You can change your cookie settings at any time by following the instructions in our Cookie Policy. To find out more, you may read our Privacy Policy.
I agree
International Journal of Molecular Medicine is an international journal devoted to molecular mechanisms of human disease.
International Journal of Oncology is an international journal devoted to oncology research and cancer treatment.
Covers molecular medicine topics such as pharmacology, pathology, genetics, neuroscience, infectious diseases, molecular cardiology, and molecular surgery.
Oncology Reports is an international journal devoted to fundamental and applied research in Oncology.
Experimental and Therapeutic Medicine is an international journal devoted to laboratory and clinical medicine.
Oncology Letters is an international journal devoted to Experimental and Clinical Oncology.
Explores a wide range of biological and medical fields, including pharmacology, genetics, microbiology, neuroscience, and molecular cardiology.
International journal addressing all aspects of oncology research, from tumorigenesis and oncogenes to chemotherapy and metastasis.
Multidisciplinary open-access journal spanning biochemistry, genetics, neuroscience, environmental health, and synthetic biology.
Open-access journal combining biochemistry, pharmacology, immunology, and genetics to advance health through functional nutrition.
Publishes open-access research on using epigenetics to advance understanding and treatment of human disease.
An International Open Access Journal Devoted to General Medicine.
![]() |
![]() |
![]() |
|
Zhao P, Zhao S, Huang C, Li Y, Wang J, Xu J, Li L, Qian Z, Li W, Zhou S, et al: Efficacy and safety of polatuzumab vedotin plus rituximab, cyclophosphamide, doxorubicin and prednisone for previously untreated diffuse large B-cell lymphoma: A real-world, multi-center, retrospective cohort study. Hematol Oncol. 43:e700172025. View Article : Google Scholar | |
|
Vaughn JL, Ramdhanny A, Munir M, Rimmalapudi S and Epperla N: A comparative analysis of transformed indolent lymphomas and de novo diffuse large B-cell lymphoma: A population-based cohort study. Blood Cancer J. 14:2122024. View Article : Google Scholar : PubMed/NCBI | |
|
Schmitz R, Wright GW, Huang DW, Johnson CA, Phelan JD, Wang JQ, Roulland S, Kasbekar M, Young RM, Shaffer AL, et al: Genetics and pathogenesis of diffuse large B-cell lymphoma. N Engl J Med. 378:1396–1407. 2018. View Article : Google Scholar : PubMed/NCBI | |
|
Bantilan KS, Smith AN, Maurer MJ, Teruya-Feldstein J, Matasar MJ, Moskowitz AJ, Straus DJ, Noy A, Palomba ML, Horwitz SM, et al: Matched control analysis suggests that R-CHOP followed by (R)-ICE may improve outcome in non-GCB DLBCL compared with R-CHOP. Blood Adv. 8:2172–2181. 2024. View Article : Google Scholar : PubMed/NCBI | |
|
García-Sancho AM, Cabero A and Gutiérrez NC: Treatment of relapsed or refractory diffuse large B-cell lymphoma: New approved options. J Clin Med. 13:702023. View Article : Google Scholar | |
|
Coiffier B, Thieblemont C, Van Den Neste E, Lepeu G, Plantier I, Castaigne S, Lefort S, Marit G, Macro M, Sebban C, et al: Long-term outcome of patients in the LNH-98.5 trial, the first randomized study comparing rituximab-CHOP to standard CHOP chemotherapy in DLBCL patients: a study by the Groupe d'Etudes des Lymphomes de l'Adulte. Blood. 116:2040–2045. 2010. View Article : Google Scholar : PubMed/NCBI | |
|
Pfreundschuh M, Trümper L, Osterborg A, Pettengell R, Trneny M, Imrie K, Ma D, Gill D, Walewski J, Zinzani PL, et al: CHOP-like chemotherapy plus rituximab versus CHOP-like chemotherapy alone in young patients with good-prognosis diffuse large-B-cell lymphoma: A randomised controlled trial by the MabThera international trial (MInT) group. Lancet Oncol. 7:379–391. 2006. View Article : Google Scholar : PubMed/NCBI | |
|
Pinzone MR, Berretta M, Cacopardo B and Nunnari G: Epstein-barr virus- and Kaposi sarcoma-associated herpesvirus-related malignancies in the setting of human immunodeficiency virus infection. Semin Oncol. 42:258–271. 2015. View Article : Google Scholar : PubMed/NCBI | |
|
Chapman JR, Bouska AC, Zhang W, Alderuccio JP, Lossos IS, Rimsza LM, Maguire A, Yi S, Chan WC, Vega F and Song JY: EBV-positive HIV-associated diffuse large B cell lymphomas are characterized by JAK/STAT (STAT3) pathway mutations and unique clinicopathologic features. Br J Haematol. 194:870–878. 2021. View Article : Google Scholar : PubMed/NCBI | |
|
Gianella S, Anderson CM, Var SR, Oliveira MF, Lada SM, Vargas MV, Massanella M, Little SJ, Richman DD, Strain MC, et al: Replication of human herpesviruses is associated with higher HIV DNA levels during antiretroviral therapy started at early phases of HIV infection. J Virol. 90:3944–3952. 2016. View Article : Google Scholar : PubMed/NCBI | |
|
Wang SS: Epidemiology and etiology of diffuse large B-cell lymphoma. Semin Hematol. 60:255–266. 2023. View Article : Google Scholar | |
|
Ekström Smedby K, Vajdic CM, Falster M, Engels EA, Martínez-Maza O, Turner J, Hjalgrim H, Vineis P, Seniori Costantini A, Bracci PM, et al: Autoimmune disorders and risk of non-Hodgkin lymphoma subtypes: A pooled analysis within the InterLymph consortium. Blood. 111:4029–4038. 2008. View Article : Google Scholar : PubMed/NCBI | |
|
Yang L, Liang Y, Pu J, Cai L, Gao R, Han F, Chang K, Pan S, Wu Z, Zhang Y, et al: Dysregulated serum lipid profile is associated with inflammation and disease activity in primary Sjögren's syndrome: A retrospective study in China. Immunol Lett. 267:1068652024. View Article : Google Scholar | |
