chemoresistance of cancer cells and the possibilities of its inhibition. Int J Mol Sci. 21:43922020. View Article : Google Scholar

44 

Bogdanov A, Bogdanov A, Chubenko V, Volkov N, Moiseenko F and Moiseyenko V: Tumor acidity: From hallmark of cancer to target of treatment. Front Oncol. 12:9791542022. View Article : Google Scholar : PubMed/NCBI

45 

Mahoney BP, Raghunand N, Baggett B and Gillies RJ: Tumor acidity, ion trapping and chemotherapeutics. I. Acid pH affects the distribution of chemotherapeutic agents in vitro. Biochem Pharmacol. 66:1207–1218. 2003. View Article : Google Scholar : PubMed/NCBI

46 

Alfarouk KO, Stock CM, Taylor S, Walsh M, Muddathir AK, Verduzco D, Bashir AH, Mohammed OY, Elhassan GO, Harguindey S, et al: Resistance to cancer chemotherapy: Failure in drug response from ADME to P-gp. Cancer Cell Int. 15:712015. View Article : Google Scholar : PubMed/NCBI

47 

Dong Q, Zhou C, Ren H, Zhang Z, Cheng F, Xiong Z, Chen C, Yang J, Gao J, Zhang Y, et al: Lactate-induced MRP1 expression contributes to metabolism-based etoposide resistance in non-small cell lung cancer cells. Cell Commun Signal. 18:1672020. View Article : Google Scholar : PubMed/NCBI

48 

Li J, Gao N, Gao Z, Liu W, Pang B, Dong X, Li Y and Fan T: The emerging role of exosomes in cancer chemoresistance. Front Cell Dev Biol. 9:7379622021. View Article : Google Scholar : PubMed/NCBI

49 

Brown TP and Ganapathy V: Lactate/GPR81 signaling and proton motive force in cancer: Role in angiogenesis, immune escape, nutrition, and Warburg phenomenon. Pharmacol Ther. 206:1074512020. View Article : Google Scholar

50 

Sandforth L, Ammar N, Dinges LA, Röcken C, Arlt A, Sebens S and Schäfer H: Impact of the monocarboxylate transporter-1 (MCT1)-mediated cellular import of lactate on stemness properties of human pancreatic adenocarcinoma cells †. Cancers (Basel). 12:5812020. View Article : Google Scholar

51 

Takada T, Takata K and Ashihara E: Inhibition of monocarboxylate transporter 1 suppresses the proliferation of glioblastoma stem cells. J Physiol Sci. 66:387–396. 2016. View Article : Google Scholar : PubMed/NCBI

52 

Zhang XY, Zhang M, Cong Q, Zhang MX, Zhang MY, Lu YY and Xu CJ: Hexokinase 2 confers resistance to cisplatin in ovarian cancer cells by enhancing cisplatin-induced autophagy. Int J Biochem Cell Biol. 95:9–16. 2018. View Article : Google Scholar

53 

Thirusangu P, Ray U, Sarkar Bhattacharya S, Oien DB, Jin L, Staub J, Kannan N, Molina JR and Shridhar V: PFKFB3 regulates cancer stemness through the hippo pathway in small cell lung carcinoma. Oncogene. 41:4003–4017. 2022. View Article : Google Scholar : PubMed/NCBI

54 

Amin S, Yang P and Li Z: Pyruvate kinase M2: A multifarious enzyme in non-canonical localization to promote cancer progression. Biochim Biophys Acta Rev Cancer. 1871:331–341. 2019. View Article : Google Scholar : PubMed/NCBI

55 

Lee SH, Golinska M and Griffiths JR: HIF-1-independent mechanisms regulating metabolic adaptation in hypoxic cancer cells. Cells. 10:23712021. View Article : Google Scholar : PubMed/NCBI

56 

Tirpe AA, Gulei D, Ciortea SM, Crivii C and Berindan-Neagoe I: Hypoxia: Overview on hypoxia-mediated mechanisms with a focus on the role of HIF genes. Int J Mol Sci. 20:61402019. View Article : Google Scholar : PubMed/NCBI

57 

Nagao A, Kobayashi M, Koyasu S, Chow CCT and Harada H: HIF-1-dependent reprogramming of glucose metabolic pathway of cancer cells and its therapeutic significance. Int J Mol Sci. 20:2382019. View Article : Google Scholar : PubMed/NCBI

58 

Delgado JM and Shoemaker CJ: An unexpected journey for BNIP3. Autophagy. 20:1447–1448. 2024. View Article : Google Scholar : PubMed/NCBI

59 

Geng Y, Zheng X, Zhang D, Wei S, Feng J, Wang W, Zhang L, Wu C and Hu W: CircHIF1A induces cetuximab resistance in colorectal cancer by promoting HIF1α-mediated glycometabolism alteration. Biol Direct. 19:362024. View Article : Google Scholar

60 

Xu G, Li M, Wu J, Qin C, Tao Y and He H: Circular RNA circ-NRIP1 sponges microRNA-138-5p to maintain hypoxia-induced resistance to 5-fluorouracil through HIF-1α-dependent glucose metabolism in gastric carcinoma. Cancer Manag Res. 12:2789–2802. 2020. View Article : Google Scholar :

61 

Li Q, Sun H, Luo D, Gan L, Mo S, Dai W, Liang L, Yang Y, Xu M, Li J, et al: Lnc-RP11-536 K7.3/SOX2/HIF-1α signaling axis regulates oxaliplatin resistance in patient-derived colorectal cancer organoids. J Exp Clin Cancer Res. 40:3482021. View Article : Google Scholar

62 

Chen F, Chen J, Yang L, Liu J, Zhang X, Zhang Y, Tu Q, Yin D, Lin D, Wong PP, et al: Extracellular vesicle-packaged HIF-1α-stabilizing lncRNA from tumour-associated macrophages regulates aerobic glycolysis of breast cancer cells. Nat Cell Biol. 21:498–510. 2019. View Article : Google Scholar : PubMed/NCBI

63 

Xu F, Huang M, Chen Q, Niu Y, Hu Y, Hu P, Chen D, He C, Huang K, Zeng Z, et al: LncRNA HIF1A-AS1 promotes gemcitabine resistance of pancreatic cancer by enhancing glycolysis through modulating the AKT/YB1/HIF1α pathway. Cancer Res. 81:5678–5691. 2021. View Article : Google Scholar : PubMed/NCBI

64 

Zeng Z, Zhao Y, Chen Q, Zhu S, Niu Y, Ye Z, Hu P, Chen D, Xu P, Chen J, et al: Hypoxic exosomal HIF-1α-stabilizing circZNF91 promotes chemoresistance of normoxic pancreatic cancer cells via enhancing glycolysis. Oncogene. 40:5505–5517. 2021. View Article : Google Scholar : PubMed/NCBI

65 

Meng Y, Xu X, Luan H, Li L, Dai W, Li Z and Bian J: The progress and development of GLUT1 inhibitors targeting cancer energy metabolism. Future Med Chem. 11:2333–2352. 2019. View Article : Google Scholar : PubMed/NCBI

66 

Dong P, Wang F, Taheri M, Xiong Y, Ihira K, Kobayashi N, Konno Y, Yue J and Watari H: Long non-coding RNA TMPO-AS1 promotes GLUT1-mediated glycolysis and paclitaxel resistance in endometrial cancer cells by interacting with miR-140 and miR-143. Front Oncol. 12:9129352022. View Article : Google Scholar : PubMed/NCBI

67 

Ma J, Qi G and Li L: A novel serum exosomes-based biomarker hsa_circ_0002130 facilitates osimertinib-resistance in non-small cell lung cancer by sponging miR-498. Onco Targets Ther. 13:5293–5307. 2020. View Article : Google Scholar : PubMed/NCBI

68 

Li P, Yang X, Cheng Y, Zhang X, Yang C, Deng X, Li P, Tao J, Yang H, Wei J, et al: MicroRNA-218 increases the sensitivity of bladder cancer to cisplatin by targeting Glut1. Cell Physiol Biochem. 41:921–932. 2017. View Article : Google Scholar : PubMed/NCBI

69 

Tu MJ, Duan Z, Liu Z, Zhang C, Bold RJ, Gonzalez FJ, Kim EJ and Yu AM: MicroRNA-1291-5p sensitizes pancreatic carcinoma cells to arginine deprivation and chemotherapy through the regulation of arginolysis and glycolysis. Mol Pharmacol. 98:686–694. 2020. View Article : Google Scholar : PubMed/NCBI

70 

Zuo J, Tang J, Lu M, Zhou Z, Li Y, Tian H, Liu E, Gao B, Liu T and Shao P: Glycolysis rate-limiting enzymes: Novel potential regulators of rheumatoid arthritis pathogenesis. Front Immunol. 12:7797872021. View Article : Google Scholar : PubMed/NCBI

71 

Xu J, Xu Y, Ye G and Qiu J: LncRNA-SNHG1 promotes paclitaxel resistance of gastric cancer cells through modulating the miR-216b-5p-hexokianse 2 axis. J Chemother. 35:527–538. 2023. View Article : Google Scholar

72 

Shi H, Li K, Feng J, Liu G, Feng Y and Zhang X: LncRNA-DANCR interferes with miR-125b-5p/HK2 axis to desensitize colon cancer cells to cisplatin vis activating anaerobic glycolysis. Front Oncol. 10:10342020. View Article : Google Scholar : PubMed/NCBI

73 

Zhang H, Zhao L, Ren P and Sun X: LncRNA MBNL1-AS1 knockdown increases the sensitivity of hepatocellular carcinoma to tripterine by regulating miR-708-5p-mediated glycolysis. Biotechnol Genet Eng Rev. 40:1407–1424. 2024. View Article : Google Scholar

