You can change your cookie settings at any time by following the instructions in our Cookie Policy. To find out more, you may read our Privacy Policy.
I agree
International Journal of Molecular Medicine is an international journal devoted to molecular mechanisms of human disease.
International Journal of Oncology is an international journal devoted to oncology research and cancer treatment.
Covers molecular medicine topics such as pharmacology, pathology, genetics, neuroscience, infectious diseases, molecular cardiology, and molecular surgery.
Oncology Reports is an international journal devoted to fundamental and applied research in Oncology.
Experimental and Therapeutic Medicine is an international journal devoted to laboratory and clinical medicine.
Oncology Letters is an international journal devoted to Experimental and Clinical Oncology.
Explores a wide range of biological and medical fields, including pharmacology, genetics, microbiology, neuroscience, and molecular cardiology.
International journal addressing all aspects of oncology research, from tumorigenesis and oncogenes to chemotherapy and metastasis.
Multidisciplinary open-access journal spanning biochemistry, genetics, neuroscience, environmental health, and synthetic biology.
Open-access journal combining biochemistry, pharmacology, immunology, and genetics to advance health through functional nutrition.
Publishes open-access research on using epigenetics to advance understanding and treatment of human disease.
An International Open Access Journal Devoted to General Medicine.
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
|
Bray F, Laversanne M, Sung H, Ferlay J, Siegel RL, Soerjomataram I and Jemal A: Global cancer statistics 2022: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J Clin. 74:229–263. 2024. View Article : Google Scholar : PubMed/NCBI | |
|
Bukhari SNA: Emerging nanotherapeutic approaches to overcome drug resistance in cancers with update on clinical trials. Pharmaceutics. 14:8662022. View Article : Google Scholar : PubMed/NCBI | |
|
Vasan N, Baselga J and Hyman DM: A view on drug resistance in cancer. Nature. 575:299–309. 2019. View Article : Google Scholar : PubMed/NCBI | |
|
Mattiuzzi C and Lippi G: Current cancer epidemiology. J Epidemiol Glob Health. 9:217–222. 2019. View Article : Google Scholar : PubMed/NCBI | |
|
Tufail M, Hu JJ, Liang J, He CY, Wan WD, Huang YQ, Jiang CH, Wu H and Li N: Hallmarks of cancer resistance. iScience. 27:1099792024. View Article : Google Scholar : PubMed/NCBI | |
|
Kubik J, Humeniuk E, Adamczuk G, Madej-Czerwonka B and Korga-Plewko A: Targeting energy metabolism in cancer treatment. Int J Mol Sci. 23:55722022. View Article : Google Scholar : PubMed/NCBI | |
|
Pavlova NN, Zhu J and Thompson CB: The hallmarks of cancer metabolism: Still emerging. Cell Metab. 34:355–377. 2022. View Article : Google Scholar : PubMed/NCBI | |
|
Warburg O, Wind F and Negelein E: The metabolism of tumors in the body. J Gen Physiol. 8:519–530. 1927. View Article : Google Scholar : PubMed/NCBI | |
|
Paul S, Ghosh S and Kumar S: Tumor glycolysis, an essential sweet tooth of tumor cells. Semin Cancer Biol. 86:1216–1230. 2022. View Article : Google Scholar : PubMed/NCBI | |
|
Yoo HC, Yu YC, Sung Y and Han JM: Glutamine reliance in cell metabolism. Exp Mol Med. 52:1496–1516. 2020. View Article : Google Scholar : PubMed/NCBI | |
|
Pavlova NN and Thompson CB: The emerging hallmarks of cancer metabolism. Cell Metab. 23:27–47. 2016. View Article : Google Scholar : PubMed/NCBI | |
|
Stine ZE, Schug ZT, Salvino JM and Dang CV: Targeting cancer metabolism in the era of precision oncology. Nat Rev Drug Discov. 21:141–162. 2022. View Article : Google Scholar | |
|
Landau BR, Laszlo J, Stengle J and Burk D: Certain metabolic and pharmacologic effects in cancer patients given infusions of 2-deoxy-D-glucose. J Natl Cancer Inst. 21:485–494. 1958.PubMed/NCBI | |
|
Slack FJ and Chinnaiyan AM: The role of non-coding RNAs in oncology. Cell. 179:1033–1055. 2019. View Article : Google Scholar : PubMed/NCBI | |
|
Nemeth K, Bayraktar R, Ferracin M and Calin GA: Non-coding RNAs in disease: From mechanisms to therapeutics. Nat Rev Genet. 25:211–232. 2024. View Article : Google Scholar | |
|
Sanchez-Mejias A and Tay Y: Competing endogenous RNA networks: Tying the essential knots for cancer biology and therapeutics. J Hematol Oncol. 8:302015. View Article : Google Scholar : PubMed/NCBI | |
|
Lin W, Zhou Q, Wang CQ, Zhu L, Bi C, Zhang S, Wang X and Jin H: LncRNAs regulate metabolism in cancer. Int J Biol Sci. 16:1194–1206. 2020. View Article : Google Scholar : PubMed/NCBI | |
|
Shih JW, Wang LY, Hung CL, Kung HJ and Hsieh CL: Non-coding RNAs in castration-resistant prostate cancer: Regulation of androgen receptor signaling and cancer metabolism. Int J Mol Sci. 16:28943–28978. 2015. View Article : Google Scholar : PubMed/NCBI | |
|
Xu S, Wang L, Zhao Y, Mo T, Wang B, Lin J and Yang H: Metabolism-regulating non-coding RNAs in breast cancer: Roles, mechanisms and clinical applications. J Biomed Sci. 31:252024. View Article : Google Scholar : PubMed/NCBI | |
|
Keyvani-Ghamsari S, Khorsandi K, Rasul A and Zaman MK: Current understanding of epigenetics mechanism as a novel target in reducing cancer stem cells resistance. Clin Epigenetics. 13:1202021. View Article : Google Scholar : PubMed/NCBI | |
|
Zeng Z, Fu M, Hu Y, Wei Y, Wei X and Luo M: Regulation and signaling pathways in cancer stem cells: Implications for targeted therapy for cancer. Mol Cancer. 22:1722023. View Article : Google Scholar : PubMed/NCBI | |
|
Yuan Y, Li H, Pu W, Chen L, Guo D, Jiang H, He B, Qin S, Wang K, Li N, et al: Cancer metabolism and tumor microenvironment: Fostering each other? Sci China Life Sci. 65:236–279. 2022. View Article : Google Scholar | |
|
Lin X, Wu Z, Hu H, Luo ML and Song E: Non-coding RNAs rewire cancer metabolism networks. Semin Cancer Biol. 75:116–126. 2021. View Article : Google Scholar : PubMed/NCBI | |
|
Zhang D, Guo Q, You K, Zhang Y, Zheng Y and Wei T: m6A-modified circARHGAP12 promotes the aerobic glycolysis of doxorubicin-resistance osteosarcoma by targeting c-Myc. J Orthop Surg Res. 19:332024. View Article : Google Scholar | |
|
Zhang Q, Wu J, Zhang X, Cao L, Wu Y and Miao X: Transcription factor ELK1 accelerates aerobic glycolysis to enhance osteosarcoma chemoresistance through miR-134/PTBP1 signaling cascade. Aging (Albany NY). 13:6804–6819. 2021. View Article : Google Scholar : PubMed/NCBI | |
|
He W, Liang B, Wang C, Li S, Zhao Y, Huang Q, Liu Z, Yao Z, Wu Q, Liao W, et al: MSC-regulated lncRNA MACC1-AS1 promotes stemness and chemoresistance through fatty acid oxidation in gastric cancer. Oncogene. 38:4637–4654. 2019. View Article : Google Scholar : PubMed/NCBI | |
|
Ge X, Pan MH, Wang L, Li W, Jiang C, He J, Abouzid K, Liu LZ, Shi Z and Jiang BH: Hypoxia-mediated mitochondria apoptosis inhibition induces temozolomide treatment resistance through miR-26a/Bad/Bax axis. Cell Death Dis. 9:11282018. View Article : Google Scholar : PubMed/NCBI | |
|
Ding C, Yi X, Chen X, Wu Z, You H, Chen X, Zhang G, Sun Y, Bu X, Wu X, et al: Warburg effect-promoted exosomal circ_0072083 releasing up-regulates NANGO expression through multiple pathways and enhances temozolomide resistance in glioma. J Exp Clin Cancer Res. 40:1642021. View Article : Google Scholar : PubMed/NCBI | |
|
Sun X, Sun G, Huang Y, Hao Y, Tang X, Zhang N, Zhao L, Zhong R and Peng Y: 3-Bromopyruvate regulates the status of glycolysis and BCNU sensitivity in human hepatocellular carcinoma cells. Biochem Pharmacol. 177:1139882020. View Article : Google Scholar : PubMed/NCBI | |
|
Liu R, Chen Y, Liu G, Li C, Song Y, Cao Z, Li W, Hu J, Lu C and Liu Y: PI3K/AKT pathway as a key link modulates the multidrug resistance of cancers. Cell Death Dis. 11:7972020. View Article : Google Scholar : PubMed/NCBI | |
|
Castellví A, Pequerul R, Barracco V, Juanhuix J, Parés X and Farrés J: Structural and biochemical evidence that ATP inhibits the cancer biomarker human aldehyde dehydrogenase 1A3. Commun Biol. 5:3542022. View Article : Google Scholar : PubMed/NCBI | |
|
Hou GX, Liu PP, Zhang S, Yang M, Liao J, Yang J, Hu Y, Jiang WQ, Wen S and Huang P: Elimination of stem-like cancer cell side-population by auranofin through modulation of ROS and glycolysis. Cell Death Dis. 9:892018. View Article : Google Scholar : PubMed/NCBI | |
|
Giddings EL, Champagne DP, Wu MH, Laffin JM, Thornton TM, Valenca-Pereira F, Culp-Hill R, Fortner KA, Romero N, East J, et al: Mitochondrial ATP fuels ABC transporter-mediated drug efflux in cancer chemoresistance. Nat Commun. 12:28042021. View Article : Google Scholar : PubMed/NCBI | |
|
