Spandidos Publications Logo
  • About
    • About Spandidos
    • Aims and Scopes
    • Abstracting and Indexing
    • Editorial Policies
    • Reprints and Permissions
    • Job Opportunities
    • Terms and Conditions
    • Contact
  • Journals
    • All Journals
    • Oncology Letters
      • Oncology Letters
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Oncology
      • International Journal of Oncology
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Molecular and Clinical Oncology
      • Molecular and Clinical Oncology
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Experimental and Therapeutic Medicine
      • Experimental and Therapeutic Medicine
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Molecular Medicine
      • International Journal of Molecular Medicine
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Biomedical Reports
      • Biomedical Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Oncology Reports
      • Oncology Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Molecular Medicine Reports
      • Molecular Medicine Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • World Academy of Sciences Journal
      • World Academy of Sciences Journal
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Functional Nutrition
      • International Journal of Functional Nutrition
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Epigenetics
      • International Journal of Epigenetics
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Medicine International
      • Medicine International
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
  • Articles
  • Information
    • Information for Authors
    • Information for Reviewers
    • Information for Librarians
    • Information for Advertisers
    • Conferences
  • Language Editing
Spandidos Publications Logo
  • About
    • About Spandidos
    • Aims and Scopes
    • Abstracting and Indexing
    • Editorial Policies
    • Reprints and Permissions
    • Job Opportunities
    • Terms and Conditions
    • Contact
  • Journals
    • All Journals
    • Biomedical Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Experimental and Therapeutic Medicine
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Epigenetics
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Functional Nutrition
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Molecular Medicine
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Oncology
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Medicine International
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Molecular and Clinical Oncology
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Molecular Medicine Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Oncology Letters
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Oncology Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • World Academy of Sciences Journal
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
  • Articles
  • Information
    • For Authors
    • For Reviewers
    • For Librarians
    • For Advertisers
    • Conferences
  • Language Editing
Login Register Submit
  • This site uses cookies
  • You can change your cookie settings at any time by following the instructions in our Cookie Policy. To find out more, you may read our Privacy Policy.

    I agree
Search articles by DOI, keyword, author or affiliation
Search
Advanced Search
presentation
International Journal of Oncology
Join Editorial Board Propose a Special Issue
Print ISSN: 1019-6439 Online ISSN: 1791-2423
Journal Cover
May-2025 Volume 66 Issue 5

Full Size Image

Cover Legend PDF

Sign up for eToc alerts
Recommend to Library

Journals

International Journal of Molecular Medicine

International Journal of Molecular Medicine

International Journal of Molecular Medicine is an international journal devoted to molecular mechanisms of human disease.

International Journal of Oncology

International Journal of Oncology

International Journal of Oncology is an international journal devoted to oncology research and cancer treatment.

Molecular Medicine Reports

Molecular Medicine Reports

Covers molecular medicine topics such as pharmacology, pathology, genetics, neuroscience, infectious diseases, molecular cardiology, and molecular surgery.

Oncology Reports

Oncology Reports

Oncology Reports is an international journal devoted to fundamental and applied research in Oncology.

Experimental and Therapeutic Medicine

Experimental and Therapeutic Medicine

Experimental and Therapeutic Medicine is an international journal devoted to laboratory and clinical medicine.

Oncology Letters

Oncology Letters

Oncology Letters is an international journal devoted to Experimental and Clinical Oncology.

Biomedical Reports

Biomedical Reports

Explores a wide range of biological and medical fields, including pharmacology, genetics, microbiology, neuroscience, and molecular cardiology.

Molecular and Clinical Oncology

Molecular and Clinical Oncology

International journal addressing all aspects of oncology research, from tumorigenesis and oncogenes to chemotherapy and metastasis.

World Academy of Sciences Journal

World Academy of Sciences Journal

Multidisciplinary open-access journal spanning biochemistry, genetics, neuroscience, environmental health, and synthetic biology.

International Journal of Functional Nutrition

International Journal of Functional Nutrition

Open-access journal combining biochemistry, pharmacology, immunology, and genetics to advance health through functional nutrition.

International Journal of Epigenetics

International Journal of Epigenetics

Publishes open-access research on using epigenetics to advance understanding and treatment of human disease.

Medicine International

Medicine International

An International Open Access Journal Devoted to General Medicine.

Journal Cover
May-2025 Volume 66 Issue 5

Full Size Image

Cover Legend PDF

Sign up for eToc alerts
Recommend to Library

  • Article
  • Citations
    • Cite This Article
    • Download Citation
    • Create Citation Alert
    • Remove Citation Alert
    • Cited By
  • Similar Articles
    • Related Articles (in Spandidos Publications)
    • Similar Articles (Google Scholar)
    • Similar Articles (PubMed)
  • Download PDF
  • Download XML
  • View XML
Review Open Access

Role of the Wnt signaling pathway in the complex microenvironment of breast cancer and prospects for therapeutic potential (Review)

  • Authors:
    • Meng Xuan Sun
    • Han Ci Zhu
    • Yang Yu
    • Yan Yao
    • Hua Yao Li
    • Fu Bin Feng
    • Qing Yang Wang
    • Rui Juan Liu
    • Chang Gang Sun
  • View Affiliations / Copyright

    Affiliations: College of First Clinical Medicine, Shandong University of Traditional Chinese Medicine, Jinan, Shandong 250355, P.R. China, State Key Laboratory of Quality Research in Chinese Medicine, and Faculty of Chinese Medicine, Macau University of Science and Technology, Macau 999078, P.R. China, Department of Oncology, Weifang Traditional Chinese Hospital, Weifang, Shandong 261000, P.R. China, College of Traditional Chinese Medicine, Shandong Second Medical University, Weifang, Shandong 261053, P.R. China
    Copyright: © Sun et al. This is an open access article distributed under the terms of Creative Commons Attribution License.
  • Article Number: 36
    |
    Published online on: March 21, 2025
       https://doi.org/10.3892/ijo.2025.5742
  • Expand metrics +
Metrics: Total Views: 0 (Spandidos Publications: | PMC Statistics: )
Metrics: Total PDF Downloads: 0 (Spandidos Publications: | PMC Statistics: )
Cited By (CrossRef): 0 citations Loading Articles...

This article is mentioned in:



Abstract

The focus on breast cancer treatment has shifted from the cytotoxic effects of single drugs on tumor cells to multidimensional multi‑pathway synergistic intervention strategies targeting the tumor microenvironment (TME). The activation of the Wnt signaling pathway in the TME of breast cancer cells serves a key regulatory role in tissue homeostasis and is a key driver of the carcinogenic process. Modulating the crosstalk between the Wnt pathway and TME of breast cancer is key for understanding the biological behavior of breast cancer and advancing the development of novel antitumor drugs. The present review aimed to summarize the complex mechanisms of the Wnt signaling pathway in the breast cancer TME, interactions between the Wnt signaling pathway and components of the breast cancer TME and breast cancer‑associated genes, as well as the interactions between the Wnt signaling pathway and other signaling cascades at the molecular level. Furthermore, the present review aimed to highlight the unique advantages of the Wnt signaling pathway in the macro‑regulation of the TME and the current therapeutic strategies targeting the Wnt signaling pathway, their potential clinical value and future research directions in breast cancer treatment.
View Figures

Figure 1

Figure 2

Figure 3

Figure 4

Figure 5

View References

1 

Kim J, Harper A, McCormack V, Sung H, Houssami N, Morgan E, Mutebi M, Garvey G, Soerjomataram I and Fidler-Benaoudia MM: Global patterns and trends in breast cancer incidence and mortality across 185 countries. Nat Med. Feb 24–2025.Epub ahead of print.

2 

Scholler N, Perbost R, Locke FL, Jain MD, Turcan S, Danan C, Chang EC, Neelapu SS, Miklos DB, Jacobson CA, et al: Tumor immune contexture is a determinant of anti-CD19 CAR T cell efficacy in large B cell lymphoma. Nat Med. 28:1872–1882. 2022.

3 

Yu T and Di G: Role of tumor microenvironment in triple-negative breast cancer and its prognostic significance. Chin J Cancer Res. 29:237–252. 2017.

4 

Rodríguez-Bejarano OH, Parra-López C and Patarroyo MA: A review concerning the breast cancer-related tumour microenvironment. Crit Rev Oncol Hematol. 199:1043892024.

5 

Park J, Hsueh PC, Li Z and Ho PC: Microenvironment-driven metabolic adaptations guiding CD8+ T cell anti-tumor immunity. Immunity. 56:32–42. 2023.

6 

Mao X, Xu J, Wang W, Liang C, Hua J, Liu J, Zhang B, Meng Q, Yu X and Shi S: Crosstalk between cancer-associated fibroblasts and immune cells in the tumor microenvironment: new findings and future perspectives. Mol Cancer. 20:1312021.

7 

Christofides A, Strauss L, Yeo A, Cao C, Charest A and Boussiotis VA: The complex role of tumor-infiltrating macrophages. Nat Immunol. 23:1148–1156. 2022.

8 

Soleas JP, D'Arcangelo E, Huang L, Karoubi G, Nostro MC, McGuigan AP and Waddell TK: Assembly of lung progenitors into developmentally-inspired geometry drives differentiation via cellular tension. Biomaterials. 254:1201282020.

9 

Salik B, Yi H, Hassan N, Santiappillai N, Vick B, Connerty P, Duly A, Trahair T, Woo AJ, Beck D, et al: Targeting RSPO3-LGR4 signaling for leukemia stem cell eradication in acute myeloid leukemia. Cancer Cell. 38:263–278.e6. 2020.

10 

Choi BR, Cave C, Na CH and Sockanathan S: GDE2-Dependent activation of canonical wnt signaling in neurons regulates oligodendrocyte maturation. Cell Rep. 31:1075402020.

11 

Zhuang X, Zhang H, Li X, Li X, Cong M, Peng F, Yu J, Zhang X, Yang Q and Hu G: Differential effects on lung and bone metastasis of breast cancer by Wnt signalling inhibitor DKK1. Nat Cell Biol. 19:1274–1285. 2017.

12 

Krishnamurthy N and Kurzrock R: Targeting the Wnt/betacatenin pathway in cancer: Update on effectors and inhibitors. Cancer Treat Rev. 62:50–60. 2018.

13 

Wend P, Runke S, Wend K, Anchondo B, Yesayan M, Jardon M, Hardie N, Loddenkemper C, Ulasov I, Lesniak MS, et al: WNT10B/β-catenin signalling induces HMGA2 and proliferation in metastatic triple-negative breast cancer. EMBO Mol Med. 5:264–279. 2013.

14 

Zhu L, Tian Q, Gao H, Wu K, Wang B, Ge G, Jiang S, Wang K, Zhou C, He J, et al: PROX1 promotes breast cancer invasion and metastasis through WNT/β-catenin pathway via interacting with hnRNPK. Int J Biol Sci. 18:2032–2046. 2022.

15 

Teng Y, Mei Y, Hawthorn L and Cowell JK: WASF3 regulates miR-200 inactivation by ZEB1 through suppression of KISS1 leading to increased invasiveness in breast cancer cells. Oncogene. 33:203–211. 2014.

