|
1
|
Kim J, Harper A, McCormack V, Sung H,
Houssami N, Morgan E, Mutebi M, Garvey G, Soerjomataram I and
Fidler-Benaoudia MM: Global patterns and trends in breast cancer
incidence and mortality across 185 countries. Nat Med. Feb
24–2025.Epub ahead of print.
|
|
2
|
Scholler N, Perbost R, Locke FL, Jain MD,
Turcan S, Danan C, Chang EC, Neelapu SS, Miklos DB, Jacobson CA, et
al: Tumor immune contexture is a determinant of anti-CD19 CAR T
cell efficacy in large B cell lymphoma. Nat Med. 28:1872–1882.
2022.
|
|
3
|
Yu T and Di G: Role of tumor
microenvironment in triple-negative breast cancer and its
prognostic significance. Chin J Cancer Res. 29:237–252. 2017.
|
|
4
|
Rodríguez-Bejarano OH, Parra-López C and
Patarroyo MA: A review concerning the breast cancer-related tumour
microenvironment. Crit Rev Oncol Hematol. 199:1043892024.
|
|
5
|
Park J, Hsueh PC, Li Z and Ho PC:
Microenvironment-driven metabolic adaptations guiding CD8+ T cell
anti-tumor immunity. Immunity. 56:32–42. 2023.
|
|
6
|
Mao X, Xu J, Wang W, Liang C, Hua J, Liu
J, Zhang B, Meng Q, Yu X and Shi S: Crosstalk between
cancer-associated fibroblasts and immune cells in the tumor
microenvironment: new findings and future perspectives. Mol Cancer.
20:1312021.
|
|
7
|
Christofides A, Strauss L, Yeo A, Cao C,
Charest A and Boussiotis VA: The complex role of tumor-infiltrating
macrophages. Nat Immunol. 23:1148–1156. 2022.
|
|
8
|
Soleas JP, D'Arcangelo E, Huang L, Karoubi
G, Nostro MC, McGuigan AP and Waddell TK: Assembly of lung
progenitors into developmentally-inspired geometry drives
differentiation via cellular tension. Biomaterials.
254:1201282020.
|
|
9
|
Salik B, Yi H, Hassan N, Santiappillai N,
Vick B, Connerty P, Duly A, Trahair T, Woo AJ, Beck D, et al:
Targeting RSPO3-LGR4 signaling for leukemia stem cell eradication
in acute myeloid leukemia. Cancer Cell. 38:263–278.e6. 2020.
|
|
10
|
Choi BR, Cave C, Na CH and Sockanathan S:
GDE2-Dependent activation of canonical wnt signaling in neurons
regulates oligodendrocyte maturation. Cell Rep. 31:1075402020.
|
|
11
|
Zhuang X, Zhang H, Li X, Li X, Cong M,
Peng F, Yu J, Zhang X, Yang Q and Hu G: Differential effects on
lung and bone metastasis of breast cancer by Wnt signalling
inhibitor DKK1. Nat Cell Biol. 19:1274–1285. 2017.
|
|
12
|
Krishnamurthy N and Kurzrock R: Targeting
the Wnt/betacatenin pathway in cancer: Update on effectors and
inhibitors. Cancer Treat Rev. 62:50–60. 2018.
|
|
13
|
Wend P, Runke S, Wend K, Anchondo B,
Yesayan M, Jardon M, Hardie N, Loddenkemper C, Ulasov I, Lesniak
MS, et al: WNT10B/β-catenin signalling induces HMGA2 and
proliferation in metastatic triple-negative breast cancer. EMBO Mol
Med. 5:264–279. 2013.
|
|
14
|
Zhu L, Tian Q, Gao H, Wu K, Wang B, Ge G,
Jiang S, Wang K, Zhou C, He J, et al: PROX1 promotes breast cancer
invasion and metastasis through WNT/β-catenin pathway via
interacting with hnRNPK. Int J Biol Sci. 18:2032–2046. 2022.
|
|
15
|
Teng Y, Mei Y, Hawthorn L and Cowell JK:
WASF3 regulates miR-200 inactivation by ZEB1 through suppression of
KISS1 leading to increased invasiveness in breast cancer cells.
Oncogene. 33:203–211. 2014.
|
|
16
|
Mortezaee K: WNT/β-catenin regulatory
roles on PD-(L)1 and immunotherapy responses. Clin Exp Med.
24:152024.
|
|
17
|
Wang L, Zhang L, Zhao L, Shao S, Ning Q,
Jing X, Zhang Y, Zhao F, Liu X, Gu S, et al: VEGFA/NRP-1/GAPVD1
axis promotes progression and cancer stemness of triple-negative
breast cancer by enhancing tumor cell-macrophage crosstalk. Int J
Biol Sci. 20:446–463. 2024.
|
|
18
|
Foldynová-Trantírková S, Sekyrová P,
Tmejová K, Brumovská E, Bernatík O, Blankenfeldt W, Krejcí P,
Kozubík A, Dolezal T, Trantírek L and Bryja V: Breast
cancer-specific mutations in CK1epsilon inhibit Wnt/beta-catenin
and activate the Wnt/Rac1/JNK and NFAT pathways to decrease cell
adhesion and promote cell migration. Breast Cancer Res.
12:R302010.
|
|
19
|
Zhou Y, Xu J, Luo H, Meng X, Chen M and
Zhu D: Wnt signaling pathway in cancer immunotherapy. Cancer Lett.
525:84–96. 2022.
|
|
20
|
Liao Y, Badmann S, Kraus F, Topalov NE,
Mayr D, Kolben T, Hester A, Beyer S, Mahner S, Jeschke U, et al:
PLA2G7/PAF-AH as potential negative regulator of the wnt signaling
pathway mediates protective effects in BRCA1 mutant breast cancer.
Int J Mol Sci. 24:8822023.
|
|
21
|
Liu L, Xiao B, Hirukawa A, Smith HW, Zuo
D, Sanguin-Gendreau V, McCaffrey L, Nam AJ and Muller WJ: Ezh2
promotes mammary tumor initiation through epigenetic regulation of
the Wnt and mTORC1 signaling pathways. Proc Natl Acad Sci USA.
120:e23030101202023.
|
|
22
|
Wu F, Yang J, Liu J, Wang Y, Mu J, Zeng Q,
Deng S and Zhou H: Signaling pathways in cancer-associated
fibroblasts and targeted therapy for cancer. Signal Transduct
Target Ther. 6:2182021.
|
|
23
|
Song P, Gao Z, Bao Y, Chen L, Huang Y, Liu
Y, Dong Q and Wei X: Wnt/β-catenin signaling pathway in
carcinogenesis and cancer therapy. J Hematol Oncol. 17:462024.
|
|
24
|
Liu Y, Zhao C, Wang G, Chen J, Ju S, Huang
J and Wang X: SNORD1C maintains stemness and 5-FU resistance by
activation of Wnt signaling pathway in colorectal cancer. Cell
Death Discov. 8:2002022.
|
|
25
|
Wei B, Cao J, Tian JH, Yu CY, Huang Q, Yu
JJ, Ma R, Wang J, Xu F and Wang LB: Mortalin maintains breast
cancer stem cells stemness via activation of Wnt/GSK3β/β-catenin
signaling pathway. Am J Cancer Res. 11:2696–2716. 2021.
|
|
26
|
Zhao H, Ming T, Tang S, Ren S, Yang H, Liu
M, Tao Q and Xu H: Wnt signaling in colorectal cancer: Pathogenic
role and therapeutic target. Mol Cancer. 21:1442022.
|
|
27
|
Wang Y, Zheng L, Shang W, Yang Z, Li T,
Liu F, Shao W, Lv L, Chai L, Qu L, et al: Wnt/beta-catenin
signaling confers ferroptosis resistance by targeting GPX4 in
gastric cancer. Cell Death Differ. 29:2190–2202. 2022.
|
|
28
|
Wei L, Ding L, Mo MS, Lei M, Zhang L, Chen
K and Xu P: Wnt3a protects SH-SY5Y cells against 6-hydroxydopamine
toxicity by restoration of mitochondria function. Transl
Neurodegener. 4:112015.
|
|
29
|
Lin TY, Tsai MC, Tu W, Yeh HC, Wang SC,
Huang SP and Li CY: Role of the NLRP3 inflammasome: Insights into
cancer hallmarks. Front Immunol. 11:6104922021.
|
|
30
|
Zhang Y and Wang X: Targeting the
Wnt/β-catenin signaling pathway in cancer. J Hematol Oncol.
13:1652020.
|
|
31
|
Rim EY, Clevers H and Nusse R: The wnt
pathway: From signaling mechanisms to synthetic modulators. Annu
Rev Biochem. 91:571–598. 2022.
|
|
32
|
Katoh M and Katoh M: WNT signaling and
cancer stemness. Essays Biochem. 66:319–331. 2022.
|
|
33
|
Liu J, Xiao Q, Xiao J, Niu C, Li Y, Zhang
X, Zhou Z, Shu G and Yin G: Wnt/β-catenin signalling: function,
biological mechanisms, and therapeutic opportunities. Signal
Transduct Target Ther. 7:32022.
|
|
34
|
Ozalp O, Cark O, Azbazdar Y, Haykir B,
Cucun G, Kucukaylak I, Alkan-Yesilyurt G, Sezgin E and Ozhan G:
Nradd acts as a negative feedback regulator of Wnt/β-Catenin
signaling and promotes apoptosis. Biomolecules. 11:1002021.
|
|
35
|
Duchartre Y, Kim YM and Kahn M: The Wnt
signaling pathway in cancer. Crit Rev Oncol Hematol. 99:141–149.
2016.
|
|
36
|
Gao Y, Chen N, Fu Z and Zhang Q: Progress
of wnt signaling pathway in osteoporosis. Biomolecules.