|
Almasmoum HA: Molecular complexity of diffuse large B-cell lymphoma: A molecular perspective and therapeutic implications. J Appl Genet. 65:57–72. 2024. View Article : Google Scholar | |
|
Serganova I, Chakraborty S, Yamshon S, Isshiki Y, Bucktrout R, Melnick A, Béguelin W and Zappasodi R: Epigenetic, metabolic, and immune crosstalk in germinal-center-derived B-cell lymphomas: Unveiling new vulnerabilities for rational combination therapies. Front Cell Dev Biol. 9:8051952022. View Article : Google Scholar : PubMed/NCBI | |
|
Horn H, Ziepert M, Becher C, Barth TF, Bernd HW, Feller AC, Klapper W, Hummel M, Stein H, Hansmann ML, et al: MYC status in concert with BCL2 and BCL6 expression predicts outcome in diffuse large B-cell lymphoma. Blood. 121:2253–2263. 2013. View Article : Google Scholar : PubMed/NCBI | |
|
Riedell PA and Smith SM: Double hit and double expressors in lymphoma: Definition and treatment. Cancer. 124:4622–4632. 2018. View Article : Google Scholar : PubMed/NCBI | |
|
Cioroianu AI, Stinga PI, Sticlaru L, Cioplea MD, Nichita L, Popp C and Staniceanu F: Tumor microenvironment in diffuse large B-cell lymphoma: role and prognosis. Anal Cell Pathol (Amst). 2019:85863542019. | |
|
Momivand M, Razaghi M, Mohammadi F, Hoseinzadeh E and Najafi-Vosough R: The status of serum 25(OH)D levels is related to breast cancer. Cancer Treat Res Commun. 42:1008702024. View Article : Google Scholar | |
|
Jang Y and Kim CY: The role of vitamin e isoforms and metabolites in cancer prevention: Mechanistic insights into sphingolipid metabolism modulation. Nutrients. 16:41152024. View Article : Google Scholar : PubMed/NCBI | |
|
Paller CJ, Zahurak ML, Mandl A, Metri NA, Lalji A, Heath E, Kelly WK, Hoimes C, Barata P, Taksey J, et al: High-dose intravenous vitamin C combined with docetaxel in men with metastatic castration-resistant prostate cancer: A randomized placebo-controlled phase II trial. Cancer Res Commun. 4:2174–2182. 2024. View Article : Google Scholar : PubMed/NCBI | |
|
Gillberg L, Ørskov AD, Nasif A, Ohtani H, Madaj Z, Hansen JW, Rapin N, Mogensen JB, Liu M, Dufva IH, et al: Oral vitamin C supplementation to patients with myeloid cancer on azacitidine treatment: Normalization of plasma vitamin C induces epigenetic changes. Clin Epigenetics. 11:1432019. View Article : Google Scholar : PubMed/NCBI | |
|
O'Leary BR, Alexander MS, Du J, Moose DL, Henry MD and Cullen JJ: Pharmacological ascorbate inhibits pancreatic cancer metastases via a peroxide-mediated mechanism. Sci Rep. 10:176492020. View Article : Google Scholar : PubMed/NCBI | |
|
Furqan M, Abu-Hejleh T, Stephens LM, Hartwig SM, Mott SL, Pulliam CF, Petronek M, Henrich JB, Fath MA, Houtman JC, et al: Pharmacological ascorbate improves the response to platinum-based chemotherapy in advanced stage non-small cell lung cancer. Redox Biol. 53:1023182022. View Article : Google Scholar : PubMed/NCBI | |
|
Bodeker KL, Smith BJ, Berg DJ, Chandrasekharan C, Sharif S, Fei N, Vollstedt S, Brown H, Chandler M, Lorack A, et al: A randomized trial of pharmacological ascorbate, gemcitabine, and nab-paclitaxel for metastatic pancreatic cancer. Redox Biol. 77:1033752024. View Article : Google Scholar : PubMed/NCBI | |
|
Su X, Shen Z, Yang Q, Sui F, Pu J, Ma J, Ma S, Yao D, Ji M and Hou P: Vitamin C kills thyroid cancer cells through ROS-dependent inhibition of MAPK/ERK and PI3K/AKT pathways via distinct mechanisms. Theranostics. 9:4461–4473. 2019. View Article : Google Scholar : PubMed/NCBI | |
|
Zhou J, Chen C, Chen X, Fei Y, Jiang L and Wang G: Vitamin C promotes apoptosis and cell cycle arrest in oral squamous cell carcinoma. Front Oncol. 10:9762020. View Article : Google Scholar : PubMed/NCBI | |
|
Su X, Li P, Han B, Jia H, Liang Q, Wang H, Gu M, Cai J, Li S, Zhou Y, et al: Vitamin C sensitizes BRAFV600E thyroid cancer to PLX4032 via inhibiting the feedback activation of MAPK/ERK signal by PLX4032. J Exp Clin Cancer Res. 40:342021. View Article : Google Scholar | |
|
Zhao X, Liu M, Li C, Liu X, Zhao J, Ma H, Zhang S and Qu J: High dose vitamin C inhibits PD-L1 by ROS-pSTAT3 signal pathway and enhances T cell function in TNBC. Int Immunopharmacol. 126:1113212024. View Article : Google Scholar | |
|
Lv H, Zong Q, Chen C, Lv G, Xiang W, Xing F, Jiang G, Yan B, Sun X, Ma Y, et al: TET2-mediated tumor cGAS triggers endothelial STING activation to regulate vasculature remodeling and anti-tumor immunity in liver cancer. Nat Commun. 15:62024. View Article : Google Scholar : PubMed/NCBI | |
|
Williams DJ, Edwards D, Pun S, Chaliha M, Burren B, Tinggi U and Sultanbawa Y: Organic acids in Kakadu plum (Terminalia ferdinandiana): The good (ellagic), the bad (oxalic) and the uncertain (ascorbic). Food Res Int. 89:237–244. 2016. View Article : Google Scholar | |
|
Böttger F, Vallés-Martí A, Cahn L and Jimenez CR: High-dose intravenous vitamin C, a promising multi-targeting agent in the treatment of cancer. J Exp Clin Cancer Res. 40:3432021. View Article : Google Scholar : PubMed/NCBI | |
|
Ngo B, Van Riper JM, Cantley LC and Yun J: Targeting cancer vulnerabilities with high-dose vitamin C. Nat Rev Cancer. 19:271–282. 2019. View Article : Google Scholar : PubMed/NCBI | |
|
Chang JE, Voorhees PM, Kolesar JM, Ahuja HG, Sanchez FA, Rodriguez GA, Kim K, Werndli J, Bailey HH and Kahl BS: Phase II study of arsenic trioxide and ascorbic acid for relapsed or refractory lymphoid malignancies: A wisconsin oncology network study. Hematol Oncol. 27:11–16. 2009. View Article : Google Scholar | |