16 

Mortezaee K: WNT/β-catenin regulatory roles on PD-(L)1 and immunotherapy responses. Clin Exp Med. 24:152024.

17 

Wang L, Zhang L, Zhao L, Shao S, Ning Q, Jing X, Zhang Y, Zhao F, Liu X, Gu S, et al: VEGFA/NRP-1/GAPVD1 axis promotes progression and cancer stemness of triple-negative breast cancer by enhancing tumor cell-macrophage crosstalk. Int J Biol Sci. 20:446–463. 2024.

18 

Foldynová-Trantírková S, Sekyrová P, Tmejová K, Brumovská E, Bernatík O, Blankenfeldt W, Krejcí P, Kozubík A, Dolezal T, Trantírek L and Bryja V: Breast cancer-specific mutations in CK1epsilon inhibit Wnt/beta-catenin and activate the Wnt/Rac1/JNK and NFAT pathways to decrease cell adhesion and promote cell migration. Breast Cancer Res. 12:R302010.

19 

Zhou Y, Xu J, Luo H, Meng X, Chen M and Zhu D: Wnt signaling pathway in cancer immunotherapy. Cancer Lett. 525:84–96. 2022.

20 

Liao Y, Badmann S, Kraus F, Topalov NE, Mayr D, Kolben T, Hester A, Beyer S, Mahner S, Jeschke U, et al: PLA2G7/PAF-AH as potential negative regulator of the wnt signaling pathway mediates protective effects in BRCA1 mutant breast cancer. Int J Mol Sci. 24:8822023.

21 

Liu L, Xiao B, Hirukawa A, Smith HW, Zuo D, Sanguin-Gendreau V, McCaffrey L, Nam AJ and Muller WJ: Ezh2 promotes mammary tumor initiation through epigenetic regulation of the Wnt and mTORC1 signaling pathways. Proc Natl Acad Sci USA. 120:e23030101202023.

22 

Wu F, Yang J, Liu J, Wang Y, Mu J, Zeng Q, Deng S and Zhou H: Signaling pathways in cancer-associated fibroblasts and targeted therapy for cancer. Signal Transduct Target Ther. 6:2182021.

23 

Song P, Gao Z, Bao Y, Chen L, Huang Y, Liu Y, Dong Q and Wei X: Wnt/β-catenin signaling pathway in carcinogenesis and cancer therapy. J Hematol Oncol. 17:462024.

24 

Liu Y, Zhao C, Wang G, Chen J, Ju S, Huang J and Wang X: SNORD1C maintains stemness and 5-FU resistance by activation of Wnt signaling pathway in colorectal cancer. Cell Death Discov. 8:2002022.

25 

Wei B, Cao J, Tian JH, Yu CY, Huang Q, Yu JJ, Ma R, Wang J, Xu F and Wang LB: Mortalin maintains breast cancer stem cells stemness via activation of Wnt/GSK3β/β-catenin signaling pathway. Am J Cancer Res. 11:2696–2716. 2021.

26 

Zhao H, Ming T, Tang S, Ren S, Yang H, Liu M, Tao Q and Xu H: Wnt signaling in colorectal cancer: Pathogenic role and therapeutic target. Mol Cancer. 21:1442022.

27 

Wang Y, Zheng L, Shang W, Yang Z, Li T, Liu F, Shao W, Lv L, Chai L, Qu L, et al: Wnt/beta-catenin signaling confers ferroptosis resistance by targeting GPX4 in gastric cancer. Cell Death Differ. 29:2190–2202. 2022.

28 

Wei L, Ding L, Mo MS, Lei M, Zhang L, Chen K and Xu P: Wnt3a protects SH-SY5Y cells against 6-hydroxydopamine toxicity by restoration of mitochondria function. Transl Neurodegener. 4:112015.

29 

Lin TY, Tsai MC, Tu W, Yeh HC, Wang SC, Huang SP and Li CY: Role of the NLRP3 inflammasome: Insights into cancer hallmarks. Front Immunol. 11:6104922021.

30 

Zhang Y and Wang X: Targeting the Wnt/β-catenin signaling pathway in cancer. J Hematol Oncol. 13:1652020.

31 

Rim EY, Clevers H and Nusse R: The wnt pathway: From signaling mechanisms to synthetic modulators. Annu Rev Biochem. 91:571–598. 2022.

32 

Katoh M and Katoh M: WNT signaling and cancer stemness. Essays Biochem. 66:319–331. 2022.

33 

Liu J, Xiao Q, Xiao J, Niu C, Li Y, Zhang X, Zhou Z, Shu G and Yin G: Wnt/β-catenin signalling: function, biological mechanisms, and therapeutic opportunities. Signal Transduct Target Ther. 7:32022.

34 

Ozalp O, Cark O, Azbazdar Y, Haykir B, Cucun G, Kucukaylak I, Alkan-Yesilyurt G, Sezgin E and Ozhan G: Nradd acts as a negative feedback regulator of Wnt/β-Catenin signaling and promotes apoptosis. Biomolecules. 11:1002021.

35 

Duchartre Y, Kim YM and Kahn M: The Wnt signaling pathway in cancer. Crit Rev Oncol Hematol. 99:141–149. 2016.

36 

Gao Y, Chen N, Fu Z and Zhang Q: Progress of wnt signaling pathway in osteoporosis. Biomolecules. 13:4832023.

37 

Malla RR and Kiran P: Tumor microenvironment pathways: Cross regulation in breast cancer metastasis. Genes Dis. 9:310–324. 2020.

38 

Yang Y, Ye YC, Chen Y, Zhao JL, Gao CC, Han H, Liu WC and Qin HY: Crosstalk between hepatic tumor cells and macrophages via Wnt/β-catenin signaling promotes M2-like macrophage polarization and reinforces tumor malignant behaviors. Cell Death Dis. 9:7932018.

39 

Jiang Y, Han Q, Zhao H and Zhang J: Promotion of epithelial-mesenchymal transformation by hepatocellular carcinoma-educated macrophages through Wnt2b/β-catenin/c-Myc signaling and reprogramming glycolysis. J Exp Clin Cancer Res. 40:132021.

40 

Tigue ML, Loberg MA, Goettel JA, Weiss WA, Lee E and Weiss VL: Wnt signaling in the phenotype and function of tumor-associated macrophages. Cancer Res. 83:3–11. 2023.

41 

Bergenfelz C, Medrek C, Ekström E, Jirström K, Janols H, Wullt M, Bredberg A and Leandersson K: Wnt5a induces a tolerogenic phenotype of macrophages in sepsis and breast cancer patients. J Immunol. 188:5448–5458. 2012.

42 

Liu Q, Yang C, Wang S, Shi D, Wei C, Song J, Lin X, Dou R, Bai J, Xiang Z, et al: Wnt5a-induced M2 polarization of tumor-associated macrophages via IL-10 promotes colorectal cancer progression. Cell Commun Signal. 18:512020.

43 

van Amerongen R: Alternative Wnt pathways and receptors. Cold Spring Harb Perspect Biol. 4:a0079142012.

44 

Spranger S and Gajewski TF: A new paradigm for tumor immune escape: β-catenin-driven immune exclusion. J Immunother Cancer. 3:432015.

45 

Zebley CC, Zehn D, Gottschalk S and Chi H: T cell dysfunction and therapeutic intervention in cancer. Nat Immunol. 25:1344–1354. 2024.

46 

Ying J, Li H, Yu J, Ng KM, Poon FF, Wong SC, Chan AT, Sung JJ and Tao Q: WNT5A exhibits tumor-suppressive activity through antagonizing the Wnt/beta-catenin signaling, and is frequently methylated in colorectal cancer. Clin Cancer Res. 14:55–61. 2008.

47 

Muto S, Enta A, Maruya Y, Inomata S, Yamaguchi H, Mine H, Takagi H, Ozaki Y, Watanabe M, Inoue T, et al: Wnt/β-catenin signaling and resistance to immune checkpoint inhibitors: From non-small-cell lung cancer to other cancers. Biomedicines. 11:1902023.

48 

Li Q, Wei S, Li Y, Wu F, Qin X, Li Z, Li J and Chen C: Blocking of programmed cell death-ligand 1 (PD-L1) expressed on endothelial cells promoted the recruitment of CD8+IFN-γ+ T cells in atherosclerosis. Inflamm Res. 72:783–796. 2023.

49 

Xu X, Zhang M, Xu F and Jiang S: Wnt signaling in breast cancer: Biological mechanisms, challenges and opportunities. Mol Cancer. 19:1652020.

50 

Wherry EJ and Kurachi M: Molecular and cellular insights into T cell exhaustion. Nat Rev Immunol. 15:486–499. 2015.

51 

Rasha F, Boligala GP, Yang MV, Martinez-Marin D, Castro-Piedras I, Furr K, Snitman A, Khan SY, Brandi L, Castro M, et al: Dishevelled 2 regulates cancer cell proliferation and T cell mediated immunity in HER2-positive breast cancer. BMC Cancer. 23:1722023.

52 

Yang M, Wei Z, Feng M, Zhu Y, Chen Y and Zhu D: Pharmacological inhibition and genetic knockdown of BCL9 modulate the cellular landscape of cancer-associated fibroblasts in the tumor-immune microenvironment of colorectal cancer. Front Oncol. 11:6035562021.

53 

Gattinoni L, Zhong XS, Palmer DC, Ji Y, Hinrichs CS, Yu Z, Wrzesinski C, Boni A, Cassard L, Garvin LM, et al: Wnt signaling arrests effector T cell differentiation and generates CD8+ memory stem cells. Nat Med. 15:808–813. 2009.

54 

Shan F, Somasundaram A, Bruno TC, Workman CJ and Vignali DAA: Therapeutic targeting of regulatory T cells in cancer. Trends Cancer. 8:944–961. 2022.

55 

Hong Y, Manoharan I, Suryawanshi A, Majumdar T, Angus-Hill ML, Koni PA, Manicassamy B, Mellor AL, Munn DH and Manicassamy S: β-catenin promotes regulatory T-cell responses in tumors by inducing vitamin A metabolism in dendritic cells. Cancer Res. 75:656–665. 2015.

56 

van Loosdregt J, Fleskens V, Tiemessen MM, Mokry M, van Boxtel R, Meerding J, Pals CE, Kurek D, Baert MR, Delemarre EM, et al: Canonical wnt signaling negatively modulates regulatory T cell function. Immunity. 39:298–310. 2013.

57 

Yang ZY, Zhang WL, Jiang CW and Sun G: PCBP1-mediated regulation of WNT signaling is critical for breast tumorigenesis. Cell Biol Toxicol. 39:2331–2343. 2023.

58 

Trotter TN, Dagotto CE, Serra D, Wang T, Yang X, Acharya CR, Wei J, Lei G, Lyerly HK and Hartman ZC: Dormant tumors circumvent tumor-specific adaptive immunity by establishing a Treg-dominated niche via DKK3. JCI Insight. 8:e1744582023.