13:4832023.
|
|
37
|
Malla RR and Kiran P: Tumor
microenvironment pathways: Cross regulation in breast cancer
metastasis. Genes Dis. 9:310–324. 2020.
|
|
38
|
Yang Y, Ye YC, Chen Y, Zhao JL, Gao CC,
Han H, Liu WC and Qin HY: Crosstalk between hepatic tumor cells and
macrophages via Wnt/β-catenin signaling promotes M2-like macrophage
polarization and reinforces tumor malignant behaviors. Cell Death
Dis. 9:7932018.
|
|
39
|
Jiang Y, Han Q, Zhao H and Zhang J:
Promotion of epithelial-mesenchymal transformation by
hepatocellular carcinoma-educated macrophages through
Wnt2b/β-catenin/c-Myc signaling and reprogramming glycolysis. J Exp
Clin Cancer Res. 40:132021.
|
|
40
|
Tigue ML, Loberg MA, Goettel JA, Weiss WA,
Lee E and Weiss VL: Wnt signaling in the phenotype and function of
tumor-associated macrophages. Cancer Res. 83:3–11. 2023.
|
|
41
|
Bergenfelz C, Medrek C, Ekström E,
Jirström K, Janols H, Wullt M, Bredberg A and Leandersson K: Wnt5a
induces a tolerogenic phenotype of macrophages in sepsis and breast
cancer patients. J Immunol. 188:5448–5458. 2012.
|
|
42
|
Liu Q, Yang C, Wang S, Shi D, Wei C, Song
J, Lin X, Dou R, Bai J, Xiang Z, et al: Wnt5a-induced M2
polarization of tumor-associated macrophages via IL-10 promotes
colorectal cancer progression. Cell Commun Signal. 18:512020.
|
|
43
|
van Amerongen R: Alternative Wnt pathways
and receptors. Cold Spring Harb Perspect Biol. 4:a0079142012.
|
|
44
|
Spranger S and Gajewski TF: A new paradigm
for tumor immune escape: β-catenin-driven immune exclusion. J
Immunother Cancer. 3:432015.
|
|
45
|
Zebley CC, Zehn D, Gottschalk S and Chi H:
T cell dysfunction and therapeutic intervention in cancer. Nat
Immunol. 25:1344–1354. 2024.
|
|
46
|
Ying J, Li H, Yu J, Ng KM, Poon FF, Wong
SC, Chan AT, Sung JJ and Tao Q: WNT5A exhibits tumor-suppressive
activity through antagonizing the Wnt/beta-catenin signaling, and
is frequently methylated in colorectal cancer. Clin Cancer Res.
14:55–61. 2008.
|
|
47
|
Muto S, Enta A, Maruya Y, Inomata S,
Yamaguchi H, Mine H, Takagi H, Ozaki Y, Watanabe M, Inoue T, et al:
Wnt/β-catenin signaling and resistance to immune checkpoint
inhibitors: From non-small-cell lung cancer to other cancers.
Biomedicines. 11:1902023.
|
|
48
|
Li Q, Wei S, Li Y, Wu F, Qin X, Li Z, Li J
and Chen C: Blocking of programmed cell death-ligand 1 (PD-L1)
expressed on endothelial cells promoted the recruitment of
CD8+IFN-γ+ T cells in atherosclerosis. Inflamm Res. 72:783–796.
2023.
|
|
49
|
Xu X, Zhang M, Xu F and Jiang S: Wnt
signaling in breast cancer: Biological mechanisms, challenges and
opportunities. Mol Cancer. 19:1652020.
|
|
50
|
Wherry EJ and Kurachi M: Molecular and
cellular insights into T cell exhaustion. Nat Rev Immunol.
15:486–499. 2015.
|
|
51
|
Rasha F, Boligala GP, Yang MV,
Martinez-Marin D, Castro-Piedras I, Furr K, Snitman A, Khan SY,
Brandi L, Castro M, et al: Dishevelled 2 regulates cancer cell
proliferation and T cell mediated immunity in HER2-positive breast
cancer. BMC Cancer. 23:1722023.
|
|
52
|
Yang M, Wei Z, Feng M, Zhu Y, Chen Y and
Zhu D: Pharmacological inhibition and genetic knockdown of BCL9
modulate the cellular landscape of cancer-associated fibroblasts in
the tumor-immune microenvironment of colorectal cancer. Front
Oncol. 11:6035562021.
|
|
53
|
Gattinoni L, Zhong XS, Palmer DC, Ji Y,
Hinrichs CS, Yu Z, Wrzesinski C, Boni A, Cassard L, Garvin LM, et
al: Wnt signaling arrests effector T cell differentiation and
generates CD8+ memory stem cells. Nat Med. 15:808–813. 2009.
|
|
54
|
Shan F, Somasundaram A, Bruno TC, Workman
CJ and Vignali DAA: Therapeutic targeting of regulatory T cells in
cancer. Trends Cancer. 8:944–961. 2022.
|
|
55
|
Hong Y, Manoharan I, Suryawanshi A,
Majumdar T, Angus-Hill ML, Koni PA, Manicassamy B, Mellor AL, Munn
DH and Manicassamy S: β-catenin promotes regulatory T-cell
responses in tumors by inducing vitamin A metabolism in dendritic
cells. Cancer Res. 75:656–665. 2015.
|
|
56
|
van Loosdregt J, Fleskens V, Tiemessen MM,
Mokry M, van Boxtel R, Meerding J, Pals CE, Kurek D, Baert MR,
Delemarre EM, et al: Canonical wnt signaling negatively modulates
regulatory T cell function. Immunity. 39:298–310. 2013.
|
|
57
|
Yang ZY, Zhang WL, Jiang CW and Sun G:
PCBP1-mediated regulation of WNT signaling is critical for breast
tumorigenesis. Cell Biol Toxicol. 39:2331–2343. 2023.
|
|
58
|
Trotter TN, Dagotto CE, Serra D, Wang T,
Yang X, Acharya CR, Wei J, Lei G, Lyerly HK and Hartman ZC: Dormant
tumors circumvent tumor-specific adaptive immunity by establishing
a Treg-dominated niche via DKK3. JCI Insight. 8:e1744582023.
|
|
59
|
Ding Y, Shen S, Lino AC, Curotto de
Lafaille MA and Lafaille JJ: Beta-catenin stabilization extends
regulatory T cell survival and induces anergy in nonregulatory T
cells. Nat Med. 14:162–169. 2008.
|
|
60
|
Dai W, Liu F, Li C, Lu Y, Lu X, Du S, Chen
Y, Weng D and Chen J: Blockade of Wnt/β-catenin pathway aggravated
silica-induced lung inflammation through tregs regulation on Th
immune responses. Mediators Inflamm. 2016:62356142016.
|
|
61
|
Gunaydin G: CAFs interacting With TAMs in
tumor microenvironment to enhance tumorigenesis and immune evasion.
Front Oncol. 11:6683492021.
|
|
62
|
Hu D, Li Z, Zheng B, Lin X, Pan Y, Gong P,
Zhuo W, Hu Y, Chen C, Chen L, et al: Cancer-associated fibroblasts
in breast cancer: Challenges and opportunities. Cancer Commun
(Lond). 42:401–434. 2022.
|
|
63
|
Xie J, Qi X, Wang Y, Yin X, Xu W, Han S,
Cai Y and Han W: Cancer-associated fibroblasts secrete
hypoxia-induced serglycin to promote head and neck squamous cell
carcinoma tumor cell growth in vitro and in vivo by activating the
Wnt/β-catenin pathway. Cell Oncol (Dordr). 44:661–671. 2021.
|
|
64
|
Aizawa T, Karasawa H, Funayama R, Shirota
M, Suzuki T, Maeda S, Suzuki H, Yamamura A, Naitoh T, Nakayama K
and Unno M: Cancer-associated fibroblasts secrete Wnt2 to promote
cancer progression in colorectal cancer. Cancer Med. 8:6370–6382.
2019.
|
|
65
|
Bochet L, Lehuédé C, Dauvillier S, Wang
YY, Dirat B, Laurent V, Dray C, Guiet R, Maridonneau-Parini I, Le
Gonidec S, et al: Adipocyte-derived fibroblasts promote tumor
progression and contribute to the desmoplastic reaction in breast
cancer. Cancer Res. 73:5657–5668. 2013.
|
|
66
|
Chen Y, Zeng C, Zhan Y, Wang H, Jiang X
and Li W: Aberrant low expression of p85α in stromal fibroblasts
promotes breast cancer cell metastasis through exosome-mediated
paracrine Wnt10b. Oncogene. 36:4692–4705. 2017.
|
|
67
|
Liu J, Shen JX, Wu HT, Li XL, Wen XF, Du
CW and Zhang GJ: Collagen 1A1 (COL1A1) promotes metastasis of
breast cancer and is a potential therapeutic target. Discov Med.
25:211–223. 2018.
|
|
68
|
Kim SH, Lee HY, Jung SP, Kim S, Lee JE,
Nam SJ and Bae JW: Role of secreted type I collagen derived from
stromal cells in two breast cancer cell lines. Oncol Lett.
8:507–512. 2014.
|
|
69
|
Luga V, Zhang L, Viloria-Petit AM,
Ogunjimi AA, Inanlou MR, Chiu E, Buchanan M, Hosein AN, Basik M and
Wrana JL: Exosomes mediate stromal mobilization of autocrine
Wnt-PCP signaling in breast cancer cell migration. Cell.
151:1542–1556. 2012.
|
|
70
|
Dominici M, Le Blanc K, Mueller I,
Slaper-Cortenbach I, Marini F, Krause D, Deans R, Keating A,
Prockop Dj and Horwitz E: Minimal criteria for defining multipotent
mesenchymal stromal cells. The International Society for Cellular
Therapy position statement. Cytotherapy. 8:315–317. 2006.
|
|
71
|
Cuiffo BG and Karnoub AE: Mesenchymal stem
cells in tumor development: Emerging roles and concepts. Cell Adh
Migr. 6:220–230. 2012.
|
|
72
|
Liang W and Chen X, Zhang S, Fang J, Chen
M, Xu Y and Chen X: Mesenchymal stem cells as a double-edged sword
in tumor growth: Focusing on MSC-derived cytokines. Cell Mol Biol
Lett. 26:32021.
|
|
73
|
Sun Z, Wang S and Zhao RC: The roles of
mesenchymal stem cells in tumor inflammatory microenvironment. J
Hematol Oncol. 7:142014.
|
|
74
|
Shi Y, Du L, Lin L and Wang Y:
Tumour-associated mesenchymal stem/stromal cells: Emerging
therapeutic targets. Nat Rev Drug Discov. 16:35–52. 2017.
|
|
75
|
Kar S, Jasuja H, Katti DR and Katti KS:
Wnt/β-catenin signaling pathway regulates osteogenesis for breast
cancer bone metastasis: Experiments in an in vitro nanoclay
scaffold cancer testbed. ACS Biomater Sci Eng. 6:2600–2611.