74 

Deng Y, Li X, Feng J and Zhang X: Overexpression of miR-202 resensitizes imatinib resistant chronic myeloid leukemia cells through targetting Hexokinase 2. Biosci Rep. 38:BSR201713832018. View Article : Google Scholar : PubMed/NCBI

75 

Jiang JX, Gao S, Pan YZ, Yu C and Sun CY: Overexpression of microRNA-125b sensitizes human hepatocellular carcinoma cells to 5-fluorouracil through inhibition of glycolysis by targeting hexokinase II. Mol Med Rep. 10:995–1002. 2014. View Article : Google Scholar : PubMed/NCBI

76 

Zhang Y, Liu Y and Xu X: Knockdown of LncRNA-UCA1 suppresses chemoresistance of pediatric AML by inhibiting glycolysis through the microRNA-125a/hexokinase 2 pathway. J Cell Biochem. 119:6296–6308. 2018. View Article : Google Scholar : PubMed/NCBI

77 

Shi H, Li K, Feng J and Zhang X: Overexpression of long non-coding RNA urothelial carcinoma associated 1 causes paclitaxel (Taxol) resistance in colorectal cancer cells by promoting glycolysis. J Chemother. 33:409–419. 2021. View Article : Google Scholar : PubMed/NCBI

78 

Deng X, Li D, Ke X, Wang Q, Yan S, Xue Y, Wang Q and Zheng H: Mir-488 alleviates chemoresistance and glycolysis of colorectal cancer by targeting PFKFB3. J Clin Lab Anal. 35:e235782021. View Article : Google Scholar

79 

Gao Y, Liu C, Xu X, Wang Y and Jiang Y: Circular RNA sterile alpha motif domain containing 4A contributes to cell 5-fluorouracil resistance in colorectal cancer by regulating the miR-545-3p/6-phosphofructo-2-kinase/fructose-2,6-bisphosphataseisotype 3 axis. Anticancer Drugs. 33:553–563. 2022. View Article : Google Scholar : PubMed/NCBI

80 

Yang W and Lu Z: Pyruvate kinase M2 at a glance. J Cell Sci. 128:1655–1660. 2015.PubMed/NCBI

81 

Dayton TL, Jacks T and Vander Heiden MG: PKM2, cancer metabolism, and the road ahead. EMBO Rep. 17:1721–1730. 2016. View Article : Google Scholar : PubMed/NCBI

82 

Yu Y, Liang Y, Xie F, Zhang Z, Zhang P, Zhao X, Zhang Z, Liang Z, Li D, Wang L, et al: Tumor-associated macrophage enhances PD-L1-mediated immune escape of bladder cancer through PKM2 dimer-STAT3 complex nuclear translocation. Cancer Lett. 593:2169642024. View Article : Google Scholar : PubMed/NCBI

83 

Yao Y, Chen X, Wang X, Li H, Zhu Y, Li X, Xiao Z, Zi T, Qin X, Zhao Y, et al: Glycolysis related lncRNA SNHG3/miR-139-5p/PKM2 axis promotes castration-resistant prostate cancer (CRPC) development and enzalutamide resistance. Int J Biol Macromol. 260:1296352024. View Article : Google Scholar

84 

Zhong W, Wang C and Sun Y: LncRNA PCIF1 promotes aerobic glycolysis in A549/DDP cells by competitively binding miR-326 to regulate PKM expression. Mol Cell Probes. 77:1019772024. View Article : Google Scholar : PubMed/NCBI

85 

Wu H, Du J, Li C, Li H, Guo H and Li Z: Kaempferol can reverse the 5-Fu resistance of colorectal cancer cells by inhibiting PKM2-mediated glycolysis. Int J Mol Sci. 23:35442022. View Article : Google Scholar : PubMed/NCBI

86 

Bian Z, Yang F, Xu P, Gao G, Yang C, Cao Y, Yao S, Wang X, Yin Y, Fei B and Huang Z: LINC01852 inhibits the tumorigenesis and chemoresistance in colorectal cancer by suppressing SRSF5-mediated alternative splicing of PKM. Mol Cancer. 23:232024. View Article : Google Scholar : PubMed/NCBI

87 

Zhu Z, Tang G and Yan J: MicroRNA-122 regulates docetaxel resistance of prostate cancer cells by regulating PKM2. Exp Ther Med. 20:2472020. View Article : Google Scholar : PubMed/NCBI

88 

Pan C, Wang X, Shi K, Zheng Y, Li J, Chen Y, Jin L and Pan Z: MiR-122 reverses the doxorubicin-resistance in hepatocellular carcinoma cells through regulating the tumor metabolism. PLoS One. 11:e01520902016. View Article : Google Scholar : PubMed/NCBI

89 

Wang X, Zhang H, Yang H, Bai M, Ning T, Deng T, Liu R, Fan Q, Zhu K, Li J, et al: Exosome-delivered circRNA promotes glycolysis to induce chemoresistance through the miR-122-PKM2 axis in colorectal cancer. Mol Oncol. 14:539–555. 2020. View Article : Google Scholar : PubMed/NCBI

90 

Zhu S, Guo Y, Zhang X, Liu H, Yin M, Chen X and Peng C: Pyruvate kinase M2 (PKM2) in cancer and cancer therapeutics. Cancer Lett. 503:240–248. 2021. View Article : Google Scholar

91 

Zhang M, Zhang H, Hong H and Zhang Z: MiR-374b re-sensitizes hepatocellular carcinoma cells to sorafenib therapy by antagonizing PKM2-mediated glycolysis pathway. Am J Cancer Res. 9:765–778. 2019.PubMed/NCBI

92 

Jiang CF, Xie YX, Qian YC, Wang M, Liu LZ, Shu YQ, Bai XM and Jiang BH: TBX15/miR-152/KIF2C pathway regulates breast cancer doxorubicin resistance via promoting PKM2 ubiquitination. Cancer Cell Int. 21:5422021. View Article : Google Scholar : PubMed/NCBI

93 

Li X, Zhang Y and Wang X, Lin F, Cheng X, Wang Z and Wang X: Long non-coding RNA CTSLP8 mediates ovarian cancer progression and chemotherapy resistance by modulating cellular glycolysis and regulating c-Myc expression through PKM2. Cell Biol Toxicol. 38:1027–1045. 2022. View Article : Google Scholar :

94 

Van Wilpe S, Koornstra R, Den Brok M, De Groot JW, Blank C, De Vries J, Gerritsen W and Mehra N: Lactate dehydrogenase: A marker of diminished antitumor immunity. Oncoimmunology. 9:17319422020. View Article : Google Scholar : PubMed/NCBI

95 

Pei LJ, Sun PJ, Ma K, Guo YY, Wang LY and Liu FD: LncRNA-SNHG7 interferes with miR-34a to de-sensitize gastric cancer cells to cisplatin. Cancer Biomark. 30:127–137. 2021. View Article : Google Scholar

96 

Hua G, Zeng ZL, Shi YT, Chen W, He LF and Zhao GF: LncRNA XIST contributes to cisplatin resistance of lung cancer cells by promoting cellular glycolysis through sponging miR-101-3p. Pharmacology. 106:498–508. 2021. View Article : Google Scholar : PubMed/NCBI

97 

Li G, Li Y and Wang DY: Overexpression of miR-329-3p sensitizes osteosarcoma cells to cisplatin through suppression of glucose metabolism by targeting LDHA. Cell Biol Int. 45:766–774. 2021. View Article : Google Scholar

98 

Hu J, Huang L, Ding Q, Lv J and Chen Z: Long noncoding RNA HAGLR sponges miR-338-3p to promote 5-Fu resistance in gastric cancer through targeting the LDHA-glycolysis pathway. Cell Biol Int. 46:173–184. 2022. View Article : Google Scholar

99 

Shao X, Zheng X, Ma D, Liu Y and Liu G: Inhibition of lncRNA-NEAT1 sensitizes 5-Fu resistant cervical cancer cells through de-repressing the microRNA-34a/LDHA axis. Biosci Rep. 41:BSR202005332021. View Article : Google Scholar : PubMed/NCBI

100 

Shi L, Duan R, Sun Z, Jia Q, Wu W, Wang F, Liu J, Zhang H and Xue X: LncRNA GLTC targets LDHA for succinylation and enzymatic activity to promote progression and radioiodine resistance in papillary thyroid cancer. Cell Death Differ. 30:1517–1532. 2023. View Article : Google Scholar : PubMed/NCBI

101 

Purhonen J, Klefström J and Kallijärvi J: MYC-an emerging player in mitochondrial diseases. Front Cell Dev Biol. 11:12576512023. View Article : Google Scholar : PubMed/NCBI

102 

Wang H, Wang L, Pan H, Wang Y, Shi M, Yu H, Wang C, Pan X and Chen Z: Exosomes derived from macrophages enhance aerobic glycolysis and chemoresistance in lung cancer by stabilizing c-Myc via the inhibition of NEDD4L. Front Cell Dev Biol. 8:6206032021. View Article : Google Scholar : PubMed/NCBI

103 

Jiang X, Guo S, Wang S, Zhang Y, Chen H, Wang Y, Liu R, Niu Y and Xu Y: EIF4A3-induced circARHGAP29 promotes aerobic glycolysis in docetaxel-resistant prostate cancer through IGF2BP2/c-Myc/LDHA signaling. Cancer Res. 82:831–845. 2022. View Article : Google Scholar