59 

Ding Y, Shen S, Lino AC, Curotto de Lafaille MA and Lafaille JJ: Beta-catenin stabilization extends regulatory T cell survival and induces anergy in nonregulatory T cells. Nat Med. 14:162–169. 2008.

60 

Dai W, Liu F, Li C, Lu Y, Lu X, Du S, Chen Y, Weng D and Chen J: Blockade of Wnt/β-catenin pathway aggravated silica-induced lung inflammation through tregs regulation on Th immune responses. Mediators Inflamm. 2016:62356142016.

61 

Gunaydin G: CAFs interacting With TAMs in tumor microenvironment to enhance tumorigenesis and immune evasion. Front Oncol. 11:6683492021.

62 

Hu D, Li Z, Zheng B, Lin X, Pan Y, Gong P, Zhuo W, Hu Y, Chen C, Chen L, et al: Cancer-associated fibroblasts in breast cancer: Challenges and opportunities. Cancer Commun (Lond). 42:401–434. 2022.

63 

Xie J, Qi X, Wang Y, Yin X, Xu W, Han S, Cai Y and Han W: Cancer-associated fibroblasts secrete hypoxia-induced serglycin to promote head and neck squamous cell carcinoma tumor cell growth in vitro and in vivo by activating the Wnt/β-catenin pathway. Cell Oncol (Dordr). 44:661–671. 2021.

64 

Aizawa T, Karasawa H, Funayama R, Shirota M, Suzuki T, Maeda S, Suzuki H, Yamamura A, Naitoh T, Nakayama K and Unno M: Cancer-associated fibroblasts secrete Wnt2 to promote cancer progression in colorectal cancer. Cancer Med. 8:6370–6382. 2019.

65 

Bochet L, Lehuédé C, Dauvillier S, Wang YY, Dirat B, Laurent V, Dray C, Guiet R, Maridonneau-Parini I, Le Gonidec S, et al: Adipocyte-derived fibroblasts promote tumor progression and contribute to the desmoplastic reaction in breast cancer. Cancer Res. 73:5657–5668. 2013.

66 

Chen Y, Zeng C, Zhan Y, Wang H, Jiang X and Li W: Aberrant low expression of p85α in stromal fibroblasts promotes breast cancer cell metastasis through exosome-mediated paracrine Wnt10b. Oncogene. 36:4692–4705. 2017.

67 

Liu J, Shen JX, Wu HT, Li XL, Wen XF, Du CW and Zhang GJ: Collagen 1A1 (COL1A1) promotes metastasis of breast cancer and is a potential therapeutic target. Discov Med. 25:211–223. 2018.

68 

Kim SH, Lee HY, Jung SP, Kim S, Lee JE, Nam SJ and Bae JW: Role of secreted type I collagen derived from stromal cells in two breast cancer cell lines. Oncol Lett. 8:507–512. 2014.

69 

Luga V, Zhang L, Viloria-Petit AM, Ogunjimi AA, Inanlou MR, Chiu E, Buchanan M, Hosein AN, Basik M and Wrana JL: Exosomes mediate stromal mobilization of autocrine Wnt-PCP signaling in breast cancer cell migration. Cell. 151:1542–1556. 2012.

70 

Dominici M, Le Blanc K, Mueller I, Slaper-Cortenbach I, Marini F, Krause D, Deans R, Keating A, Prockop Dj and Horwitz E: Minimal criteria for defining multipotent mesenchymal stromal cells. The International Society for Cellular Therapy position statement. Cytotherapy. 8:315–317. 2006.

71 

Cuiffo BG and Karnoub AE: Mesenchymal stem cells in tumor development: Emerging roles and concepts. Cell Adh Migr. 6:220–230. 2012.

72 

Liang W and Chen X, Zhang S, Fang J, Chen M, Xu Y and Chen X: Mesenchymal stem cells as a double-edged sword in tumor growth: Focusing on MSC-derived cytokines. Cell Mol Biol Lett. 26:32021.

73 

Sun Z, Wang S and Zhao RC: The roles of mesenchymal stem cells in tumor inflammatory microenvironment. J Hematol Oncol. 7:142014.

74 

Shi Y, Du L, Lin L and Wang Y: Tumour-associated mesenchymal stem/stromal cells: Emerging therapeutic targets. Nat Rev Drug Discov. 16:35–52. 2017.

75 

Kar S, Jasuja H, Katti DR and Katti KS: Wnt/β-catenin signaling pathway regulates osteogenesis for breast cancer bone metastasis: Experiments in an in vitro nanoclay scaffold cancer testbed. ACS Biomater Sci Eng. 6:2600–2611. 2020.

76 

Arrigoni C, De Luca P, Gilardi M, Previdi S, Broggini M and Moretti M: Direct but not indirect co-culture with osteogenically differentiated human bone marrow stromal cells increases RANKL/OPG ratio in human breast cancer cells generating bone metastases. Mol Cancer. 13:2382014.

77 

Qiao L, Xu ZL, Zhao TJ, Ye LH and Zhang XD: Dkk-1 secreted by mesenchymal stem cells inhibits growth of breast cancer cells via depression of Wnt signalling. Cancer Lett. 269:67–77. 2008.

78 

Qiao L, Xu Z, Zhao T, Zhao Z, Shi M, Zhao RC, Ye L and Zhang X: Suppression of tumorigenesis by human mesenchymal stem cells in a hepatoma model. Cell Res. 18:500–507. 2008.

79 

Khakoo AY, Pati S, Anderson SA, Reid W, Elshal MF, Rovira II, Nguyen AT, Malide D, Combs CA, Hall G, et al: Human mesenchymal stem cells exert potent antitumorigenic effects in a model of Kaposi's sarcoma. J Exp Med. 203:1235–1247. 2006.

80 

Dasari VR, Velpula KK, Kaur K, Fassett D, Klopfenstein JD, Dinh DH, Gujrati M and Rao JS: Cord blood stem cell-mediated induction of apoptosis in glioma downregulates X-linked inhibitor of apoptosis protein (XIAP). PLoS One. 5:e118132010.

81 

Otsu K, Das S, Houser SD, Quadri SK, Bhattacharya S and Bhattacharya J: Concentration-dependent inhibition of angiogenesis by mesenchymal stem cells. Blood. 113:4197–4205. 2009.

82 

Zhu Y, Sun Z, Han Q, Liao L, Wang J, Bian C, Li J, Yan X, Liu Y, Shao C and Zhao RC: Human mesenchymal stem cells inhibit cancer cell proliferation by secreting DKK-1. Leukemia. 23:925–933. 2009.

83 

Vallée A, Lecarpentier Y, Guillevin R and Vallée JN: Interactions between TGF-β1, canonical WNT/β-catenin pathway and PPAR γ in radiation-induced fibrosis. Oncotarget. 8:90579–90604. 2017.

84 

Patel SA, Nilsson MB, Le X, Cascone T, Jain RK and Heymach JV: Molecular mechanisms and future implications of VEGF/VEGFR in cancer therapy. Clin Cancer Res. 29:30–39. 2023.

85 

Zerlin M, Julius MA and Kitajewski J: Wnt/Frizzled signaling in angiogenesis. Angiogenesis. 11:63–69. 2008.

86 

Mankuzhy P, Dharmarajan A, Perumalsamy LR, Sharun K, Samji P and Dilley RJ: The role of Wnt signaling in mesenchymal stromal cell-driven angiogenesis. Tissue Cell. 85:1022402023.

87 

Xie W, Zhang Y, Zhang S, Wang F, Zhang K, Huang Y, Zhou Z, Huang G and Wang J: Oxymatrine enhanced anti-tumor effects of Bevacizumab against triple-negative breast cancer via abating Wnt/β-Catenin signaling pathway. Am J Cancer Res. 9:1796–1814. 2019.

88 

Pagani E, Ruffini F, Antonini Cappellini GC, Scoppola A, Fortes C, Marchetti P, Graziani G, D'Atri S and Lacal PM: Placenta growth factor and neuropilin-1 collaborate in promoting melanoma aggressiveness. Int J Oncol. 48:1581–1589. 2016.

89 

Ruffini F, D'Atri S and Lacal PM: Neuropilin-1 expression promotes invasiveness of melanoma cells through vascular endothelial growth factor receptor-2-dependent and -independent mechanisms. Int J Oncol. 43:297–306. 2013.

90 

Nilsson LM, Nilsson-Ohman J, Zetterqvist AV and Gomez MF: Nuclear factor of activated T-cells transcription factors in the vasculature: The good guys or the bad guys? Curr Opin Lipidol. 19:483–490. 2008.

91 

Reis M and Liebner S: Wnt signaling in the vasculature. Exp Cell Res. 319:1317–1323. 2013.

92 

Roma-Rodrigues C, Fernandes AR and Baptista PV: Exosome in tumour microenvironment: Overview of the crosstalk between normal and cancer cells. Biomed Res Int. 2014:1794862014.

93 

Graner MW, Schnell S and Olin MR: Tumor-derived exosomes, microRNAs, and cancer immune suppression. Semin Immunopathol. 40:505–515. 2018.

94 

Ruivo CF, Adem B, Silva M and Melo SA: The biology of cancer exosomes: Insights and new perspectives. Cancer Res. 77:6480–6488. 2017.

95 

Kalluri R and LeBleu VS: The biology, function, and biomedical applications of exosomes. Science. 367:eaau69772020.

96 

Samuel P, Fabbri M and Carter DRF: Mechanisms of drug resistance in cancer: The role of extracellular vesicles. Proteomics. 17:16003752017.

97 

Abd Elmageed ZY, Yang Y, Thomas R, Ranjan M, Mondal D, Moroz K, Fang Z, Rezk BM, Moparty K, Sikka SC, et al: Neoplastic reprogramming of patient-derived adipose stem cells by prostate cancer cell-associated exosomes. Stem Cells. 32:983–997. 2014.

98 

Melo SA, Sugimoto H, O'Connell JT, Kato N, Villanueva A, Vidal A, Qiu L, Vitkin E, Perelman LT, Melo CA, et al: Cancer exosomes perform cell-independent microRNA biogenesis and promote tumorigenesis. Cancer Cell. 26:707–721. 2014.

99 

Liang Z, Liu L, Gao R, Che C and Yang G: Downregulation of exosomal miR-7-5p promotes breast cancer migration and invasion by targeting RYK and participating in the atypical WNT signalling pathway. Cell Mol Biol Lett. 27:882022.

100 

Xiao Z, Feng X, Zhou Y, Li P, Luo J, Zhang W, Zhou J, Zhao J, Wang D, Wang Y, et al: Exosomal miR-10527-5p inhibits migration, invasion, lymphangiogenesis and lymphatic metastasis by affecting Wnt/β-catenin signaling via Rab10 in esophageal squamous cell carcinoma. Int J Nanomedicine. 18:95–114. 2023.

101 

Naseri Z, Oskuee RK, Jaafari MR and Forouzandeh Moghadam M: Exosome-mediated delivery of functionally active miRNA-142-3p inhibitor reduces tumorigenicity of breast cancer in vitro and in vivo. Int J Nanomedicine. 13:7727–7747. 2018.