2020.
|
|
76
|
Arrigoni C, De Luca P, Gilardi M, Previdi
S, Broggini M and Moretti M: Direct but not indirect co-culture
with osteogenically differentiated human bone marrow stromal cells
increases RANKL/OPG ratio in human breast cancer cells generating
bone metastases. Mol Cancer. 13:2382014.
|
|
77
|
Qiao L, Xu ZL, Zhao TJ, Ye LH and Zhang
XD: Dkk-1 secreted by mesenchymal stem cells inhibits growth of
breast cancer cells via depression of Wnt signalling. Cancer Lett.
269:67–77. 2008.
|
|
78
|
Qiao L, Xu Z, Zhao T, Zhao Z, Shi M, Zhao
RC, Ye L and Zhang X: Suppression of tumorigenesis by human
mesenchymal stem cells in a hepatoma model. Cell Res. 18:500–507.
2008.
|
|
79
|
Khakoo AY, Pati S, Anderson SA, Reid W,
Elshal MF, Rovira II, Nguyen AT, Malide D, Combs CA, Hall G, et al:
Human mesenchymal stem cells exert potent antitumorigenic effects
in a model of Kaposi's sarcoma. J Exp Med. 203:1235–1247. 2006.
|
|
80
|
Dasari VR, Velpula KK, Kaur K, Fassett D,
Klopfenstein JD, Dinh DH, Gujrati M and Rao JS: Cord blood stem
cell-mediated induction of apoptosis in glioma downregulates
X-linked inhibitor of apoptosis protein (XIAP). PLoS One.
5:e118132010.
|
|
81
|
Otsu K, Das S, Houser SD, Quadri SK,
Bhattacharya S and Bhattacharya J: Concentration-dependent
inhibition of angiogenesis by mesenchymal stem cells. Blood.
113:4197–4205. 2009.
|
|
82
|
Zhu Y, Sun Z, Han Q, Liao L, Wang J, Bian
C, Li J, Yan X, Liu Y, Shao C and Zhao RC: Human mesenchymal stem
cells inhibit cancer cell proliferation by secreting DKK-1.
Leukemia. 23:925–933. 2009.
|
|
83
|
Vallée A, Lecarpentier Y, Guillevin R and
Vallée JN: Interactions between TGF-β1, canonical WNT/β-catenin
pathway and PPAR γ in radiation-induced fibrosis. Oncotarget.
8:90579–90604. 2017.
|
|
84
|
Patel SA, Nilsson MB, Le X, Cascone T,
Jain RK and Heymach JV: Molecular mechanisms and future
implications of VEGF/VEGFR in cancer therapy. Clin Cancer Res.
29:30–39. 2023.
|
|
85
|
Zerlin M, Julius MA and Kitajewski J:
Wnt/Frizzled signaling in angiogenesis. Angiogenesis. 11:63–69.
2008.
|
|
86
|
Mankuzhy P, Dharmarajan A, Perumalsamy LR,
Sharun K, Samji P and Dilley RJ: The role of Wnt signaling in
mesenchymal stromal cell-driven angiogenesis. Tissue Cell.
85:1022402023.
|
|
87
|
Xie W, Zhang Y, Zhang S, Wang F, Zhang K,
Huang Y, Zhou Z, Huang G and Wang J: Oxymatrine enhanced anti-tumor
effects of Bevacizumab against triple-negative breast cancer via
abating Wnt/β-Catenin signaling pathway. Am J Cancer Res.
9:1796–1814. 2019.
|
|
88
|
Pagani E, Ruffini F, Antonini Cappellini
GC, Scoppola A, Fortes C, Marchetti P, Graziani G, D'Atri S and
Lacal PM: Placenta growth factor and neuropilin-1 collaborate in
promoting melanoma aggressiveness. Int J Oncol. 48:1581–1589.
2016.
|
|
89
|
Ruffini F, D'Atri S and Lacal PM:
Neuropilin-1 expression promotes invasiveness of melanoma cells
through vascular endothelial growth factor receptor-2-dependent and
-independent mechanisms. Int J Oncol. 43:297–306. 2013.
|
|
90
|
Nilsson LM, Nilsson-Ohman J, Zetterqvist
AV and Gomez MF: Nuclear factor of activated T-cells transcription
factors in the vasculature: The good guys or the bad guys? Curr
Opin Lipidol. 19:483–490. 2008.
|
|
91
|
Reis M and Liebner S: Wnt signaling in the
vasculature. Exp Cell Res. 319:1317–1323. 2013.
|
|
92
|
Roma-Rodrigues C, Fernandes AR and
Baptista PV: Exosome in tumour microenvironment: Overview of the
crosstalk between normal and cancer cells. Biomed Res Int.
2014:1794862014.
|
|
93
|
Graner MW, Schnell S and Olin MR:
Tumor-derived exosomes, microRNAs, and cancer immune suppression.
Semin Immunopathol. 40:505–515. 2018.
|
|
94
|
Ruivo CF, Adem B, Silva M and Melo SA: The
biology of cancer exosomes: Insights and new perspectives. Cancer
Res. 77:6480–6488. 2017.
|
|
95
|
Kalluri R and LeBleu VS: The biology,
function, and biomedical applications of exosomes. Science.
367:eaau69772020.
|
|
96
|
Samuel P, Fabbri M and Carter DRF:
Mechanisms of drug resistance in cancer: The role of extracellular
vesicles. Proteomics. 17:16003752017.
|
|
97
|
Abd Elmageed ZY, Yang Y, Thomas R, Ranjan
M, Mondal D, Moroz K, Fang Z, Rezk BM, Moparty K, Sikka SC, et al:
Neoplastic reprogramming of patient-derived adipose stem cells by
prostate cancer cell-associated exosomes. Stem Cells. 32:983–997.
2014.
|
|
98
|
Melo SA, Sugimoto H, O'Connell JT, Kato N,
Villanueva A, Vidal A, Qiu L, Vitkin E, Perelman LT, Melo CA, et
al: Cancer exosomes perform cell-independent microRNA biogenesis
and promote tumorigenesis. Cancer Cell. 26:707–721. 2014.
|
|
99
|
Liang Z, Liu L, Gao R, Che C and Yang G:
Downregulation of exosomal miR-7-5p promotes breast cancer
migration and invasion by targeting RYK and participating in the
atypical WNT signalling pathway. Cell Mol Biol Lett. 27:882022.
|
|
100
|
Xiao Z, Feng X, Zhou Y, Li P, Luo J, Zhang
W, Zhou J, Zhao J, Wang D, Wang Y, et al: Exosomal miR-10527-5p
inhibits migration, invasion, lymphangiogenesis and lymphatic
metastasis by affecting Wnt/β-catenin signaling via Rab10 in
esophageal squamous cell carcinoma. Int J Nanomedicine. 18:95–114.
2023.
|
|
101
|
Naseri Z, Oskuee RK, Jaafari MR and
Forouzandeh Moghadam M: Exosome-mediated delivery of functionally
active miRNA-142-3p inhibitor reduces tumorigenicity of breast
cancer in vitro and in vivo. Int J Nanomedicine. 13:7727–7747.
2018.
|
|
102
|
Gargalionis AN, Papavassiliou KA, Basdra
EK and Papavassiliou AG: mTOR signaling components in tumor
mechanobiology. Int J Mol Sci. 23:18252022.
|
|
103
|
Liu Q, Luo Q, Ju Y and Song G: Role of the
mechanical microenvironment in cancer development and progression.
Cancer Biol Med. 17:282–292. 2020.
|
|
104
|
Sun J, Luo Q, Liu L and Song G: Low-level
shear stress induces differentiation of liver cancer stem cells via
the Wnt/β-catenin signalling pathway. Exp Cell Res. 375:90–96.
2019.
|
|
105
|
Li Y, Mao AS, Seo BR, Zhao X, Gupta SK,
Chen M, Han YL, Shih TY, Mooney DJ and Guo M: Compression-induced
dedifferentiation of adipocytes promotes tumor progression. Sci
Adv. 6:eaax56112020.
|
|
106
|
Yu H, Mouw JK and Weaver VM: Forcing form
and function: Biomechanical regulation of tumor evolution. Trends
Cell Biol. 21:47–56. 2011.
|
|
107
|
Provenzano PP and Keely PJ: Mechanical
signaling through the cytoskeleton regulates cell proliferation by
coordinated focal adhesion and Rho GTPase signaling. J Cell Sci.
124:1195–1205. 2011.
|
|
108
|
Schrader J, Gordon-Walker TT, Aucot RL,
van Deemter M, Quaas A, Walsh S, Benten D, Forbes SJ, Wells RG and
Iredale JP: Matrix stiffness modulates proliferation,
chemotherapeutic response, and dormancy in hepatocellular carcinoma
cells. Hepatology. 53:1192–1205. 2011.
|
|
109
|
Johnson RW, Merkel AR, Page JM, Ruppender
NS, Guelcher SA and Sterling JA: Wnt signaling induces gene
expression of factors associated with bone destruction in lung and
breast cancer. Clin Exp Metastasis. 31:945–959. 2014.
|
|
110
|
Chen Z, Han F, Du Y, Shi H and Zhou W:
Hypoxic microenvironment in cancer: molecular mechanisms and
therapeutic interventions. Signal Transduct Target Ther.
8:702023.
|
|
111
|
Schito L and Semenza GL: Hypoxia-inducible
factors: Master regulators of cancer progression. Trends Cancer.
2:758–770. 2016.
|
|
112
|
Zhou F, Sun J, Ye L, Jiang T, Li W, Su C,
Ren S, Wu F, Zhou C and Gao G: Fibronectin promotes tumor
angiogenesis and progression of non-small-cell lung cancer by
elevating WISP3 expression via FAK/MAPK/HIF-1α axis and activating
wnt signaling pathway. Exp Hematol Oncol. 12:612023.
|
|
113
|
Yan Y, Liu F, Han L, Zhao L, Chen J,
Olopade OI, He M and Wei M: HIF-2α promotes conversion to a stem
cell phenotype and induces chemoresistance in breast cancer cells
by activating Wnt and Notch pathways. J Exp Clin Cancer Res.
37:2562018.
|
|
114
|
Ma F, Li W, Liu C, Li W, Yu H, Lei B, Ren
Y, Li Z, Pang D and Qian C: MiR-23a promotes TGF-β1-induced EMT and
tumor metastasis in breast cancer cells by directly targeting CDH1
and activating Wnt/β-catenin signaling. Oncotarget. 8:69538–69550.