|
Kawada H, Sawanobori M, Tsuma-Kaneko M, Wasada I, Miyamoto M, Murayama H, Toyosaki M, Onizuka M, Tsuboi K, Tazume K, et al: Phase I clinical trial of intravenous l-ascorbic acid following salvage chemotherapy for relapsed B-cell non-Hodgkin's lymphoma. Tokai J Exp Clin Med. 39:111–115. 2014.PubMed/NCBI | |
|
Carr AC and Maggini S: Vitamin C and immune function. Nutrients. 9:12112017. View Article : Google Scholar : PubMed/NCBI | |
|
Padayatty SJ and Levine M: Vitamin C: The known and the unknown and goldilocks. Oral Dis. 22:463–493. 2016. View Article : Google Scholar : PubMed/NCBI | |
|
Bhoot HR, Zamwar UM, Chakole S and Anjankar A: Dietary sources, bioavailability, and functions of ascorbic acid (vitamin C) and its role in the common cold, tissue healing, and iron metabolism. Cureus. 15:e493082023.PubMed/NCBI | |
|
Bowry SK: Dialysis membranes today. Int J Artif Organs. 25:447–460. 2002. View Article : Google Scholar : PubMed/NCBI | |
|
Bürzle M, Suzuki Y, Ackermann D, Miyazaki H, Maeda N, Clémençon B, Burrier R and Hediger MA: The sodium-dependent ascorbic acid transporter family SLC23. Mol Aspects Med. 34:436–454. 2013. View Article : Google Scholar : PubMed/NCBI | |
|
Lykkesfeldt J and Tveden-Nyborg P: The pharmacokinetics of vitamin C. Nutrients. 11:24122019. View Article : Google Scholar : PubMed/NCBI | |
|
Doseděl M, Jirkovský E, Macáková K, Krčmová LK, Javorská L, Pourová J, Mercolini L, Remião F, Nováková L, Mladěnka P, et al: Vitamin C-sources, physiological role, kinetics, deficiency, use, toxicity, and determination. Nutrients. 13:6152021. View Article : Google Scholar : PubMed/NCBI | |
|
Hasselholt S, Tveden-Nyborg P and Lykkesfeldt J: Distribution of vitamin C is tissue specific with early saturation of the brain and adrenal glands following differential oral dose regimens in guinea pigs. Br J Nutr. 113:1539–1549. 2015. View Article : Google Scholar : PubMed/NCBI | |
|
Mohammed BM, Fisher BJ, Kraskauskas D, Ward S, Wayne JS, Brophy DF, Fowler AA III, Yager DR and Natarajan R: Vitamin C promotes wound healing through novel pleiotropic mechanisms. Int Wound J. 13:572–584. 2016. View Article : Google Scholar | |
|
Moores J: Vitamin C: A wound healing perspective. Br J Community Nurs. Suppl:S6S8–S11. 2013. View Article : Google Scholar | |
|
Fisher BJ, Kraskauskas D, Martin EJ, Farkas D, Puri P, Massey HD, Idowu MO, Brophy DF, Voelkel NF, Fowler AA III and Natarajan R: Attenuation of sepsis-induced organ injury in mice by vitamin C. JPEN J Parenter Enteral Nutr. 38:825–839. 2014. View Article : Google Scholar | |
|
Carr AC, Shaw GM, Fowler AA and Natarajan R: Ascorbate-dependent vasopressor synthesis: A rationale for vitamin C administration in severe sepsis and septic shock? Crit Care. 19:4182015. View Article : Google Scholar : PubMed/NCBI | |
|
Bozonet SM, Carr AC, Pullar JM and Vissers MC: Enhanced human neutrophil vitamin C status, chemotaxis and oxidant generation following dietary supplementation with vitamin C-rich SunGold kiwifruit. Nutrients. 7:2574–2588. 2015. View Article : Google Scholar : PubMed/NCBI | |
|
Hong JM, Kim JH, Kang JS, Lee WJ and Hwang YI: Vitamin C is taken up by human T cells via sodium-dependent vitamin C transporter 2 (SVCT2) and exerts inhibitory effects on the activation of these cells in vitro. Anat Cell Biol. 49:88–98. 2016. View Article : Google Scholar : PubMed/NCBI | |
|
Molina N, Morandi AC, Bolin AP and Otton R: Comparative effect of fucoxanthin and vitamin C on oxidative and functional parameters of human lymphocytes. Int Immunopharmacol. 22:41–50. 2014. View Article : Google Scholar : PubMed/NCBI | |
|
van Gorkom GNY, Klein Wolterink RGJ, Van Elssen CHMJ, Wieten L, Germeraad WTV and Bos GMJ: Influence of vitamin C on lymphocytes: An overview. Antioxidants (Basel). 7:412018. View Article : Google Scholar : PubMed/NCBI | |
|
Zhang X, Zhang Y, Wang C and Wang X: TET (Ten-eleven translocation) family proteins: Structure, biological functions and applications. Signal Transduct Target Ther. 8:2972023. View Article : Google Scholar : PubMed/NCBI | |
|
Yue X, Trifari S, Äijö T, Tsagaratou A, Pastor WA, Zepeda-Martínez JA, Lio CW, Li X, Huang Y, Vijayanand P, et al: Control of Foxp3 stability through modulation of TET activity. J Exp Med. 213:377–397. 2016. View Article : Google Scholar : PubMed/NCBI | |
|
Warren CFA, Wong-Brown MW and Bowden NA: BCL-2 family isoforms in apoptosis and cancer. Cell Death Dis. 10:1772019. View Article : Google Scholar : PubMed/NCBI | |
|
Singh R, Letai A and Sarosiek K: Regulation of apoptosis in health and disease: The balancing act of BCL-2 family proteins. Nat Rev Mol Cell Biol. 20:175–193. 2019. View Article : Google Scholar : PubMed/NCBI | |
|
Deng X, Gao F and May WS Jr: Bcl2 retards G1/S cell cycle transition by regulating intracellular ROS. Blood. 102:3179–3185. 2003. View Article : Google Scholar : PubMed/NCBI | |
|
Güler A, Yardımcı BK and Özek NŞ: Human anti-apoptotic Bcl-2 and Bcl-xL proteins protect yeast cells from aging induced oxidative stress. Biochimie. 229:69–83. 2025. View Article : Google Scholar | |
|
Yu X, Wang Y, Tan J, Li Y, Yang P, Liu X, Lai J, Zhang Y, Cai L, Gu Y, et al: Inhibition of NRF2 enhances the acute myeloid leukemia cell death induced by venetoclax via the ferroptosis pathway. Cell Death Discov. 10:352024. View Article : Google Scholar : PubMed/NCBI | |
|