102 

Gargalionis AN, Papavassiliou KA, Basdra EK and Papavassiliou AG: mTOR signaling components in tumor mechanobiology. Int J Mol Sci. 23:18252022.

103 

Liu Q, Luo Q, Ju Y and Song G: Role of the mechanical microenvironment in cancer development and progression. Cancer Biol Med. 17:282–292. 2020.

104 

Sun J, Luo Q, Liu L and Song G: Low-level shear stress induces differentiation of liver cancer stem cells via the Wnt/β-catenin signalling pathway. Exp Cell Res. 375:90–96. 2019.

105 

Li Y, Mao AS, Seo BR, Zhao X, Gupta SK, Chen M, Han YL, Shih TY, Mooney DJ and Guo M: Compression-induced dedifferentiation of adipocytes promotes tumor progression. Sci Adv. 6:eaax56112020.

106 

Yu H, Mouw JK and Weaver VM: Forcing form and function: Biomechanical regulation of tumor evolution. Trends Cell Biol. 21:47–56. 2011.

107 

Provenzano PP and Keely PJ: Mechanical signaling through the cytoskeleton regulates cell proliferation by coordinated focal adhesion and Rho GTPase signaling. J Cell Sci. 124:1195–1205. 2011.

108 

Schrader J, Gordon-Walker TT, Aucot RL, van Deemter M, Quaas A, Walsh S, Benten D, Forbes SJ, Wells RG and Iredale JP: Matrix stiffness modulates proliferation, chemotherapeutic response, and dormancy in hepatocellular carcinoma cells. Hepatology. 53:1192–1205. 2011.

109 

Johnson RW, Merkel AR, Page JM, Ruppender NS, Guelcher SA and Sterling JA: Wnt signaling induces gene expression of factors associated with bone destruction in lung and breast cancer. Clin Exp Metastasis. 31:945–959. 2014.

110 

Chen Z, Han F, Du Y, Shi H and Zhou W: Hypoxic microenvironment in cancer: molecular mechanisms and therapeutic interventions. Signal Transduct Target Ther. 8:702023.

111 

Schito L and Semenza GL: Hypoxia-inducible factors: Master regulators of cancer progression. Trends Cancer. 2:758–770. 2016.

112 

Zhou F, Sun J, Ye L, Jiang T, Li W, Su C, Ren S, Wu F, Zhou C and Gao G: Fibronectin promotes tumor angiogenesis and progression of non-small-cell lung cancer by elevating WISP3 expression via FAK/MAPK/HIF-1α axis and activating wnt signaling pathway. Exp Hematol Oncol. 12:612023.

113 

Yan Y, Liu F, Han L, Zhao L, Chen J, Olopade OI, He M and Wei M: HIF-2α promotes conversion to a stem cell phenotype and induces chemoresistance in breast cancer cells by activating Wnt and Notch pathways. J Exp Clin Cancer Res. 37:2562018.

114 

Ma F, Li W, Liu C, Li W, Yu H, Lei B, Ren Y, Li Z, Pang D and Qian C: MiR-23a promotes TGF-β1-induced EMT and tumor metastasis in breast cancer cells by directly targeting CDH1 and activating Wnt/β-catenin signaling. Oncotarget. 8:69538–69550. 2017.

115 

Lopez Almeida L, Sebbagh M, Bertucci F, Finetti P, Wicinski J, Marchetto S, Castellano R, Josselin E, Charafe-Jauffret E, Ginestier C, et al: The SCRIB paralog LANO/LRRC1 regulates breast cancer stem cell fate through WNT/β-catenin signaling. Stem Cell Rep. 11:1040–1050. 2018.

116 

Bhuvanalakshmi G, Basappa, Rangappa KS, Dharmarajan A, Sethi G, Kumar AP and Warrier S: Breast cancer stem-like cells are inhibited by diosgenin, a steroidal saponin, by the attenuation of the wnt β-catenin signaling via the wnt antagonist secreted frizzled related protein-4. Front Pharmacol. 8:1242017.

117 

Lv C, Li F, Li X, Tian Y, Zhang Y, Sheng X, Song Y, Meng Q, Yuan S, Luan L, et al: MiR-31 promotes mammary stem cell expansion and breast tumorigenesis by suppressing Wnt signaling antagonists. Nat Commun. 8:10362017.

118 

Xu BS, Chen HY, Que Y, Xiao W, Zeng MS and Zhang X: ALKATI interacts with c-Myc and promotes cancer stem cell-like properties in sarcoma. Oncogene. 39:151–163. 2020.

119 

Dittmer J: Breast cancer stem cells: Features, key drivers and treatment options. Semin Cancer Biol. 53:59–74. 2018.

120 

Wang F, Chen L, Kong D, Zhang X, Xia S, Liang B, Li Y, Zhou Y, Zhang Z, Shao J, et al: Canonical Wnt signaling promotes HSC glycolysis and liver fibrosis through an LDH-A/HIF-1α transcriptional complex. Hepatology. 79:606–623. 2024.

121 

Li X, Yang J, Ni R, Chen J, Zhou Y, Song H, Jin L and Pan Y: Hypoxia-induced lncRNA RBM5-AS1 promotes tumorigenesis via activating wnt/β-catenin signaling in breast cancer. Cell Death Dis. 13:952022.

122 

Tirpe AA, Gulei D, Ciortea SM, Crivii C and Berindan-Neagoe I: Hypoxia: Overview on hypoxia-mediated mechanisms with a focus on the role of HIF genes. Int J Mol Sci. 20:61402019.

123 

Wu J, Chen J, Feng Y, Tian H and Chen X: Tumor microenvironment as the 'regulator' and 'target' for gene therapy. J Gene Med. 21:e30882019.

124 

Lee S, Toft NJ, Axelsen TV, Espejo MS, Pedersen TM, Mele M, Pedersen HL, Balling E, Johansen T, Burton M, et al: Carbonic anhydrases reduce the acidity of the tumor microenvironment, promote immune infiltration, decelerate tumor growth, and improve survival in ErbB2/HER2-enriched breast cancer. Breast Cancer Res. 25:462023.

125 

Melnik S, Dvornikov D, Müller-Decker K, Depner S, Stannek P, Meister M, Warth A, Thomas M, Muley T, Risch A, et al: Cancer cell specific inhibition of Wnt/β-catenin signaling by forced intracellular acidification. Cell Discov. 4:372018.

126 

Bao L, Wu Y, Ren Z, Huang Y, Jiang Y, Li K, Xu X, Ye Y and Gui Z: Comprehensive pan-cancer analysis indicates UCHL5 as a novel cancer biomarker and promotes cervical cancer progression through the wnt signaling pathway. Biol Direct. 19:1392024.

127 

Ghosh A and Gopinath SCB: Molecular mechanism of breast cancer and predisposition of mouse mammary tumor virus propagation cycle. Curr Med Chem. May 8–2024.Epub ahead of print.

128 

Wang F, Wang W, Wang M and Chen D: Genetic landscape of breast cancer subtypes following radiation therapy: Insights from comprehensive profiling. Front Oncol. 14:12915092024.

129 

Wooster R, Neuhausen SL, Mangion J, Quirk Y, Ford D, Collins N, Nguyen K, Seal S, Tran T, Averill D, et al: Localization of a breast cancer susceptibility gene, BRCA2, to chromosome 13q12-13. Science. 265:2088–2090. 1994.

130 

Hall JM, Lee MK, Newman B, Morrow JE, Anderson LA, Huey B and King MC: Linkage of early-onset familial breast cancer to chromosome 17q21. Science. 250:1684–1689. 1990.

131 

Wan A, Zhang G, Ma D, Zhang Y and Qi X: An overview of the research progress of BRCA gene mutations in breast cancer. Biochim Biophys Acta Rev Cancer. 1878:1889072023.

132 

Weber F, Shen L, Fukino K, Patocs A, Mutter GL, Caldes T and Eng C: Total-genome analysis of BRCA1/2-related invasive carcinomas of the breast identifies tumor stroma as potential landscaper for neoplastic initiation. Am J Hum Genet. 78:961–972. 2006.

133 

Ghosh S, Lu Y, Katz A, Hu Y and Li R: Tumor suppressor BRCA1 inhibits a breast cancer-associated promoter of the aromatase gene (CYP19) in human adipose stromal cells. Am J Physiol Endocrinol Metab. 292:E246–E252. 2007.

134 

Wu ZQ, Li XY, Hu CY, Ford M, Kleer CG and Weiss SJ: Canonical Wnt signaling regulates Slug activity and links epithelial-mesenchymal transition with epigenetic Breast Cancer 1, Early Onset (BRCA1) repression. Proc Natl Acad Sci USA. 109:16654–16659. 2012.

135 

Li H, Sekine M, Tung N and Avraham HK: Wild-type BRCA1, but not Mutated BRCA1, regulates the expression of the nuclear Form of beta-catenin. Mol Cancer Res. 8:407–420. 2010.

136 

Cancer Genome Atlas Network: Comprehensive molecular portraits of human breast tumours. Nature. 490:61–70. 2012.

137 

Kastenhuber ER and Lowe SW: Putting p53 in context. Cell. 170:1062–1078. 2017.

138 

Walerych D, Napoli M, Collavin L and Del Sal G: The rebel angel: mutant p53 as the driving oncogene in breast cancer. Carcinogenesis. 33:2007–2017. 2012.

139 

Kim NH, Cha YH, Lee J, Lee SH, Yang JH, Yun JS, Cho ES, Zhang X, Nam M, Kim N, et al: Snail reprograms glucose metabolism by repressing phosphofructokinase PFKP allowing cancer cell survival under metabolic stress. Nat Commun. 8:143742017.

140 

Wellenstein MD, Coffelt SB, Duits DEM, van Miltenburg MH, Slagter M, de Rink I, Henneman L, Kas SM, Prekovic S, Hau CS, et al: Loss of p53 triggers WNT-dependent systemic inflammation to drive breast cancer metastasis. Nature. 572:538–542. 2019.

141 

Roarty K, Pfefferle AD, Creighton CJ, Perou CM and Rosen JM: Ror2-mediated alternative Wnt signaling regulates cell fate and adhesion during mammary tumor progression. Oncogene. 36:5958–5968. 2017.

142 

Nolan E, Lindeman GJ and Visvader JE: Deciphering breast cancer: From biology to the clinic. Cell. 186:1708–1728. 2023.

143 

Wang X, Song C, Ye Y, Gu Y, Li X, Chen P, Leng D, Xiao J, Wu H, Xie S, et al: BRD9-mediated control of the TGF-β/activin/nodal pathway regulates self-renewal and differentiation of human embryonic stem cells and progression of cancer cells. Nucleic Acids Res. 51:11634–11651. 2023.

144 

Song X, Wei C and Li X: The signaling pathways associated with breast cancer bone metastasis. Front Oncol. 12:8556092022.

145 

Clevers H and Nusse R: Wnt/β-catenin signaling and disease. Cell. 149:1192–1205. 2012.