Lu S, Tian H, Li L, Li B, Yang M, Zhou L, Jiang H, Li Q, Wang W, Nice EC, et al: Nanoengineering a zeolitic imidazolate framework-8 capable of manipulating energy metabolism against cancer chemo-phototherapy resistance. Small. 18:e22049262022. View Article : Google Scholar : PubMed/NCBI | |
|
Roberts DJ and Miyamoto S: Hexokinase II integrates energy metabolism and cellular protection: Akting on mitochondria and TORCing to autophagy. Cell Death Differ. 22:248–257. 2015. View Article : Google Scholar : | |
|
Zhang Z, Deng X, Liu Y, Liu Y, Sun L and Chen F: PKM2, function and expression and regulation. Cell Biosci. 9:522019. View Article : Google Scholar : PubMed/NCBI | |
|
Jang M, Kang HJ, Lee SY, Chung SJ, Kang S, Chi SW, Cho S, Lee SC, Lee CK, Park BC, et al: Glyceraldehyde-3-phosphate, a glycolytic intermediate, plays a key role in controlling cell fate via inhibition of caspase activity. Mol Cells. 28:559–563. 2009. View Article : Google Scholar : PubMed/NCBI | |
|
Dong Q, Niu W, Mu M, Ye C, Wu P, Hu S and Niu C: Lycorine hydrochloride interferes with energy metabolism to inhibit chemoresistant glioblastoma multiforme cell growth through suppressing PDK3. Mol Cell Biochem. 480:355–369. 2025. View Article : Google Scholar | |
|
Yalcin A, Clem BF, Imbert-Fernandez Y, Ozcan SC, Peker S, O'Neal J, Klarer AC, Clem AL, Telang S and Chesney J: 6-Phosphofructo-2-kinase (PFKFB3) promotes cell cycle progression and suppresses apoptosis via Cdk1-mediated phosphorylation of p27. Cell Death Dis. 5:e13372014. View Article : Google Scholar : PubMed/NCBI | |
|
Shi L, Pan H, Liu Z, Xie J and Han W: Roles of PFKFB3 in cancer. Signal Transduct Target Ther. 2:170442017. View Article : Google Scholar : PubMed/NCBI | |
|
Cantelmo AR, Conradi LC, Brajic A, Goveia J, Kalucka J, Pircher A, Chaturvedi P, Hol J, Thienpont B, Teuwen LA, et al: Inhibition of the glycolytic activator PFKFB3 in endothelium induces tumor vessel normalization, impairs metastasis, and improves chemotherapy. Cancer Cell. 30:968–985. 2016. View Article : Google Scholar : PubMed/NCBI | |
|
Morais-Santos F, Granja S, Miranda-Gonçalves V, Moreira AH, Queirós S, Vilaça JL, Schmitt FC, Longatto-Filho A, Paredes J, Baltazar F and Pinheiro C: Targeting lactate transport suppresses in vivo breast tumour growth. Oncotarget. 6:19177–19189. 2015. View Article : Google Scholar : PubMed/NCBI | |
|
Hraběta J, Belhajová M, Šubrtová H, Merlos Rodrigo MA, Heger Z and Eckschlager T: Drug sequestration in lysosomes as one of the mechanisms of chemoresistance of cancer cells and the possibilities of its inhibition. Int J Mol Sci. 21:43922020. View Article : Google Scholar | |
|
Bogdanov A, Bogdanov A, Chubenko V, Volkov N, Moiseenko F and Moiseyenko V: Tumor acidity: From hallmark of cancer to target of treatment. Front Oncol. 12:9791542022. View Article : Google Scholar : PubMed/NCBI | |
|
Mahoney BP, Raghunand N, Baggett B and Gillies RJ: Tumor acidity, ion trapping and chemotherapeutics. I. Acid pH affects the distribution of chemotherapeutic agents in vitro. Biochem Pharmacol. 66:1207–1218. 2003. View Article : Google Scholar : PubMed/NCBI | |
|
Alfarouk KO, Stock CM, Taylor S, Walsh M, Muddathir AK, Verduzco D, Bashir AH, Mohammed OY, Elhassan GO, Harguindey S, et al: Resistance to cancer chemotherapy: Failure in drug response from ADME to P-gp. Cancer Cell Int. 15:712015. View Article : Google Scholar : PubMed/NCBI | |
|
Dong Q, Zhou C, Ren H, Zhang Z, Cheng F, Xiong Z, Chen C, Yang J, Gao J, Zhang Y, et al: Lactate-induced MRP1 expression contributes to metabolism-based etoposide resistance in non-small cell lung cancer cells. Cell Commun Signal. 18:1672020. View Article : Google Scholar : PubMed/NCBI | |
|
Li J, Gao N, Gao Z, Liu W, Pang B, Dong X, Li Y and Fan T: The emerging role of exosomes in cancer chemoresistance. Front Cell Dev Biol. 9:7379622021. View Article : Google Scholar : PubMed/NCBI | |
|
Brown TP and Ganapathy V: Lactate/GPR81 signaling and proton motive force in cancer: Role in angiogenesis, immune escape, nutrition, and Warburg phenomenon. Pharmacol Ther. 206:1074512020. View Article : Google Scholar | |
|
Sandforth L, Ammar N, Dinges LA, Röcken C, Arlt A, Sebens S and Schäfer H: Impact of the monocarboxylate transporter-1 (MCT1)-mediated cellular import of lactate on stemness properties of human pancreatic adenocarcinoma cells †. Cancers (Basel). 12:5812020. View Article : Google Scholar | |
|
Takada T, Takata K and Ashihara E: Inhibition of monocarboxylate transporter 1 suppresses the proliferation of glioblastoma stem cells. J Physiol Sci. 66:387–396. 2016. View Article : Google Scholar : PubMed/NCBI | |
|
Zhang XY, Zhang M, Cong Q, Zhang MX, Zhang MY, Lu YY and Xu CJ: Hexokinase 2 confers resistance to cisplatin in ovarian cancer cells by enhancing cisplatin-induced autophagy. Int J Biochem Cell Biol. 95:9–16. 2018. View Article : Google Scholar | |
|
Thirusangu P, Ray U, Sarkar Bhattacharya S, Oien DB, Jin L, Staub J, Kannan N, Molina JR and Shridhar V: PFKFB3 regulates cancer stemness through the hippo pathway in small cell lung carcinoma. Oncogene. 41:4003–4017. 2022. View Article : Google Scholar : PubMed/NCBI | |
|
Amin S, Yang P and Li Z: Pyruvate kinase M2: A multifarious enzyme in non-canonical localization to promote cancer progression. Biochim Biophys Acta Rev Cancer. 1871:331–341. 2019. View Article : Google Scholar : PubMed/NCBI | |
|
Lee SH, Golinska M and Griffiths JR: HIF-1-independent mechanisms regulating metabolic adaptation in hypoxic cancer cells. Cells. 10:23712021. View Article : Google Scholar : PubMed/NCBI | |
|
Tirpe AA, Gulei D, Ciortea SM, Crivii C and Berindan-Neagoe I: Hypoxia: Overview on hypoxia-mediated mechanisms with a focus on the role of HIF genes. Int J Mol Sci. 20:61402019. View Article : Google Scholar : PubMed/NCBI | |
|
Nagao A, Kobayashi M, Koyasu S, Chow CCT and Harada H: HIF-1-dependent reprogramming of glucose metabolic pathway of cancer cells and its therapeutic significance. Int J Mol Sci. 20:2382019. View Article : Google Scholar : PubMed/NCBI | |
|
Delgado JM and Shoemaker CJ: An unexpected journey for BNIP3. Autophagy. 20:1447–1448. 2024. View Article : Google Scholar : PubMed/NCBI | |
|
Geng Y, Zheng X, Zhang D, Wei S, Feng J, Wang W, Zhang L, Wu C and Hu W: CircHIF1A induces cetuximab resistance in colorectal cancer by promoting HIF1α-mediated glycometabolism alteration. Biol Direct. 19:362024. View Article : Google Scholar | |
|
Xu G, Li M, Wu J, Qin C, Tao Y and He H: Circular RNA circ-NRIP1 sponges microRNA-138-5p to maintain hypoxia-induced resistance to 5-fluorouracil through HIF-1α-dependent glucose metabolism in gastric carcinoma. Cancer Manag Res. 12:2789–2802. 2020. View Article : Google Scholar : | |
|
Li Q, Sun H, Luo D, Gan L, Mo S, Dai W, Liang L, Yang Y, Xu M, Li J, et al: Lnc-RP11-536 K7.3/SOX2/HIF-1α signaling axis regulates oxaliplatin resistance in patient-derived colorectal cancer organoids. J Exp Clin Cancer Res. 40:3482021. View Article : Google Scholar | |
|
Chen F, Chen J, Yang L, Liu J, Zhang X, Zhang Y, Tu Q, Yin D, Lin D, Wong PP, et al: Extracellular vesicle-packaged HIF-1α-stabilizing lncRNA from tumour-associated macrophages regulates aerobic glycolysis of breast cancer cells. Nat Cell Biol. 21:498–510. 2019. View Article : Google Scholar : PubMed/NCBI | |
|
Xu F, Huang M, Chen Q, Niu Y, Hu Y, Hu P, Chen D, He C, Huang K, Zeng Z, et al: LncRNA HIF1A-AS1 promotes gemcitabine resistance of pancreatic cancer by enhancing glycolysis through modulating the AKT/YB1/HIF1α pathway. Cancer Res. 81:5678–5691. 2021. View Article : Google Scholar : PubMed/NCBI | |
|
Zeng Z, Zhao Y, Chen Q, Zhu S, Niu Y, Ye Z, Hu P, Chen D, Xu P, Chen J, et al: Hypoxic exosomal HIF-1α-stabilizing circZNF91 promotes chemoresistance of normoxic pancreatic cancer cells via enhancing glycolysis. Oncogene. 40:5505–5517. 2021. View Article : Google Scholar : PubMed/NCBI | |
|
Meng Y, Xu X, Luan H, Li L, Dai W, Li Z and Bian J: The progress and development of GLUT1 inhibitors targeting cancer energy metabolism. Future Med Chem. 11:2333–2352. 2019. View Article : Google Scholar : PubMed/NCBI | |
|
Dong P, Wang F, Taheri M, Xiong Y, Ihira K, Kobayashi N, Konno Y, Yue J and Watari H: Long non-coding RNA TMPO-AS1 promotes GLUT1-mediated glycolysis and paclitaxel resistance in endometrial cancer cells by interacting with miR-140 and miR-143. Front Oncol. 12:9129352022. View Article : Google Scholar : PubMed/NCBI | |
|
Ma J, Qi G and Li L: A novel serum exosomes-based biomarker hsa_circ_0002130 facilitates osimertinib-resistance in non-small cell lung cancer by sponging miR-498. Onco Targets Ther. 13:5293–5307. 2020. View Article : Google Scholar : PubMed/NCBI | |
|