104 

Anwar S, Shamsi A, Mohammad T, Islam A and Hassan MI: Targeting pyruvate dehydrogenase kinase signaling in the development of effective cancer therapy. Biochim Biophys Acta Rev Cancer. 1876:1885682021. View Article : Google Scholar : PubMed/NCBI

105 

Zhuang L, Zhang B, Liu X, Lin L, Wang L, Hong Z and Chen J: Exosomal miR-21-5p derived from cisplatin-resistant SKOV3 ovarian cancer cells promotes glycolysis and inhibits chemosensitivity of its progenitor SKOV3 cells by targeting PDHA1. Cell Biol Int. 45:2140–2149. 2021. View Article : Google Scholar : PubMed/NCBI

106 

Kim JW, Tchernyshyov I, Semenza GL and Dang CV: HIF-1-mediated expression of pyruvate dehydrogenase kinase: A metabolic switch required for cellular adaptation to hypoxia. Cell Metab. 3:177–185. 2006. View Article : Google Scholar : PubMed/NCBI

107 

Qian Y, Wu X, Wang H, Hou G, Han X and Song W: MicroRNA-4290 suppresses PDK1-mediated glycolysis to enhance the sensitivity of gastric cancer cell to cisplatin. Braz J Med Biol Res. 53:e93302020. View Article : Google Scholar : PubMed/NCBI

108 

Xie Y, Shi Z, Qian Y, Jiang C, Liu W, Liu B and Jiang B: HDAC2- and EZH2-mediated histone modifications induce PDK1 expression through miR-148a downregulation in breast cancer progression and adriamycin resistance. Cancers (Basel). 14:36002022. View Article : Google Scholar : PubMed/NCBI

109 

Ding Y, Gao S, Zheng J and Chen X: Blocking lncRNA-SNHG16 sensitizes gastric cancer cells to 5-Fu through targeting the miR-506-3p-PTBP1-mediated glucose metabolism. Cancer Metab. 10:202022. View Article : Google Scholar : PubMed/NCBI

110 

Chen X, Luo R, Zhang Y, Ye S, Zeng X, Liu J, Huang D, Liu Y, Liu Q, Luo ML and Song E: Long noncoding RNA DIO3OS induces glycolytic-dominant metabolic reprogramming to promote aromatase inhibitor resistance in breast cancer. Nat Commun. 13:71602022. View Article : Google Scholar : PubMed/NCBI

111 

Yang GJ, Tao F, Zhong HJ, Yang C and Chen J: Targeting PGAM1 in cancer: An emerging therapeutic opportunity. Eur J Med Chem. 244:1147982022. View Article : Google Scholar : PubMed/NCBI

112 

Liu Z, Zheng N, Li J, Li C, Zheng D, Jiang X, Ge X, Liu M, Liu L, Song Z, et al: N6-methyladenosine-modified circular RNA QSOX1 promotes colorectal cancer resistance to anti-CTLA-4 therapy through induction of intratumoral regulatory T cells. Drug Resist Updat. 65:1008862022. View Article : Google Scholar : PubMed/NCBI

113 

Poliaková M, Aebersold DM, Zimmer Y and Medová M: The relevance of tyrosine kinase inhibitors for global metabolic pathways in cancer. Mol Cancer. 17:272018. View Article : Google Scholar : PubMed/NCBI

114 

Li C, Liu FY, Shen Y, Tian Y and Han FJ: Research progress on the mechanism of glycolysis in ovarian cancer. Front Immunol. 14:12848532023. View Article : Google Scholar : PubMed/NCBI

115 

Fontana F, Giannitti G, Marchesi S and Limonta P: The PI3K/Akt pathway and glucose metabolism: A dangerous liaison in cancer. Int J Biol Sci. 20:3113–3125. 2024. View Article : Google Scholar : PubMed/NCBI

116 

Wang L, Jiang P, Li J, Huang Y, Wen J, Wu Z, Chen Y and Hu J: Loss of MiR-155 sensitizes FLT3-ITD+AML to chemotherapy and FLT3 inhibitors via glycolysis blocking by targeting PIK3R1. J Cancer. 14:99–113. 2023. View Article : Google Scholar :

117 

Chen X, Song Y, Tian Y, Dong X, Chang Y and Wang W: miR-149-3p enhances drug sensitivity of AML cells by inhibiting warburg effect through PI3K/AKT pathway. Cell Biochem Biophys. 82:3287–3296. 2024. View Article : Google Scholar : PubMed/NCBI

118 

Lim SO, Li CW, Xia W, Lee HH, Chang SS, Shen J, Hsu JL, Raftery D, Djukovic D, Gu H, et al: EGFR signaling enhances aerobic glycolysis in triple-negative breast cancer cells to promote tumor growth and immune escape. Cancer Res. 76:1284–1296. 2016. View Article : Google Scholar : PubMed/NCBI

119 

Concha-Benavente F and Ferris RL: Reversing EGFR mediated immunoescape by targeted monoclonal antibody therapy. Front Pharmacol. 8:3322017. View Article : Google Scholar : PubMed/NCBI

120 

Gao SJ, Ren SN, Liu YT, Yan HW and Chen XB: Targeting EGFR sensitizes 5-Fu-resistant colon cancer cells through modification of the lncRNA-FGD5-AS1-miR-330-3p-Hexokinase 2 axis. Mol Ther Oncolytics. 23:14–25. 2021. View Article : Google Scholar : PubMed/NCBI

121 

Wen JF, Jiang YQ, Li C, Dai XK, Wu T and Yin WZ: LncRNA-SARCC sensitizes osteosarcoma to cisplatin through the miR-143-mediated glycolysis inhibition by targeting Hexokinase 2. Cancer Biomark. 28:231–246. 2020. View Article : Google Scholar

122 

Chen W, Chen Y and Hui T: microRNA-143 interferes the EGFR-stimulated glucose metabolism to re-sensitize 5-FU resistant colon cancer cells via targeting hexokinase 2. J Chemother. 35:539–549. 2023. View Article : Google Scholar

123 

Cheng WL, Feng PH, Lee KY, Chen KY, Sun WL, Van Hiep N, Luo CS and Wu SM: The role of EREG/EGFR pathway in tumor progression. Int J Mol Sci. 22:128282021. View Article : Google Scholar : PubMed/NCBI

124 

He M, Jin Q, Chen C, Liu Y, Ye X, Jiang Y, Ji F, Qian H, Gan D, Yue S, et al: The miR-186-3p/EREG axis orchestrates tamoxifen resistance and aerobic glycolysis in breast cancer cells. Oncogene. 38:5551–5565. 2019. View Article : Google Scholar : PubMed/NCBI

125 

Asl ER, Amini M, Najafi S, Mansoori B, Mokhtarzadeh A, Mohammadi A, Lotfinejad P, Bagheri M, Shirjang S, Lotfi Z, et al: Interplay between MAPK/ERK signaling pathway and MicroRNAs: A crucial mechanism regulating cancer cell metabolism and tumor progression. Life Sci. 278:1194992021. View Article : Google Scholar : PubMed/NCBI

126 

He Z, Zhong Y, Lv T, Wang J, Jin Y, Li F and Hu H: PP4R1 promotes glycolysis and gallbladder cancer progression through facilitating ERK1/2 mediated PKM2 nuclear translocation. Cancer Lett. 586:2166772024. View Article : Google Scholar : PubMed/NCBI

127 

Li X, Tsauo J, Geng C, Zhao H, Lei X and Li X: Ginsenoside Rg3 Decreases NHE1 expression via inhibiting EGF-EGFR-ERK1/2-HIF-1 α pathway in hepatocellular carcinoma: A novel antitumor mechanism. Am J Chin Med. 46:1915–1931. 2018. View Article : Google Scholar

128 

Li M, Cai O, Yu Y and Tan S: Paeonol inhibits the malignancy of Apatinib-resistant gastric cancer cells via LINC00665/miR-665/MAPK1 axis. Phytomedicine. 96:1539032022. View Article : Google Scholar : PubMed/NCBI

129 

Garcia D and Shaw RJ: AMPK: Mechanisms of cellular energy sensing and restoration of metabolic balance. Mol Cell. 66:789–800. 2017. View Article : Google Scholar : PubMed/NCBI

130 

Li YZ, Deng J, Zhang XD, Li DY, Su LX, Li S, Pan JM, Lu L, Ya JQ, Yang N, et al: Naringenin enhances the efficacy of ferroptosis inducers by attenuating aerobic glycolysis by activating the AMPK-PGC1α signalling axis in liver cancer. Heliyon. 10:e322882024. View Article : Google Scholar

131 

Lyu X, Wang J, Guo X, Wu G, Jiao Y, Faleti OD, Liu P, Liu T, Long Y, Chong T, et al: EBV-miR-BART1-5P activates AMPK/mTOR/HIF1 pathway via a PTEN independent manner to promote glycolysis and angiogenesis in nasopharyngeal carcinoma. PLoS Pathog. 14:e10074842018. View Article : Google Scholar : PubMed/NCBI

132 

Barisciano G, Colangelo T, Rosato V, Muccillo L, Taddei ML, Ippolito L, Chiarugi P, Galgani M, Bruzzaniti S, Matarese G, et al: miR-27a is a master regulator of metabolic reprogramming and chemoresistance in colorectal cancer. Br J Cancer. 122:1354–1366. 2020. View Article : Google Scholar : PubMed/NCBI

133 

Vallée A, Lecarpentier Y and Vallée JN: The key role of the WNT/β-catenin pathway in metabolic reprogramming in cancers under normoxic conditions. Cancers (Basel). 13:55572021. View Article : Google Scholar