Sies H: Oxidative stress: A concept in redox biology and medicine. Redox Biol. 4:180–183. 2015. View Article : Google Scholar : PubMed/NCBI | |
|
Assi M: The differential role of reactive oxygen species in early and late stages of cancer. Am J Physiol Regul Integr Comp Physiol. 313:R646–R653. 2017. View Article : Google Scholar : PubMed/NCBI | |
|
Hayes JD, Dinkova-Kostova AT and Tew KD: Oxidative stress in cancer. Cancer Cell. 38:167–197. 2020. View Article : Google Scholar : PubMed/NCBI | |
|
Sahoo BM, Banik BK, Borah P and Jain A: Reactive oxygen species (ROS): Key components in cancer therapies. Anticancer Agents Med Chem. 22:215–222. 2022. View Article : Google Scholar | |
|
Ebrahim AS, Sabbagh H, Liddane A, Raufi A, Kandouz M and Al-Katib A: Hematologic malignancies: Newer strategies to counter the BCL-2 protein. J Cancer Res Clin Oncol. 142:2013–2022. 2016. View Article : Google Scholar : PubMed/NCBI | |
|
Ashkenazi A, Fairbrother WJ, Leverson JD and Souers AJ: From basic apoptosis discoveries to advanced selective BCL-2 family inhibitors. Nat Rev Drug Discov. 16:273–284. 2017. View Article : Google Scholar : PubMed/NCBI | |
|
Sermer D, Bobillo S, Dogan A, Zhang Y, Seshan V, Lavery JA, Batlevi C, Caron P, Hamilton A, Hamlin P, et al: Extra copies of MYC, BCL2, and BCL6 and outcome in patients with diffuse large B-cell lymphoma. Blood Adv. 4:3382–3390. 2020. View Article : Google Scholar : PubMed/NCBI | |
|
Cerón R, Martínez A, Ramos C, De la Cruz A, García A, Mendoza I, Palmeros G, Montaño Figueroa EH, Navarrete J, Jiménez-Morales S, et al: Overexpression of BCL2, BCL6, VEGFR1 and TWIST1 in circulating tumor cells derived from patients with DLBCL decreases event-free survival. Onco Targets Ther. 15:1583–1595. 2022. View Article : Google Scholar | |
|
Low IC, Kang J and Pervaiz S: Bcl-2: A prime regulator of mitochondrial redox metabolism in cancer cells. Antioxid Redox Signal. 15:2975–2987. 2011. View Article : Google Scholar : PubMed/NCBI | |
|
Krishna S, Low ICC and Pervaiz S: Regulation of mitochondrial metabolism: Yet another facet in the biology of the oncoprotein Bcl-2. Biochem J. 435:545–551. 2011. View Article : Google Scholar : PubMed/NCBI | |
|
Eno CO, Zhao G, Olberding KE and Li C: The Bcl-2 proteins Noxa and Bcl-xL co-ordinately regulate oxidative stress-induced apoptosis. Biochem J. 444:69–78. 2012. View Article : Google Scholar : PubMed/NCBI | |
|
Lagadinou ED, Sach A, Callahan K, Rossi RM, Neering SJ, Minhajuddin M, Ashton JM, Pei S, Grose V, O'Dwyer KM, et al: BCL-2 inhibition targets oxidative phosphorylation and selectively eradicates quiescent human leukemia stem cells. Cell Stem Cell. 12:329–341. 2013. View Article : Google Scholar : PubMed/NCBI | |
|
Lv H, Wang C, Fang T, Li T, Lv G, Han Q, Yang W and Wang H: Vitamin C preferentially kills cancer stem cells in hepatocellular carcinoma via SVCT-2. NPJ Precis Oncol. 2:12018. View Article : Google Scholar : PubMed/NCBI | |
|
Ghanem A, Melzer AM, Zaal E, Neises L, Baltissen D, Matar O, Glennemeier-Marke H, Almouhanna F, Theobald J, Abu El Maaty MA, et al: Ascorbate kills breast cancer cells by rewiring metabolism via redox imbalance and energy crisis. Free Radic Biol Med. 163:196–209. 2021. View Article : Google Scholar | |
|
Chen Q, Espey MG, Krishna MC, Mitchell JB, Corpe CP, Buettner GR, Shacter E and Levine M: Pharmacologic ascorbic acid concentrations selectively kill cancer cells: Action as a pro-drug to deliver hydrogen peroxide to tissues. Proc Natl Acad Sci USA. 102:13604–13609. 2005. View Article : Google Scholar : PubMed/NCBI | |
|
Fan D, Liu X, Shen Z, Wu P, Zhong L and Lin F: Cell signaling pathways based on vitamin C and their application in cancer therapy. Biomed Pharmacother. 162:1146952023. View Article : Google Scholar : PubMed/NCBI | |
|
El-Garawani IM, El-Nabi SH, El-Shafey S, Elfiky M and Nafie E: Coffea arabica bean extracts and vitamin C: A novel combination unleashes MCF-7 cell death. Curr Pharm Biotechnol. 21:23–36. 2020. View Article : Google Scholar | |
|
Chen MS, Zhao HK, Cheng YY, Yuan ZH and Zhang YL: Toxic effects of vitamin C combined with temozolomide on glioma cells and its mechanism. Zhongguo Ying Yong Sheng Li Xue Za Zhi. 36:616–621. 2020.In Chinese. | |
|
Liongue C, Almohaisen F and Ward AC: B cell lymphoma 6 (BCL6): A conserved regulator of immunity and beyond. Int J Mol Sci. 25:109682024. View Article : Google Scholar : PubMed/NCBI | |
|
Basso K and Dalla-Favera R: Roles of BCL6 in normal and transformed germinal center B cells. Immunol Rev. 247:172–183. 2012. View Article : Google Scholar : PubMed/NCBI | |
|
Phan RT and Dalla-Favera R: The BCL6 proto-oncogene suppresses p53 expression in germinal-centre B cells. Nature. 432:635–639. 2004. View Article : Google Scholar : PubMed/NCBI | |
|
Kerckaert JP, Deweindt C, Tilly H, Quief S, Lecocq G and Bastard C: LAZ3, a novel zinc-finger encoding gene, is disrupted by recurring chromosome 3q27 translocations in human lymphomas. Nat Genet. 5:66–70. 1993. View Article : Google Scholar : PubMed/NCBI | |
|
Johnston RJ, Poholek AC, DiToro D, Yusuf I, Eto D, Barnett B, Dent AL, Craft J and Crotty S: Bcl6 and Blimp-1 are reciprocal and antagonistic regulators of T follicular helper cell differentiation. Science. 325:1006–1010. 2009. View Article : Google Scholar : PubMed/NCBI | |
|
Zan H, Wu X, Komori A, Holloman WK and Casali P: AID-dependent generation of resected double-strand DNA breaks and recruitment of Rad52/Rad51 in somatic hypermutation. Immunity. 18:727–738. 2003. View Article : Google Scholar : PubMed/NCBI | |