Li P, Yang X, Cheng Y, Zhang X, Yang C, Deng X, Li P, Tao J, Yang H, Wei J, et al: MicroRNA-218 increases the sensitivity of bladder cancer to cisplatin by targeting Glut1. Cell Physiol Biochem. 41:921–932. 2017. View Article : Google Scholar : PubMed/NCBI | |
|
Tu MJ, Duan Z, Liu Z, Zhang C, Bold RJ, Gonzalez FJ, Kim EJ and Yu AM: MicroRNA-1291-5p sensitizes pancreatic carcinoma cells to arginine deprivation and chemotherapy through the regulation of arginolysis and glycolysis. Mol Pharmacol. 98:686–694. 2020. View Article : Google Scholar : PubMed/NCBI | |
|
Zuo J, Tang J, Lu M, Zhou Z, Li Y, Tian H, Liu E, Gao B, Liu T and Shao P: Glycolysis rate-limiting enzymes: Novel potential regulators of rheumatoid arthritis pathogenesis. Front Immunol. 12:7797872021. View Article : Google Scholar : PubMed/NCBI | |
|
Xu J, Xu Y, Ye G and Qiu J: LncRNA-SNHG1 promotes paclitaxel resistance of gastric cancer cells through modulating the miR-216b-5p-hexokianse 2 axis. J Chemother. 35:527–538. 2023. View Article : Google Scholar | |
|
Shi H, Li K, Feng J, Liu G, Feng Y and Zhang X: LncRNA-DANCR interferes with miR-125b-5p/HK2 axis to desensitize colon cancer cells to cisplatin vis activating anaerobic glycolysis. Front Oncol. 10:10342020. View Article : Google Scholar : PubMed/NCBI | |
|
Zhang H, Zhao L, Ren P and Sun X: LncRNA MBNL1-AS1 knockdown increases the sensitivity of hepatocellular carcinoma to tripterine by regulating miR-708-5p-mediated glycolysis. Biotechnol Genet Eng Rev. 40:1407–1424. 2024. View Article : Google Scholar | |
|
Deng Y, Li X, Feng J and Zhang X: Overexpression of miR-202 resensitizes imatinib resistant chronic myeloid leukemia cells through targetting Hexokinase 2. Biosci Rep. 38:BSR201713832018. View Article : Google Scholar : PubMed/NCBI | |
|
Jiang JX, Gao S, Pan YZ, Yu C and Sun CY: Overexpression of microRNA-125b sensitizes human hepatocellular carcinoma cells to 5-fluorouracil through inhibition of glycolysis by targeting hexokinase II. Mol Med Rep. 10:995–1002. 2014. View Article : Google Scholar : PubMed/NCBI | |
|
Zhang Y, Liu Y and Xu X: Knockdown of LncRNA-UCA1 suppresses chemoresistance of pediatric AML by inhibiting glycolysis through the microRNA-125a/hexokinase 2 pathway. J Cell Biochem. 119:6296–6308. 2018. View Article : Google Scholar : PubMed/NCBI | |
|
Shi H, Li K, Feng J and Zhang X: Overexpression of long non-coding RNA urothelial carcinoma associated 1 causes paclitaxel (Taxol) resistance in colorectal cancer cells by promoting glycolysis. J Chemother. 33:409–419. 2021. View Article : Google Scholar : PubMed/NCBI | |
|
Deng X, Li D, Ke X, Wang Q, Yan S, Xue Y, Wang Q and Zheng H: Mir-488 alleviates chemoresistance and glycolysis of colorectal cancer by targeting PFKFB3. J Clin Lab Anal. 35:e235782021. View Article : Google Scholar | |
|
Gao Y, Liu C, Xu X, Wang Y and Jiang Y: Circular RNA sterile alpha motif domain containing 4A contributes to cell 5-fluorouracil resistance in colorectal cancer by regulating the miR-545-3p/6-phosphofructo-2-kinase/fructose-2,6-bisphosphataseisotype 3 axis. Anticancer Drugs. 33:553–563. 2022. View Article : Google Scholar : PubMed/NCBI | |
|
Yang W and Lu Z: Pyruvate kinase M2 at a glance. J Cell Sci. 128:1655–1660. 2015.PubMed/NCBI | |
|
Dayton TL, Jacks T and Vander Heiden MG: PKM2, cancer metabolism, and the road ahead. EMBO Rep. 17:1721–1730. 2016. View Article : Google Scholar : PubMed/NCBI | |
|
Yu Y, Liang Y, Xie F, Zhang Z, Zhang P, Zhao X, Zhang Z, Liang Z, Li D, Wang L, et al: Tumor-associated macrophage enhances PD-L1-mediated immune escape of bladder cancer through PKM2 dimer-STAT3 complex nuclear translocation. Cancer Lett. 593:2169642024. View Article : Google Scholar : PubMed/NCBI | |
|
Yao Y, Chen X, Wang X, Li H, Zhu Y, Li X, Xiao Z, Zi T, Qin X, Zhao Y, et al: Glycolysis related lncRNA SNHG3/miR-139-5p/PKM2 axis promotes castration-resistant prostate cancer (CRPC) development and enzalutamide resistance. Int J Biol Macromol. 260:1296352024. View Article : Google Scholar | |
|
Zhong W, Wang C and Sun Y: LncRNA PCIF1 promotes aerobic glycolysis in A549/DDP cells by competitively binding miR-326 to regulate PKM expression. Mol Cell Probes. 77:1019772024. View Article : Google Scholar : PubMed/NCBI | |
|
Wu H, Du J, Li C, Li H, Guo H and Li Z: Kaempferol can reverse the 5-Fu resistance of colorectal cancer cells by inhibiting PKM2-mediated glycolysis. Int J Mol Sci. 23:35442022. View Article : Google Scholar : PubMed/NCBI | |
|
Bian Z, Yang F, Xu P, Gao G, Yang C, Cao Y, Yao S, Wang X, Yin Y, Fei B and Huang Z: LINC01852 inhibits the tumorigenesis and chemoresistance in colorectal cancer by suppressing SRSF5-mediated alternative splicing of PKM. Mol Cancer. 23:232024. View Article : Google Scholar : PubMed/NCBI | |
|
Zhu Z, Tang G and Yan J: MicroRNA-122 regulates docetaxel resistance of prostate cancer cells by regulating PKM2. Exp Ther Med. 20:2472020. View Article : Google Scholar : PubMed/NCBI | |
|
Pan C, Wang X, Shi K, Zheng Y, Li J, Chen Y, Jin L and Pan Z: MiR-122 reverses the doxorubicin-resistance in hepatocellular carcinoma cells through regulating the tumor metabolism. PLoS One. 11:e01520902016. View Article : Google Scholar : PubMed/NCBI | |
|
Wang X, Zhang H, Yang H, Bai M, Ning T, Deng T, Liu R, Fan Q, Zhu K, Li J, et al: Exosome-delivered circRNA promotes glycolysis to induce chemoresistance through the miR-122-PKM2 axis in colorectal cancer. Mol Oncol. 14:539–555. 2020. View Article : Google Scholar : PubMed/NCBI | |
|
Zhu S, Guo Y, Zhang X, Liu H, Yin M, Chen X and Peng C: Pyruvate kinase M2 (PKM2) in cancer and cancer therapeutics. Cancer Lett. 503:240–248. 2021. View Article : Google Scholar | |
|
Zhang M, Zhang H, Hong H and Zhang Z: MiR-374b re-sensitizes hepatocellular carcinoma cells to sorafenib therapy by antagonizing PKM2-mediated glycolysis pathway. Am J Cancer Res. 9:765–778. 2019.PubMed/NCBI | |
|
Jiang CF, Xie YX, Qian YC, Wang M, Liu LZ, Shu YQ, Bai XM and Jiang BH: TBX15/miR-152/KIF2C pathway regulates breast cancer doxorubicin resistance via promoting PKM2 ubiquitination. Cancer Cell Int. 21:5422021. View Article : Google Scholar : PubMed/NCBI | |
|
Li X, Zhang Y and Wang X, Lin F, Cheng X, Wang Z and Wang X: Long non-coding RNA CTSLP8 mediates ovarian cancer progression and chemotherapy resistance by modulating cellular glycolysis and regulating c-Myc expression through PKM2. Cell Biol Toxicol. 38:1027–1045. 2022. View Article : Google Scholar : | |
|
Van Wilpe S, Koornstra R, Den Brok M, De Groot JW, Blank C, De Vries J, Gerritsen W and Mehra N: Lactate dehydrogenase: A marker of diminished antitumor immunity. Oncoimmunology. 9:17319422020. View Article : Google Scholar : PubMed/NCBI | |
|
Pei LJ, Sun PJ, Ma K, Guo YY, Wang LY and Liu FD: LncRNA-SNHG7 interferes with miR-34a to de-sensitize gastric cancer cells to cisplatin. Cancer Biomark. 30:127–137. 2021. View Article : Google Scholar | |
|
Hua G, Zeng ZL, Shi YT, Chen W, He LF and Zhao GF: LncRNA XIST contributes to cisplatin resistance of lung cancer cells by promoting cellular glycolysis through sponging miR-101-3p. Pharmacology. 106:498–508. 2021. View Article : Google Scholar : PubMed/NCBI | |
|
Li G, Li Y and Wang DY: Overexpression of miR-329-3p sensitizes osteosarcoma cells to cisplatin through suppression of glucose metabolism by targeting LDHA. Cell Biol Int. 45:766–774. 2021. View Article : Google Scholar | |
|
Hu J, Huang L, Ding Q, Lv J and Chen Z: Long noncoding RNA HAGLR sponges miR-338-3p to promote 5-Fu resistance in gastric cancer through targeting the LDHA-glycolysis pathway. Cell Biol Int. 46:173–184. 2022. View Article : Google Scholar | |
|
Shao X, Zheng X, Ma D, Liu Y and Liu G: Inhibition of lncRNA-NEAT1 sensitizes 5-Fu resistant cervical cancer cells through de-repressing the microRNA-34a/LDHA axis. Biosci Rep. 41:BSR202005332021. View Article : Google Scholar : PubMed/NCBI | |
|
Shi L, Duan R, Sun Z, Jia Q, Wu W, Wang F, Liu J, Zhang H and Xue X: LncRNA GLTC targets LDHA for succinylation and enzymatic activity to promote progression and radioiodine resistance in papillary thyroid cancer. Cell Death Differ. 30:1517–1532. 2023. View Article : Google Scholar : PubMed/NCBI | |
|
Purhonen J, Klefström J and Kallijärvi J: MYC-an emerging player in mitochondrial diseases. Front Cell Dev Biol. 11:12576512023. View Article : Google Scholar : PubMed/NCBI | |
|
Wang H, Wang L, Pan H, Wang Y, Shi M, Yu H, Wang C, Pan X and Chen Z: Exosomes derived from macrophages enhance aerobic glycolysis and chemoresistance in lung cancer by stabilizing c-Myc via the inhibition of NEDD4L. Front Cell Dev Biol. 8:6206032021. View Article : Google Scholar : PubMed/NCBI | |
|