134 

Chen L, Hu N, Wang C and Zhao H: HOTAIRM1 knockdown enhances cytarabine-induced cytotoxicity by suppression of glycolysis through the Wnt/β-catenin/PFKP pathway in acute myeloid leukemia cells. Arch Biochem Biophys. 680:1082442020. View Article : Google Scholar

135 

Zhang Z, Tan X, Luo J, Yao H, Si Z and Tong JS: The miR-30a-5p/CLCF1 axis regulates sorafenib resistance and aerobic glycolysis in hepatocellular carcinoma. Cell Death Dis. 11:9022020. View Article : Google Scholar : PubMed/NCBI

136 

Yi Q, Wei J and Li Y: Effects of miR-103a-3p targeted regulation of TRIM66 axis on docetaxel resistance and glycolysis in prostate cancer cells. Front Genet. 12:8137932022. View Article : Google Scholar : PubMed/NCBI

137 

Wang Z, Wang Y, Li Z, Xue W, Hu S and Kong X: Lipid metabolism as a target for cancer drug resistance: Progress and prospects. Front Pharmacol. 14:12743352023. View Article : Google Scholar : PubMed/NCBI

138 

Qin J, Ye L, Wen X, Zhang X, Di Y, Chen Z and Wang Z: Fatty acids in cancer chemoresistance. Cancer Lett. 572:2163522023. View Article : Google Scholar : PubMed/NCBI

139 

Ladanyi A, Mukherjee A, Kenny HA, Johnson A, Mitra AK, Sundaresan S, Nieman KM, Pascual G, Benitah SA, Montag A, et al: Adipocyte-induced CD36 expression drives ovarian cancer progression and metastasis. Oncogene. 37:2285–2301. 2018. View Article : Google Scholar : PubMed/NCBI

140 

Guo Y, Yang L, Guo W, Wei L and Zhou Y: FV-429 enhances the efficacy of paclitaxel in NSCLC by reprogramming HIF-1α-modulated FattyAcid metabolism. Chem Biol Interact. 350:1097022021. View Article : Google Scholar

141 

Ventura R, Mordec K, Waszczuk J, Wang Z, Lai J, Fridlib M, Buckley D, Kemble G and Heuer TS: Inhibition of de novo palmitate synthesis by fatty acid synthase induces apoptosis in tumor cells by remodeling cell membranes, inhibiting signaling pathways, and reprogramming gene expression. EBioMedicine. 2:808–824. 2015. View Article : Google Scholar : PubMed/NCBI

142 

Liu S, Sun Y, Hou Y, Yang L, Wan X, Qin Y, Liu Y, Wang R, Zhu P, Teng Y and Liu M: A novel lncRNA ROPM-mediated lipid metabolism governs breast cancer stem cell properties. J Hematol Oncol. 14:1782021. View Article : Google Scholar : PubMed/NCBI

143 

Varghese E, Samuel SM, Líšková A, Samec M, Kubatka P and Büsselberg D: Targeting glucose metabolism to overcome resistance to anticancer chemotherapy in breast cancer. Cancers (Basel). 12:22522020. View Article : Google Scholar : PubMed/NCBI

144 

Eytan GD, Regev R, Oren G and Assaraf YG: The role of passive transbilayer drug movement in multidrug resistance and its modulation. J Biol Chem. 271:12897–12902. 1996. View Article : Google Scholar : PubMed/NCBI

145 

Wang X, He S, Gu Y, Wang Q, Chu X, Jin M, Xu L, Wu Q, Zhou Q, Wang B, et al: Fatty acid receptor GPR120 promotes breast cancer chemoresistance by upregulating ABC transporters expression and fatty acid synthesis. EBioMedicine. 40:251–262. 2019. View Article : Google Scholar : PubMed/NCBI

146 

Kuan CY, Walker TH, Luo PG and Chen CF: Long-chain polyunsaturated fatty acids promote paclitaxel cytotoxicity via inhibition of the MDR1 gene in the human colon cancer Caco-2 cell line. J Am Coll Nutr. 30:265–273. 2011. View Article : Google Scholar : PubMed/NCBI

147 

Royo-García A, Courtois S, Parejo-Alonso B, Espiau-Romera P and Sancho P: Lipid droplets as metabolic determinants for stemness and chemoresistance in cancer. World J Stem Cells. 13:1307–1317. 2021. View Article : Google Scholar : PubMed/NCBI

148 

Huang KB, Pan YH, Shu GN, Yao HH, Liu X, Zhou M, Wei JH, Chen ZH, Lu J, Feng ZH, et al: Circular RNA circSNX6 promotes sunitinib resistance in renal cell carcinoma through the miR-1184/GPCPD1/lysophosphatidic acid axis. Cancer Lett. 523:121–134. 2021. View Article : Google Scholar : PubMed/NCBI

149 

Zhang X, Xu Y, Ma L, Yu K, Niu Y, Xu X, Shi Y, Guo S, Xue X, Wang Y, et al: Essential roles of exosome and circRNA_101093 on ferroptosis desensitization in lung adenocarcinoma. Cancer Commun (Lond). 42:287–313. 2022. View Article : Google Scholar : PubMed/NCBI

150 

Nan Y, Luo Q, Wu X, Liu S, Zhao P, Chang W, Zhou A and Liu Z: DLGAP1-AS2-mediated phosphatidic acid synthesis activates YAP signaling and confers chemoresistance in squamous cell carcinoma. Cancer Res. 82:2887–2903. 2022. View Article : Google Scholar : PubMed/NCBI

151 

Huang X, Taeb S, Jahangiri S, Emmenegger U, Tran E, Bruce J, Mesci A, Korpela E, Vesprini D, Wong CS, et al: miRNA-95 mediates radioresistance in tumors by targeting the sphingolipid phosphatase SGPP1. Cancer Res. 73:6972–6986. 2013. View Article : Google Scholar : PubMed/NCBI

152 

Kopecka J, Trouillas P, Gašparović AČ, Gazzano E, Assaraf YG and Riganti C: Phospholipids and cholesterol: Inducers of cancer multidrug resistance and therapeutic targets. Drug Resist Updat. 49:1006702020. View Article : Google Scholar

153 

Palma GBH and Kaur M: miRNA-128 and miRNA-223 regulate cholesterol-mediated drug resistance in breast cancer. IUBMB Life. 75:743–764. 2023. View Article : Google Scholar : PubMed/NCBI

154 

Wolfe AR, Bambhroliya A, Reddy JP, Debeb BG, Huo L, Larson R, Li L, Ueno NT and Woodward WA: MiR-33a decreases high-density lipoprotein-induced radiation sensitivity in breast cancer. Int J Radiat Oncol Biol Phys. 95:791–799. 2016. View Article : Google Scholar : PubMed/NCBI

155 

Cui Q, Wang JQ, Assaraf YG, Ren L, Gupta P, Wei L, Ashby CR Jr, Yang DH and Chen ZS: Modulating ROS to overcome multidrug resistance in cancer. Drug Resist Updat. 41:1–25. 2018. View Article : Google Scholar : PubMed/NCBI

156 

Kennedy L, Sandhu JK, Harper ME and Cuperlovic-Culf M: Role of glutathione in cancer: From mechanisms to therapies. Biomolecules. 10:14292020. View Article : Google Scholar : PubMed/NCBI

157 

Castelli S, De Falco P, Ciccarone F, Desideri E and Ciriolo MR: Lipid catabolism and ROS in cancer: A bidirectional liaison. Cancers (Basel). 13:54842021. View Article : Google Scholar : PubMed/NCBI

158 

Wang Y, Lu JH, Wang F, Wang YN, He MM, Wu QN, Lu YX, Yu HE, Chen ZH, Zhao Q, et al: Inhibition of fatty acid catabolism augments the efficacy of oxaliplatin-based chemotherapy in gastrointestinal cancers. Cancer Lett. 473:74–89. 2020. View Article : Google Scholar : PubMed/NCBI

159 

Farge T, Saland E, de Toni F, Aroua N, Hosseini M, Perry R, Bosc C, Sugita M, Stuani L, Fraisse M, et al: Chemotherapy-resistant human acute myeloid leukemia cells are not enriched for leukemic stem cells but require oxidative metabolism. Cancer Discov. 7:716–735. 2017. View Article : Google Scholar : PubMed/NCBI

160 

De Oliveira MP and Liesa M: The role of mitochondrial fat oxidation in cancer cell proliferation and survival. Cells. 9:26002020. View Article : Google Scholar : PubMed/NCBI

161 

Luo J, Hong Y, Tao X, Wei X, Zhang L and Li Q: An indispensable role of CPT-1a to survive cancer cells during energy stress through rewiring cancer metabolism. Tumour Biol. 37:15795–15804. 2016. View Article : Google Scholar : PubMed/NCBI

162 

Snaebjornsson MT, Janaki-Raman S and Schulze A: Greasing the wheels of the cancer machine: The role of lipid metabolism in cancer. Cell Metab. 31:62–76. 2020. View Article : Google Scholar

163 

Chan YT, Wu J, Lu Y, Li Q, Feng Z, Xu L, Yuan H, Xing T, Zhang C, Tan HY, et al: Loss of lncRNA LINC01056 leads to sorafenib resistance in HCC. Mol Cancer. 23:742024. View Article : Google Scholar : PubMed/NCBI

164 

Wu H, Liu B, Chen Z, Li G and Zhang Z: MSC-induced lncRNA HCP5 drove fatty acid oxidation through miR-3619-5p/AMPK/PGC1α/CEBPB axis to promote stemness and chemo-resistance of gastric cancer. Cell Death Dis. 11:2332020. View Article : Google Scholar