|
Liu Y, Feng J, Yuan K, Wu Z, Hu L, Lu Y, Li K, Guo J, Chen J, Ma C and Pang X: The oncoprotein BCL6 enables solid tumor cells to evade genotoxic stress. Elife. 11:e692552022. View Article : Google Scholar : PubMed/NCBI | |
|
McLachlan T, Matthews WC, Jackson ER, Staudt DE, Douglas AM, Findlay IJ, Persson ML, Duchatel RJ, Mannan A, Germon ZP and Dun MD: B-cell lymphoma 6 (BCL6): From master regulator of humoral immunity to oncogenic driver in pediatric cancers. Mol Cancer Res. 20:1711–1723. 2022. View Article : Google Scholar : PubMed/NCBI | |
|
Louwen F, Kreis NN, Ritter A, Friemel A, Solbach C and Yuan J: BCL6, a key oncogene, in the placenta, pre-eclampsia and endometriosis. Hum Reprod Update. 28:890–909. 2022. View Article : Google Scholar : PubMed/NCBI | |
|
Leeman-Neill RJ and Bhagat G: BCL6 as a therapeutic target for lymphoma. Expert Opin Ther Targets. 22:143–152. 2018. View Article : Google Scholar | |
|
Huang C and Melnick A: Mechanisms of action of BCL6 during germinal center B cell development. Sci China Life Sci. 58:1226–1232. 2015. View Article : Google Scholar : PubMed/NCBI | |
|
Krull JE, Wenzl K, Hartert KT, Manske MK, Sarangi V, Maurer MJ, Larson MC, Nowakowski GS, Ansell SM, McPhail E, et al: Somatic copy number gains in MYC, BCL2, and BCL6 identifies a subset of aggressive alternative-DH/TH DLBCL patients. Blood Cancer J. 10:1172020. View Article : Google Scholar : PubMed/NCBI | |
|
Ting CY, Chang KM, Kuan JW, Sathar J, Chew LP, Wong OJ, Yusuf Y, Wong L, Samsudin AT, Pana MNBM, et al: Clinical significance of BCL2, C-MYC, and BCL6 genetic abnormalities, epstein-barr virus infection, CD5 protein expression, germinal center B Cell/non-germinal center B-cell subtypes, co-expression of MYC/BCL2 proteins and co-expression of MYC/BCL2/BCL6 proteins in diffuse large B-cell lymphoma: a clinical and pathological correlation study of 120 patients. Int J Med Sci. 16:556–566. 2019. View Article : Google Scholar : | |
|
Ferretti GDS, Quarti J, Dos Santos G, Rangel LP and Silva JL: Anticancer therapeutic strategies targeting p53 aggregation. Int J Mol Sci. 23:110232022. View Article : Google Scholar : PubMed/NCBI | |
|
Bieging KT, Mello SS and Attardi LD: Unravelling mechanisms of p53-mediated tumour suppression. Nat Rev Cancer. 14:359–370. 2014. View Article : Google Scholar : PubMed/NCBI | |
|
Williams AB and Schumacher B: p53 in the DNA-damage-repair process. Cold Spring Harb Perspect Med. 6:a0260702016. View Article : Google Scholar : PubMed/NCBI | |
|
Sermeus A and Michiels C: Reciprocal influence of the p53 and the hypoxic pathways. Cell Death Dis. 2:e1642011. View Article : Google Scholar : PubMed/NCBI | |
|
Miyata S, Ishii T and Kitanaka S: Reduction of HIF-1α/PD-L1 by catalytic topoisomerase inhibitor induces cell death through caspase activation in cancer cells under hypoxia. Anticancer Res. 44:49–59. 2024. View Article : Google Scholar : PubMed/NCBI | |
|
Madan E, Parker TM, Pelham CJ, Palma AM, Peixoto ML, Nagane M, Chandaria A, Tomás AR, Canas-Marques R, Henriques V, et al: HIF-transcribed p53 chaperones HIF-1α. Nucleic Acids Res. 47:10212–10234. 2019. View Article : Google Scholar : PubMed/NCBI | |
|
Ismail S, Elshimali Y, Daoud A and Alshehabi Z: Immunohistochemical expression of transcription factors PAX5, OCT2, BCL6 and transcription regulator P53 in Non-Hodgkin lymphomas: A diagnostic cross-sectional study. Ann Med Surg (Lond). 78:1037862022.PubMed/NCBI | |
|
Choi SH, Koh DI, Cho SY, Kim MK, Kim KS and Hur MW: Temporal and differential regulation of KAISO-controlled transcription by phosphorylated and acetylated p53 highlights a crucial regulatory role of apoptosis. J Biol Chem. 294:12957–12974. 2019. View Article : Google Scholar : PubMed/NCBI | |
|
Margalit O, Amram H, Amariglio N, Simon AJ, Shaklai S, Granot G, Minsky N, Shimoni A, Harmelin A, Givol D, et al: BCL6 is regulated by p53 through a response element frequently disrupted in B-cell non-Hodgkin lymphoma. Blood. 107:1599–1607. 2006. View Article : Google Scholar | |
|
Kaźmierczak-Barańska J, Boguszewska K, Adamus-Grabicka A and Karwowski BT: Two faces of vitamin C-antioxidative and pro-oxidative agent. Nutrients. 12:15012020. View Article : Google Scholar | |
|
Xiong Y, Xu S, Fu B, Tang W, Zaky MY, Tian R, Yao R, Zhang S, Zhao Q, Nian W, et al: Vitamin C-induced competitive binding of HIF-1α and p53 to ubiquitin E3 ligase CBL contributes to anti-breast cancer progression through p53 deacetylation. Food Chem Toxicol. 168:1133212022. View Article : Google Scholar | |
|
Kim J, Lee SD, Chang B, Jin DH, Jung SI, Park MY, Han Y, Yang Y, Il Kim K, Lim JS, et al: Enhanced antitumor activity of vitamin C via p53 in cancer cells. Free Radic Biol Med. 53:1607–1615. 2012. View Article : Google Scholar : PubMed/NCBI | |
|
Huang K: Chemical inducers of proximity: Precision tools for apoptosis in transcriptional regulation. Signal Transduct Target Ther. 9:3642024. View Article : Google Scholar : PubMed/NCBI | |
|
Duffy MJ, O'Grady S, Tang M and Crown J: MYC as a target for cancer treatment. Cancer Treat Rev. 94:1021542021. View Article : Google Scholar : PubMed/NCBI | |
|
Das SK, Lewis BA and Levens D: MYC: A complex problem. Trends Cell Biol. 33:235–246. 2023. View Article : Google Scholar : | |
|
Ellenbroek BD, Kahler JP, Arella D, Lin C, Jespers W, Züger EA, Drukker M and Pomplun SJ: Development of DuoMYC: A synthetic cell penetrant miniprotein that efficiently inhibits the oncogenic transcription factor MYC. Angew Chem Int Ed Engl. 64:e2024160822025. View Article : Google Scholar : | |