2017.
|
|
115
|
Lopez Almeida L, Sebbagh M, Bertucci F,
Finetti P, Wicinski J, Marchetto S, Castellano R, Josselin E,
Charafe-Jauffret E, Ginestier C, et al: The SCRIB paralog
LANO/LRRC1 regulates breast cancer stem cell fate through
WNT/β-catenin signaling. Stem Cell Rep. 11:1040–1050. 2018.
|
|
116
|
Bhuvanalakshmi G, Basappa, Rangappa KS,
Dharmarajan A, Sethi G, Kumar AP and Warrier S: Breast cancer
stem-like cells are inhibited by diosgenin, a steroidal saponin, by
the attenuation of the wnt β-catenin signaling via the wnt
antagonist secreted frizzled related protein-4. Front Pharmacol.
8:1242017.
|
|
117
|
Lv C, Li F, Li X, Tian Y, Zhang Y, Sheng
X, Song Y, Meng Q, Yuan S, Luan L, et al: MiR-31 promotes mammary
stem cell expansion and breast tumorigenesis by suppressing Wnt
signaling antagonists. Nat Commun. 8:10362017.
|
|
118
|
Xu BS, Chen HY, Que Y, Xiao W, Zeng MS and
Zhang X: ALKATI interacts with c-Myc and promotes cancer
stem cell-like properties in sarcoma. Oncogene. 39:151–163.
2020.
|
|
119
|
Dittmer J: Breast cancer stem cells:
Features, key drivers and treatment options. Semin Cancer Biol.
53:59–74. 2018.
|
|
120
|
Wang F, Chen L, Kong D, Zhang X, Xia S,
Liang B, Li Y, Zhou Y, Zhang Z, Shao J, et al: Canonical Wnt
signaling promotes HSC glycolysis and liver fibrosis through an
LDH-A/HIF-1α transcriptional complex. Hepatology. 79:606–623.
2024.
|
|
121
|
Li X, Yang J, Ni R, Chen J, Zhou Y, Song
H, Jin L and Pan Y: Hypoxia-induced lncRNA RBM5-AS1 promotes
tumorigenesis via activating wnt/β-catenin signaling in breast
cancer. Cell Death Dis. 13:952022.
|
|
122
|
Tirpe AA, Gulei D, Ciortea SM, Crivii C
and Berindan-Neagoe I: Hypoxia: Overview on hypoxia-mediated
mechanisms with a focus on the role of HIF genes. Int J Mol Sci.
20:61402019.
|
|
123
|
Wu J, Chen J, Feng Y, Tian H and Chen X:
Tumor microenvironment as the 'regulator' and 'target' for gene
therapy. J Gene Med. 21:e30882019.
|
|
124
|
Lee S, Toft NJ, Axelsen TV, Espejo MS,
Pedersen TM, Mele M, Pedersen HL, Balling E, Johansen T, Burton M,
et al: Carbonic anhydrases reduce the acidity of the tumor
microenvironment, promote immune infiltration, decelerate tumor
growth, and improve survival in ErbB2/HER2-enriched breast cancer.
Breast Cancer Res. 25:462023.
|
|
125
|
Melnik S, Dvornikov D, Müller-Decker K,
Depner S, Stannek P, Meister M, Warth A, Thomas M, Muley T, Risch
A, et al: Cancer cell specific inhibition of Wnt/β-catenin
signaling by forced intracellular acidification. Cell Discov.
4:372018.
|
|
126
|
Bao L, Wu Y, Ren Z, Huang Y, Jiang Y, Li
K, Xu X, Ye Y and Gui Z: Comprehensive pan-cancer analysis
indicates UCHL5 as a novel cancer biomarker and promotes cervical
cancer progression through the wnt signaling pathway. Biol Direct.
19:1392024.
|
|
127
|
Ghosh A and Gopinath SCB: Molecular
mechanism of breast cancer and predisposition of mouse mammary
tumor virus propagation cycle. Curr Med Chem. May 8–2024.Epub ahead
of print.
|
|
128
|
Wang F, Wang W, Wang M and Chen D: Genetic
landscape of breast cancer subtypes following radiation therapy:
Insights from comprehensive profiling. Front Oncol.
14:12915092024.
|
|
129
|
Wooster R, Neuhausen SL, Mangion J, Quirk
Y, Ford D, Collins N, Nguyen K, Seal S, Tran T, Averill D, et al:
Localization of a breast cancer susceptibility gene, BRCA2, to
chromosome 13q12-13. Science. 265:2088–2090. 1994.
|
|
130
|
Hall JM, Lee MK, Newman B, Morrow JE,
Anderson LA, Huey B and King MC: Linkage of early-onset familial
breast cancer to chromosome 17q21. Science. 250:1684–1689.
1990.
|
|
131
|
Wan A, Zhang G, Ma D, Zhang Y and Qi X: An
overview of the research progress of BRCA gene mutations in breast
cancer. Biochim Biophys Acta Rev Cancer. 1878:1889072023.
|
|
132
|
Weber F, Shen L, Fukino K, Patocs A,
Mutter GL, Caldes T and Eng C: Total-genome analysis of
BRCA1/2-related invasive carcinomas of the breast identifies tumor
stroma as potential landscaper for neoplastic initiation. Am J Hum
Genet. 78:961–972. 2006.
|
|
133
|
Ghosh S, Lu Y, Katz A, Hu Y and Li R:
Tumor suppressor BRCA1 inhibits a breast cancer-associated promoter
of the aromatase gene (CYP19) in human adipose stromal cells. Am J
Physiol Endocrinol Metab. 292:E246–E252. 2007.
|
|
134
|
Wu ZQ, Li XY, Hu CY, Ford M, Kleer CG and
Weiss SJ: Canonical Wnt signaling regulates Slug activity and links
epithelial-mesenchymal transition with epigenetic Breast Cancer 1,
Early Onset (BRCA1) repression. Proc Natl Acad Sci USA.
109:16654–16659. 2012.
|
|
135
|
Li H, Sekine M, Tung N and Avraham HK:
Wild-type BRCA1, but not Mutated BRCA1, regulates the expression of
the nuclear Form of beta-catenin. Mol Cancer Res. 8:407–420.
2010.
|
|
136
|
Cancer Genome Atlas Network: Comprehensive
molecular portraits of human breast tumours. Nature. 490:61–70.
2012.
|
|
137
|
Kastenhuber ER and Lowe SW: Putting p53 in
context. Cell. 170:1062–1078. 2017.
|
|
138
|
Walerych D, Napoli M, Collavin L and Del
Sal G: The rebel angel: mutant p53 as the driving oncogene in
breast cancer. Carcinogenesis. 33:2007–2017. 2012.
|
|
139
|
Kim NH, Cha YH, Lee J, Lee SH, Yang JH,
Yun JS, Cho ES, Zhang X, Nam M, Kim N, et al: Snail reprograms
glucose metabolism by repressing phosphofructokinase PFKP allowing
cancer cell survival under metabolic stress. Nat Commun.
8:143742017.
|
|
140
|
Wellenstein MD, Coffelt SB, Duits DEM, van
Miltenburg MH, Slagter M, de Rink I, Henneman L, Kas SM, Prekovic
S, Hau CS, et al: Loss of p53 triggers WNT-dependent systemic
inflammation to drive breast cancer metastasis. Nature.
572:538–542. 2019.
|
|
141
|
Roarty K, Pfefferle AD, Creighton CJ,
Perou CM and Rosen JM: Ror2-mediated alternative Wnt signaling
regulates cell fate and adhesion during mammary tumor progression.
Oncogene. 36:5958–5968. 2017.
|
|
142
|
Nolan E, Lindeman GJ and Visvader JE:
Deciphering breast cancer: From biology to the clinic. Cell.
186:1708–1728. 2023.
|
|
143
|
Wang X, Song C, Ye Y, Gu Y, Li X, Chen P,
Leng D, Xiao J, Wu H, Xie S, et al: BRD9-mediated control of the
TGF-β/activin/nodal pathway regulates self-renewal and
differentiation of human embryonic stem cells and progression of
cancer cells. Nucleic Acids Res. 51:11634–11651. 2023.
|
|
144
|
Song X, Wei C and Li X: The signaling
pathways associated with breast cancer bone metastasis. Front
Oncol. 12:8556092022.
|
|
145
|
Clevers H and Nusse R: Wnt/β-catenin
signaling and disease. Cell. 149:1192–1205. 2012.
|
|
146
|
Massagué J: TGFbeta in cancer. Cell.
134:215–230. 2008.
|
|
147
|
Nusse R and Clevers H: Wnt/β-catenin
signaling, disease, and emerging therapeutic modalities. Cell.
169:985–999. 2017.
|
|
148
|
Luo K: Signaling cross talk between
TGF-β/smad and other signaling pathways. Cold Spring Harb Perspect
Biol. 9:a0221372017.
|
|
149
|
Shi X, Yang J, Deng S, Xu H, Wu D, Zeng Q,
Wang S, Hu T, Wu F and Zhou H: TGF-β signaling in the tumor
metabolic microenvironment and targeted therapies. J Hematol Oncol.
15:1352022.
|
|
150
|
Spranger S, Bao R and Gajewski TF:
Melanoma-intrinsic β-catenin signalling prevents anti-tumour
immunity. Nature. 523:231–235. 2015.
|
|
151
|
Scheel C, Eaton EN, Li SH, Chaffer CL,
Reinhardt F, Kah KJ, Bell G, Guo W, Rubin J, Richardson AL and
Weinberg RA: Paracrine and autocrine signals induce and maintain
mesenchymal and stem cell states in the breast. Cell. 145:926–940.
2011.
|
|
152
|
Funa NS, Mjoseng HK, de Lichtenberg KH,
Raineri S, Esen D, Egeskov-Madsen AR, Quaranta R, Jørgensen MC,
Hansen MS, van Cuyl Kuylenstierna J, et al: TGF-β modulates cell
fate in human ES cell-derived foregut endoderm by inhibiting wnt
and BMP signaling. Stem Cell Reports. 19:973–992. 2024.
|
|
153
|
Liu L, Chen G, Chen T, Shi W, Hu H, Song
K, Huang R, Cai H and He Y: si-SNHG5-FOXF2 inhibits TGF-β1-induced
fibrosis in human primary endometrial stromal cells by the
wnt/β-catenin signalling pathway. Stem Cell Res Ther.
11:4792020.
|
|
154
|
Katso R, Okkenhaug K, Ahmadi K, White S,
Timms J and Waterfield MD: Cellular function of phosphoinositide
3-kinases: Implications for development, homeostasis, and cancer.