165 

Xu T, Ding W, Ji X, Ao X, Liu Y, Yu W and Wang J: Molecular mechanisms of ferroptosis and its role in cancer therapy. J Cell Mol Med. 23:4900–4912. 2019. View Article : Google Scholar : PubMed/NCBI

166 

Dos Santos AF, Fazeli G, Xavier da Silva TN and Friedmann Angeli JP: Ferroptosis: Mechanisms and implications for cancer development and therapy response. Trends Cell Biol. 33:1062–1076. 2023. View Article : Google Scholar : PubMed/NCBI

167 

Koppula P, Zhuang L and Gan B: Cystine transporter SLC7A11/xCT in cancer: Ferroptosis, nutrient dependency, and cancer therapy. Protein Cell. 12:599–620. 2021. View Article : Google Scholar :

168 

Li J, Cao F, Yin HL, Huang ZJ, Lin ZT, Mao N, Sun B and Wang G: Ferroptosis: Past, present and future. Cell Death Dis. 11:882020. View Article : Google Scholar : PubMed/NCBI

169 

Qu S, Qi S, Zhang H, Li Z, Wang K, Zhu T, Ye R, Zhang W, Huang G and Yi GZ: Albumin-bound paclitaxel augment temozolomide treatment sensitivity of glioblastoma cells by disrupting DNA damage repair and promoting ferroptosis. J Exp Clin Cancer Res. 42:2852023. View Article : Google Scholar : PubMed/NCBI

170 

Lu Y, Chan YT, Tan HY, Zhang C, Guo W, Xu Y, Sharma R, Chen ZS, Zheng YC, Wang N and Feng Y: Epigenetic regulation of ferroptosis via ETS1/miR-23a-3p/ACSL4 axis mediates sorafenib resistance in human hepatocellular carcinoma. J Exp Clin Cancer Res. 41:32022. View Article : Google Scholar : PubMed/NCBI

171 

Pope LE and Dixon SJ: Regulation of ferroptosis by lipid metabolism. Trends Cell Biol. 33:1077–1087. 2023. View Article : Google Scholar : PubMed/NCBI

172 

Zhong S, Wang Z, Yang J, Jiang D and Wang K: Ferroptosis-related oxaliplatin resistance in multiple cancers: Potential roles and therapeutic implications. Heliyon. 10:e376132024. View Article : Google Scholar : PubMed/NCBI

173 

Zou Y, Zheng S, Xie X, Ye F, Hu X, Tian Z, Yan SM, Yang L, Kong Y, Tang Y, et al: N6-methyladenosine regulated FGFR4 attenuates ferroptotic cell death in recalcitrant HER2-positive breast cancer. Nat Commun. 13:26722022. View Article : Google Scholar : PubMed/NCBI

174 

Baird L and Dinkova-Kostova AT: The cytoprotective role of the Keap1-Nrf2 pathway. Arch Toxicol. 85:241–272. 2011. View Article : Google Scholar : PubMed/NCBI

175 

Sun X, Niu X, Chen R, He W, Chen D, Kang R and Tang D: Metallothionein-1G facilitates sorafenib resistance through inhibition of ferroptosis. Hepatology. 64:488–500. 2016. View Article : Google Scholar : PubMed/NCBI

176 

Chen X, Kang R, Kroemer G and Tang D: Broadening horizons: The role of ferroptosis in cancer. Nat Rev Clin Oncol. 18:280–296. 2021. View Article : Google Scholar : PubMed/NCBI

177 

Zhang W, Li Q, Zhang Y, Wang Z, Yuan S, Zhang X, Zhao M, Zhuang W and Li B: Multiple myeloma with high expression of SLC7A11 is sensitive to erastin-induced ferroptosis. Apoptosis. 29:412–423. 2024. View Article : Google Scholar

178 

Xu X, Zhang X, Wei C, Zheng D, Lu X, Yang Y, Luo A, Zhang K, Duan X and Wang Y: Targeting SLC7A11 specifically suppresses the progression of colorectal cancer stem cells via inducing ferroptosis. Eur J Pharm Sci. 152:1054502020. View Article : Google Scholar : PubMed/NCBI

179 

Zheng Y, Li L, Chen H, Zheng Y, Tan X, Zhang G, Jiang R, Yu H, Lin S, Wei Y, et al: Luteolin exhibits synergistic therapeutic efficacy with erastin to induce ferroptosis in colon cancer cells through the HIC1-mediated inhibition of GPX4 expression. Free Radic Biol Med. 208:530–544. 2023. View Article : Google Scholar : PubMed/NCBI

180 

Yin LB, Li ZW, Wang JL, Wang L, Hou L, Hu SY, Chen H, Luo P, Cui XB and Zhu JL: Sulfasalazine inhibits esophageal cancer cell proliferation by mediating ferroptosis. Chem Biol Drug Des. 102:730–737. 2023. View Article : Google Scholar : PubMed/NCBI

181 

Yang J, Zhou Y, Xie S, Wang J, Li Z, Chen L, Mao M, Chen C, Huang A, Chen Y, et al: Metformin induces Ferroptosis by inhibiting UFMylation of SLC7A11 in breast cancer. J Exp Clin Cancer Res. 40:2062021. View Article : Google Scholar : PubMed/NCBI

182 

Sui X, Zhang R, Liu S, Duan T, Zhai L, Zhang M, Han X, Xiang Y, Huang X, Lin H and Xie T: RSL3 drives ferroptosis through GPX4 inactivation and ROS production in colorectal cancer. Front Pharmacol. 9:13712018. View Article : Google Scholar : PubMed/NCBI

183 

Gaschler MM, Andia AA, Liu H, Csuka JM, Hurlocker B, Vaiana CA, Heindel DW, Zuckerman DS, Bos PH, Reznik E, et al: FINO2 initiates ferroptosis through GPX4 inactivation and iron oxidation. Nat Chem Biol. 14:507–515. 2018. View Article : Google Scholar : PubMed/NCBI

184 

Cheff DM, Huang C, Scholzen KC, Gencheva R, Ronzetti MH, Cheng Q, Hall MD and Arnér ESJ: The ferroptosis inducing compounds RSL3 and ML162 are not direct inhibitors of GPX4 but of TXNRD1. Redox Biol. 62:1027032023. View Article : Google Scholar : PubMed/NCBI

185 

Wang Y, Yuan X, Ren M and Wang Z: Ferroptosis: A new research direction of artemisinin and its derivatives in anti-cancer treatment. Am J Chin Med. 52:161–181. 2024. View Article : Google Scholar : PubMed/NCBI

186 

Chen GQ, Benthani FA, Wu J, Liang D, Bian ZX and Jiang X: Artemisinin compounds sensitize cancer cells to ferroptosis by regulating iron homeostasis. Cell Death Differ. 27:242–254. 2020. View Article : Google Scholar :

187 

Li J, Li Y, Wang D, Liao R and Wu Z: PLAG1 interacts with GPX4 to conquer vulnerability to sorafenib induced ferroptosis through a PVT1/miR-195-5p axis-dependent manner in hepatocellular carcinoma. J Exp Clin Cancer Res. 43:1432024. View Article : Google Scholar : PubMed/NCBI

188 

Nalla LV and Khairnar A: Empagliflozin drives ferroptosis in anoikis-resistant cells by activating miR-128-3p dependent pathway and inhibiting CD98hc in breast cancer. Free Radic Biol Med. 220:288–300. 2024. View Article : Google Scholar : PubMed/NCBI

189 

Li X, Li Y, Lian P, Lv Q and Liu F: Silencing lncRNA HCG18 regulates GPX4-inhibited ferroptosis by adsorbing miR-450b-5p to avert sorafenib resistance in hepatocellular carcinoma. Hum Exp Toxicol. 42:96032712211428182023. View Article : Google Scholar : PubMed/NCBI

190 

Zhang H, Deng T, Liu R, Ning T, Yang H, Liu D, Zhang Q, Lin D, Ge S, Bai M, et al: CAF secreted miR-522 suppresses ferroptosis and promotes acquired chemo-resistance in gastric cancer. Mol Cancer. 19:432020. View Article : Google Scholar : PubMed/NCBI

191 

Zhao J, Shen J, Mao L, Yang T, Liu J and Hongbin S: Cancer associated fibroblast secreted miR-432-5p targets CHAC1 to inhibit ferroptosis and promote acquired chemoresistance in prostate cancer. Oncogene. 43:2104–2114. 2024. View Article : Google Scholar : PubMed/NCBI

192 

Zong WX, Rabinowitz JD and White E: Mitochondria and cancer. Mol Cell. 61:667–676. 2016. View Article : Google Scholar : PubMed/NCBI

193 

Li X, Zhong Y, Lu J, Axcrona K, Eide L, Syljuåsen RG, Peng Q, Wang J, Zhang H, Goscinski MA, et al: MtDNA depleted PC3 cells exhibit Warburg effect and cancer stem cell features. Oncotarget. 7:40297–40313. 2016. View Article : Google Scholar : PubMed/NCBI

194 

Gonzalez-Sanchez E, Marin JJ and Perez MJ: The expression of genes involved in hepatocellular carcinoma chemoresistance is affected by mitochondrial genome depletion. Mol Pharm. 11:1856–1868. 2014. View Article : Google Scholar : PubMed/NCBI

195 

Lee W, Choi HI, Kim MJ and Park SY: Depletion of mitochondrial DNA up-regulates the expression of MDR1 gene via an increase in mRNA stability. Exp Mol Med. 40:109–117. 2008. View Article : Google Scholar : PubMed/NCBI

196 

Guerra F, Arbini AA and Moro L: Mitochondria and cancer chemoresistance. Biochim Biophys Acta Bioenerg. 1858:686–699. 2017. View Article : Google Scholar : PubMed/NCBI