|
Baluapuri A, Wolf E and Eilers M: Target gene-independent functions of MYC oncoproteins. Nat Rev Mol Cell Biol. 21:255–267. 2020. View Article : Google Scholar : PubMed/NCBI | |
|
Liu Z, Chen SS, Clarke S, Veschi V and Thiele CJ: Targeting MYCN in pediatric and adult cancers. Front Oncol. 10:6236792021. View Article : Google Scholar : PubMed/NCBI | |
|
Massó-Vallés D, Beaulieu ME and Soucek L: MYC, MYCL, and MYCN as therapeutic targets in lung cancer. Expert Opin Ther Targets. 24:101–114. 2020. View Article : Google Scholar : PubMed/NCBI | |
|
Stoelzle T, Schwarb P, Trumpp A and Hynes NE: c-Myc affects mRNA translation, cell proliferation and progenitor cell function in the mammary gland. BMC Biol. 7:632009. View Article : Google Scholar : PubMed/NCBI | |
|
Felipe I, Martínez-de-Villarreal J, Patel K, Martínez-Torrecuadrada J, Grossmann LD, Roncador G, Cubells M, Farrell A, Kendsersky N, Sabroso-Lasa S, et al: BPTF cooperates with MYCN and MYC to link neuroblastoma cell cycle control to epigenetic cellular states. bioRxiv [Preprint]: 2024.02.11.579816. 2024. | |
|
Mahdavi P, Panahipoor Javaherdehi A, Khanjanpoor P, Aminian H, Zakeri M, Zafarani A and Razizadeh MH: The role of c-Myc in Epstein-Barr virus-associated cancers: Mechanistic insights and therapeutic implications. Microb Pathog. 197:1070252024. View Article : Google Scholar : PubMed/NCBI | |
|
Yoon J, Jeon T, Kwon JA and Yoon SY: Characterization of MYC rearrangements in multiple myeloma: An optical genome mapping approach. Blood Cancer J. 14:1652024. View Article : Google Scholar : PubMed/NCBI | |
|
Jakobsen ST and Siersbæk R: Transcriptional regulation by MYC: An emerging new model. Oncogene. 44:1–7. 2025. View Article : Google Scholar | |
|
Bisso A, Filipuzzi M, Gamarra Figueroa GP, Brumana G, Biagioni F, Doni M, Ceccotti G, Tanaskovic N, Morelli MJ, Pendino V, et al: Cooperation between MYC and β-catenin in liver tumorigenesis requires Yap/Taz. Hepatology. 72:1430–1443. 2020. View Article : Google Scholar : PubMed/NCBI | |
|
Dhanasekaran R, Deutzmann A, Mahauad-Fernandez WD, Hansen AS, Gouw AM and Felsher DW: The MYC oncogene-the grand orchestrator of cancer growth and immune evasion. Nat Rev Clin Oncol. 19:23–36. 2022. View Article : Google Scholar | |
|
Baena E, Ortiz M, Martínez-A C and de Alborán IM: c-Myc is essential for hematopoietic stem cell differentiation and regulates Lin(-)Sca-1(+)c-Kit(-) cell generation through p21. Exp Hematol. 35:1333–1343. 2007. View Article : Google Scholar : PubMed/NCBI | |
|
Sewastianik T, Prochorec-Sobieszek M, Chapuy B and Juszczyński P: MYC deregulation in lymphoid tumors: Molecular mechanisms, clinical consequences and therapeutic implications. Biochim Biophys Acta. 1846:457–467. 2014.PubMed/NCBI | |
|
Susanibar-Adaniya S and Barta SK: 2021 Update on diffuse large B cell lymphoma: A review of current data and potential applications on risk stratification and management. Am J Hematol. 96:617–629. 2021. View Article : Google Scholar : PubMed/NCBI | |
|
Candelaria M, Cerrato-Izaguirre D, Gutierrez O, Diaz-Chavez J, Aviles A, Dueñas-Gonzalez A and Malpica L: Characterizing the mutational landscape of diffuse large B-cell lymphoma in a prospective cohort of mexican patients. Int J Mol Sci. 25:93282024. View Article : Google Scholar : PubMed/NCBI | |
|
Hashmi AA, Iftikhar SN, Nargus G, Ahmed O, Asghar IA, Shirazi UA, Afzal A, Irfan M and Ali J: Double-expressor phenotype (BCL-2/c-MYC co-expression) of diffuse large B-cell lymphoma and its clinicopathological correlation. Cureus. 13:e131552021.PubMed/NCBI | |
|
Wu G, Liu T, Li H, Li Y, Li D and Li W: c-MYC and reactive oxygen species play roles in tetrandrine-induced leukemia differentiation. Cell Death Dis. 9:4732018. View Article : Google Scholar : PubMed/NCBI | |
|
Koo JI, Sim DY, Lee HJ, Ahn CH, Park J, Park SY, Lee D, Shim BS, Kim B and Kim SH: Apoptotic and anti-Warburg effect of Morusin via ROS mediated inhibition of FOXM1/c-Myc signaling in prostate cancer cells. Phytother Res. 37:4473–4487. 2023. View Article : Google Scholar : PubMed/NCBI | |
|
Meng L, Gao J, Mo W, Wang B, Shen H, Cao W, Ding M, Diao W, Chen W, Zhang Q, et al: MIOX inhibits autophagy to regulate the ROS-driven inhibition of STAT3/c-Myc-mediated epithelial-mesenchymal transition in clear cell renal cell carcinoma. Redox Biol. 68:1029562023. View Article : Google Scholar | |
|
Yao L, Wu P, Yao F, Huang B, Zhong F and Wang X: ZCCHC4 regulates esophageal cancer progression and cisplatin resistance through ROS/c-myc axis. Sci Rep. 15:51492025. View Article : Google Scholar : PubMed/NCBI | |
|
Donati G, Nicoli P, Verrecchia A, Vallelonga V, Croci O, Rodighiero S, Audano M, Cassina L, Ghsein A, Binelli G, et al: Oxidative stress enhances the therapeutic action of a respiratory inhibitor in MYC-driven lymphoma. EMBO Mol Med. 15:e169102023. View Article : Google Scholar : PubMed/NCBI | |
|
Firouzjaei AA and Mohammadi-Yeganeh S: The intricate interplay between ferroptosis and efferocytosis in cancer: Unraveling novel insights and therapeutic opportunities. Front Oncol. 14:14242182024. View Article : Google Scholar : PubMed/NCBI | |
|
Ahn M, Ali A and Seo JH: Mitochondrial regulation in the tumor microenvironment: Targeting mitochondria for immunotherapy. Front Immunol. 15:14538862024. View Article : Google Scholar : PubMed/NCBI | |
|