Annu Rev Cell Dev Biol. 17:615–675. 2001.
|
|
155
|
Samuels Y, Wang Z, Bardelli A, Silliman N,
Ptak J, Szabo S, Yan H, Gazdar A, Powell SM, Riggins GJ, et al:
High frequency of mutations of the PIK3CA gene in human cancers.
Science. 304:5542004.
|
|
156
|
Shimura T, Takenaka Y, Tsutsumi S, Hogan
V, Kikuchi A and Raz A: Galectin-3, a novel binding partner of
beta-catenin. Cancer Res. 64:6363–6367. 2004.
|
|
157
|
Luo J, Chen J, Deng ZL, Luo X, Song WX,
Sharff KA, Tang N, Haydon RC, Luu HH and He TC: Wnt signaling and
human diseases: What are the therapeutic implications? Lab Invest.
87:97–103. 2007.
|
|
158
|
Maric G, Annis MG, MacDonald PA, Russo C,
Perkins D, Siwak DR, Mills GB and Siegel PM: GPNMB augments Wnt-1
mediated breast tumor initiation and growth by enhancing
PI3K/AKT/mTOR pathway signaling and β-catenin activity. Oncogene.
38:5294–5307. 2019.
|
|
159
|
Perry JM, He XC, Sugimura R, Grindley JC,
Haug JS, Ding S and Li L: Cooperation between both
Wnt/{beta}-catenin and PTEN/PI3K/Akt signaling promotes primitive
hematopoietic stem cell self-renewal and expansion. Genes Dev.
25:1928–1942. 2011.
|
|
160
|
Mulholland DJ, Dedhar S, Wu H and Nelson
CC: PTEN and GSK3beta: Key regulators of progression to
androgen-independent prostate cancer. Oncogene. 25:329–337.
2006.
|
|
161
|
Siddharth S, Goutam K, Das S, Nayak A,
Nayak D, Sethy C, Wyatt MD and Kundu CN: Nectin-4 is a breast
cancer stem cell marker that induces WNT/β-catenin signaling via
Pi3k/Akt axis. Int J Biochem Cell Biol. 89:85–94. 2017.
|
|
162
|
Bachelder RE, Yoon SO, Franci C, de
Herreros AG and Mercurio AM: Glycogen synthase kinase-3 is an
endogenous inhibitor of Snail transcription: Implications for the
epithelial-mesenchymal transition. J Cell Biol. 168:29–33.
2005.
|
|
163
|
Tsai JH, Hsu LS, Lin CL, Hong HM, Pan MH,
Way TD and Chen WJ: 3,5,4′-Trimethoxystilbene, a natural
methoxylated analog of resveratrol, inhibits breast cancer cell
invasiveness by downregulation of PI3K/Akt and Wnt/β-catenin
signaling cascades and reversal of epithelial-mesenchymal
transition. Toxicol Appl Pharmacol. 272:746–756. 2013.
|
|
164
|
Haiaty S, Rashidi MR, Akbarzadeh M,
Bazmani A, Mostafazadeh M, Nikanfar S, Zibaei Z, Rahbarghazi R and
Nouri M: Thymoquinone inhibited vasculogenic capacity and promoted
mesenchymal-epithelial transition of human breast cancer stem
cells. BMC Complement Med Ther. 21:832021.
|
|
165
|
Arqués O, Chicote I, Puig I, Tenbaum SP,
Argilés G, Dienstmann R, Fernández N, Caratù G, Matito J,
Silberschmidt D, et al: Tankyrase inhibition blocks Wnt/β-catenin
pathway and reverts resistance to PI3K and AKT inhibitors in the
treatment of colorectal cancer. Clin Cancer Res. 22:644–656.
2016.
|
|
166
|
Katoh M: Network of WNT and other
regulatory signaling cascades in pluripotent stem cells and cancer
stem cells. Curr Pharm Biotechnol. 12:160–170. 2011.
|
|
167
|
Nyeng P, Norgaard GA, Kobberup S and
Jensen J: FGF10 maintains distal lung bud epithelium and excessive
signaling leads to progenitor state arrest, distalization, and
goblet cell metaplasia. BMC Dev Biol. 8:22008.
|
|
168
|
Shimokawa T, Furukawa Y, Sakai M, Li M,
Miwa N, Lin YM and Nakamura Y: Involvement of the FGF18 gene in
colorectal carcinogenesis, as a novel downstream target of the
beta-catenin/ T-cell factor complex. Cancer Res. 63:6116–6120.
2003.
|
|
169
|
Chamorro MN, Schwartz DR, Vonica A,
Brivanlou AH, Cho KR and Varmus HE: FGF-20 and DKK1 are
transcriptional targets of beta-catenin and FGF-20 is implicated in
cancer and development. EMBO J. 24:73–84. 2005.
|
|
170
|
Pai R, Dunlap D, Qing J, Mohtashemi I,
Hotzel K and French DM: Inhibition of fibroblast growth factor 19
reduces tumor growth by modulating beta-catenin signaling. Cancer
Res. 68:5086–5095. 2008.
|
|
171
|
El-Hariry I, Pignatelli M and Lemoine NR:
FGF-1 and FGF-2 modulate the E-cadherin/catenin system in
pancreatic adenocarcinoma cell lines. Br J Cancer. 84:1656–1663.
2001.
|
|
172
|
Brembeck FH, Rosário M and Birchmeier W:
Balancing cell adhesion and Wnt signaling, the key role of
beta-catenin. Curr Opin Genet Dev. 16:51–59. 2006.
|
|
173
|
Davidson G, Shen J, Huang YL, Su Y,
Karaulanov E, Bartscherer K, Hassler C, Stannek P, Boutros M and
Niehrs C: Cell cycle control of wnt receptor activation. Dev Cell.
17:788–799. 2009.
|
|
174
|
Brennan KR and Brown AM: Wnt proteins in
mammary development and cancer. J Mammary Gland Biol Neoplasia.
9:119–131. 2004.
|
|
175
|
Nusse R and Varmus HE: Many tumors induced
by the mouse mammary tumor virus contain a provirus integrated in
the same region of the host genome. Cell. 31:99–109. 1982.
|
|
176
|
Lee FS, Lane TF, Kuo A, Shackleford GM and
Leder P: Insertional mutagenesis identifies a member of the Wnt
gene family as a candidate oncogene in the mammary epithelium of
int-2/Fgf-3 transgenic mice. Proc Natl Acad Sci USA. 92:2268–2272.
1995.
|
|
177
|
Theodorou V, Kimm MA, Boer M, Wessels L,
Theelen W, Jonkers J and Hilkens J: MMTV insertional mutagenesis
identifies genes, gene families and pathways involved in mammary
cancer. Nat Genet. 39:759–769. 2007.
|
|
178
|
Nguyen TM, Kabotyanski EB, Dou Y, Reineke
LC, Zhang P, Zhang XH, Malovannaya A, Jung SY, Mo Q, Roarty KP, et
al: FGFR1-activated translation of WNT pathway components with
structured 5′ UTRs is vulnerable to inhibition of EIF4A-dependent
translation initiation. Cancer Res. 78:4229–4240. 2018.
|
|
179
|
Gonzalez DM and Medici D: Signaling
mechanisms of the epithelial-mesenchymal transition. Sci Signal.
7:re82014.
|
|
180
|
Chatterjee S and Sil PC: Targeting the
crosstalks of Wnt pathway with Hedgehog and Notch for cancer
therapy. Pharmacol Res. 142:251–261. 2019.
|
|
181
|
Ormestad M, Astorga J, Landgren H, Wang T,
Johansson BR, Miura N and Carlsson P: Foxf1 and Foxf2 control
murine gut development by limiting mesenchymal Wnt signaling and
promoting extracellular matrix production. Development.
133:833–843. 2006.
|
|
182
|
Maeda O, Kondo M, Fujita T, Usami N, Fukui
T, Shimokata K, Ando T, Goto H and Sekido Y: Enhancement of
GLI1-transcriptional activity by beta-catenin in human cancer
cells. Oncol Rep. 16:91–96. 2006.
|
|
183
|
Arnold KM, Pohlig RT and Sims-Mourtada J:
Co-activation of Hedgehog and Wnt signaling pathways is associated
with poor outcomes in triple negative breast cancer. Oncol Lett.
14:5285–5292. 2017.
|
|
184
|
Katoh M and Katoh M: Molecular genetics
and targeted therapy of WNT-related human diseases (Review). Int J
Mol Med. 40:587–606. 2017.
|
|
185
|
Wu Y, Ginther C, Kim J, Mosher N, Chung S,
Slamon D and Vadgama JV: Expression of Wnt3 activates Wnt/β-catenin
pathway and promotes EMT-like phenotype in trastuzumab-resistant
HER2-overexpressing breast cancer cells. Mol Cancer Res.
10:1597–1606. 2012.
|
|
186
|
Zou Y, Yang A, Chen B, Deng X, Xie J, Dai
D, Zhang J, Tang H, Wu T, Zhou Z, et al: crVDAC3 alleviates
ferroptosis by impeding HSPB1 ubiquitination and confers
trastuzumab deruxtecan resistance in HER2-low breast cancer. Drug
Resist Updat. 77:1011262024.
|
|
187
|
Castagnoli L, Tagliabue E and Pupa SM:
Inhibition of the Wnt signalling pathway: An avenue to control
breast cancer aggressiveness. Int J Mol Sci. 21:90692020.
|
|
188
|
Castagnoli L, Franceschini A, Cancila V,
Dugo M, Bigliardi M, Chiodoni C, Toneguzzo P, Regondi V, Corsetto
PA, Pietrantonio F, et al: CD36 enrichment in HER2-positive
mesenchymal stem cells drives therapy refractoriness in breast
cancer. J Exp Clin Cancer Res. 44:192025.
|
|
189
|
Xu J, Prosperi JR, Choudhury N, Olopade OI
and Goss KH: β-Catenin is required for the tumorigenic behavior of
triple-negative breast cancer cells. PLoS One. 10:e01170972015.
|
|
190
|
Shetti D, Zhang B, Fan C, Mo C, Lee BH and
Wei K: Low dose of paclitaxel combined with XAV939 Attenuates
metastasis, angiogenesis and growth in breast cancer by suppressing
Wnt signaling. Cells. 8:8922019.
|
|
191
|
Saleh R, Taha RZ, Sasidharan Nair V,
Alajez NM and Elkord E: PD-L1 blockade by atezolizumab
downregulates signaling pathways associated with tumor growth,
metastasis, and hypoxia in human triple negative breast cancer.