Jiang X, Guo S, Wang S, Zhang Y, Chen H, Wang Y, Liu R, Niu Y and Xu Y: EIF4A3-induced circARHGAP29 promotes aerobic glycolysis in docetaxel-resistant prostate cancer through IGF2BP2/c-Myc/LDHA signaling. Cancer Res. 82:831–845. 2022. View Article : Google Scholar | |
|
Anwar S, Shamsi A, Mohammad T, Islam A and Hassan MI: Targeting pyruvate dehydrogenase kinase signaling in the development of effective cancer therapy. Biochim Biophys Acta Rev Cancer. 1876:1885682021. View Article : Google Scholar : PubMed/NCBI | |
|
Zhuang L, Zhang B, Liu X, Lin L, Wang L, Hong Z and Chen J: Exosomal miR-21-5p derived from cisplatin-resistant SKOV3 ovarian cancer cells promotes glycolysis and inhibits chemosensitivity of its progenitor SKOV3 cells by targeting PDHA1. Cell Biol Int. 45:2140–2149. 2021. View Article : Google Scholar : PubMed/NCBI | |
|
Kim JW, Tchernyshyov I, Semenza GL and Dang CV: HIF-1-mediated expression of pyruvate dehydrogenase kinase: A metabolic switch required for cellular adaptation to hypoxia. Cell Metab. 3:177–185. 2006. View Article : Google Scholar : PubMed/NCBI | |
|
Qian Y, Wu X, Wang H, Hou G, Han X and Song W: MicroRNA-4290 suppresses PDK1-mediated glycolysis to enhance the sensitivity of gastric cancer cell to cisplatin. Braz J Med Biol Res. 53:e93302020. View Article : Google Scholar : PubMed/NCBI | |
|
Xie Y, Shi Z, Qian Y, Jiang C, Liu W, Liu B and Jiang B: HDAC2- and EZH2-mediated histone modifications induce PDK1 expression through miR-148a downregulation in breast cancer progression and adriamycin resistance. Cancers (Basel). 14:36002022. View Article : Google Scholar : PubMed/NCBI | |
|
Ding Y, Gao S, Zheng J and Chen X: Blocking lncRNA-SNHG16 sensitizes gastric cancer cells to 5-Fu through targeting the miR-506-3p-PTBP1-mediated glucose metabolism. Cancer Metab. 10:202022. View Article : Google Scholar : PubMed/NCBI | |
|
Chen X, Luo R, Zhang Y, Ye S, Zeng X, Liu J, Huang D, Liu Y, Liu Q, Luo ML and Song E: Long noncoding RNA DIO3OS induces glycolytic-dominant metabolic reprogramming to promote aromatase inhibitor resistance in breast cancer. Nat Commun. 13:71602022. View Article : Google Scholar : PubMed/NCBI | |
|
Yang GJ, Tao F, Zhong HJ, Yang C and Chen J: Targeting PGAM1 in cancer: An emerging therapeutic opportunity. Eur J Med Chem. 244:1147982022. View Article : Google Scholar : PubMed/NCBI | |
|
Liu Z, Zheng N, Li J, Li C, Zheng D, Jiang X, Ge X, Liu M, Liu L, Song Z, et al: N6-methyladenosine-modified circular RNA QSOX1 promotes colorectal cancer resistance to anti-CTLA-4 therapy through induction of intratumoral regulatory T cells. Drug Resist Updat. 65:1008862022. View Article : Google Scholar : PubMed/NCBI | |
|
Poliaková M, Aebersold DM, Zimmer Y and Medová M: The relevance of tyrosine kinase inhibitors for global metabolic pathways in cancer. Mol Cancer. 17:272018. View Article : Google Scholar : PubMed/NCBI | |
|
Li C, Liu FY, Shen Y, Tian Y and Han FJ: Research progress on the mechanism of glycolysis in ovarian cancer. Front Immunol. 14:12848532023. View Article : Google Scholar : PubMed/NCBI | |
|
Fontana F, Giannitti G, Marchesi S and Limonta P: The PI3K/Akt pathway and glucose metabolism: A dangerous liaison in cancer. Int J Biol Sci. 20:3113–3125. 2024. View Article : Google Scholar : PubMed/NCBI | |
|
Wang L, Jiang P, Li J, Huang Y, Wen J, Wu Z, Chen Y and Hu J: Loss of MiR-155 sensitizes FLT3-ITD+AML to chemotherapy and FLT3 inhibitors via glycolysis blocking by targeting PIK3R1. J Cancer. 14:99–113. 2023. View Article : Google Scholar : | |
|
Chen X, Song Y, Tian Y, Dong X, Chang Y and Wang W: miR-149-3p enhances drug sensitivity of AML cells by inhibiting warburg effect through PI3K/AKT pathway. Cell Biochem Biophys. 82:3287–3296. 2024. View Article : Google Scholar : PubMed/NCBI | |
|
Lim SO, Li CW, Xia W, Lee HH, Chang SS, Shen J, Hsu JL, Raftery D, Djukovic D, Gu H, et al: EGFR signaling enhances aerobic glycolysis in triple-negative breast cancer cells to promote tumor growth and immune escape. Cancer Res. 76:1284–1296. 2016. View Article : Google Scholar : PubMed/NCBI | |
|
Concha-Benavente F and Ferris RL: Reversing EGFR mediated immunoescape by targeted monoclonal antibody therapy. Front Pharmacol. 8:3322017. View Article : Google Scholar : PubMed/NCBI | |
|
Gao SJ, Ren SN, Liu YT, Yan HW and Chen XB: Targeting EGFR sensitizes 5-Fu-resistant colon cancer cells through modification of the lncRNA-FGD5-AS1-miR-330-3p-Hexokinase 2 axis. Mol Ther Oncolytics. 23:14–25. 2021. View Article : Google Scholar : PubMed/NCBI | |
|
Wen JF, Jiang YQ, Li C, Dai XK, Wu T and Yin WZ: LncRNA-SARCC sensitizes osteosarcoma to cisplatin through the miR-143-mediated glycolysis inhibition by targeting Hexokinase 2. Cancer Biomark. 28:231–246. 2020. View Article : Google Scholar | |
|
Chen W, Chen Y and Hui T: microRNA-143 interferes the EGFR-stimulated glucose metabolism to re-sensitize 5-FU resistant colon cancer cells via targeting hexokinase 2. J Chemother. 35:539–549. 2023. View Article : Google Scholar | |
|
Cheng WL, Feng PH, Lee KY, Chen KY, Sun WL, Van Hiep N, Luo CS and Wu SM: The role of EREG/EGFR pathway in tumor progression. Int J Mol Sci. 22:128282021. View Article : Google Scholar : PubMed/NCBI | |
|
He M, Jin Q, Chen C, Liu Y, Ye X, Jiang Y, Ji F, Qian H, Gan D, Yue S, et al: The miR-186-3p/EREG axis orchestrates tamoxifen resistance and aerobic glycolysis in breast cancer cells. Oncogene. 38:5551–5565. 2019. View Article : Google Scholar : PubMed/NCBI | |
|
Asl ER, Amini M, Najafi S, Mansoori B, Mokhtarzadeh A, Mohammadi A, Lotfinejad P, Bagheri M, Shirjang S, Lotfi Z, et al: Interplay between MAPK/ERK signaling pathway and MicroRNAs: A crucial mechanism regulating cancer cell metabolism and tumor progression. Life Sci. 278:1194992021. View Article : Google Scholar : PubMed/NCBI | |
|
He Z, Zhong Y, Lv T, Wang J, Jin Y, Li F and Hu H: PP4R1 promotes glycolysis and gallbladder cancer progression through facilitating ERK1/2 mediated PKM2 nuclear translocation. Cancer Lett. 586:2166772024. View Article : Google Scholar : PubMed/NCBI | |
|
Li X, Tsauo J, Geng C, Zhao H, Lei X and Li X: Ginsenoside Rg3 Decreases NHE1 expression via inhibiting EGF-EGFR-ERK1/2-HIF-1 α pathway in hepatocellular carcinoma: A novel antitumor mechanism. Am J Chin Med. 46:1915–1931. 2018. View Article : Google Scholar | |
|
Li M, Cai O, Yu Y and Tan S: Paeonol inhibits the malignancy of Apatinib-resistant gastric cancer cells via LINC00665/miR-665/MAPK1 axis. Phytomedicine. 96:1539032022. View Article : Google Scholar : PubMed/NCBI | |
|
Garcia D and Shaw RJ: AMPK: Mechanisms of cellular energy sensing and restoration of metabolic balance. Mol Cell. 66:789–800. 2017. View Article : Google Scholar : PubMed/NCBI | |
|
Li YZ, Deng J, Zhang XD, Li DY, Su LX, Li S, Pan JM, Lu L, Ya JQ, Yang N, et al: Naringenin enhances the efficacy of ferroptosis inducers by attenuating aerobic glycolysis by activating the AMPK-PGC1α signalling axis in liver cancer. Heliyon. 10:e322882024. View Article : Google Scholar | |
|
Lyu X, Wang J, Guo X, Wu G, Jiao Y, Faleti OD, Liu P, Liu T, Long Y, Chong T, et al: EBV-miR-BART1-5P activates AMPK/mTOR/HIF1 pathway via a PTEN independent manner to promote glycolysis and angiogenesis in nasopharyngeal carcinoma. PLoS Pathog. 14:e10074842018. View Article : Google Scholar : PubMed/NCBI | |
|
Barisciano G, Colangelo T, Rosato V, Muccillo L, Taddei ML, Ippolito L, Chiarugi P, Galgani M, Bruzzaniti S, Matarese G, et al: miR-27a is a master regulator of metabolic reprogramming and chemoresistance in colorectal cancer. Br J Cancer. 122:1354–1366. 2020. View Article : Google Scholar : PubMed/NCBI | |
|
Vallée A, Lecarpentier Y and Vallée JN: The key role of the WNT/β-catenin pathway in metabolic reprogramming in cancers under normoxic conditions. Cancers (Basel). 13:55572021. View Article : Google Scholar | |
|
Chen L, Hu N, Wang C and Zhao H: HOTAIRM1 knockdown enhances cytarabine-induced cytotoxicity by suppression of glycolysis through the Wnt/β-catenin/PFKP pathway in acute myeloid leukemia cells. Arch Biochem Biophys. 680:1082442020. View Article : Google Scholar | |
|
Zhang Z, Tan X, Luo J, Yao H, Si Z and Tong JS: The miR-30a-5p/CLCF1 axis regulates sorafenib resistance and aerobic glycolysis in hepatocellular carcinoma. Cell Death Dis. 11:9022020. View Article : Google Scholar : PubMed/NCBI | |
|
Yi Q, Wei J and Li Y: Effects of miR-103a-3p targeted regulation of TRIM66 axis on docetaxel resistance and glycolysis in prostate cancer cells. Front Genet. 12:8137932022. View Article : Google Scholar : PubMed/NCBI | |
|
Wang Z, Wang Y, Li Z, Xue W, Hu S and Kong X: Lipid metabolism as a target for cancer drug resistance: Progress and prospects. Front Pharmacol. 14:12743352023. View Article : Google Scholar : PubMed/NCBI | |
|