146 

Massagué J: TGFbeta in cancer. Cell. 134:215–230. 2008.

147 

Nusse R and Clevers H: Wnt/β-catenin signaling, disease, and emerging therapeutic modalities. Cell. 169:985–999. 2017.

148 

Luo K: Signaling cross talk between TGF-β/smad and other signaling pathways. Cold Spring Harb Perspect Biol. 9:a0221372017.

149 

Shi X, Yang J, Deng S, Xu H, Wu D, Zeng Q, Wang S, Hu T, Wu F and Zhou H: TGF-β signaling in the tumor metabolic microenvironment and targeted therapies. J Hematol Oncol. 15:1352022.

150 

Spranger S, Bao R and Gajewski TF: Melanoma-intrinsic β-catenin signalling prevents anti-tumour immunity. Nature. 523:231–235. 2015.

151 

Scheel C, Eaton EN, Li SH, Chaffer CL, Reinhardt F, Kah KJ, Bell G, Guo W, Rubin J, Richardson AL and Weinberg RA: Paracrine and autocrine signals induce and maintain mesenchymal and stem cell states in the breast. Cell. 145:926–940. 2011.

152 

Funa NS, Mjoseng HK, de Lichtenberg KH, Raineri S, Esen D, Egeskov-Madsen AR, Quaranta R, Jørgensen MC, Hansen MS, van Cuyl Kuylenstierna J, et al: TGF-β modulates cell fate in human ES cell-derived foregut endoderm by inhibiting wnt and BMP signaling. Stem Cell Reports. 19:973–992. 2024.

153 

Liu L, Chen G, Chen T, Shi W, Hu H, Song K, Huang R, Cai H and He Y: si-SNHG5-FOXF2 inhibits TGF-β1-induced fibrosis in human primary endometrial stromal cells by the wnt/β-catenin signalling pathway. Stem Cell Res Ther. 11:4792020.

154 

Katso R, Okkenhaug K, Ahmadi K, White S, Timms J and Waterfield MD: Cellular function of phosphoinositide 3-kinases: Implications for development, homeostasis, and cancer. Annu Rev Cell Dev Biol. 17:615–675. 2001.

155 

Samuels Y, Wang Z, Bardelli A, Silliman N, Ptak J, Szabo S, Yan H, Gazdar A, Powell SM, Riggins GJ, et al: High frequency of mutations of the PIK3CA gene in human cancers. Science. 304:5542004.

156 

Shimura T, Takenaka Y, Tsutsumi S, Hogan V, Kikuchi A and Raz A: Galectin-3, a novel binding partner of beta-catenin. Cancer Res. 64:6363–6367. 2004.

157 

Luo J, Chen J, Deng ZL, Luo X, Song WX, Sharff KA, Tang N, Haydon RC, Luu HH and He TC: Wnt signaling and human diseases: What are the therapeutic implications? Lab Invest. 87:97–103. 2007.

158 

Maric G, Annis MG, MacDonald PA, Russo C, Perkins D, Siwak DR, Mills GB and Siegel PM: GPNMB augments Wnt-1 mediated breast tumor initiation and growth by enhancing PI3K/AKT/mTOR pathway signaling and β-catenin activity. Oncogene. 38:5294–5307. 2019.

159 

Perry JM, He XC, Sugimura R, Grindley JC, Haug JS, Ding S and Li L: Cooperation between both Wnt/{beta}-catenin and PTEN/PI3K/Akt signaling promotes primitive hematopoietic stem cell self-renewal and expansion. Genes Dev. 25:1928–1942. 2011.

160 

Mulholland DJ, Dedhar S, Wu H and Nelson CC: PTEN and GSK3beta: Key regulators of progression to androgen-independent prostate cancer. Oncogene. 25:329–337. 2006.

161 

Siddharth S, Goutam K, Das S, Nayak A, Nayak D, Sethy C, Wyatt MD and Kundu CN: Nectin-4 is a breast cancer stem cell marker that induces WNT/β-catenin signaling via Pi3k/Akt axis. Int J Biochem Cell Biol. 89:85–94. 2017.

162 

Bachelder RE, Yoon SO, Franci C, de Herreros AG and Mercurio AM: Glycogen synthase kinase-3 is an endogenous inhibitor of Snail transcription: Implications for the epithelial-mesenchymal transition. J Cell Biol. 168:29–33. 2005.

163 

Tsai JH, Hsu LS, Lin CL, Hong HM, Pan MH, Way TD and Chen WJ: 3,5,4′-Trimethoxystilbene, a natural methoxylated analog of resveratrol, inhibits breast cancer cell invasiveness by downregulation of PI3K/Akt and Wnt/β-catenin signaling cascades and reversal of epithelial-mesenchymal transition. Toxicol Appl Pharmacol. 272:746–756. 2013.

164 

Haiaty S, Rashidi MR, Akbarzadeh M, Bazmani A, Mostafazadeh M, Nikanfar S, Zibaei Z, Rahbarghazi R and Nouri M: Thymoquinone inhibited vasculogenic capacity and promoted mesenchymal-epithelial transition of human breast cancer stem cells. BMC Complement Med Ther. 21:832021.

165 

Arqués O, Chicote I, Puig I, Tenbaum SP, Argilés G, Dienstmann R, Fernández N, Caratù G, Matito J, Silberschmidt D, et al: Tankyrase inhibition blocks Wnt/β-catenin pathway and reverts resistance to PI3K and AKT inhibitors in the treatment of colorectal cancer. Clin Cancer Res. 22:644–656. 2016.

166 

Katoh M: Network of WNT and other regulatory signaling cascades in pluripotent stem cells and cancer stem cells. Curr Pharm Biotechnol. 12:160–170. 2011.

167 

Nyeng P, Norgaard GA, Kobberup S and Jensen J: FGF10 maintains distal lung bud epithelium and excessive signaling leads to progenitor state arrest, distalization, and goblet cell metaplasia. BMC Dev Biol. 8:22008.

168 

Shimokawa T, Furukawa Y, Sakai M, Li M, Miwa N, Lin YM and Nakamura Y: Involvement of the FGF18 gene in colorectal carcinogenesis, as a novel downstream target of the beta-catenin/ T-cell factor complex. Cancer Res. 63:6116–6120. 2003.

169 

Chamorro MN, Schwartz DR, Vonica A, Brivanlou AH, Cho KR and Varmus HE: FGF-20 and DKK1 are transcriptional targets of beta-catenin and FGF-20 is implicated in cancer and development. EMBO J. 24:73–84. 2005.

170 

Pai R, Dunlap D, Qing J, Mohtashemi I, Hotzel K and French DM: Inhibition of fibroblast growth factor 19 reduces tumor growth by modulating beta-catenin signaling. Cancer Res. 68:5086–5095. 2008.

171 

El-Hariry I, Pignatelli M and Lemoine NR: FGF-1 and FGF-2 modulate the E-cadherin/catenin system in pancreatic adenocarcinoma cell lines. Br J Cancer. 84:1656–1663. 2001.

172 

Brembeck FH, Rosário M and Birchmeier W: Balancing cell adhesion and Wnt signaling, the key role of beta-catenin. Curr Opin Genet Dev. 16:51–59. 2006.

173 

Davidson G, Shen J, Huang YL, Su Y, Karaulanov E, Bartscherer K, Hassler C, Stannek P, Boutros M and Niehrs C: Cell cycle control of wnt receptor activation. Dev Cell. 17:788–799. 2009.

174 

Brennan KR and Brown AM: Wnt proteins in mammary development and cancer. J Mammary Gland Biol Neoplasia. 9:119–131. 2004.

175 

Nusse R and Varmus HE: Many tumors induced by the mouse mammary tumor virus contain a provirus integrated in the same region of the host genome. Cell. 31:99–109. 1982.

176 

Lee FS, Lane TF, Kuo A, Shackleford GM and Leder P: Insertional mutagenesis identifies a member of the Wnt gene family as a candidate oncogene in the mammary epithelium of int-2/Fgf-3 transgenic mice. Proc Natl Acad Sci USA. 92:2268–2272. 1995.

177 

Theodorou V, Kimm MA, Boer M, Wessels L, Theelen W, Jonkers J and Hilkens J: MMTV insertional mutagenesis identifies genes, gene families and pathways involved in mammary cancer. Nat Genet. 39:759–769. 2007.

178 

Nguyen TM, Kabotyanski EB, Dou Y, Reineke LC, Zhang P, Zhang XH, Malovannaya A, Jung SY, Mo Q, Roarty KP, et al: FGFR1-activated translation of WNT pathway components with structured 5′ UTRs is vulnerable to inhibition of EIF4A-dependent translation initiation. Cancer Res. 78:4229–4240. 2018.

179 

Gonzalez DM and Medici D: Signaling mechanisms of the epithelial-mesenchymal transition. Sci Signal. 7:re82014.

180 

Chatterjee S and Sil PC: Targeting the crosstalks of Wnt pathway with Hedgehog and Notch for cancer therapy. Pharmacol Res. 142:251–261. 2019.

181 

Ormestad M, Astorga J, Landgren H, Wang T, Johansson BR, Miura N and Carlsson P: Foxf1 and Foxf2 control murine gut development by limiting mesenchymal Wnt signaling and promoting extracellular matrix production. Development. 133:833–843. 2006.

182 

Maeda O, Kondo M, Fujita T, Usami N, Fukui T, Shimokata K, Ando T, Goto H and Sekido Y: Enhancement of GLI1-transcriptional activity by beta-catenin in human cancer cells. Oncol Rep. 16:91–96. 2006.

183 

Arnold KM, Pohlig RT and Sims-Mourtada J: Co-activation of Hedgehog and Wnt signaling pathways is associated with poor outcomes in triple negative breast cancer. Oncol Lett. 14:5285–5292. 2017.

184 

Katoh M and Katoh M: Molecular genetics and targeted therapy of WNT-related human diseases (Review). Int J Mol Med. 40:587–606. 2017.

185 

Wu Y, Ginther C, Kim J, Mosher N, Chung S, Slamon D and Vadgama JV: Expression of Wnt3 activates Wnt/β-catenin pathway and promotes EMT-like phenotype in trastuzumab-resistant HER2-overexpressing breast cancer cells. Mol Cancer Res. 10:1597–1606. 2012.

186 

Zou Y, Yang A, Chen B, Deng X, Xie J, Dai D, Zhang J, Tang H, Wu T, Zhou Z, et al: crVDAC3 alleviates ferroptosis by impeding HSPB1 ubiquitination and confers trastuzumab deruxtecan resistance in HER2-low breast cancer. Drug Resist Updat. 77:1011262024.

187 

Castagnoli L, Tagliabue E and Pupa SM: Inhibition of the Wnt signalling pathway: An avenue to control breast cancer aggressiveness. Int J Mol Sci. 21:90692020.

188 

Castagnoli L, Franceschini A, Cancila V, Dugo M, Bigliardi M, Chiodoni C, Toneguzzo P, Regondi V, Corsetto PA, Pietrantonio F, et al: CD36 enrichment in HER2-positive mesenchymal stem cells drives therapy refractoriness in breast cancer. J Exp Clin Cancer Res. 44:192025.