197 

Yang H, Villani RM, Wang H, Simpson MJ, Roberts MS, Tang M and Liang X: The role of cellular reactive oxygen species in cancer chemotherapy. J Exp Clin Cancer Res. 37:2662018. View Article : Google Scholar : PubMed/NCBI

198 

Orrenius S, Gogvadze V and Zhivotovsky B: Calcium and mitochondria in the regulation of cell death. Biochem Biophys Res Commun. 460:72–81. 2015. View Article : Google Scholar : PubMed/NCBI

199 

Seong JB, Kim B, Kim S, Kim MH, Park YH, Lee Y, Lee HJ, Hong CW and Lee DS: Macrophage peroxiredoxin 5 deficiency promotes lung cancer progression via ROS-dependent M2-like polarization. Free Radic Biol Med. 176:322–334. 2021. View Article : Google Scholar : PubMed/NCBI

200 

Jeong H, Kim S, Hong BJ, Lee CJ, Kim YE, Bok S, Oh JM, Gwak SH, Yoo MY, Lee MS, et al: Tumor-associated macrophages enhance tumor hypoxia and aerobic glycolysis. Cancer Res. 79:795–806. 2019. View Article : Google Scholar : PubMed/NCBI

201 

Shi L, Zhang S, Feng K, Wu F, Wan Y, Wang Z, Zhang J, Wang Y, Yan W, Fu Z and You Y: MicroRNA-125b-2 confers human glioblastoma stem cells resistance to temozolomide through the mitochondrial pathway of apoptosis. Int J Oncol. 40:119–129. 2012.

202 

Kuo CL, Ponneri Babuharisankar A, Lin YC, Lien HW, Lo YK, Chou HY, Tangeda V, Cheng LC, Cheng AN and Lee AY: Mitochondrial oxidative stress in the tumor microenvironment and cancer immunoescape: Foe or friend? J Biomed Sci. 29:742022. View Article : Google Scholar : PubMed/NCBI

203 

Liu JS, Yeh CA, Huang IC, Huang GY, Chiu CH, Mahalakshmi B, Wen SY, Huang CY and Kuo WW: Signal transducer and activator of transcription 3 mediates apoptosis inhibition through reducing mitochondrial ROS and activating Bcl-2 in gemcitabine-resistant lung cancer A549 cells. J Cell Physiol. 236:3896–3905. 2021. View Article : Google Scholar

204 

Katopodi V, Marino A, Pateraki N, Verheyden Y, Cinque S, Jimenez EL, Adnane S, Demesmaeker E, Scomparin A, Derua R, et al: The long non-coding RNA ROSALIND protects the mitochondrial translational machinery from oxidative damage. Cell Death Differ. 32:397–415. 2025. View Article : Google Scholar

205 

Fernández-Tussy P, Rodríguez-Agudo R, Fernández-Ramos D, Barbier-Torres L, Zubiete-Franco I, Davalillo SL, Herraez E, Goikoetxea-Usandizaga N, Lachiondo-Ortega S, Simón J, et al: Anti-miR-518d-5p overcomes liver tumor cell death resistance through mitochondrial activity. Cell Death Dis. 12:5552021. View Article : Google Scholar : PubMed/NCBI

206 

Fan S, Tian T, Chen W, Lv X, Lei X, Zhang H, Sun S, Cai L, Pan G, He L, et al: Mitochondrial miRNA determines chemoresistance by reprogramming metabolism and regulating mitochondrial transcription. Cancer Res. 79:1069–1084. 2019. View Article : Google Scholar : PubMed/NCBI

207 

Orre C, Dieu X, Guillon J, Gueguen N, Ahmadpour ST, Dumas JF, Khiati S, Reynier P, Lenaers G, Coqueret O, et al: The long non-coding RNA SAMMSON is a regulator of chemosensitivity and metabolic orientation in MCF-7 doxorubicin-resistant breast cancer cells. Biology (Basel). 10:11562021.PubMed/NCBI

208 

Hillman Y, Mardamshina M, Pasmanik-Chor M, Ziporen L, Geiger T, Shomron N and Fishelson Z: MicroRNAs affect complement regulator expression and mitochondrial activity to modulate cell resistance to complement-dependent cytotoxicity. Cancer Immunol Res. 7:1970–1983. 2019. View Article : Google Scholar : PubMed/NCBI

209 

Luan T, Fu S, Huang L, Zuo Y, Ding M, Li N, Chen J, Wang H and Wang J: MicroRNA-98 promotes drug resistance and regulates mitochondrial dynamics by targeting LASS2 in bladder cancer cells. Exp Cell Res. 373:188–197. 2018. View Article : Google Scholar : PubMed/NCBI

210 

Chen W, Wang P, Lu Y, Jin T, Lei X, Liu M, Zhuang P, Liao J, Lin Z, Li B, et al: Decreased expression of mitochondrial miR-5787 contributes to chemoresistance by reprogramming glucose metabolism and inhibiting MT-CO3 translation. Theranostics. 9:5739–5754. 2019. View Article : Google Scholar : PubMed/NCBI

211 

Benassi B, Marani M, Loda M and Blandino G: USP2a alters chemotherapeutic response by modulating redox. Cell Death Dis. 4:e8122013. View Article : Google Scholar : PubMed/NCBI

212 

Zheng ZG, Xu H, Suo SS, Xu XL, Ni MW, Gu LH, Chen W, Wang LY, Zhao Y, Tian B and Hua YJ: The essential role of H19 contributing to cisplatin resistance by regulating glutathione metabolism in high-grade serous ovarian cancer. Sci Rep. 6:260932016. View Article : Google Scholar : PubMed/NCBI

213 

Ueda S, Takanashi M, Sudo K, Kanekura K and Kuroda M: miR-27a ameliorates chemoresistance of breast cancer cells by disruption of reactive oxygen species homeostasis and impairment of autophagy. Lab Invest. 100:863–873. 2020. View Article : Google Scholar : PubMed/NCBI

214 

Yang Q, Li K, Huang X, Zhao C, Mei Y, Li X, Jiao L and Yang H: lncRNA SLC7A11-AS1 promotes chemoresistance by blocking SCFβ−TRCP-mediated degradation of NRF2 in pancreatic cancer. Mol Ther Nucleic Acids. 19:974–985. 2020. View Article : Google Scholar : PubMed/NCBI

215 

Kaur R, Kanthaje S, Taneja S, Dhiman RK and Chakraborti A: miR-23b-3p modulating cytoprotective autophagy and glutamine addiction in sorafenib resistant HepG2, a hepatocellular carcinoma cell line. Genes (Basel). 13:13752022. View Article : Google Scholar : PubMed/NCBI

216 

Liu X, Chen L and Wang T: Overcoming cisplatin resistance of human lung cancer by sinomenine through targeting the miR-200a-3p-GLS axis. J Chemother. 35:357–366. 2023. View Article : Google Scholar

217 

Zhou X, Wei P, Wang X, Zhang J and Shi Y: miR-141-3p promotes the cisplatin sensitivity of osteosarcoma cell through targeting the glutaminase [GLS]-mediated glutamine metabolism. Curr Mol Med. 23:177–184. 2023. View Article : Google Scholar

218 

Chang X, Zhu W, Zhang H and Lian S: Sensitization of melanoma cells to temozolomide by overexpression of microRNA 203 through direct targeting of glutaminase-mediated glutamine metabolism. Clin Exp Dermatol. 42:614–621. 2017. View Article : Google Scholar : PubMed/NCBI

219 

Chen Z, Wang Q, Huang L, Xu G and Hu J: LncRNA PVT1 confers cisplatin resistance of esophageal cancer cells through Modulating the miR-181a-5p-Glutaminase (GLS) axis. Nutr Cancer. 75:1646–1657. 2023. View Article : Google Scholar : PubMed/NCBI

220 

Lin W, Wu WC, Liang Z, Zhang JH and Fang SP: LncRNA FEZF1-AS1 facilitates cisplatin resistance in non-small cell lung cancer through modulating the miR-32-5p-glutaminase axis. Am J Cancer Res. 14:3153–3170. 2024. View Article : Google Scholar : PubMed/NCBI

221 

De Los Santos-Jiménez J, Campos-Sandoval JA, Alonso FJ, Márquez J and Matés JM: GLS and GLS2 glutaminase isoenzymes in the antioxidant system of cancer cells. Antioxidants (Basel). 13:7452024. View Article : Google Scholar : PubMed/NCBI

222 

Li Y, Yuan S, Zhou Y, Zhou J, Zhang X, Zhang P, Xiao W, Zhang Y, Deng J and Lou S: Long non-coding RNA PXN-AS1 promotes glutamine synthetase-mediated chronic myeloid leukemia BCR::ABL1-independent resistance to Imatinib via cell cycle signaling pathway. Cancer Cell Int. 24:1862024. View Article : Google Scholar : PubMed/NCBI

223 

Montani F and Bianchi F: Circulating cancer biomarkers: The macro-revolution of the micro-RNA. EBioMedicine. 5:4–6. 2016. View Article : Google Scholar : PubMed/NCBI

224 

Sarfi M, Abbastabar M and Khalili E: Long noncoding RNAs biomarker-based cancer assessment. J Cell Physiol. 234:16971–16986. 2019. View Article : Google Scholar : PubMed/NCBI

225 

Liu R, Zeng Y, Zhou CF, Wang Y, Li X, Liu ZQ, Chen XP, Zhang W and Zhou HH: Long noncoding RNA expression signature to predict platinum-based chemotherapeutic sensitivity of ovarian cancer patients. Sci Rep. 7:182017. View Article : Google Scholar : PubMed/NCBI