Qin J, Ye L, Wen X, Zhang X, Di Y, Chen Z and Wang Z: Fatty acids in cancer chemoresistance. Cancer Lett. 572:2163522023. View Article : Google Scholar : PubMed/NCBI | |
|
Ladanyi A, Mukherjee A, Kenny HA, Johnson A, Mitra AK, Sundaresan S, Nieman KM, Pascual G, Benitah SA, Montag A, et al: Adipocyte-induced CD36 expression drives ovarian cancer progression and metastasis. Oncogene. 37:2285–2301. 2018. View Article : Google Scholar : PubMed/NCBI | |
|
Guo Y, Yang L, Guo W, Wei L and Zhou Y: FV-429 enhances the efficacy of paclitaxel in NSCLC by reprogramming HIF-1α-modulated FattyAcid metabolism. Chem Biol Interact. 350:1097022021. View Article : Google Scholar | |
|
Ventura R, Mordec K, Waszczuk J, Wang Z, Lai J, Fridlib M, Buckley D, Kemble G and Heuer TS: Inhibition of de novo palmitate synthesis by fatty acid synthase induces apoptosis in tumor cells by remodeling cell membranes, inhibiting signaling pathways, and reprogramming gene expression. EBioMedicine. 2:808–824. 2015. View Article : Google Scholar : PubMed/NCBI | |
|
Liu S, Sun Y, Hou Y, Yang L, Wan X, Qin Y, Liu Y, Wang R, Zhu P, Teng Y and Liu M: A novel lncRNA ROPM-mediated lipid metabolism governs breast cancer stem cell properties. J Hematol Oncol. 14:1782021. View Article : Google Scholar : PubMed/NCBI | |
|
Varghese E, Samuel SM, Líšková A, Samec M, Kubatka P and Büsselberg D: Targeting glucose metabolism to overcome resistance to anticancer chemotherapy in breast cancer. Cancers (Basel). 12:22522020. View Article : Google Scholar : PubMed/NCBI | |
|
Eytan GD, Regev R, Oren G and Assaraf YG: The role of passive transbilayer drug movement in multidrug resistance and its modulation. J Biol Chem. 271:12897–12902. 1996. View Article : Google Scholar : PubMed/NCBI | |
|
Wang X, He S, Gu Y, Wang Q, Chu X, Jin M, Xu L, Wu Q, Zhou Q, Wang B, et al: Fatty acid receptor GPR120 promotes breast cancer chemoresistance by upregulating ABC transporters expression and fatty acid synthesis. EBioMedicine. 40:251–262. 2019. View Article : Google Scholar : PubMed/NCBI | |
|
Kuan CY, Walker TH, Luo PG and Chen CF: Long-chain polyunsaturated fatty acids promote paclitaxel cytotoxicity via inhibition of the MDR1 gene in the human colon cancer Caco-2 cell line. J Am Coll Nutr. 30:265–273. 2011. View Article : Google Scholar : PubMed/NCBI | |
|
Royo-García A, Courtois S, Parejo-Alonso B, Espiau-Romera P and Sancho P: Lipid droplets as metabolic determinants for stemness and chemoresistance in cancer. World J Stem Cells. 13:1307–1317. 2021. View Article : Google Scholar : PubMed/NCBI | |
|
Huang KB, Pan YH, Shu GN, Yao HH, Liu X, Zhou M, Wei JH, Chen ZH, Lu J, Feng ZH, et al: Circular RNA circSNX6 promotes sunitinib resistance in renal cell carcinoma through the miR-1184/GPCPD1/lysophosphatidic acid axis. Cancer Lett. 523:121–134. 2021. View Article : Google Scholar : PubMed/NCBI | |
|
Zhang X, Xu Y, Ma L, Yu K, Niu Y, Xu X, Shi Y, Guo S, Xue X, Wang Y, et al: Essential roles of exosome and circRNA_101093 on ferroptosis desensitization in lung adenocarcinoma. Cancer Commun (Lond). 42:287–313. 2022. View Article : Google Scholar : PubMed/NCBI | |
|
Nan Y, Luo Q, Wu X, Liu S, Zhao P, Chang W, Zhou A and Liu Z: DLGAP1-AS2-mediated phosphatidic acid synthesis activates YAP signaling and confers chemoresistance in squamous cell carcinoma. Cancer Res. 82:2887–2903. 2022. View Article : Google Scholar : PubMed/NCBI | |
|
Huang X, Taeb S, Jahangiri S, Emmenegger U, Tran E, Bruce J, Mesci A, Korpela E, Vesprini D, Wong CS, et al: miRNA-95 mediates radioresistance in tumors by targeting the sphingolipid phosphatase SGPP1. Cancer Res. 73:6972–6986. 2013. View Article : Google Scholar : PubMed/NCBI | |
|
Kopecka J, Trouillas P, Gašparović AČ, Gazzano E, Assaraf YG and Riganti C: Phospholipids and cholesterol: Inducers of cancer multidrug resistance and therapeutic targets. Drug Resist Updat. 49:1006702020. View Article : Google Scholar | |
|
Palma GBH and Kaur M: miRNA-128 and miRNA-223 regulate cholesterol-mediated drug resistance in breast cancer. IUBMB Life. 75:743–764. 2023. View Article : Google Scholar : PubMed/NCBI | |
|
Wolfe AR, Bambhroliya A, Reddy JP, Debeb BG, Huo L, Larson R, Li L, Ueno NT and Woodward WA: MiR-33a decreases high-density lipoprotein-induced radiation sensitivity in breast cancer. Int J Radiat Oncol Biol Phys. 95:791–799. 2016. View Article : Google Scholar : PubMed/NCBI | |
|
Cui Q, Wang JQ, Assaraf YG, Ren L, Gupta P, Wei L, Ashby CR Jr, Yang DH and Chen ZS: Modulating ROS to overcome multidrug resistance in cancer. Drug Resist Updat. 41:1–25. 2018. View Article : Google Scholar : PubMed/NCBI | |
|
Kennedy L, Sandhu JK, Harper ME and Cuperlovic-Culf M: Role of glutathione in cancer: From mechanisms to therapies. Biomolecules. 10:14292020. View Article : Google Scholar : PubMed/NCBI | |
|
Castelli S, De Falco P, Ciccarone F, Desideri E and Ciriolo MR: Lipid catabolism and ROS in cancer: A bidirectional liaison. Cancers (Basel). 13:54842021. View Article : Google Scholar : PubMed/NCBI | |
|
Wang Y, Lu JH, Wang F, Wang YN, He MM, Wu QN, Lu YX, Yu HE, Chen ZH, Zhao Q, et al: Inhibition of fatty acid catabolism augments the efficacy of oxaliplatin-based chemotherapy in gastrointestinal cancers. Cancer Lett. 473:74–89. 2020. View Article : Google Scholar : PubMed/NCBI | |
|
Farge T, Saland E, de Toni F, Aroua N, Hosseini M, Perry R, Bosc C, Sugita M, Stuani L, Fraisse M, et al: Chemotherapy-resistant human acute myeloid leukemia cells are not enriched for leukemic stem cells but require oxidative metabolism. Cancer Discov. 7:716–735. 2017. View Article : Google Scholar : PubMed/NCBI | |
|
De Oliveira MP and Liesa M: The role of mitochondrial fat oxidation in cancer cell proliferation and survival. Cells. 9:26002020. View Article : Google Scholar : PubMed/NCBI | |
|
Luo J, Hong Y, Tao X, Wei X, Zhang L and Li Q: An indispensable role of CPT-1a to survive cancer cells during energy stress through rewiring cancer metabolism. Tumour Biol. 37:15795–15804. 2016. View Article : Google Scholar : PubMed/NCBI | |
|
Snaebjornsson MT, Janaki-Raman S and Schulze A: Greasing the wheels of the cancer machine: The role of lipid metabolism in cancer. Cell Metab. 31:62–76. 2020. View Article : Google Scholar | |
|
Chan YT, Wu J, Lu Y, Li Q, Feng Z, Xu L, Yuan H, Xing T, Zhang C, Tan HY, et al: Loss of lncRNA LINC01056 leads to sorafenib resistance in HCC. Mol Cancer. 23:742024. View Article : Google Scholar : PubMed/NCBI | |
|
Wu H, Liu B, Chen Z, Li G and Zhang Z: MSC-induced lncRNA HCP5 drove fatty acid oxidation through miR-3619-5p/AMPK/PGC1α/CEBPB axis to promote stemness and chemo-resistance of gastric cancer. Cell Death Dis. 11:2332020. View Article : Google Scholar | |
|
Xu T, Ding W, Ji X, Ao X, Liu Y, Yu W and Wang J: Molecular mechanisms of ferroptosis and its role in cancer therapy. J Cell Mol Med. 23:4900–4912. 2019. View Article : Google Scholar : PubMed/NCBI | |
|
Dos Santos AF, Fazeli G, Xavier da Silva TN and Friedmann Angeli JP: Ferroptosis: Mechanisms and implications for cancer development and therapy response. Trends Cell Biol. 33:1062–1076. 2023. View Article : Google Scholar : PubMed/NCBI | |
|
Koppula P, Zhuang L and Gan B: Cystine transporter SLC7A11/xCT in cancer: Ferroptosis, nutrient dependency, and cancer therapy. Protein Cell. 12:599–620. 2021. View Article : Google Scholar : | |
|
Li J, Cao F, Yin HL, Huang ZJ, Lin ZT, Mao N, Sun B and Wang G: Ferroptosis: Past, present and future. Cell Death Dis. 11:882020. View Article : Google Scholar : PubMed/NCBI | |
|
Qu S, Qi S, Zhang H, Li Z, Wang K, Zhu T, Ye R, Zhang W, Huang G and Yi GZ: Albumin-bound paclitaxel augment temozolomide treatment sensitivity of glioblastoma cells by disrupting DNA damage repair and promoting ferroptosis. J Exp Clin Cancer Res. 42:2852023. View Article : Google Scholar : PubMed/NCBI | |
|
Lu Y, Chan YT, Tan HY, Zhang C, Guo W, Xu Y, Sharma R, Chen ZS, Zheng YC, Wang N and Feng Y: Epigenetic regulation of ferroptosis via ETS1/miR-23a-3p/ACSL4 axis mediates sorafenib resistance in human hepatocellular carcinoma. J Exp Clin Cancer Res. 41:32022. View Article : Google Scholar : PubMed/NCBI | |
|
Pope LE and Dixon SJ: Regulation of ferroptosis by lipid metabolism. Trends Cell Biol. 33:1077–1087. 2023. View Article : Google Scholar : PubMed/NCBI | |
|
Zhong S, Wang Z, Yang J, Jiang D and Wang K: Ferroptosis-related oxaliplatin resistance in multiple cancers: Potential roles and therapeutic implications. Heliyon. 10:e376132024. View Article : Google Scholar : PubMed/NCBI | |
|
Zou Y, Zheng S, Xie X, Ye F, Hu X, Tian Z, Yan SM, Yang L, Kong Y, Tang Y, et al: N6-methyladenosine regulated FGFR4 attenuates ferroptotic cell death in recalcitrant HER2-positive breast cancer. Nat Commun. 13:26722022. View Article : Google Scholar : PubMed/NCBI | |