189 

Xu J, Prosperi JR, Choudhury N, Olopade OI and Goss KH: β-Catenin is required for the tumorigenic behavior of triple-negative breast cancer cells. PLoS One. 10:e01170972015.

190 

Shetti D, Zhang B, Fan C, Mo C, Lee BH and Wei K: Low dose of paclitaxel combined with XAV939 Attenuates metastasis, angiogenesis and growth in breast cancer by suppressing Wnt signaling. Cells. 8:8922019.

191 

Saleh R, Taha RZ, Sasidharan Nair V, Alajez NM and Elkord E: PD-L1 blockade by atezolizumab downregulates signaling pathways associated with tumor growth, metastasis, and hypoxia in human triple negative breast cancer. Cancers (Basel). 11:10502019.

192 

Castagnoli L, Cancila V, Cordoba-Romero SL, Faraci S, Talarico G, Belmonte B, Iorio MV, Milani M, Volpari T, Chiodoni C, et al: WNT signaling modulates PD-L1 expression in the stem cell compartment of triple-negative breast cancer. Oncogene. 38:4047–4060. 2019.

193 

Merikhian P, Eisavand MR and Farahmand L: Triple-negative breast cancer: Understanding Wnt signaling in drug resistance. Cancer Cell Int. 21:4192021.

194 

Ke M, Zhu H, Lin Y, Zhang Y, Tang T, Xie Y, Chen ZS, Wang X and Shen Y: Actin-related protein 2/3 complex subunit 1B promotes ovarian cancer progression by regulating the AKT/PI3K/mTOR signaling pathway. J Transl Int Med. 12:406–423. 2024.

195 

Tang L, Wang D, Hu T, Lin X and Wu S: Current applications of tumor local ablation (TLA) combined with immune checkpoint inhibitors in breast cancer treatment. Cancer Drug Resist. 7:332024.

196 

Torres VI, Godoy JA and Inestrosa NC: Modulating Wnt signaling at the root: Porcupine and Wnt acylation. Pharmacol Ther. 198:34–45. 2019.

197 

Kabiri Z, Numata A, Kawasaki A, Edison, Tenen DG and Virshup DM: Wnts are dispensable for differentiation and self-renewal of adult murine hematopoietic stem cells. Blood. 126:1086–1094. 2015.

198 

Takada R, Satomi Y, Kurata T, Ueno N, Norioka S, Kondoh H, Takao T and Takada S: Monounsaturated fatty acid modification of Wnt protein: Its role in Wnt secretion. Dev Cell. 11:791–801. 2006.

199 

Hausmann G, Bänziger C and Basler K: Helping Wingless take flight: How WNT proteins are secreted. Nat Rev Mol Cell Biol. 8:331–336. 2007.

200 

van den Heuvel M, Harryman-Samos C, Klingensmith J, Perrimon N and Nusse R: Mutations in the segment polarity genes wingless and porcupine impair secretion of the wingless protein. EMBO J. 12:5293–5302. 1993.

201 

Shah K, Panchal S and Patel B: Porcupine inhibitors: Novel and emerging anti-cancer therapeutics targeting the Wnt signaling pathway. Pharmacol Res. 167:1055322021.

202 

Resh MD: Palmitoylation of proteins in cancer. Biochem Soc Trans. 45:409–416. 2017.

203 

Madan B, Ke Z, Harmston N, Ho SY, Frois AO, Alam J, Jeyaraj DA, Pendharkar V, Ghosh K, Virshup IH, et al: Wnt addiction of genetically defined cancers reversed by PORCN inhibition. Oncogene. 35:2197–2207. 2016.

204 

Cheng D, Liu J, Han D, Zhang G, Gao W, Hsieh MH, Ng N, Kasibhatla S, Tompkins C, Li J, et al: Discovery of pyridinyl acetamide derivatives as potent, selective, and orally bioavailable porcupine inhibitors. ACS Med Chem Lett. 7:676–680. 2016.

205 

Liu Y, Qi X, Donnelly L, Elghobashi-Meinhardt N, Long T, Zhou RW, Sun Y, Wang B and Li X: Mechanisms and inhibition of porcupine-mediated wnt acylation. Nature. 607:816–822. 2022.

206 

Doo DW, Meza-Perez S, Londoño AI, Goldsberry WN, Katre AA, Boone JD, Moore DJ, Hudson CT, Betella I, McCaw TR, et al: Inhibition of the Wnt/β-catenin pathway enhances antitumor immunity in ovarian cancer. Ther Adv Med Oncol. 12:17588359209137982020.

207 

Liu J, Pan S, Hsieh MH, Ng N, Sun F, Wang T, Kasibhatla S, Schuller AG, Li AG, Cheng D, et al: Targeting Wnt-driven cancer through the inhibition of porcupine by LGK974. Proc Natl Acad Sci USA. 110:20224–20229. 2013.

208 

Nusse R and Varmus H: Three decades of Wnts: A personal perspective on how a scientific field developed. EMBO J. 31:2670–2684. 2012.

209 

Goswami VG and Patel BD: Recent updates on Wnt signaling modulators: A patent review (2014-2020). Expert Opin Ther Pat. 31:1009–1043. 2021.

210 

Gupta PB, Onder TT, Jiang G, Tao K, Kuperwasser C, Weinberg RA and Lander ES: Identification of selective inhibitors of cancer stem cells by high-throughput screening. Cell. 138:645–659. 2009.

211 

Lu W and Li Y: Salinomycin suppresses LRP6 expression and inhibits both Wnt/β-catenin and mTORC1 signaling in breast and prostate cancer cells. J Cell Biochem. 115:1799–1807. 2014.

212 

Le PN, McDermott JD and Jimeno A: Targeting the Wnt pathway in human cancers: Therapeutic targeting with a focus on OMP-54F28. Pharmacol Ther. 146:1–11. 2015.

213 

Lu W, Lin C, Roberts MJ, Waud WR, Piazza GA and Li Y: Niclosamide suppresses cancer cell growth by inducing Wnt co-receptor LRP6 degradation and inhibiting the Wnt/β-catenin pathway. PLoS One. 6:e292902011.

214 

Londoño-Joshi AI, Arend RC, Aristizabal L, Lu W, Samant RS, Metge BJ, Hidalgo B, Grizzle WE, Conner M, Forero-Torres A, et al: Effect of niclosamide on basal-like breast cancers. Mol Cancer Ther. 13:800–811. 2014.

215 

Wang YC, Chao TK, Chang CC, Yo YT, Yu MH and Lai HC: Drug screening identifies niclosamide as an inhibitor of breast cancer stem-like cells. PLoS One. 8:e745382013.

216 

Ye T, Xiong Y, Yan Y, Xia Y, Song X, Liu L, Li D, Wang N, Zhang L, Zhu Y, et al: The anthelmintic drug niclosamide induces apoptosis, impairs metastasis and reduces immunosuppressive cells in breast cancer model. PLoS One. 9:e858872014.

217 

Gurney A, Axelrod F, Bond CJ, Cain J, Chartier C, Donigan L, Fischer M, Chaudhari A, Ji M, Kapoun AM, et al: Wnt pathway inhibition via the targeting of Frizzled receptors results in decreased growth and tumorigenicity of human tumors. Proc Natl Acad Sci USA. 109:11717–11722. 2012.

218 

Fischer MM, Cancilla B, Yeung VP, Cattaruzza F, Chartier C, Murriel CL, Cain J, Tam R, Cheng CY, Evans JW, et al: WNT antagonists exhibit unique combinatorial antitumor activity with taxanes by potentiating mitotic cell death. Sci Adv. 3:e17000902017.

219 

Diamond JR, Becerra C, Richards D, Mita A, Osborne C, O'Shaughnessy J, Zhang C, Henner R, Kapoun AM, Xu L, et al: Phase Ib clinical trial of the anti-frizzled antibody vantictumab (OMP-18R5) plus paclitaxel in patients with locally advanced or metastatic HER2-negative breast cancer. Breast Cancer Res Treat. 184:53–62. 2020.

220 

Huang SM, Mishina YM, Liu S, Cheung A, Stegmeier F, Michaud GA, Charlat O, Wiellette E, Zhang Y, Wiessner S, et al: Tankyrase inhibition stabilizes axin and antagonizes Wnt signalling. Nature. 461:614–620. 2009.

221 

Bao R, Christova T, Song S, Angers S, Yan X and Attisano L: Inhibition of tankyrases induces Axin stabilization and blocks Wnt signalling in breast cancer cells. PLoS One. 7:e486702012.

222 

Menon M, Elliott R, Bowers L, Balan N, Rafiq R, Costa-Cabral S, Munkonge F, Trinidade I, Porter R, Campbell AD, et al: A novel tankyrase inhibitor, MSC2504877, enhances the effects of clinical CDK4/6 inhibitors. Sci Rep. 9:2012019.

223 

Sharma M, Li L, Celver J, Killian C, Kovoor A and Seeram NP: Effects of fruit ellagitannin extracts, ellagic acid, and their colonic metabolite, urolithin a, on wnt signaling. J Agric Food Chem. 58:3965–3969. 2010.

224 

Sher A, Tabassum S, Wallace HM, Khan A, Karim AM, Gul S and Kang SC: In vitro analysis of cytotoxic activities of monotheca buxifolia targeting WNT/β-catenin genes in breast cancer cells. Plants (Basel). 12:11472023.

225 

Mandal S, Gamit N, Varier L, Dharmarajan A and Warrier S: Inhibition of breast cancer stem-like cells by a triterpenoid, ursolic acid, via activation of Wnt antagonist, sFRP4 and suppression of miRNA-499a-5p. Life Sci. 265:1188542021.

226 

Loibl S, Poortmans P, Morrow M, Denkert C and Curigliano G: Breast cancer. Lancet. 397:1750–1769. 2021.

227 

Narod SA: Which genes for hereditary breast cancer? N Engl J Med. 384:471–473. 2021.

228 

Li L, Yang LL, Yang SL, Wang RQ, Gao H, Lin ZY, Zhao YY, Tang WW, Han R, Wang WJ, et al: Andrographolide suppresses breast cancer progression by modulating tumor-associated macrophage polarization through the wnt/β-catenin pathway. Phytother Res. 36:4587–4603. 2022.

229 

Wang M, Zheng Y, Hao Q, Mao G, Dai Z, Zhai Z, Lin S, Liang B, Kang H and Ma X: Hypoxic BMSC-derived exosomal miR-210-3p promotes progression of triple-negative breast cancer cells via NFIX-wnt/β-catenin signaling axis. J Transl Med. 23:392025.

230 

Shome R, Sen P, Sarkar S and Ghosh SS: Single-cell transcriptomics reveals the intra-tumoral heterogeneity and SQSTM1/P62 and wnt/β-catenin mediated epithelial to mesenchymal transition and stemness of triple-negative breast cancer. Exp Cell Res. 438:1140322024.