Cancers (Basel). 11:10502019.
|
|
192
|
Castagnoli L, Cancila V, Cordoba-Romero
SL, Faraci S, Talarico G, Belmonte B, Iorio MV, Milani M, Volpari
T, Chiodoni C, et al: WNT signaling modulates PD-L1 expression in
the stem cell compartment of triple-negative breast cancer.
Oncogene. 38:4047–4060. 2019.
|
|
193
|
Merikhian P, Eisavand MR and Farahmand L:
Triple-negative breast cancer: Understanding Wnt signaling in drug
resistance. Cancer Cell Int. 21:4192021.
|
|
194
|
Ke M, Zhu H, Lin Y, Zhang Y, Tang T, Xie
Y, Chen ZS, Wang X and Shen Y: Actin-related protein 2/3 complex
subunit 1B promotes ovarian cancer progression by regulating the
AKT/PI3K/mTOR signaling pathway. J Transl Int Med. 12:406–423.
2024.
|
|
195
|
Tang L, Wang D, Hu T, Lin X and Wu S:
Current applications of tumor local ablation (TLA) combined with
immune checkpoint inhibitors in breast cancer treatment. Cancer
Drug Resist. 7:332024.
|
|
196
|
Torres VI, Godoy JA and Inestrosa NC:
Modulating Wnt signaling at the root: Porcupine and Wnt acylation.
Pharmacol Ther. 198:34–45. 2019.
|
|
197
|
Kabiri Z, Numata A, Kawasaki A, Edison,
Tenen DG and Virshup DM: Wnts are dispensable for differentiation
and self-renewal of adult murine hematopoietic stem cells. Blood.
126:1086–1094. 2015.
|
|
198
|
Takada R, Satomi Y, Kurata T, Ueno N,
Norioka S, Kondoh H, Takao T and Takada S: Monounsaturated fatty
acid modification of Wnt protein: Its role in Wnt secretion. Dev
Cell. 11:791–801. 2006.
|
|
199
|
Hausmann G, Bänziger C and Basler K:
Helping Wingless take flight: How WNT proteins are secreted. Nat
Rev Mol Cell Biol. 8:331–336. 2007.
|
|
200
|
van den Heuvel M, Harryman-Samos C,
Klingensmith J, Perrimon N and Nusse R: Mutations in the segment
polarity genes wingless and porcupine impair secretion of the
wingless protein. EMBO J. 12:5293–5302. 1993.
|
|
201
|
Shah K, Panchal S and Patel B: Porcupine
inhibitors: Novel and emerging anti-cancer therapeutics targeting
the Wnt signaling pathway. Pharmacol Res. 167:1055322021.
|
|
202
|
Resh MD: Palmitoylation of proteins in
cancer. Biochem Soc Trans. 45:409–416. 2017.
|
|
203
|
Madan B, Ke Z, Harmston N, Ho SY, Frois
AO, Alam J, Jeyaraj DA, Pendharkar V, Ghosh K, Virshup IH, et al:
Wnt addiction of genetically defined cancers reversed by PORCN
inhibition. Oncogene. 35:2197–2207. 2016.
|
|
204
|
Cheng D, Liu J, Han D, Zhang G, Gao W,
Hsieh MH, Ng N, Kasibhatla S, Tompkins C, Li J, et al: Discovery of
pyridinyl acetamide derivatives as potent, selective, and orally
bioavailable porcupine inhibitors. ACS Med Chem Lett. 7:676–680.
2016.
|
|
205
|
Liu Y, Qi X, Donnelly L,
Elghobashi-Meinhardt N, Long T, Zhou RW, Sun Y, Wang B and Li X:
Mechanisms and inhibition of porcupine-mediated wnt acylation.
Nature. 607:816–822. 2022.
|
|
206
|
Doo DW, Meza-Perez S, Londoño AI,
Goldsberry WN, Katre AA, Boone JD, Moore DJ, Hudson CT, Betella I,
McCaw TR, et al: Inhibition of the Wnt/β-catenin pathway enhances
antitumor immunity in ovarian cancer. Ther Adv Med Oncol.
12:17588359209137982020.
|
|
207
|
Liu J, Pan S, Hsieh MH, Ng N, Sun F, Wang
T, Kasibhatla S, Schuller AG, Li AG, Cheng D, et al: Targeting
Wnt-driven cancer through the inhibition of porcupine by LGK974.
Proc Natl Acad Sci USA. 110:20224–20229. 2013.
|
|
208
|
Nusse R and Varmus H: Three decades of
Wnts: A personal perspective on how a scientific field developed.
EMBO J. 31:2670–2684. 2012.
|
|
209
|
Goswami VG and Patel BD: Recent updates on
Wnt signaling modulators: A patent review (2014-2020). Expert Opin
Ther Pat. 31:1009–1043. 2021.
|
|
210
|
Gupta PB, Onder TT, Jiang G, Tao K,
Kuperwasser C, Weinberg RA and Lander ES: Identification of
selective inhibitors of cancer stem cells by high-throughput
screening. Cell. 138:645–659. 2009.
|
|
211
|
Lu W and Li Y: Salinomycin suppresses LRP6
expression and inhibits both Wnt/β-catenin and mTORC1 signaling in
breast and prostate cancer cells. J Cell Biochem. 115:1799–1807.
2014.
|
|
212
|
Le PN, McDermott JD and Jimeno A:
Targeting the Wnt pathway in human cancers: Therapeutic targeting
with a focus on OMP-54F28. Pharmacol Ther. 146:1–11. 2015.
|
|
213
|
Lu W, Lin C, Roberts MJ, Waud WR, Piazza
GA and Li Y: Niclosamide suppresses cancer cell growth by inducing
Wnt co-receptor LRP6 degradation and inhibiting the Wnt/β-catenin
pathway. PLoS One. 6:e292902011.
|
|
214
|
Londoño-Joshi AI, Arend RC, Aristizabal L,
Lu W, Samant RS, Metge BJ, Hidalgo B, Grizzle WE, Conner M,
Forero-Torres A, et al: Effect of niclosamide on basal-like breast
cancers. Mol Cancer Ther. 13:800–811. 2014.
|
|
215
|
Wang YC, Chao TK, Chang CC, Yo YT, Yu MH
and Lai HC: Drug screening identifies niclosamide as an inhibitor
of breast cancer stem-like cells. PLoS One. 8:e745382013.
|
|
216
|
Ye T, Xiong Y, Yan Y, Xia Y, Song X, Liu
L, Li D, Wang N, Zhang L, Zhu Y, et al: The anthelmintic drug
niclosamide induces apoptosis, impairs metastasis and reduces
immunosuppressive cells in breast cancer model. PLoS One.
9:e858872014.
|
|
217
|
Gurney A, Axelrod F, Bond CJ, Cain J,
Chartier C, Donigan L, Fischer M, Chaudhari A, Ji M, Kapoun AM, et
al: Wnt pathway inhibition via the targeting of Frizzled receptors
results in decreased growth and tumorigenicity of human tumors.
Proc Natl Acad Sci USA. 109:11717–11722. 2012.
|
|
218
|
Fischer MM, Cancilla B, Yeung VP,
Cattaruzza F, Chartier C, Murriel CL, Cain J, Tam R, Cheng CY,
Evans JW, et al: WNT antagonists exhibit unique combinatorial
antitumor activity with taxanes by potentiating mitotic cell death.
Sci Adv. 3:e17000902017.
|
|
219
|
Diamond JR, Becerra C, Richards D, Mita A,
Osborne C, O'Shaughnessy J, Zhang C, Henner R, Kapoun AM, Xu L, et
al: Phase Ib clinical trial of the anti-frizzled antibody
vantictumab (OMP-18R5) plus paclitaxel in patients with locally
advanced or metastatic HER2-negative breast cancer. Breast Cancer
Res Treat. 184:53–62. 2020.
|
|
220
|
Huang SM, Mishina YM, Liu S, Cheung A,
Stegmeier F, Michaud GA, Charlat O, Wiellette E, Zhang Y, Wiessner
S, et al: Tankyrase inhibition stabilizes axin and antagonizes Wnt
signalling. Nature. 461:614–620. 2009.
|
|
221
|
Bao R, Christova T, Song S, Angers S, Yan
X and Attisano L: Inhibition of tankyrases induces Axin
stabilization and blocks Wnt signalling in breast cancer cells.
PLoS One. 7:e486702012.
|
|
222
|
Menon M, Elliott R, Bowers L, Balan N,
Rafiq R, Costa-Cabral S, Munkonge F, Trinidade I, Porter R,
Campbell AD, et al: A novel tankyrase inhibitor, MSC2504877,
enhances the effects of clinical CDK4/6 inhibitors. Sci Rep.
9:2012019.
|
|
223
|
Sharma M, Li L, Celver J, Killian C,
Kovoor A and Seeram NP: Effects of fruit ellagitannin extracts,
ellagic acid, and their colonic metabolite, urolithin a, on wnt
signaling. J Agric Food Chem. 58:3965–3969. 2010.
|
|
224
|
Sher A, Tabassum S, Wallace HM, Khan A,
Karim AM, Gul S and Kang SC: In vitro analysis of cytotoxic
activities of monotheca buxifolia targeting WNT/β-catenin genes in
breast cancer cells. Plants (Basel). 12:11472023.
|
|
225
|
Mandal S, Gamit N, Varier L, Dharmarajan A
and Warrier S: Inhibition of breast cancer stem-like cells by a
triterpenoid, ursolic acid, via activation of Wnt antagonist, sFRP4
and suppression of miRNA-499a-5p. Life Sci. 265:1188542021.
|
|
226
|
Loibl S, Poortmans P, Morrow M, Denkert C
and Curigliano G: Breast cancer. Lancet. 397:1750–1769. 2021.
|
|
227
|
Narod SA: Which genes for hereditary
breast cancer? N Engl J Med. 384:471–473. 2021.
|
|
228
|
Li L, Yang LL, Yang SL, Wang RQ, Gao H,
Lin ZY, Zhao YY, Tang WW, Han R, Wang WJ, et al: Andrographolide
suppresses breast cancer progression by modulating tumor-associated
macrophage polarization through the wnt/β-catenin pathway.