|
Baird L and Dinkova-Kostova AT: The cytoprotective role of the Keap1-Nrf2 pathway. Arch Toxicol. 85:241–272. 2011. View Article : Google Scholar : PubMed/NCBI | |
|
Sun X, Niu X, Chen R, He W, Chen D, Kang R and Tang D: Metallothionein-1G facilitates sorafenib resistance through inhibition of ferroptosis. Hepatology. 64:488–500. 2016. View Article : Google Scholar : PubMed/NCBI | |
|
Chen X, Kang R, Kroemer G and Tang D: Broadening horizons: The role of ferroptosis in cancer. Nat Rev Clin Oncol. 18:280–296. 2021. View Article : Google Scholar : PubMed/NCBI | |
|
Zhang W, Li Q, Zhang Y, Wang Z, Yuan S, Zhang X, Zhao M, Zhuang W and Li B: Multiple myeloma with high expression of SLC7A11 is sensitive to erastin-induced ferroptosis. Apoptosis. 29:412–423. 2024. View Article : Google Scholar | |
|
Xu X, Zhang X, Wei C, Zheng D, Lu X, Yang Y, Luo A, Zhang K, Duan X and Wang Y: Targeting SLC7A11 specifically suppresses the progression of colorectal cancer stem cells via inducing ferroptosis. Eur J Pharm Sci. 152:1054502020. View Article : Google Scholar : PubMed/NCBI | |
|
Zheng Y, Li L, Chen H, Zheng Y, Tan X, Zhang G, Jiang R, Yu H, Lin S, Wei Y, et al: Luteolin exhibits synergistic therapeutic efficacy with erastin to induce ferroptosis in colon cancer cells through the HIC1-mediated inhibition of GPX4 expression. Free Radic Biol Med. 208:530–544. 2023. View Article : Google Scholar : PubMed/NCBI | |
|
Yin LB, Li ZW, Wang JL, Wang L, Hou L, Hu SY, Chen H, Luo P, Cui XB and Zhu JL: Sulfasalazine inhibits esophageal cancer cell proliferation by mediating ferroptosis. Chem Biol Drug Des. 102:730–737. 2023. View Article : Google Scholar : PubMed/NCBI | |
|
Yang J, Zhou Y, Xie S, Wang J, Li Z, Chen L, Mao M, Chen C, Huang A, Chen Y, et al: Metformin induces Ferroptosis by inhibiting UFMylation of SLC7A11 in breast cancer. J Exp Clin Cancer Res. 40:2062021. View Article : Google Scholar : PubMed/NCBI | |
|
Sui X, Zhang R, Liu S, Duan T, Zhai L, Zhang M, Han X, Xiang Y, Huang X, Lin H and Xie T: RSL3 drives ferroptosis through GPX4 inactivation and ROS production in colorectal cancer. Front Pharmacol. 9:13712018. View Article : Google Scholar : PubMed/NCBI | |
|
Gaschler MM, Andia AA, Liu H, Csuka JM, Hurlocker B, Vaiana CA, Heindel DW, Zuckerman DS, Bos PH, Reznik E, et al: FINO2 initiates ferroptosis through GPX4 inactivation and iron oxidation. Nat Chem Biol. 14:507–515. 2018. View Article : Google Scholar : PubMed/NCBI | |
|
Cheff DM, Huang C, Scholzen KC, Gencheva R, Ronzetti MH, Cheng Q, Hall MD and Arnér ESJ: The ferroptosis inducing compounds RSL3 and ML162 are not direct inhibitors of GPX4 but of TXNRD1. Redox Biol. 62:1027032023. View Article : Google Scholar : PubMed/NCBI | |
|
Wang Y, Yuan X, Ren M and Wang Z: Ferroptosis: A new research direction of artemisinin and its derivatives in anti-cancer treatment. Am J Chin Med. 52:161–181. 2024. View Article : Google Scholar : PubMed/NCBI | |
|
Chen GQ, Benthani FA, Wu J, Liang D, Bian ZX and Jiang X: Artemisinin compounds sensitize cancer cells to ferroptosis by regulating iron homeostasis. Cell Death Differ. 27:242–254. 2020. View Article : Google Scholar : | |
|
Li J, Li Y, Wang D, Liao R and Wu Z: PLAG1 interacts with GPX4 to conquer vulnerability to sorafenib induced ferroptosis through a PVT1/miR-195-5p axis-dependent manner in hepatocellular carcinoma. J Exp Clin Cancer Res. 43:1432024. View Article : Google Scholar : PubMed/NCBI | |
|
Nalla LV and Khairnar A: Empagliflozin drives ferroptosis in anoikis-resistant cells by activating miR-128-3p dependent pathway and inhibiting CD98hc in breast cancer. Free Radic Biol Med. 220:288–300. 2024. View Article : Google Scholar : PubMed/NCBI | |
|
Li X, Li Y, Lian P, Lv Q and Liu F: Silencing lncRNA HCG18 regulates GPX4-inhibited ferroptosis by adsorbing miR-450b-5p to avert sorafenib resistance in hepatocellular carcinoma. Hum Exp Toxicol. 42:96032712211428182023. View Article : Google Scholar : PubMed/NCBI | |
|
Zhang H, Deng T, Liu R, Ning T, Yang H, Liu D, Zhang Q, Lin D, Ge S, Bai M, et al: CAF secreted miR-522 suppresses ferroptosis and promotes acquired chemo-resistance in gastric cancer. Mol Cancer. 19:432020. View Article : Google Scholar : PubMed/NCBI | |
|
Zhao J, Shen J, Mao L, Yang T, Liu J and Hongbin S: Cancer associated fibroblast secreted miR-432-5p targets CHAC1 to inhibit ferroptosis and promote acquired chemoresistance in prostate cancer. Oncogene. 43:2104–2114. 2024. View Article : Google Scholar : PubMed/NCBI | |
|
Zong WX, Rabinowitz JD and White E: Mitochondria and cancer. Mol Cell. 61:667–676. 2016. View Article : Google Scholar : PubMed/NCBI | |
|
Li X, Zhong Y, Lu J, Axcrona K, Eide L, Syljuåsen RG, Peng Q, Wang J, Zhang H, Goscinski MA, et al: MtDNA depleted PC3 cells exhibit Warburg effect and cancer stem cell features. Oncotarget. 7:40297–40313. 2016. View Article : Google Scholar : PubMed/NCBI | |
|
Gonzalez-Sanchez E, Marin JJ and Perez MJ: The expression of genes involved in hepatocellular carcinoma chemoresistance is affected by mitochondrial genome depletion. Mol Pharm. 11:1856–1868. 2014. View Article : Google Scholar : PubMed/NCBI | |
|
Lee W, Choi HI, Kim MJ and Park SY: Depletion of mitochondrial DNA up-regulates the expression of MDR1 gene via an increase in mRNA stability. Exp Mol Med. 40:109–117. 2008. View Article : Google Scholar : PubMed/NCBI | |
|
Guerra F, Arbini AA and Moro L: Mitochondria and cancer chemoresistance. Biochim Biophys Acta Bioenerg. 1858:686–699. 2017. View Article : Google Scholar : PubMed/NCBI | |
|
Yang H, Villani RM, Wang H, Simpson MJ, Roberts MS, Tang M and Liang X: The role of cellular reactive oxygen species in cancer chemotherapy. J Exp Clin Cancer Res. 37:2662018. View Article : Google Scholar : PubMed/NCBI | |
|
Orrenius S, Gogvadze V and Zhivotovsky B: Calcium and mitochondria in the regulation of cell death. Biochem Biophys Res Commun. 460:72–81. 2015. View Article : Google Scholar : PubMed/NCBI | |
|
Seong JB, Kim B, Kim S, Kim MH, Park YH, Lee Y, Lee HJ, Hong CW and Lee DS: Macrophage peroxiredoxin 5 deficiency promotes lung cancer progression via ROS-dependent M2-like polarization. Free Radic Biol Med. 176:322–334. 2021. View Article : Google Scholar : PubMed/NCBI | |
|
Jeong H, Kim S, Hong BJ, Lee CJ, Kim YE, Bok S, Oh JM, Gwak SH, Yoo MY, Lee MS, et al: Tumor-associated macrophages enhance tumor hypoxia and aerobic glycolysis. Cancer Res. 79:795–806. 2019. View Article : Google Scholar : PubMed/NCBI | |
|
Shi L, Zhang S, Feng K, Wu F, Wan Y, Wang Z, Zhang J, Wang Y, Yan W, Fu Z and You Y: MicroRNA-125b-2 confers human glioblastoma stem cells resistance to temozolomide through the mitochondrial pathway of apoptosis. Int J Oncol. 40:119–129. 2012. | |
|
Kuo CL, Ponneri Babuharisankar A, Lin YC, Lien HW, Lo YK, Chou HY, Tangeda V, Cheng LC, Cheng AN and Lee AY: Mitochondrial oxidative stress in the tumor microenvironment and cancer immunoescape: Foe or friend? J Biomed Sci. 29:742022. View Article : Google Scholar : PubMed/NCBI | |
|
Liu JS, Yeh CA, Huang IC, Huang GY, Chiu CH, Mahalakshmi B, Wen SY, Huang CY and Kuo WW: Signal transducer and activator of transcription 3 mediates apoptosis inhibition through reducing mitochondrial ROS and activating Bcl-2 in gemcitabine-resistant lung cancer A549 cells. J Cell Physiol. 236:3896–3905. 2021. View Article : Google Scholar | |
|
Katopodi V, Marino A, Pateraki N, Verheyden Y, Cinque S, Jimenez EL, Adnane S, Demesmaeker E, Scomparin A, Derua R, et al: The long non-coding RNA ROSALIND protects the mitochondrial translational machinery from oxidative damage. Cell Death Differ. 32:397–415. 2025. View Article : Google Scholar | |
|
Fernández-Tussy P, Rodríguez-Agudo R, Fernández-Ramos D, Barbier-Torres L, Zubiete-Franco I, Davalillo SL, Herraez E, Goikoetxea-Usandizaga N, Lachiondo-Ortega S, Simón J, et al: Anti-miR-518d-5p overcomes liver tumor cell death resistance through mitochondrial activity. Cell Death Dis. 12:5552021. View Article : Google Scholar : PubMed/NCBI | |
|
Fan S, Tian T, Chen W, Lv X, Lei X, Zhang H, Sun S, Cai L, Pan G, He L, et al: Mitochondrial miRNA determines chemoresistance by reprogramming metabolism and regulating mitochondrial transcription. Cancer Res. 79:1069–1084. 2019. View Article : Google Scholar : PubMed/NCBI | |
|
Orre C, Dieu X, Guillon J, Gueguen N, Ahmadpour ST, Dumas JF, Khiati S, Reynier P, Lenaers G, Coqueret O, et al: The long non-coding RNA SAMMSON is a regulator of chemosensitivity and metabolic orientation in MCF-7 doxorubicin-resistant breast cancer cells. Biology (Basel). 10:11562021.PubMed/NCBI | |
|