226 

Wang Q, Zheng C, Hou H, Bao X, Tai H, Huang X, Li Z, Li Z, Wang Q, Pan Q, et al: Interplay of sphingolipid metabolism in predicting prognosis of GBM patients: Towards precision immunotherapy. J Cancer. 15:275–292. 2024. View Article : Google Scholar : PubMed/NCBI

227 

Bacci M, Giannoni E, Fearns A, Ribas R, Gao Q, Taddei ML, Pintus G, Dowsett M, Isacke CM, Martin LA, et al: miR-155 drives metabolic reprogramming of ER+ breast cancer cells following long-term estrogen deprivation and predicts clinical response to aromatase inhibitors. Cancer Res. 76:1615–1626. 2016. View Article : Google Scholar : PubMed/NCBI

228 

Lei H, Xiang T, Zhu H and Hu X: A novel cholesterol metabolism-related lncRNA signature predicts the prognosis of patients with hepatocellular carcinoma and their response to immunotherapy. Front Biosci (Landmark Ed). 29:1292024. View Article : Google Scholar : PubMed/NCBI

229 

He X, Xu Z, Ren R, Wan P, Zhang Y, Wang L and Han Y: A novel sphingolipid metabolism-related long noncoding RNA signature predicts the prognosis, immune landscape and therapeutic response in pancreatic adenocarcinoma. Heliyon. 10:e236592023. View Article : Google Scholar

230 

Wang X, Yang X, Zhang Y, Guo A, Luo S, Xiao M, Xue L, Zhang G and Wang H: Fatty acid metabolism-related lncRNAs are potential biomarkers for predicting prognoses and immune responses in patients with skin cutaneous melanoma. Clin Cosmet Investig Dermatol. 16:3595–3614. 2023. View Article : Google Scholar : PubMed/NCBI

231 

Bayarmaa B, Wu Z, Peng J, Wang Y, Xu S, Yan T, Yin W, Lu J and Zhou L: Association of LncRNA MEG3 polymorphisms with efficacy of neoadjuvant chemotherapy in breast cancer. BMC Cancer. 19:8772019. View Article : Google Scholar : PubMed/NCBI

232 

Xu W, Hua Y, Deng F, Wang D, Wu Y, Zhang W and Tang J: MiR-145 in cancer therapy resistance and sensitivity: A comprehensive review. Cancer Sci. 111:3122–3131. 2020. View Article : Google Scholar : PubMed/NCBI

233 

Hedayat S, Cascione L, Cunningham D, Schirripa M, Lampis A, Hahne JC, Tunariu N, Hong SP, Marchetti S, Khan K, et al: Circulating microRNA analysis in a prospective co-clinical trial identifies MIR652-3p as a response biomarker and driver of regorafenib resistance mechanisms in colorectal cancer. Clin Cancer Res. 30:2140–2159. 2024. View Article : Google Scholar : PubMed/NCBI

234 

Gonçalves AC, Richiardone E, Jorge J, Polónia B, Xavier CPR, Salaroglio IC, Riganti C, Vasconcelos MH, Corbet C and Sarmento-Ribeiro AB: Impact of cancer metabolism on therapy resistance-clinical implications. Drug Resist Updat. 59:1007972021. View Article : Google Scholar

235 

Abdel-Wahab AF, Mahmoud W and Al-Harizy RM: Targeting glucose metabolism to suppress cancer progression: Prospective of anti-glycolytic cancer therapy. Pharmacol Res. 150:1045112019. View Article : Google Scholar : PubMed/NCBI

236 

Sun Z, Zhang Q, Yuan W, Li X, Chen C, Guo Y, Shao B, Dang Q, Zhou Q, Wang Q, et al: MiR-103a-3p promotes tumour glycolysis in colorectal cancer via hippo/YAP1/HIF1A axis. J Exp Clin Cancer Res. 39:2502020. View Article : Google Scholar : PubMed/NCBI

237 

Fujiwara N, Inoue J, Kawano T, Tanimoto K, Kozaki K and Inazawa J: miR-634 activates the mitochondrial apoptosis pathway and enhances chemotherapy-induced cytotoxicity. Cancer Res. 75:3890–3901. 2015. View Article : Google Scholar : PubMed/NCBI

238 

Medina PP, Nolde M and Slack FJ: OncomiR addiction in an in vivo model of microRNA-21-induced pre-B-cell lymphoma. Nature. 467:86–90. 2010. View Article : Google Scholar : PubMed/NCBI

239 

Chen B, Dragomir MP, Yang C, Li Q, Horst D and Calin GA: Targeting non-coding RNAs to overcome cancer therapy resistance. Signal Transduct Target Ther. 7:1212022. View Article : Google Scholar : PubMed/NCBI

240 

Kara G, Calin GA and Ozpolat B: RNAi-based therapeutics and tumor targeted delivery in cancer. Adv Drug Deliv Rev. 182:1141132022. View Article : Google Scholar : PubMed/NCBI

241 

Yadav DN, Ali MS, Thanekar AM, Pogu SV and Rengan AK: Recent advancements in the design of nanodelivery systems of siRNA for cancer therapy. Mol Pharm. 19:4506–4526. 2022. View Article : Google Scholar : PubMed/NCBI

242 

Garbo S, Maione R, Tripodi M and Battistelli C: Next RNA therapeutics: The mine of non-coding. Int J Mol Sci. 23:74712022. View Article : Google Scholar : PubMed/NCBI

243 

Lin F, Wen D, Wang X and Mahato RI: Dual responsive micelles capable of modulating miRNA-34a to combat taxane resistance in prostate cancer. Biomaterials. 192:95–108. 2019. View Article : Google Scholar

244 

Xin X, Kumar V, Lin F, Kumar V, Bhattarai R, Bhatt VR, Tan C and Mahato RI: Redox-responsive nanoplatform for codelivery of miR-519c and gemcitabine for pancreatic cancer therapy. Sci Adv. 6:eabd67642020. View Article : Google Scholar : PubMed/NCBI

245 

Guo W, Wu Z, Chen J, Guo S, You W, Wang S, Ma J, Wang H, Wang X, Wang H, et al: Nanoparticle delivery of miR-21-3p sensitizes melanoma to anti-PD-1 immunotherapy by promoting ferroptosis. J Immunother Cancer. 10:e0043812022. View Article : Google Scholar : PubMed/NCBI

246 

Xu F, Ye ML, Zhang YP, Li WJ, Li MT, Wang HZ, Qiu X, Xu Y, Yin JW, Hu Q, et al: MicroRNA-375-3p enhances chemosensitivity to 5-fluorouracil by targeting thymidylate synthase in colorectal cancer. Cancer Sci. 111:1528–1541. 2020. View Article : Google Scholar : PubMed/NCBI

247 

Lo YL, Wang CS, Chen YC, Wang TY, Chang YH, Chen CJ and Yang CP: Mitochondrion-directed nanoparticles loaded with a natural compound and a microRNA for promoting cancer cell death via the modulation of tumor metabolism and mitochondrial dynamics. Pharmaceutics. 12:7562020. View Article : Google Scholar : PubMed/NCBI

248 

Yi WR, Tu MJ, Yu AX, Lin J and Yu AM: Bioengineered miR-34a modulates mitochondrial inner membrane protein 17 like 2 (MPV17L2) expression toward the control of cancer cell mitochondrial functions. Bioengineered. 13:12489–12503. 2022. View Article : Google Scholar : PubMed/NCBI

249 

Yi W, Tu MJ, Liu Z, Zhang C, Batra N, Yu AX and Yu AM: Bioengineered miR-328-3p modulates GLUT1-mediated glucose uptake and metabolism to exert synergistic antiproliferative effects with chemotherapeutics. Acta Pharm Sin B. 10:159–170. 2020. View Article : Google Scholar : PubMed/NCBI

250 

Vahabi M, Comandatore A, Franczak MA, Smolenski RT, Peters GJ, Morelli L and Giovannetti E: Role of exosomes in transferring chemoresistance through modulation of cancer glycolytic cell metabolism. Cytokine Growth Factor Rev. 73:163–172. 2023. View Article : Google Scholar : PubMed/NCBI

251 

Liang G, Zhu Y, Ali DJ, Tian T, Xu H, Si K, Sun B, Chen B and Xiao Z: Engineered exosomes for targeted co-delivery of miR-21 inhibitor and chemotherapeutics to reverse drug resistance in colon cancer. J Nanobiotechnology. 18:102020. View Article : Google Scholar : PubMed/NCBI

252 

El Moukhtari SH, Garbayo E, Amundarain A, Pascual-Gil S, Carrasco-León A, Prosper F, Agirre X and Blanco-Prieto MJ: Lipid nanoparticles for siRNA delivery in cancer treatment. J Control Release. 361:130–146. 2023. View Article : Google Scholar : PubMed/NCBI

253 

Tassone P, Di Martino MT, Arbitrio M, Fiorillo L, Staropoli N, Ciliberto D, Cordua A, Scionti F, Bertucci B, Salvino A, et al: Safety and activity of the first-in-class locked nucleic acid (LNA) miR-221 selective inhibitor in refractory advanced cancer patients: a first-in-human, phase 1, open-label, dose-escalation study. J Hematol Oncol. 16:682023. View Article : Google Scholar : PubMed/NCBI

254 

Yang S, Wang X, Zhou X, Hou L, Wu J, Zhang W, Li H, Gao C and Sun C: ncRNA-mediated ceRNA regulatory network: Transcriptomic insights into breast cancer progression and treatment strategies. Biomed Pharmacother. 162:1146982023. View Article : Google Scholar : PubMed/NCBI