Shen M and Kang Y: Complex interplay between tumor microenvironment and cancer therapy. Front Med. 12:426–439. 2018. View Article : Google Scholar : PubMed/NCBI | |
|
Manea AJ and Ray SK: Advanced bioinformatics analysis and genetic technologies for targeting autophagy in glioblastoma multiforme. Cells. 12:8972023. View Article : Google Scholar : PubMed/NCBI | |
|
Pitt JM, Marabelle A, Eggermont A, Soria JC, Kroemer G and Zitvogel L: Targeting the tumor microenvironment: Removing obstruction to anticancer immune responses and immunotherapy. Ann Oncol. 27:1482–1492. 2016. View Article : Google Scholar : PubMed/NCBI | |
|
Tong X, Tang R, Xiao M, Xu J, Wang W, Zhang B, Liu J, Yu X and Shi S: Targeting cell death pathways for cancer therapy: Recent developments in necroptosis, pyroptosis, ferroptosis, and cuproptosis research. J Hematol Oncol. 15:1742022. View Article : Google Scholar : PubMed/NCBI | |
|
Babar Q, Saeed A, Tabish TA, Sarwar M and Thorat ND: Targeting the tumor microenvironment: Potential strategy for cancer therapeutics. Biochim Biophys Acta Mol Basis Dis. 1869:1667462023. View Article : Google Scholar : PubMed/NCBI | |
|
Worbs T, Hammerschmidt SI and Förster R: Dendritic cell migration in health and disease. Nat Rev Immunol. 17:30–48. 2017. View Article : Google Scholar | |
|
Wculek SK, Cueto FJ, Mujal AM, Melero I, Krummel MF and Sancho D: Dendritic cells in cancer immunology and immunotherapy. Nat Rev Immunol. 20:7–24. 2020. View Article : Google Scholar | |
|
Gardner A and Ruffell B: Dendritic cells and cancer immunity. Trends Immunol. 37:855–865. 2016. View Article : Google Scholar : PubMed/NCBI | |
|
Noubade R, Majri-Morrison S and Tarbell KV: Beyond cDC1: Emerging roles of DC crosstalk in cancer immunity. Front Immunol. 10:10142019. View Article : Google Scholar : PubMed/NCBI | |
|
Böttcher JP and Reis e Sousa C: The role of type 1 conventional dendritic cells in cancer immunity. Trends Cancer. 4:784–792. 2018. View Article : Google Scholar : PubMed/NCBI | |
|
Wculek SK, Amores-Iniesta J, Conde-Garrosa R, Khouili SC, Melero I and Sancho D: Effective cancer immunotherapy by natural mouse conventional type-1 dendritic cells bearing dead tumor antigen. J Immunother Cancer. 7:1002019. View Article : Google Scholar : PubMed/NCBI | |
|
Binnewies M, Mujal AM, Pollack JL, Combes AJ, Hardison EA, Barry KC, Tsui J, Ruhland MK, Kersten K, Abushawish MA, et al: Unleashing type-2 dendritic cells to drive protective antitumor CD4+ T cell immunity. Cell. 177:556–571.e16. 2019. View Article : Google Scholar | |
|
Ruhland MK, Roberts EW, Cai E, Mujal AM, Marchuk K, Beppler C, Nam D, Serwas NK, Binnewies M and Krummel MF: Visualizing synaptic transfer of tumor antigens among dendritic cells. Cancer Cell. 37:786–799.e5. 2020. View Article : Google Scholar : PubMed/NCBI | |
|
Holicek P, Guilbaud E, Klapp V, Truxova I, Spisek R, Galluzzi L and Fucikova J: Type I interferon and cancer. Immunol Rev. 321:115–127. 2024. View Article : Google Scholar | |
|
Chrisikos TT, Zhou Y, Slone N, Babcock R, Watowich SS and Li HS: Molecular regulation of dendritic cell development and function in homeostasis, inflammation, and cancer. Mol Immunol. 110:24–39. 2019. View Article : Google Scholar | |
|
Veglia F and Gabrilovich DI: Dendritic cells in cancer: The role revisited. Curr Opin Immunol. 45:43–51. 2017. View Article : Google Scholar : PubMed/NCBI | |
|
Han SH and Ju MH: Characterizing the tumor microenvironment and its correlation with cDC1-related gene expression in gastric cancer. J Immunol Res. 2024:44681452024. View Article : Google Scholar : PubMed/NCBI | |
|
Kießler M, Plesca I, Sommer U, Wehner R, Wilczkowski F, Müller L, Tunger A, Lai X, Rentsch A, Peuker K, et al: Tumor-infiltrating plasmacytoid dendritic cells are associated with survival in human colon cancer. J Immunother Cancer. 9:e0018132021. View Article : Google Scholar | |
|
Aspord C, Leccia MT, Charles J and Plumas J: Melanoma hijacks plasmacytoid dendritic cells to promote its own progression. Oncoimmunology. 3:e274022014. View Article : Google Scholar : PubMed/NCBI | |
|
De Sá Fernandes C, Novoszel P, Gastaldi T, Krauß D, Lang M, Rica R, Kutschat AP, Holcmann M, Ellmeier W, Seruggia D, et al: The histone deacetylase HDAC1 controls dendritic cell development and anti-tumor immunity. Cell Rep. 43:1143082024. View Article : Google Scholar : PubMed/NCBI | |
|
Verneau J, Sautés-Fridman C and Sun CM: Dendritic cells in the tumor microenvironment: Prognostic and theranostic impact. Semin Immunol. 48:1014102020. View Article : Google Scholar : PubMed/NCBI | |
|
Ennishi D: The biology of the tumor microenvironment in DLBCL: Targeting the 'don't eat me' signal. J Clin Exp Hematop. 61:210–215. 2021. View Article : Google Scholar : PubMed/NCBI | |
|
Jeong YJ, Kim JH, Hong JM, Kang JS, Kim HR, Lee WJ and Hwang YI: Vitamin C treatment of mouse bone marrow-derived dendritic cells enhanced CD8(+) memory T cell production capacity of these cells in vivo. Immunobiology. 219:554–564. 2014. View Article : Google Scholar : PubMed/NCBI | |
|
Kim HW, Cho SI, Bae S, Kim H, Kim Y, Hwang YI, Kang JS and Lee WJ: Vitamin C up-regulates expression of CD80, CD86 and MHC class II on dendritic cell line, DC-1 via the activation of p38 MAPK. Immune Netw. 12:277–283. 2012. View Article : Google Scholar | |
|
Morante-Palacios O, Godoy-Tena G, Calafell-Segura J, Ciudad L, Martínez-Cáceres EM, Sardina JL and Ballestar E: Vitamin C enhances NF-κB-driven epigenomic reprogramming and boosts the immunogenic properties of dendritic cells. Nucleic Acids Res. 50:10981–10994. 2022. View Article : Google Scholar : PubMed/NCBI | |