231 

Pitt JM, Marabelle A, Eggermont A, Soria JC, Kroemer G and Zitvogel L: Targeting the tumor microenvironment: Removing obstruction to anticancer immune responses and immunotherapy. Ann Oncol. 27:1482–1492. 2016.

232 

Vitale I, Manic G, Coussens LM, Kroemer G and Galluzzi L: Macrophages and metabolism in the tumor microenvironment. Cell Metab. 30:36–50. 2019.

233 

Xiao Y and Yu D: Tumor microenvironment as a therapeutic target in cancer. Pharmacol Ther. 221:1077532021.

234 

Jin MZ and Jin WL: The updated landscape of tumor microenvironment and drug repurposing. Signal Transduct Target Ther. 5:1662020.

235 

Rong Z, Zhang L, Li Z, Xiao Z, Duan Y, Ren X, Zi Y, Gao J, Mu Y, Guan Y, et al: SIK2 maintains breast cancer stemness by phosphorylating LRP6 and activating Wnt/beta-catenin signaling. Oncogene. 41:2390–2403. 2022.

236 

Yang Z, Zhang Q, Yu L, Zhu J, Cao Y and Gao X: The signaling pathways and targets of traditional Chinese medicine and natural medicine in triple-negative breast cancer. J Ethnopharmacol. 264:1132492021.

237 

Zhong C, Xie Z, Zeng L, Yuan C and Duan S: MIR4435-2HG is a potential pan-cancer biomarker for diagnosis and prognosis. Front Immunol. 13:8550782022.

238 

Prasad CP, Gupta SD, Rath G and Ralhan R: Wnt signaling pathway in invasive ductal carcinoma of the breast: Relationship between beta-catenin, dishevelled and cyclin D1 expression. Oncology. 73:112–117. 2007.

239 

Zhang CH, Liu H, Zhao WL, Zhao WX, Zhou HM and Shao RG: G3BP1 promotes human breast cancer cell proliferation through coordinating with GSK-3β and stabilizing β-catenin. Acta Pharmacol Sin. 42:1900–1912. 2021.

240 

Jung HY, Jun S, Lee M, Kim HC, Wang X, Ji H, McCrea PD and Park JI: PAF and EZH2 induce Wnt/β-catenin signaling hyperactivation. Mol Cell. 52:193–205. 2013.

241 

Hashemi M, Hasani S, Hajimazdarany S, Ghadyani F, Olyaee Y, Khodadadi M, Ziyarani MF, Dehghanpour A, Salehi H, Kakavand A, et al: Biological functions and molecular interactions of Wnt/β-catenin in breast cancer: Revisiting signaling networks. Int J Biol Macromol. 232:1233772023.

242 

Liu C, Sun L, Yang J, Liu T, Yang Y, Kim SM, Ou X, Wang Y, Sun L, Zaidi M, et al: FSIP1 regulates autophagy in breast cancer. Proc Natl Acad Sci USA. 115:13075–13080. 2018.

243 

Li P, Guo Y, Bledsoe G, Yang Z, Chao L and Chao J: Kallistatin induces breast cancer cell apoptosis and autophagy by modulating Wnt signaling and microRNA synthesis. Exp Cell Res. 340:305–314. 2016.

244 

Xie J, Deng X, Xie Y, Zhu H, Liu P, Deng W, Ning L, Tang Y, Sun Y, Tang H, et al: Multi-omics analysis of disulfidptosis regulators and therapeutic potential reveals glycogen synthase 1 as a disulfidptosis triggering target for triple-negative breast cancer. MedComm (2020). 5:e5022024.

245 

Song S, Christova T, Perusini S, Alizadeh S, Bao RY, Miller BW, Hurren R, Jitkova Y, Gronda M, Isaac M, et al: Wnt inhibitor screen reveals iron dependence of β-catenin signaling in cancers. Cancer Res. 71:7628–7639. 2011.

246 

Kumar D, Gurrapu S, Wang Y, Bae SY, Pandey PR, Chen H, Mondal J, Han H, Wu CJ, Karaiskos S, et al: LncRNA Malat1 suppresses pyroptosis and T cell-mediated killing of incipient metastatic cells. Nat Cancer. 5:262–282. 2024.

247 

Liu Y, Wang X, Liu M, Hao X, Peng Y and Zheng J: Chemical nature of metabolic activation of natural products in traditional Chinese medicines possibly associated with toxicities. Acupunct Herb Med. 4:184–196. 2024.

248 

OncoMed Pharmaceuticals: A phase 1b dose escalation study of vantictumab (OMP-18R5) in combination with paclitaxel in patients with locally recurrent or metastatic breast cancer. OncoMed Pharmaceuticals, Inc.; 2020

249 

Säfholm A, Tuomela J, Rosenkvist J, Dejmek J, Härkönen P and Andersson T: The Wnt-5a-derived hexapeptide Foxy-5 inhibits breast cancer metastasis in vivo by targeting cell motility. Clin Cancer Res. 14:6556–6563. 2008.

250 

Curegenix: A phase 1 open-label dose escalation study of CGX1321 in subjects with advanced solid tumors with expansion in advanced gastrointestinal tumors and phase 1b study of CGX1321 in combination with pembrolizumab in subjects with advanced colorectal cancer or in combination with encorafenib + cetuximab in subjects with BRAFV600E mutated advanced colorectal cancer. Curegenix Inc.; 2022

251 

Qi D, Liu Y, Li J, Huang JH, Hu X and Wu E: Salinomycin as a potent anticancer stem cell agent: State of the art and future directions. Med Res Rev. 42:1037–1063. 2022.

252 

Singh S, Weiss A, Goodman J, Fisk M, Kulkarni S, Lu I, Gray J, Smith R, Sommer M and Cheriyan J: Niclosamide-A promising treatment for COVID-19. Br J Pharmacol. 179:3250–3267. 2022.

253 

Liu L, Li Z and Wu W: Harnessing natural inhibitors of protein synthesis for cancer therapy: A comprehensive review. Pharmacol Res. 209:1074492024.

254 

Raut D, Vora A and Bhatt LK: The Wnt/β-catenin pathway in breast cancer therapy: A pre-clinical perspective of its targeting for clinical translation. Expert Rev Anticancer Ther. 22:97–114. 2022.

255 

Tang C, Gong L, Lvzi Xu, Qiu K, Zhang Z and Wan L: Echinacoside inhibits breast cancer cells by suppressing the wnt/β-catenin signaling pathway. Biochem Biophys Res Commun. 526:170–175. 2020.

256 

Fatima I, El-Ayachi I, Taotao L, Lillo MA, Krutilina RI, Seagroves TN, Radaszkiewicz TW, Hutnan M, Bryja V, Krum SA, et al: The natural compound Jatrophone interferes with Wnt/ β-catenin signaling and inhibits proliferation and EMT in human triple-negative breast cancer. PLoS One. 12:e01898642017.

257 

Alitongbieke G, Zhang X, Zhu F, Wu Q, Lin Z, Li X, Xue Y, Lai X, Feng J, Huang R and Pan Y: Glucan from Oudemansiella raphanipes suppresses breast cancer proliferation and metastasis by regulating macrophage polarization and the WNT/β-catenin signaling pathway. J Cancer. 15:1169–1181. 2024.

258 

Wang Z, Li B, Zhou L, Yu S, Su Z, Song J, Sun Q, Sha O, Wang X, Jiang W, et al: Prodigiosin inhibits Wnt/β-catenin signaling and exerts anticancer activity in breast cancer cells. Proc Natl Acad Sci USA. 113:13150–13155. 2016.

259 

Ahmed RA, Alawin OA and Sylvester PW: γ-Tocotrienol reversal of epithelial-to-mesenchymal transition in human breast cancer cells is associated with inhibition of canonical Wnt signalling. Cell Prolif. 49:460–470. 2016.

260 

Lu W, Lin C and Li Y: Rottlerin induces Wnt co-receptor LRP6 degradation and suppresses both Wnt/β-catenin and mTORC1 signaling in prostate and breast cancer cells. Cell Signal. 26:1303–1309. 2014.

261 

Li X, Meng Y, Xie C, Zhu J, Wang X, Li Y, Geng S, Wu J, Zhong C and Li M: Diallyl Trisulfide inhibits breast cancer stem cells via suppression of Wnt/β-catenin pathway. J Cell Biochem. 119:4134–4141. 2018.

262 

Ahmad A, Sarkar SH, Bitar B, Ali S, Aboukameel A, Sethi S, Li Y, Bao B, Kong D, Banerjee S, et al: Garcinol regulates EMT and Wnt signaling pathways in vitro and in vivo, leading to anticancer activity against breast cancer cells. Mol Cancer Ther. 11:2193–2201. 2012.

263 

Su Z, Wang C, Chang D, Zhu X, Sai C and Pei J: Limonin attenuates the stemness of breast cancer cells via suppressing MIR216A methylation. Biomed Pharmacother. 112:1086992019.

264 

Kim J, Zhang X, Rieger-Christ KM, Summerhayes IC, Wazer DE, Paulson KE and Yee AS: Suppression of Wnt signaling by the green tea compound (-)-epigallocatechin 3-gallate (EGCG) in invasive breast cancer cells. Requirement of the transcriptional repressor HBP1. J Biol Chem. 281:10865–10875. 2006.

265 

Xu X, Rajamanicham V, Xu S, Liu Z, Yan T, Liang G, Guo G, Zhou H and Wang Y: Schisandrin A inhibits triple negative breast cancer cells by regulating Wnt/ER stress signaling pathway. Biomed Pharmacother. 115:1089222019.

266 

Liu X, Wang LL, Duan CY, Rong YR, Liang YQ, Zhu QX, Hao GP and Wang FZ: Daurisoline inhibits proliferation, induces apoptosis, and enhances TRAIL sensitivity of breast cancer cells by upregulating DR5. Cell Biol Int. Apr 2–2024.Epub ahead of print.

267 

Su Y and Simmen RC: Soy isoflavone genistein upregulates epithelial adhesion molecule E-cadherin expression and attenuates beta-catenin signaling in mammary epithelial cells. Carcinogenesis. 30:331–339. 2009.

268 

Fu Y, Chang H, Peng X, Bai Q, Yi L, Zhou Y, Zhu J and Mi M: Resveratrol inhibits breast cancer stem-like cells and induces autophagy via suppressing Wnt/β-catenin signaling pathway. PLoS One. 9:e1025352014.

269 

Huang Y, Zhao K, Hu Y, Zhou Y, Luo X, Li X, Wei L, Li Z, You Q, Guo Q and Lu N: Wogonoside inhibits angiogenesis in breast cancer via suppressing Wnt/β-catenin pathway. Mol Carcinog. 55:1598–1612. 2016.

270 

Xiao X, Ao M, Xu F, Li X, Hu J, Wang Y, Li D, Zhu X, Xin C and Shi W: Effect of matrine against breast cancer by downregulating the vascular endothelial growth factor via the Wnt/β-catenin pathway. Oncol Lett. 15:1691–1697. 2018.