Phytother Res. 36:4587–4603. 2022.
|
|
229
|
Wang M, Zheng Y, Hao Q, Mao G, Dai Z, Zhai
Z, Lin S, Liang B, Kang H and Ma X: Hypoxic BMSC-derived exosomal
miR-210-3p promotes progression of triple-negative breast cancer
cells via NFIX-wnt/β-catenin signaling axis. J Transl Med.
23:392025.
|
|
230
|
Shome R, Sen P, Sarkar S and Ghosh SS:
Single-cell transcriptomics reveals the intra-tumoral heterogeneity
and SQSTM1/P62 and wnt/β-catenin mediated epithelial to mesenchymal
transition and stemness of triple-negative breast cancer. Exp Cell
Res. 438:1140322024.
|
|
231
|
Pitt JM, Marabelle A, Eggermont A, Soria
JC, Kroemer G and Zitvogel L: Targeting the tumor microenvironment:
Removing obstruction to anticancer immune responses and
immunotherapy. Ann Oncol. 27:1482–1492. 2016.
|
|
232
|
Vitale I, Manic G, Coussens LM, Kroemer G
and Galluzzi L: Macrophages and metabolism in the tumor
microenvironment. Cell Metab. 30:36–50. 2019.
|
|
233
|
Xiao Y and Yu D: Tumor microenvironment as
a therapeutic target in cancer. Pharmacol Ther. 221:1077532021.
|
|
234
|
Jin MZ and Jin WL: The updated landscape
of tumor microenvironment and drug repurposing. Signal Transduct
Target Ther. 5:1662020.
|
|
235
|
Rong Z, Zhang L, Li Z, Xiao Z, Duan Y, Ren
X, Zi Y, Gao J, Mu Y, Guan Y, et al: SIK2 maintains breast cancer
stemness by phosphorylating LRP6 and activating Wnt/beta-catenin
signaling. Oncogene. 41:2390–2403. 2022.
|
|
236
|
Yang Z, Zhang Q, Yu L, Zhu J, Cao Y and
Gao X: The signaling pathways and targets of traditional Chinese
medicine and natural medicine in triple-negative breast cancer. J
Ethnopharmacol. 264:1132492021.
|
|
237
|
Zhong C, Xie Z, Zeng L, Yuan C and Duan S:
MIR4435-2HG is a potential pan-cancer biomarker for diagnosis and
prognosis. Front Immunol. 13:8550782022.
|
|
238
|
Prasad CP, Gupta SD, Rath G and Ralhan R:
Wnt signaling pathway in invasive ductal carcinoma of the breast:
Relationship between beta-catenin, dishevelled and cyclin D1
expression. Oncology. 73:112–117. 2007.
|
|
239
|
Zhang CH, Liu H, Zhao WL, Zhao WX, Zhou HM
and Shao RG: G3BP1 promotes human breast cancer cell proliferation
through coordinating with GSK-3β and stabilizing β-catenin. Acta
Pharmacol Sin. 42:1900–1912. 2021.
|
|
240
|
Jung HY, Jun S, Lee M, Kim HC, Wang X, Ji
H, McCrea PD and Park JI: PAF and EZH2 induce Wnt/β-catenin
signaling hyperactivation. Mol Cell. 52:193–205. 2013.
|
|
241
|
Hashemi M, Hasani S, Hajimazdarany S,
Ghadyani F, Olyaee Y, Khodadadi M, Ziyarani MF, Dehghanpour A,
Salehi H, Kakavand A, et al: Biological functions and molecular
interactions of Wnt/β-catenin in breast cancer: Revisiting
signaling networks. Int J Biol Macromol. 232:1233772023.
|
|
242
|
Liu C, Sun L, Yang J, Liu T, Yang Y, Kim
SM, Ou X, Wang Y, Sun L, Zaidi M, et al: FSIP1 regulates autophagy
in breast cancer. Proc Natl Acad Sci USA. 115:13075–13080.
2018.
|
|
243
|
Li P, Guo Y, Bledsoe G, Yang Z, Chao L and
Chao J: Kallistatin induces breast cancer cell apoptosis and
autophagy by modulating Wnt signaling and microRNA synthesis. Exp
Cell Res. 340:305–314. 2016.
|
|
244
|
Xie J, Deng X, Xie Y, Zhu H, Liu P, Deng
W, Ning L, Tang Y, Sun Y, Tang H, et al: Multi-omics analysis of
disulfidptosis regulators and therapeutic potential reveals
glycogen synthase 1 as a disulfidptosis triggering target for
triple-negative breast cancer. MedComm (2020). 5:e5022024.
|
|
245
|
Song S, Christova T, Perusini S, Alizadeh
S, Bao RY, Miller BW, Hurren R, Jitkova Y, Gronda M, Isaac M, et
al: Wnt inhibitor screen reveals iron dependence of β-catenin
signaling in cancers. Cancer Res. 71:7628–7639. 2011.
|
|
246
|
Kumar D, Gurrapu S, Wang Y, Bae SY, Pandey
PR, Chen H, Mondal J, Han H, Wu CJ, Karaiskos S, et al: LncRNA
Malat1 suppresses pyroptosis and T cell-mediated killing of
incipient metastatic cells. Nat Cancer. 5:262–282. 2024.
|
|
247
|
Liu Y, Wang X, Liu M, Hao X, Peng Y and
Zheng J: Chemical nature of metabolic activation of natural
products in traditional Chinese medicines possibly associated with
toxicities. Acupunct Herb Med. 4:184–196. 2024.
|
|
248
|
OncoMed Pharmaceuticals: A phase 1b dose
escalation study of vantictumab (OMP-18R5) in combination with
paclitaxel in patients with locally recurrent or metastatic breast
cancer. OncoMed Pharmaceuticals, Inc.; 2020
|
|
249
|
Säfholm A, Tuomela J, Rosenkvist J, Dejmek
J, Härkönen P and Andersson T: The Wnt-5a-derived hexapeptide
Foxy-5 inhibits breast cancer metastasis in vivo by targeting cell
motility. Clin Cancer Res. 14:6556–6563. 2008.
|
|
250
|
Curegenix: A phase 1 open-label dose
escalation study of CGX1321 in subjects with advanced solid tumors
with expansion in advanced gastrointestinal tumors and phase 1b
study of CGX1321 in combination with pembrolizumab in subjects with
advanced colorectal cancer or in combination with encorafenib +
cetuximab in subjects with BRAFV600E mutated advanced colorectal
cancer. Curegenix Inc.; 2022
|
|
251
|
Qi D, Liu Y, Li J, Huang JH, Hu X and Wu
E: Salinomycin as a potent anticancer stem cell agent: State of the
art and future directions. Med Res Rev. 42:1037–1063. 2022.
|
|
252
|
Singh S, Weiss A, Goodman J, Fisk M,
Kulkarni S, Lu I, Gray J, Smith R, Sommer M and Cheriyan J:
Niclosamide-A promising treatment for COVID-19. Br J Pharmacol.
179:3250–3267. 2022.
|
|
253
|
Liu L, Li Z and Wu W: Harnessing natural
inhibitors of protein synthesis for cancer therapy: A comprehensive
review. Pharmacol Res. 209:1074492024.
|
|
254
|
Raut D, Vora A and Bhatt LK: The
Wnt/β-catenin pathway in breast cancer therapy: A pre-clinical
perspective of its targeting for clinical translation. Expert Rev
Anticancer Ther. 22:97–114. 2022.
|
|
255
|
Tang C, Gong L, Lvzi Xu, Qiu K, Zhang Z
and Wan L: Echinacoside inhibits breast cancer cells by suppressing
the wnt/β-catenin signaling pathway. Biochem Biophys Res Commun.
526:170–175. 2020.
|
|
256
|
Fatima I, El-Ayachi I, Taotao L, Lillo MA,
Krutilina RI, Seagroves TN, Radaszkiewicz TW, Hutnan M, Bryja V,
Krum SA, et al: The natural compound Jatrophone interferes with
Wnt/ β-catenin signaling and inhibits proliferation and EMT in
human triple-negative breast cancer. PLoS One. 12:e01898642017.
|
|
257
|
Alitongbieke G, Zhang X, Zhu F, Wu Q, Lin
Z, Li X, Xue Y, Lai X, Feng J, Huang R and Pan Y: Glucan from
Oudemansiella raphanipes suppresses breast cancer proliferation and
metastasis by regulating macrophage polarization and the
WNT/β-catenin signaling pathway. J Cancer. 15:1169–1181. 2024.
|
|
258
|
Wang Z, Li B, Zhou L, Yu S, Su Z, Song J,
Sun Q, Sha O, Wang X, Jiang W, et al: Prodigiosin inhibits
Wnt/β-catenin signaling and exerts anticancer activity in breast
cancer cells. Proc Natl Acad Sci USA. 113:13150–13155. 2016.
|
|
259
|
Ahmed RA, Alawin OA and Sylvester PW:
γ-Tocotrienol reversal of epithelial-to-mesenchymal transition in
human breast cancer cells is associated with inhibition of
canonical Wnt signalling. Cell Prolif. 49:460–470. 2016.
|
|
260
|
Lu W, Lin C and Li Y: Rottlerin induces
Wnt co-receptor LRP6 degradation and suppresses both Wnt/β-catenin
and mTORC1 signaling in prostate and breast cancer cells. Cell
Signal. 26:1303–1309. 2014.
|
|
261
|
Li X, Meng Y, Xie C, Zhu J, Wang X, Li Y,
Geng S, Wu J, Zhong C and Li M: Diallyl Trisulfide inhibits breast
cancer stem cells via suppression of Wnt/β-catenin pathway. J Cell
Biochem. 119:4134–4141. 2018.
|
|
262
|
Ahmad A, Sarkar SH, Bitar B, Ali S,
Aboukameel A, Sethi S, Li Y, Bao B, Kong D, Banerjee S, et al:
Garcinol regulates EMT and Wnt signaling pathways in vitro and in
vivo, leading to anticancer activity against breast cancer cells.
Mol Cancer Ther. 11:2193–2201. 2012.
|
|
263
|
Su Z, Wang C, Chang D, Zhu X, Sai C and
Pei J: Limonin attenuates the stemness of breast cancer cells via
suppressing MIR216A methylation. Biomed Pharmacother.
112:1086992019.
|
|
264
|
Kim J, Zhang X, Rieger-Christ KM,
Summerhayes IC, Wazer DE, Paulson KE and Yee AS: Suppression of Wnt
signaling by the green tea compound (-)-epigallocatechin 3-gallate
(EGCG) in invasive breast cancer cells. Requirement of the
transcriptional repressor HBP1. J Biol Chem. 281:10865–10875.