Hillman Y, Mardamshina M, Pasmanik-Chor M, Ziporen L, Geiger T, Shomron N and Fishelson Z: MicroRNAs affect complement regulator expression and mitochondrial activity to modulate cell resistance to complement-dependent cytotoxicity. Cancer Immunol Res. 7:1970–1983. 2019. View Article : Google Scholar : PubMed/NCBI | |
|
Luan T, Fu S, Huang L, Zuo Y, Ding M, Li N, Chen J, Wang H and Wang J: MicroRNA-98 promotes drug resistance and regulates mitochondrial dynamics by targeting LASS2 in bladder cancer cells. Exp Cell Res. 373:188–197. 2018. View Article : Google Scholar : PubMed/NCBI | |
|
Chen W, Wang P, Lu Y, Jin T, Lei X, Liu M, Zhuang P, Liao J, Lin Z, Li B, et al: Decreased expression of mitochondrial miR-5787 contributes to chemoresistance by reprogramming glucose metabolism and inhibiting MT-CO3 translation. Theranostics. 9:5739–5754. 2019. View Article : Google Scholar : PubMed/NCBI | |
|
Benassi B, Marani M, Loda M and Blandino G: USP2a alters chemotherapeutic response by modulating redox. Cell Death Dis. 4:e8122013. View Article : Google Scholar : PubMed/NCBI | |
|
Zheng ZG, Xu H, Suo SS, Xu XL, Ni MW, Gu LH, Chen W, Wang LY, Zhao Y, Tian B and Hua YJ: The essential role of H19 contributing to cisplatin resistance by regulating glutathione metabolism in high-grade serous ovarian cancer. Sci Rep. 6:260932016. View Article : Google Scholar : PubMed/NCBI | |
|
Ueda S, Takanashi M, Sudo K, Kanekura K and Kuroda M: miR-27a ameliorates chemoresistance of breast cancer cells by disruption of reactive oxygen species homeostasis and impairment of autophagy. Lab Invest. 100:863–873. 2020. View Article : Google Scholar : PubMed/NCBI | |
|
Yang Q, Li K, Huang X, Zhao C, Mei Y, Li X, Jiao L and Yang H: lncRNA SLC7A11-AS1 promotes chemoresistance by blocking SCFβ−TRCP-mediated degradation of NRF2 in pancreatic cancer. Mol Ther Nucleic Acids. 19:974–985. 2020. View Article : Google Scholar : PubMed/NCBI | |
|
Kaur R, Kanthaje S, Taneja S, Dhiman RK and Chakraborti A: miR-23b-3p modulating cytoprotective autophagy and glutamine addiction in sorafenib resistant HepG2, a hepatocellular carcinoma cell line. Genes (Basel). 13:13752022. View Article : Google Scholar : PubMed/NCBI | |
|
Liu X, Chen L and Wang T: Overcoming cisplatin resistance of human lung cancer by sinomenine through targeting the miR-200a-3p-GLS axis. J Chemother. 35:357–366. 2023. View Article : Google Scholar | |
|
Zhou X, Wei P, Wang X, Zhang J and Shi Y: miR-141-3p promotes the cisplatin sensitivity of osteosarcoma cell through targeting the glutaminase [GLS]-mediated glutamine metabolism. Curr Mol Med. 23:177–184. 2023. View Article : Google Scholar | |
|
Chang X, Zhu W, Zhang H and Lian S: Sensitization of melanoma cells to temozolomide by overexpression of microRNA 203 through direct targeting of glutaminase-mediated glutamine metabolism. Clin Exp Dermatol. 42:614–621. 2017. View Article : Google Scholar : PubMed/NCBI | |
|
Chen Z, Wang Q, Huang L, Xu G and Hu J: LncRNA PVT1 confers cisplatin resistance of esophageal cancer cells through Modulating the miR-181a-5p-Glutaminase (GLS) axis. Nutr Cancer. 75:1646–1657. 2023. View Article : Google Scholar : PubMed/NCBI | |
|
Lin W, Wu WC, Liang Z, Zhang JH and Fang SP: LncRNA FEZF1-AS1 facilitates cisplatin resistance in non-small cell lung cancer through modulating the miR-32-5p-glutaminase axis. Am J Cancer Res. 14:3153–3170. 2024. View Article : Google Scholar : PubMed/NCBI | |
|
De Los Santos-Jiménez J, Campos-Sandoval JA, Alonso FJ, Márquez J and Matés JM: GLS and GLS2 glutaminase isoenzymes in the antioxidant system of cancer cells. Antioxidants (Basel). 13:7452024. View Article : Google Scholar : PubMed/NCBI | |
|
Li Y, Yuan S, Zhou Y, Zhou J, Zhang X, Zhang P, Xiao W, Zhang Y, Deng J and Lou S: Long non-coding RNA PXN-AS1 promotes glutamine synthetase-mediated chronic myeloid leukemia BCR::ABL1-independent resistance to Imatinib via cell cycle signaling pathway. Cancer Cell Int. 24:1862024. View Article : Google Scholar : PubMed/NCBI | |
|
Montani F and Bianchi F: Circulating cancer biomarkers: The macro-revolution of the micro-RNA. EBioMedicine. 5:4–6. 2016. View Article : Google Scholar : PubMed/NCBI | |
|
Sarfi M, Abbastabar M and Khalili E: Long noncoding RNAs biomarker-based cancer assessment. J Cell Physiol. 234:16971–16986. 2019. View Article : Google Scholar : PubMed/NCBI | |
|
Liu R, Zeng Y, Zhou CF, Wang Y, Li X, Liu ZQ, Chen XP, Zhang W and Zhou HH: Long noncoding RNA expression signature to predict platinum-based chemotherapeutic sensitivity of ovarian cancer patients. Sci Rep. 7:182017. View Article : Google Scholar : PubMed/NCBI | |
|
Wang Q, Zheng C, Hou H, Bao X, Tai H, Huang X, Li Z, Li Z, Wang Q, Pan Q, et al: Interplay of sphingolipid metabolism in predicting prognosis of GBM patients: Towards precision immunotherapy. J Cancer. 15:275–292. 2024. View Article : Google Scholar : PubMed/NCBI | |
|
Bacci M, Giannoni E, Fearns A, Ribas R, Gao Q, Taddei ML, Pintus G, Dowsett M, Isacke CM, Martin LA, et al: miR-155 drives metabolic reprogramming of ER+ breast cancer cells following long-term estrogen deprivation and predicts clinical response to aromatase inhibitors. Cancer Res. 76:1615–1626. 2016. View Article : Google Scholar : PubMed/NCBI | |
|
Lei H, Xiang T, Zhu H and Hu X: A novel cholesterol metabolism-related lncRNA signature predicts the prognosis of patients with hepatocellular carcinoma and their response to immunotherapy. Front Biosci (Landmark Ed). 29:1292024. View Article : Google Scholar : PubMed/NCBI | |
|
He X, Xu Z, Ren R, Wan P, Zhang Y, Wang L and Han Y: A novel sphingolipid metabolism-related long noncoding RNA signature predicts the prognosis, immune landscape and therapeutic response in pancreatic adenocarcinoma. Heliyon. 10:e236592023. View Article : Google Scholar | |
|
Wang X, Yang X, Zhang Y, Guo A, Luo S, Xiao M, Xue L, Zhang G and Wang H: Fatty acid metabolism-related lncRNAs are potential biomarkers for predicting prognoses and immune responses in patients with skin cutaneous melanoma. Clin Cosmet Investig Dermatol. 16:3595–3614. 2023. View Article : Google Scholar : PubMed/NCBI | |
|
Bayarmaa B, Wu Z, Peng J, Wang Y, Xu S, Yan T, Yin W, Lu J and Zhou L: Association of LncRNA MEG3 polymorphisms with efficacy of neoadjuvant chemotherapy in breast cancer. BMC Cancer. 19:8772019. View Article : Google Scholar : PubMed/NCBI | |
|
Xu W, Hua Y, Deng F, Wang D, Wu Y, Zhang W and Tang J: MiR-145 in cancer therapy resistance and sensitivity: A comprehensive review. Cancer Sci. 111:3122–3131. 2020. View Article : Google Scholar : PubMed/NCBI | |
|
Hedayat S, Cascione L, Cunningham D, Schirripa M, Lampis A, Hahne JC, Tunariu N, Hong SP, Marchetti S, Khan K, et al: Circulating microRNA analysis in a prospective co-clinical trial identifies MIR652-3p as a response biomarker and driver of regorafenib resistance mechanisms in colorectal cancer. Clin Cancer Res. 30:2140–2159. 2024. View Article : Google Scholar : PubMed/NCBI | |
|
Gonçalves AC, Richiardone E, Jorge J, Polónia B, Xavier CPR, Salaroglio IC, Riganti C, Vasconcelos MH, Corbet C and Sarmento-Ribeiro AB: Impact of cancer metabolism on therapy resistance-clinical implications. Drug Resist Updat. 59:1007972021. View Article : Google Scholar | |
|
Abdel-Wahab AF, Mahmoud W and Al-Harizy RM: Targeting glucose metabolism to suppress cancer progression: Prospective of anti-glycolytic cancer therapy. Pharmacol Res. 150:1045112019. View Article : Google Scholar : PubMed/NCBI | |
|
Sun Z, Zhang Q, Yuan W, Li X, Chen C, Guo Y, Shao B, Dang Q, Zhou Q, Wang Q, et al: MiR-103a-3p promotes tumour glycolysis in colorectal cancer via hippo/YAP1/HIF1A axis. J Exp Clin Cancer Res. 39:2502020. View Article : Google Scholar : PubMed/NCBI | |
|
Fujiwara N, Inoue J, Kawano T, Tanimoto K, Kozaki K and Inazawa J: miR-634 activates the mitochondrial apoptosis pathway and enhances chemotherapy-induced cytotoxicity. Cancer Res. 75:3890–3901. 2015. View Article : Google Scholar : PubMed/NCBI | |
|
Medina PP, Nolde M and Slack FJ: OncomiR addiction in an in vivo model of microRNA-21-induced pre-B-cell lymphoma. Nature. 467:86–90. 2010. View Article : Google Scholar : PubMed/NCBI | |
|
Chen B, Dragomir MP, Yang C, Li Q, Horst D and Calin GA: Targeting non-coding RNAs to overcome cancer therapy resistance. Signal Transduct Target Ther. 7:1212022. View Article : Google Scholar : PubMed/NCBI | |
|
Kara G, Calin GA and Ozpolat B: RNAi-based therapeutics and tumor targeted delivery in cancer. Adv Drug Deliv Rev. 182:1141132022. View Article : Google Scholar : PubMed/NCBI | |
|
Yadav DN, Ali MS, Thanekar AM, Pogu SV and Rengan AK: Recent advancements in the design of nanodelivery systems of siRNA for cancer therapy. Mol Pharm. 19:4506–4526. 2022. View Article : Google Scholar : PubMed/NCBI | |