271 

Chen Y, Chen ZY, Chen L, Zhang JY, Fu LY, Tao L, Zhang Y, Hu XX and Shen XC: Shikonin inhibits triple-negative breast cancer-cell metastasis by reversing the epithelial-to-mesenchymal transition via glycogen synthase kinase 3β-regulated suppression of β-catenin signaling. Biochem Pharmacol. 166:33–45. 2019.

272 

Koval A, Pieme CA, Queiroz EF, Ragusa S, Ahmed K, Blagodatski A, Wolfender JL, Petrova TV and Katanaev VL: Tannins from Syzygium guineense suppress Wnt signaling and proliferation of Wnt-dependent tumors through a direct effect on secreted Wnts. Cancer Lett. 435:110–120. 2018.

273 

Wang J, Qi H, Zhang X, Si W, Xu F, Hou T, Zhou H, Wang A, Li G, Liu Y, et al: Saikosaponin D from Radix Bupleuri suppresses triple-negative breast cancer cell growth by targeting β-catenin signaling. Biomed Pharmacother. 108:724–733. 2018.

274 

Zhang X, Bao C and Zhang J: Inotodiol suppresses proliferation of breast cancer in rat model of type 2 diabetes mellitus via downregulation of β-catenin signaling. Biomed Pharmacother. 99:142–150. 2018.

275 

Li X, Wang X, Xie C, Zhu J, Meng Y, Chen Y, Li Y, Jiang Y, Yang X, Wang S, et al: Sonic hedgehog and Wnt/β-catenin pathways mediate curcumin inhibition of breast cancer stem cells. Anticancer Drugs. 29:208–215. 2018.

276 

Sun Y, Gu Y, Gao X, Jin X, Wink M, Sharopov FS, Yang L and Sethi G: Lycorine suppresses the malignancy of breast carcinoma by modulating epithelial mesenchymal transition and β-catenin signaling. Pharmacol Res. 195:1068662023.

277 

Yang S, Sun S, Xu W, Yu B, Wang G and Wang H: Astragalus polysaccharide inhibits breast cancer cell migration and invasion by regulating epithelial-mesenchymal transition via the Wnt/β-catenin signaling pathway. Mol Med Rep. 21:1819–1832. 2020.

278 

Lee HJ, Wang NX, Shi DL and Zheng JJ: Sulindac inhibits canonical Wnt signaling by blocking the PDZ domain of the protein Dishevelled. Angew Chem Int Ed Engl. 48:6448–6452. 2009.

279 

Maloney D: Phase I study of adoptive immunotherapy for advanced ROR1+ malignancies with defined subsets of autologous T cells engineered to express a ROR1-specific chimeric antigen receptor. Fred Hutchinson Cancer Center; 2022

280 

VelosBio Inc., a subsidiary of Merck &; Co., Inc.: A phase 2 study of VLS-101 in patients with solid tumors. VelosBio Inc., a subsidiary of Merck &; Co., Inc.; Rahway, NJ: 2024

281 

NBE-Therapeutics AG: A First-in-Human, Phase 1/2 Study of NBE-002, an Anti-ROR1 Antibody Drug Conjugate, in Patients With Advanced Solid Tumors. NBE-Therapeutics AG; 2023

282 

Parker B: A phase 1b pilot clinical trial of cirmtuzumab, an anti-ROR1 monoclonal antibody, in combination with paclitaxel for the treatment of patients with metastatic, or locally advanced, unresectable breast cancer. NIH; Bethesda, MD: 2024

283 

BioAtla, Inc.: A Phase 1/2 Safety and Efficacy Dose Escalation/ Dose Expansion Study of a CAB-ROR2-ADC, Alone and in Combination with a PD-1 Inhibitor, in Patients with Advanced Solid Tumors (Ph1) and Melanoma and NSCLC Patients (Ph2). BioAtla, Inc.; 2025

284 

Lenz HJ, Argilés G, de Jonge MJA, Yaeger R, Doi T, El-Khoueiry A, Eskens F, Kuboki Y, Bertulis J, Nazabadioko S, et al: A phase I dose-escalation study of LRP5/6 antagonist BI 905677 in patients with advanced solid tumors. ESMO Open. 9:1037292024.

285 

Fischer MM, Yeung VP, Cattaruzza F, Hussein R, Yen WC, Murriel C, Evans JW, O'Young G, Brunner AL, Wang M, et al: RSPO3 antagonism inhibits growth and tumorigenicity in colorectal tumors harboring common Wnt pathway mutations. Sci Rep. 7:152702017.

286 

Kuroki H, Anraku T, Kazama A, Bilim V, Tasaki M, Schmitt D, Mazar AP, Giles FJ, Ugolkov A and Tomita Y: 9-ING-41, a small molecule inhibitor of GSK-3beta, potentiates the effects of anticancer therapeutics in bladder cancer. Sci Rep. 9:199772019.

287 

Edenfield WJ, Richards DA, Vukelja SJ, Weiss GJ, Sirard CA, Landau SB and Ramanathan RK: A phase 1 study evaluating the safety and efficacy of DKN-01, an investigational monoclonal antibody (Mab) in patients (pts) with advanced non-small cell lung cancer. J Chin Oncol. 32:8068. 2014.

288 

Children's Oncology Group: A Phase 1/2 Study of Tegavivint (IND#156033, NSC#826393) in Children, Adolescents, and Young Adults with Recurrent or Refractory Solid Tumors, Including Lymphomas and Desmoid Tumors. Children's Oncology Group; 2024

289 

McWilliams RR, Ko AH, Chiorean EG, Kwak EL, Lenz HJ, Nadler PI, Wood DL, Fujimori M, Morita K, Inada T and Kouji H: A phase Ib dose-escalation study of PRI-724, a CBP/beta-catenin modulator, plus gemcitabine (GEM) in patients with advanced pancreatic adenocarcinoma (APC) as second-line therapy after FOLFIRINOX or FOLFOX. J Chin Oncol. 33:e152702015.

290 

Rodon J, Argilés G, Connolly RM, Vaishampayan U, de Jonge M, Garralda E, Giannakis M, Smith DC, Dobson JR, McLaughlin ME, et al: Phase 1 study of single-agent WNT974, a first-in-class Porcupine inhibitor, in patients with advanced solid tumours. Br J Cancer. 125:28–37. 2021.

291 

Plummer R, Dua D, Cresti N, Drew Y, Stephens P, Foegh M, Knudsen S, Sachdev P, Mistry BM, Dixit V, et al: First-in-human study of the PARP/tankyrase inhibitor E7449 in patients with advanced solid tumours and evaluation of a novel drug-response predictor. Br J Cancer. 123:525–533. 2020.

292 

Scott A, Call JA, Chandana S, Borazanci E, Falchook GS, Bordoni R, Richey S, Starodub A, Chung V, Lakhani NJ, et al: 451O Preliminary evidence of clinical activity from phase I and Ib trials of the CLK/DYRK inhibitor cirtuvivint (CIRT) in subjects with advanced solid tumors. Ann Oncol. 33(Suppl 7): S742–S743. 2022.

293 

Redx Pharma Ltd.: A modular multi-arm, phase 1, adaptive design study to evaluate the safety and tolerability of RXC004, alone and in combination with anti-cancer treatments, in patients with advanced malignancies. Redx Pharma Ltd.; 2024

294 

Molenaar RJ, Coelen RJS, Khurshed M, Roos E, Caan MWA, van Linde ME, Kouwenhoven M, Bramer JAM, Bovée JVMG, Mathôt RA, et al: Study protocol of a phase IB/II clinical trial of metformin and chloroquine in patients with IDH1-mutated or IDH2-mutated solid tumours. BMJ Open. 7:e0149612017.

295 

Hattinger CM, Patrizio MP, Magagnoli F, Luppi S and Serra M: An update on emerging drugs in osteosarcoma: Towards tailored therapies? Expert Opin Emerg Drugs. 24:153–171. 2019.

Related Articles

  • Abstract
  • View
  • Download
  • Twitter
Copy and paste a formatted citation
Spandidos Publications style
Sun MX, Zhu HC, Yu Y, Yao Y, Li HY, Feng FB, Wang QY, Liu RJ and Sun CG: Role of the Wnt signaling pathway in the complex microenvironment of breast cancer and prospects for therapeutic potential (Review). Int J Oncol 66: 36, 2025.
APA
Sun, M.X., Zhu, H.C., Yu, Y., Yao, Y., Li, H.Y., Feng, F.B. ... Sun, C.G. (2025). Role of the Wnt signaling pathway in the complex microenvironment of breast cancer and prospects for therapeutic potential (Review). International Journal of Oncology, 66, 36. https://doi.org/10.3892/ijo.2025.5742
MLA
Sun, M. X., Zhu, H. C., Yu, Y., Yao, Y., Li, H. Y., Feng, F. B., Wang, Q. Y., Liu, R. J., Sun, C. G."Role of the Wnt signaling pathway in the complex microenvironment of breast cancer and prospects for therapeutic potential (Review)". International Journal of Oncology 66.5 (2025): 36.
Chicago
Sun, M. X., Zhu, H. C., Yu, Y., Yao, Y., Li, H. Y., Feng, F. B., Wang, Q. Y., Liu, R. J., Sun, C. G."Role of the Wnt signaling pathway in the complex microenvironment of breast cancer and prospects for therapeutic potential (Review)". International Journal of Oncology 66, no. 5 (2025): 36. https://doi.org/10.3892/ijo.2025.5742
Copy and paste a formatted citation
x
Spandidos Publications style
Sun MX, Zhu HC, Yu Y, Yao Y, Li HY, Feng FB, Wang QY, Liu RJ and Sun CG: Role of the Wnt signaling pathway in the complex microenvironment of breast cancer and prospects for therapeutic potential (Review). Int J Oncol 66: 36, 2025.
APA
Sun, M.X., Zhu, H.C., Yu, Y., Yao, Y., Li, H.Y., Feng, F.B. ... Sun, C.G. (2025). Role of the Wnt signaling pathway in the complex microenvironment of breast cancer and prospects for therapeutic potential (Review). International Journal of Oncology, 66, 36. https://doi.org/10.3892/ijo.2025.5742
MLA
Sun, M. X., Zhu, H. C., Yu, Y., Yao, Y., Li, H. Y., Feng, F. B., Wang, Q. Y., Liu, R. J., Sun, C. G."Role of the Wnt signaling pathway in the complex microenvironment of breast cancer and prospects for therapeutic potential (Review)". International Journal of Oncology 66.5 (2025): 36.
Chicago
Sun, M. X., Zhu, H. C., Yu, Y., Yao, Y., Li, H. Y., Feng, F. B., Wang, Q. Y., Liu, R. J., Sun, C. G."Role of the Wnt signaling pathway in the complex microenvironment of breast cancer and prospects for therapeutic potential (Review)". International Journal of Oncology 66, no. 5 (2025): 36. https://doi.org/10.3892/ijo.2025.5742
Follow us
  • Twitter
  • LinkedIn
  • Facebook
About
  • Spandidos Publications
  • Careers
  • Cookie Policy
  • Privacy Policy
How can we help?
  • Help
  • Live Chat
  • Contact
  • Email to our Support Team