2006.
|
|
265
|
Xu X, Rajamanicham V, Xu S, Liu Z, Yan T,
Liang G, Guo G, Zhou H and Wang Y: Schisandrin A inhibits triple
negative breast cancer cells by regulating Wnt/ER stress signaling
pathway. Biomed Pharmacother. 115:1089222019.
|
|
266
|
Liu X, Wang LL, Duan CY, Rong YR, Liang
YQ, Zhu QX, Hao GP and Wang FZ: Daurisoline inhibits proliferation,
induces apoptosis, and enhances TRAIL sensitivity of breast cancer
cells by upregulating DR5. Cell Biol Int. Apr 2–2024.Epub ahead of
print.
|
|
267
|
Su Y and Simmen RC: Soy isoflavone
genistein upregulates epithelial adhesion molecule E-cadherin
expression and attenuates beta-catenin signaling in mammary
epithelial cells. Carcinogenesis. 30:331–339. 2009.
|
|
268
|
Fu Y, Chang H, Peng X, Bai Q, Yi L, Zhou
Y, Zhu J and Mi M: Resveratrol inhibits breast cancer stem-like
cells and induces autophagy via suppressing Wnt/β-catenin signaling
pathway. PLoS One. 9:e1025352014.
|
|
269
|
Huang Y, Zhao K, Hu Y, Zhou Y, Luo X, Li
X, Wei L, Li Z, You Q, Guo Q and Lu N: Wogonoside inhibits
angiogenesis in breast cancer via suppressing Wnt/β-catenin
pathway. Mol Carcinog. 55:1598–1612. 2016.
|
|
270
|
Xiao X, Ao M, Xu F, Li X, Hu J, Wang Y, Li
D, Zhu X, Xin C and Shi W: Effect of matrine against breast cancer
by downregulating the vascular endothelial growth factor via the
Wnt/β-catenin pathway. Oncol Lett. 15:1691–1697. 2018.
|
|
271
|
Chen Y, Chen ZY, Chen L, Zhang JY, Fu LY,
Tao L, Zhang Y, Hu XX and Shen XC: Shikonin inhibits
triple-negative breast cancer-cell metastasis by reversing the
epithelial-to-mesenchymal transition via glycogen synthase kinase
3β-regulated suppression of β-catenin signaling. Biochem Pharmacol.
166:33–45. 2019.
|
|
272
|
Koval A, Pieme CA, Queiroz EF, Ragusa S,
Ahmed K, Blagodatski A, Wolfender JL, Petrova TV and Katanaev VL:
Tannins from Syzygium guineense suppress Wnt signaling and
proliferation of Wnt-dependent tumors through a direct effect on
secreted Wnts. Cancer Lett. 435:110–120. 2018.
|
|
273
|
Wang J, Qi H, Zhang X, Si W, Xu F, Hou T,
Zhou H, Wang A, Li G, Liu Y, et al: Saikosaponin D from Radix
Bupleuri suppresses triple-negative breast cancer cell growth by
targeting β-catenin signaling. Biomed Pharmacother. 108:724–733.
2018.
|
|
274
|
Zhang X, Bao C and Zhang J: Inotodiol
suppresses proliferation of breast cancer in rat model of type 2
diabetes mellitus via downregulation of β-catenin signaling. Biomed
Pharmacother. 99:142–150. 2018.
|
|
275
|
Li X, Wang X, Xie C, Zhu J, Meng Y, Chen
Y, Li Y, Jiang Y, Yang X, Wang S, et al: Sonic hedgehog and
Wnt/β-catenin pathways mediate curcumin inhibition of breast cancer
stem cells. Anticancer Drugs. 29:208–215. 2018.
|
|
276
|
Sun Y, Gu Y, Gao X, Jin X, Wink M,
Sharopov FS, Yang L and Sethi G: Lycorine suppresses the malignancy
of breast carcinoma by modulating epithelial mesenchymal transition
and β-catenin signaling. Pharmacol Res. 195:1068662023.
|
|
277
|
Yang S, Sun S, Xu W, Yu B, Wang G and Wang
H: Astragalus polysaccharide inhibits breast cancer cell migration
and invasion by regulating epithelial-mesenchymal transition via
the Wnt/β-catenin signaling pathway. Mol Med Rep. 21:1819–1832.
2020.
|
|
278
|
Lee HJ, Wang NX, Shi DL and Zheng JJ:
Sulindac inhibits canonical Wnt signaling by blocking the PDZ
domain of the protein Dishevelled. Angew Chem Int Ed Engl.
48:6448–6452. 2009.
|
|
279
|
Maloney D: Phase I study of adoptive
immunotherapy for advanced ROR1+ malignancies with defined subsets
of autologous T cells engineered to express a ROR1-specific
chimeric antigen receptor. Fred Hutchinson Cancer Center; 2022
|
|
280
|
VelosBio Inc., a subsidiary of Merck
&; Co., Inc.: A phase 2 study of VLS-101 in patients with
solid tumors. VelosBio Inc., a subsidiary of Merck &; Co.,
Inc.; Rahway, NJ: 2024
|
|
281
|
NBE-Therapeutics AG: A First-in-Human,
Phase 1/2 Study of NBE-002, an Anti-ROR1 Antibody Drug Conjugate,
in Patients With Advanced Solid Tumors. NBE-Therapeutics AG;
2023
|
|
282
|
Parker B: A phase 1b pilot clinical trial
of cirmtuzumab, an anti-ROR1 monoclonal antibody, in combination
with paclitaxel for the treatment of patients with metastatic, or
locally advanced, unresectable breast cancer. NIH; Bethesda, MD:
2024
|
|
283
|
BioAtla, Inc.: A Phase 1/2 Safety and
Efficacy Dose Escalation/ Dose Expansion Study of a CAB-ROR2-ADC,
Alone and in Combination with a PD-1 Inhibitor, in Patients with
Advanced Solid Tumors (Ph1) and Melanoma and NSCLC Patients (Ph2).
BioAtla, Inc.; 2025
|
|
284
|
Lenz HJ, Argilés G, de Jonge MJA, Yaeger
R, Doi T, El-Khoueiry A, Eskens F, Kuboki Y, Bertulis J,
Nazabadioko S, et al: A phase I dose-escalation study of LRP5/6
antagonist BI 905677 in patients with advanced solid tumors. ESMO
Open. 9:1037292024.
|
|
285
|
Fischer MM, Yeung VP, Cattaruzza F,
Hussein R, Yen WC, Murriel C, Evans JW, O'Young G, Brunner AL, Wang
M, et al: RSPO3 antagonism inhibits growth and tumorigenicity in
colorectal tumors harboring common Wnt pathway mutations. Sci Rep.
7:152702017.
|
|
286
|
Kuroki H, Anraku T, Kazama A, Bilim V,
Tasaki M, Schmitt D, Mazar AP, Giles FJ, Ugolkov A and Tomita Y:
9-ING-41, a small molecule inhibitor of GSK-3beta, potentiates the
effects of anticancer therapeutics in bladder cancer. Sci Rep.
9:199772019.
|
|
287
|
Edenfield WJ, Richards DA, Vukelja SJ,
Weiss GJ, Sirard CA, Landau SB and Ramanathan RK: A phase 1 study
evaluating the safety and efficacy of DKN-01, an investigational
monoclonal antibody (Mab) in patients (pts) with advanced non-small
cell lung cancer. J Chin Oncol. 32:8068. 2014.
|
|
288
|
Children's Oncology Group: A Phase 1/2
Study of Tegavivint (IND#156033, NSC#826393) in Children,
Adolescents, and Young Adults with Recurrent or Refractory Solid
Tumors, Including Lymphomas and Desmoid Tumors. Children's Oncology
Group; 2024
|
|
289
|
McWilliams RR, Ko AH, Chiorean EG, Kwak
EL, Lenz HJ, Nadler PI, Wood DL, Fujimori M, Morita K, Inada T and
Kouji H: A phase Ib dose-escalation study of PRI-724, a
CBP/beta-catenin modulator, plus gemcitabine (GEM) in patients with
advanced pancreatic adenocarcinoma (APC) as second-line therapy
after FOLFIRINOX or FOLFOX. J Chin Oncol. 33:e152702015.
|
|
290
|
Rodon J, Argilés G, Connolly RM,
Vaishampayan U, de Jonge M, Garralda E, Giannakis M, Smith DC,
Dobson JR, McLaughlin ME, et al: Phase 1 study of single-agent
WNT974, a first-in-class Porcupine inhibitor, in patients with
advanced solid tumours. Br J Cancer. 125:28–37. 2021.
|
|
291
|
Plummer R, Dua D, Cresti N, Drew Y,
Stephens P, Foegh M, Knudsen S, Sachdev P, Mistry BM, Dixit V, et
al: First-in-human study of the PARP/tankyrase inhibitor E7449 in
patients with advanced solid tumours and evaluation of a novel
drug-response predictor. Br J Cancer. 123:525–533. 2020.
|
|
292
|
Scott A, Call JA, Chandana S, Borazanci E,
Falchook GS, Bordoni R, Richey S, Starodub A, Chung V, Lakhani NJ,
et al: 451O Preliminary evidence of clinical activity from phase I
and Ib trials of the CLK/DYRK inhibitor cirtuvivint (CIRT) in
subjects with advanced solid tumors. Ann Oncol. 33(Suppl 7):
S742–S743. 2022.
|
|
293
|
Redx Pharma Ltd.: A modular multi-arm,
phase 1, adaptive design study to evaluate the safety and
tolerability of RXC004, alone and in combination with anti-cancer
treatments, in patients with advanced malignancies. Redx Pharma
Ltd.; 2024
|
|
294
|
Molenaar RJ, Coelen RJS, Khurshed M, Roos
E, Caan MWA, van Linde ME, Kouwenhoven M, Bramer JAM, Bovée JVMG,
Mathôt RA, et al: Study protocol of a phase IB/II clinical trial of
metformin and chloroquine in patients with IDH1-mutated or
IDH2-mutated solid tumours. BMJ Open. 7:e0149612017.
|
|
295
|
Hattinger CM, Patrizio MP, Magagnoli F,
Luppi S and Serra M: An update on emerging drugs in osteosarcoma:
Towards tailored therapies? Expert Opin Emerg Drugs. 24:153–171.
2019.
|