255 

Yu J, Qi J, Sun X, Wang W, Wei G, Wu Y, Gao Q and Zheng J: MicroRNA-181a promotes cell proliferation and inhibits apoptosis in gastric cancer by targeting RASSF1A. Oncol Rep. 40:1959–1970. 2018.PubMed/NCBI

256 

Zhang LX, Gao J, Long X, Zhang PF, Yang X, Zhu SQ, Pei X, Qiu BQ, Chen SW, Lu F, et al: The circular RNA circHMGB2 drives immunosuppression and anti-PD-1 resistance in lung adenocarcinomas and squamous cell carcinomas via the miR-181a-5p/CARM1 axis. Mol Cancer. 21:1102022. View Article : Google Scholar : PubMed/NCBI

257 

Lehuédé C, Dupuy F, Rabinovitch R, Jones RG and Siegel PM: Metabolic plasticity as a determinant of tumor growth and metastasis. Cancer Res. 76:5201–5208. 2016. View Article : Google Scholar : PubMed/NCBI

258 

Hu X, Li J, Fu M, Zhao X and Wang W: The JAK/STAT signaling pathway: From bench to clinic. Signal Transduct Target Ther. 6:4022021. View Article : Google Scholar : PubMed/NCBI

259 

Xiao C, Zhang W, Hua M, Chen H, Yang B, Wang Y and Yang Q: RNF7 inhibits apoptosis and sunitinib sensitivity and promotes glycolysis in renal cell carcinoma via the SOCS1/JAK/STAT3 feedback loop. Cell Mol Biol Lett. 27:362022. View Article : Google Scholar : PubMed/NCBI

260 

Wang T, Fahrmann JF, Lee H, Li YJ, Tripathi SC, Yue C, Zhang C, Lifshitz V, Song J, Yuan Y, et al: JAK/STAT3-regulated fatty acid β-oxidation is critical for breast cancer stem cell self-renewal and chemoresistance. Cell Metab. 27:136–150.e5. 2018. View Article : Google Scholar

261 

Yin YZ, Zheng WH, Zhang X, Chen YH and Tuo YH: LINC00346 promotes hepatocellular carcinoma progression via activating the JAK-STAT3 signaling pathway. J Cell Biochem. 121:735–742. 2020. View Article : Google Scholar

262 

Hu H, Zhang Q, Chen W, Wu T, Liu S, Li X, Luo B, Zhang T, Yan G, Lu H and Lu Z: MicroRNA-301a promotes pancreatic cancer invasion and metastasis through the JAK/STAT3 signaling pathway by targeting SOCS5. Carcinogenesis. 41:502–514. 2020. View Article : Google Scholar

263 

Sulli G, Lam MTY and Panda S: Interplay between circadian clock and cancer: New frontiers for cancer treatment. Trends Cancer. 5:475–494. 2019. View Article : Google Scholar : PubMed/NCBI

264 

Varadharaj V, Petersen W, Batra SK and Ponnusamy MP: Sugar symphony: Glycosylation in cancer metabolism and stemness. Trends Cell Biol. Oct 26–2024.Epub ahead of print. View Article : Google Scholar : PubMed/NCBI

265 

Yang Y, Yang T, Zhao Z, Zhang H, Yuan P, Wang G, Zhao Z, An J, Lyu Z, Xing J and Li J: Down-regulation of BMAL1 by MiR-494-3p promotes hepatocellular carcinoma growth and metastasis by increasing GPAM-mediated lipid biosynthesis. Int J Biol Sci. 18:6129–6144. 2022. View Article : Google Scholar : PubMed/NCBI

266 

Zheng LT, Chen SR, Zhou LY, Huang QY, Chen JM, Chen WH, Lin S and Shi QY: Latest advances in the study of non-coding RNA-mediated circadian rhythm disorders causing endometrial cancer. Front Oncol. 13:12775432023. View Article : Google Scholar : PubMed/NCBI

267 

Alsayed RKME, Sheikhan KSAM, Alam MA, Buddenkotte J, Steinhoff M, Uddin S and Ahmad A: Epigenetic programing of cancer stemness by transcription factors-non-coding RNAs interactions. Semin Cancer Biol. 92:74–83. 2023. View Article : Google Scholar : PubMed/NCBI

268 

Jiang W, Zhao S, Shen J, Guo L, Sun Y, Zhu Y, Ma Z, Zhang X, Hu Y, Xiao W, et al: The MiR-135b-BMAL1-YY1 loop disturbs pancreatic clockwork to promote tumourigenesis and chemoresistance. Cell Death Dis. 9:1492018. View Article : Google Scholar : PubMed/NCBI

269 

Flores-Huerta N, Silva-Cázares MB, Arriaga-Pizano LA, Prieto-Chávez JL and López-Camarillo C: LncRNAs and microRNAs as essential regulators of stemness in breast cancer stem cells. Biomolecules. 11:3802021. View Article : Google Scholar : PubMed/NCBI

270 

Jiao X, Qian X, Wu L, Li B, Wang Y, Kong X and Xiong L: microRNA: The impact on cancer stemness and therapeutic resistance. Cells. 9:82019. View Article : Google Scholar : PubMed/NCBI

271 

Hong DS, Kang YK, Borad M, Sachdev J, Ejadi S, Lim HY, Brenner AJ, Park K, Lee JL, Kim TY, et al: Phase 1 study of MRX34, a liposomal miR-34a mimic, in patients with advanced solid tumours. Br J Cancer. 122:1630–1637. 2020. View Article : Google Scholar : PubMed/NCBI

272 

Patil S, Gao YG, Lin X, Li Y, Dang K, Tian Y, Zhang WJ, Jiang SF, Qadir A and Qian AR: The development of functional non-viral vectors for gene delivery. Int J Mol Sci. 20:54912019. View Article : Google Scholar : PubMed/NCBI

273 

Oggu GS, Sasikumar S, Reddy N, Ella KKR, Rao CM and Bokara KK: Gene delivery approaches for mesenchymal stem cell therapy: Strategies to increase efficiency and specificity. Stem Cell Rev Rep. 13:725–740. 2017. View Article : Google Scholar : PubMed/NCBI

274 

Yahya EB and Alqadhi AM: Recent trends in cancer therapy: A review on the current state of gene delivery. Life Sci. 269:1190872021. View Article : Google Scholar : PubMed/NCBI

275 

Aleksakhina SN, Kashyap A and Imyanitov EN: Mechanisms of acquired tumor drug resistance. Biochim Biophys Acta Rev Cancer. 1872:1883102019. View Article : Google Scholar : PubMed/NCBI

Related Articles

  • Abstract
  • View
  • Download
  • Twitter
Copy and paste a formatted citation
Spandidos Publications style
Li J, Li Y, Fu L, Chen H, Du F, Wang Z, Zhang Y, Huang Y, Miao J, Xiao Y, Xiao Y, et al: Targeting ncRNAs to overcome metabolic reprogramming‑mediated drug resistance in cancer (Review). Int J Oncol 66: 35, 2025.
APA
Li, J., Li, Y., Fu, L., Chen, H., Du, F., Wang, Z. ... Xiao, Y. (2025). Targeting ncRNAs to overcome metabolic reprogramming‑mediated drug resistance in cancer (Review). International Journal of Oncology, 66, 35. https://doi.org/10.3892/ijo.2025.5741
MLA
Li, J., Li, Y., Fu, L., Chen, H., Du, F., Wang, Z., Zhang, Y., Huang, Y., Miao, J., Xiao, Y."Targeting ncRNAs to overcome metabolic reprogramming‑mediated drug resistance in cancer (Review)". International Journal of Oncology 66.5 (2025): 35.
Chicago
Li, J., Li, Y., Fu, L., Chen, H., Du, F., Wang, Z., Zhang, Y., Huang, Y., Miao, J., Xiao, Y."Targeting ncRNAs to overcome metabolic reprogramming‑mediated drug resistance in cancer (Review)". International Journal of Oncology 66, no. 5 (2025): 35. https://doi.org/10.3892/ijo.2025.5741
Copy and paste a formatted citation
x
Spandidos Publications style
Li J, Li Y, Fu L, Chen H, Du F, Wang Z, Zhang Y, Huang Y, Miao J, Xiao Y, Xiao Y, et al: Targeting ncRNAs to overcome metabolic reprogramming‑mediated drug resistance in cancer (Review). Int J Oncol 66: 35, 2025.
APA
Li, J., Li, Y., Fu, L., Chen, H., Du, F., Wang, Z. ... Xiao, Y. (2025). Targeting ncRNAs to overcome metabolic reprogramming‑mediated drug resistance in cancer (Review). International Journal of Oncology, 66, 35. https://doi.org/10.3892/ijo.2025.5741
MLA
Li, J., Li, Y., Fu, L., Chen, H., Du, F., Wang, Z., Zhang, Y., Huang, Y., Miao, J., Xiao, Y."Targeting ncRNAs to overcome metabolic reprogramming‑mediated drug resistance in cancer (Review)". International Journal of Oncology 66.5 (2025): 35.
Chicago
Li, J., Li, Y., Fu, L., Chen, H., Du, F., Wang, Z., Zhang, Y., Huang, Y., Miao, J., Xiao, Y."Targeting ncRNAs to overcome metabolic reprogramming‑mediated drug resistance in cancer (Review)". International Journal of Oncology 66, no. 5 (2025): 35. https://doi.org/10.3892/ijo.2025.5741
Follow us
  • Twitter
  • LinkedIn
  • Facebook
About
  • Spandidos Publications
  • Careers
  • Cookie Policy
  • Privacy Policy
How can we help?
  • Help
  • Live Chat
  • Contact
  • Email to our Support Team