|
Garbo S, Maione R, Tripodi M and Battistelli C: Next RNA therapeutics: The mine of non-coding. Int J Mol Sci. 23:74712022. View Article : Google Scholar : PubMed/NCBI | |
|
Lin F, Wen D, Wang X and Mahato RI: Dual responsive micelles capable of modulating miRNA-34a to combat taxane resistance in prostate cancer. Biomaterials. 192:95–108. 2019. View Article : Google Scholar | |
|
Xin X, Kumar V, Lin F, Kumar V, Bhattarai R, Bhatt VR, Tan C and Mahato RI: Redox-responsive nanoplatform for codelivery of miR-519c and gemcitabine for pancreatic cancer therapy. Sci Adv. 6:eabd67642020. View Article : Google Scholar : PubMed/NCBI | |
|
Guo W, Wu Z, Chen J, Guo S, You W, Wang S, Ma J, Wang H, Wang X, Wang H, et al: Nanoparticle delivery of miR-21-3p sensitizes melanoma to anti-PD-1 immunotherapy by promoting ferroptosis. J Immunother Cancer. 10:e0043812022. View Article : Google Scholar : PubMed/NCBI | |
|
Xu F, Ye ML, Zhang YP, Li WJ, Li MT, Wang HZ, Qiu X, Xu Y, Yin JW, Hu Q, et al: MicroRNA-375-3p enhances chemosensitivity to 5-fluorouracil by targeting thymidylate synthase in colorectal cancer. Cancer Sci. 111:1528–1541. 2020. View Article : Google Scholar : PubMed/NCBI | |
|
Lo YL, Wang CS, Chen YC, Wang TY, Chang YH, Chen CJ and Yang CP: Mitochondrion-directed nanoparticles loaded with a natural compound and a microRNA for promoting cancer cell death via the modulation of tumor metabolism and mitochondrial dynamics. Pharmaceutics. 12:7562020. View Article : Google Scholar : PubMed/NCBI | |
|
Yi WR, Tu MJ, Yu AX, Lin J and Yu AM: Bioengineered miR-34a modulates mitochondrial inner membrane protein 17 like 2 (MPV17L2) expression toward the control of cancer cell mitochondrial functions. Bioengineered. 13:12489–12503. 2022. View Article : Google Scholar : PubMed/NCBI | |
|
Yi W, Tu MJ, Liu Z, Zhang C, Batra N, Yu AX and Yu AM: Bioengineered miR-328-3p modulates GLUT1-mediated glucose uptake and metabolism to exert synergistic antiproliferative effects with chemotherapeutics. Acta Pharm Sin B. 10:159–170. 2020. View Article : Google Scholar : PubMed/NCBI | |
|
Vahabi M, Comandatore A, Franczak MA, Smolenski RT, Peters GJ, Morelli L and Giovannetti E: Role of exosomes in transferring chemoresistance through modulation of cancer glycolytic cell metabolism. Cytokine Growth Factor Rev. 73:163–172. 2023. View Article : Google Scholar : PubMed/NCBI | |
|
Liang G, Zhu Y, Ali DJ, Tian T, Xu H, Si K, Sun B, Chen B and Xiao Z: Engineered exosomes for targeted co-delivery of miR-21 inhibitor and chemotherapeutics to reverse drug resistance in colon cancer. J Nanobiotechnology. 18:102020. View Article : Google Scholar : PubMed/NCBI | |
|
El Moukhtari SH, Garbayo E, Amundarain A, Pascual-Gil S, Carrasco-León A, Prosper F, Agirre X and Blanco-Prieto MJ: Lipid nanoparticles for siRNA delivery in cancer treatment. J Control Release. 361:130–146. 2023. View Article : Google Scholar : PubMed/NCBI | |
|
Tassone P, Di Martino MT, Arbitrio M, Fiorillo L, Staropoli N, Ciliberto D, Cordua A, Scionti F, Bertucci B, Salvino A, et al: Safety and activity of the first-in-class locked nucleic acid (LNA) miR-221 selective inhibitor in refractory advanced cancer patients: a first-in-human, phase 1, open-label, dose-escalation study. J Hematol Oncol. 16:682023. View Article : Google Scholar : PubMed/NCBI | |
|
Yang S, Wang X, Zhou X, Hou L, Wu J, Zhang W, Li H, Gao C and Sun C: ncRNA-mediated ceRNA regulatory network: Transcriptomic insights into breast cancer progression and treatment strategies. Biomed Pharmacother. 162:1146982023. View Article : Google Scholar : PubMed/NCBI | |
|
Yu J, Qi J, Sun X, Wang W, Wei G, Wu Y, Gao Q and Zheng J: MicroRNA-181a promotes cell proliferation and inhibits apoptosis in gastric cancer by targeting RASSF1A. Oncol Rep. 40:1959–1970. 2018.PubMed/NCBI | |
|
Zhang LX, Gao J, Long X, Zhang PF, Yang X, Zhu SQ, Pei X, Qiu BQ, Chen SW, Lu F, et al: The circular RNA circHMGB2 drives immunosuppression and anti-PD-1 resistance in lung adenocarcinomas and squamous cell carcinomas via the miR-181a-5p/CARM1 axis. Mol Cancer. 21:1102022. View Article : Google Scholar : PubMed/NCBI | |
|
Lehuédé C, Dupuy F, Rabinovitch R, Jones RG and Siegel PM: Metabolic plasticity as a determinant of tumor growth and metastasis. Cancer Res. 76:5201–5208. 2016. View Article : Google Scholar : PubMed/NCBI | |
|
Hu X, Li J, Fu M, Zhao X and Wang W: The JAK/STAT signaling pathway: From bench to clinic. Signal Transduct Target Ther. 6:4022021. View Article : Google Scholar : PubMed/NCBI | |
|
Xiao C, Zhang W, Hua M, Chen H, Yang B, Wang Y and Yang Q: RNF7 inhibits apoptosis and sunitinib sensitivity and promotes glycolysis in renal cell carcinoma via the SOCS1/JAK/STAT3 feedback loop. Cell Mol Biol Lett. 27:362022. View Article : Google Scholar : PubMed/NCBI | |
|
Wang T, Fahrmann JF, Lee H, Li YJ, Tripathi SC, Yue C, Zhang C, Lifshitz V, Song J, Yuan Y, et al: JAK/STAT3-regulated fatty acid β-oxidation is critical for breast cancer stem cell self-renewal and chemoresistance. Cell Metab. 27:136–150.e5. 2018. View Article : Google Scholar | |
|
Yin YZ, Zheng WH, Zhang X, Chen YH and Tuo YH: LINC00346 promotes hepatocellular carcinoma progression via activating the JAK-STAT3 signaling pathway. J Cell Biochem. 121:735–742. 2020. View Article : Google Scholar | |
|
Hu H, Zhang Q, Chen W, Wu T, Liu S, Li X, Luo B, Zhang T, Yan G, Lu H and Lu Z: MicroRNA-301a promotes pancreatic cancer invasion and metastasis through the JAK/STAT3 signaling pathway by targeting SOCS5. Carcinogenesis. 41:502–514. 2020. View Article : Google Scholar | |
|
Sulli G, Lam MTY and Panda S: Interplay between circadian clock and cancer: New frontiers for cancer treatment. Trends Cancer. 5:475–494. 2019. View Article : Google Scholar : PubMed/NCBI | |
|
Varadharaj V, Petersen W, Batra SK and Ponnusamy MP: Sugar symphony: Glycosylation in cancer metabolism and stemness. Trends Cell Biol. Oct 26–2024.Epub ahead of print. View Article : Google Scholar : PubMed/NCBI | |
|
Yang Y, Yang T, Zhao Z, Zhang H, Yuan P, Wang G, Zhao Z, An J, Lyu Z, Xing J and Li J: Down-regulation of BMAL1 by MiR-494-3p promotes hepatocellular carcinoma growth and metastasis by increasing GPAM-mediated lipid biosynthesis. Int J Biol Sci. 18:6129–6144. 2022. View Article : Google Scholar : PubMed/NCBI | |
|
Zheng LT, Chen SR, Zhou LY, Huang QY, Chen JM, Chen WH, Lin S and Shi QY: Latest advances in the study of non-coding RNA-mediated circadian rhythm disorders causing endometrial cancer. Front Oncol. 13:12775432023. View Article : Google Scholar : PubMed/NCBI | |
|
Alsayed RKME, Sheikhan KSAM, Alam MA, Buddenkotte J, Steinhoff M, Uddin S and Ahmad A: Epigenetic programing of cancer stemness by transcription factors-non-coding RNAs interactions. Semin Cancer Biol. 92:74–83. 2023. View Article : Google Scholar : PubMed/NCBI | |
|
Jiang W, Zhao S, Shen J, Guo L, Sun Y, Zhu Y, Ma Z, Zhang X, Hu Y, Xiao W, et al: The MiR-135b-BMAL1-YY1 loop disturbs pancreatic clockwork to promote tumourigenesis and chemoresistance. Cell Death Dis. 9:1492018. View Article : Google Scholar : PubMed/NCBI | |
|
Flores-Huerta N, Silva-Cázares MB, Arriaga-Pizano LA, Prieto-Chávez JL and López-Camarillo C: LncRNAs and microRNAs as essential regulators of stemness in breast cancer stem cells. Biomolecules. 11:3802021. View Article : Google Scholar : PubMed/NCBI | |
|
Jiao X, Qian X, Wu L, Li B, Wang Y, Kong X and Xiong L: microRNA: The impact on cancer stemness and therapeutic resistance. Cells. 9:82019. View Article : Google Scholar : PubMed/NCBI | |
|
Hong DS, Kang YK, Borad M, Sachdev J, Ejadi S, Lim HY, Brenner AJ, Park K, Lee JL, Kim TY, et al: Phase 1 study of MRX34, a liposomal miR-34a mimic, in patients with advanced solid tumours. Br J Cancer. 122:1630–1637. 2020. View Article : Google Scholar : PubMed/NCBI | |
|
Patil S, Gao YG, Lin X, Li Y, Dang K, Tian Y, Zhang WJ, Jiang SF, Qadir A and Qian AR: The development of functional non-viral vectors for gene delivery. Int J Mol Sci. 20:54912019. View Article : Google Scholar : PubMed/NCBI | |
|
Oggu GS, Sasikumar S, Reddy N, Ella KKR, Rao CM and Bokara KK: Gene delivery approaches for mesenchymal stem cell therapy: Strategies to increase efficiency and specificity. Stem Cell Rev Rep. 13:725–740. 2017. View Article : Google Scholar : PubMed/NCBI | |
|
Yahya EB and Alqadhi AM: Recent trends in cancer therapy: A review on the current state of gene delivery. Life Sci. 269:1190872021. View Article : Google Scholar : PubMed/NCBI | |
|
Aleksakhina SN, Kashyap A and Imyanitov EN: Mechanisms of acquired tumor drug resistance. Biochim Biophys Acta Rev Cancer. 1872:1883102019. View Article : Google Scholar : PubMed/NCBI |