|
Magrì A, Germano G, Lorenzato A, Lamba S, Chilà R, Montone M, Amodio V, Ceruti T, Sassi F, Arena S, et al: High-dose vitamin C enhances cancer immunotherapy. Sci Transl Med. 12:eaay87072020. View Article : Google Scholar : PubMed/NCBI | |
|
Chopp L, Redmond C, O'Shea JJ and Schwartz DM: From thymus to tissues and tumors: A review of T-cell biology. J Allergy Clin Immunol. 151:81–97. 2023. View Article : Google Scholar | |
|
Lawrence T: The nuclear factor NF-kappaB pathway in inflammation. Cold Spring Harb Perspect Biol. 1:a0016512009. View Article : Google Scholar | |
|
Kina E, Larouche JD, Thibault P and Perreault C: The cryptic immunopeptidome in health and disease. Trends Genet. 41:162–169. 2025. View Article : Google Scholar | |
|
Zhao Y, Shao Q and Peng G: Exhaustion and senescence: Two crucial dysfunctional states of T cells in the tumor microenvironment. Cell Mol Immunol. 17:27–35. 2020. View Article : Google Scholar : | |
|
Knez J, Kovačič B and Goropevšek A: The role of regulatory T-cells in the development of endometriosis. Hum Reprod. deae1032024.Epub ahead of print. PubMed/NCBI | |
|
Sawant DV, Yano H, Chikina M, Zhang Q, Liao M, Liu C, Callahan DJ, Sun Z, Sun T, Tabib T, et al: Adaptive plasticity of IL-10+ and IL-35+ Treg cells cooperatively promotes tumor T cell exhaustion. Nat Immunol. 20:724–735. 2019. View Article : Google Scholar : PubMed/NCBI | |
|
Yi M, Niu M, Wu Y, Ge H, Jiao D, Zhu S, Zhang J, Yan Y, Zhou P, Chu Q and Wu K: Combination of oral STING agonist MSA-2 and anti-TGF-β/PD-L1 bispecific antibody YM101: A novel immune cocktail therapy for non-inflamed tumors. J Hematol Oncol. 15:1422022. View Article : Google Scholar | |
|
Naulaerts S, Datsi A, Borras DM, Antoranz Martinez A, Messiaen J, Vanmeerbeek I, Sprooten J, Laureano RS, Govaerts J, Panovska D, et al: Multiomics and spatial mapping characterizes human CD8+ T cell states in cancer. Sci Transl Med. 15:eadd10162023. View Article : Google Scholar | |
|
Li S, Li K, Wang K, Yu H, Wang X, Shi M, Liang Z, Yang Z, Hu Y, Li Y, et al: Low-dose radiotherapy combined with dual PD-L1 and VEGFA blockade elicits antitumor response in hepatocellular carcinoma mediated by activated intratumoral CD8+ exhausted-like T cells. Nat Commun. 14:77092023. View Article : Google Scholar | |
|
Opinto G, Vegliante MC, Negri A, Skrypets T, Loseto G, Pileri SA, Guarini A and Ciavarella S: The tumor microenvironment of DLBCL in the computational era. Front Oncol. 10:3512020. View Article : Google Scholar : PubMed/NCBI | |
|
Thommen DS, Koelzer VH, Herzig P, Roller A, Trefny M, Dimeloe S, Kiialainen A, Hanhart J, Schill C, Hess C, et al: A transcriptionally and functionally distinct PD-1+ CD8+ T cell pool with predictive potential in non-small-cell lung cancer treated with PD-1 blockade. Nat Med. 24:994–1004. 2018. View Article : Google Scholar : PubMed/NCBI | |
|
van der Leun AM, Thommen DS and Schumacher TN: CD8+ T cell states in human cancer: Insights from single-cell analysis. Nat Rev Cancer. 20:218–232. 2020. View Article : Google Scholar : PubMed/NCBI | |
|
Dolina JS, Van Braeckel-Budimir N, Thomas GD and Salek-Ardakani S: CD8+ T cell exhaustion in cancer. Front Immunol. 12:7152342021. View Article : Google Scholar | |
|
Baitsch L, Fuertes-Marraco SA, Legat A, Meyer C and Speiser DE: The three main stumbling blocks for anticancer T cells. Trends Immunol. 33:364–372. 2012. View Article : Google Scholar : PubMed/NCBI | |
|
Thinyakul C, Sakamoto Y, Shimoda M, Liu Y, Thongchot S, Reda O, Nita A, Sakamula R, Sampattavanich S, Maeda A, et al: Hippo pathway in cancer cells induces NCAM1+αSMA+ fibroblasts to modulate tumor microenvironment. Commun Biol. 7:13432024. View Article : Google Scholar | |
|
Sarhan D, Hippen KL, Lemire A, Hying S, Luo X, Lenvik T, Curtsinger J, Davis Z, Zhang B, Cooley S, et al: Adaptive NK cells resist regulatory T-cell suppression driven by IL37. Cancer Immunol Res. 6:766–775. 2018. View Article : Google Scholar : PubMed/NCBI | |
|
Li L, Nong J, Li J, Fang L, Pan M, Qiu H, Huang S, Li Y, Wei M and Yin H: Dendrobine suppresses tumor growth by regulating the PD-1/PD-L1 checkpoint pathway in lung cancer. Curr Cancer Drug Targets. Sep 18–2024.Epub ahead of print. View Article : Google Scholar | |
|
Tang Q, Chen Y, Li X, Long S, Shi Y, Yu Y, Wu W, Han L and Wang S: The role of PD-1/PD-L1 and application of immune-checkpoint inhibitors in human cancers. Front Immunol. 13:9644422022. View Article : Google Scholar : PubMed/NCBI | |
|
Ma J, Pang X, Li J, Zhang W and Cui W: The immune checkpoint expression in the tumor immune microenvironment of DLBCL: Clinicopathologic features and prognosis. Front Oncol. 12:10693782022. View Article : Google Scholar : PubMed/NCBI | |
|
Roussel M, Le KS, Granier C, Llamas Gutierrez F, Foucher E, Le Gallou S, Pangault C, Xerri L, Launay V, Lamy T, et al: Functional characterization of PD1+TIM3+ tumor-infiltrating T cells in DLBCL and effects of PD1 or TIM3 blockade. Blood Adv. 5:1816–1829. 2021. View Article : Google Scholar : PubMed/NCBI | |
|
Forde PM, Spicer J, Lu S, Provencio M, Mitsudomi T, Awad MM, Felip E, Broderick SR, Brahmer JR, Swanson SJ, et al: Neoadjuvant nivolumab plus chemotherapy in resectable lung cancer. N Engl J Med. 386:1973–1985. 2022. View Article : Google Scholar : PubMed/NCBI | |
|
Sheikh S and Kuruvilla J: Pembrolizumab for the treatment of diffuse large B-cell lymphoma. Expert Opin Biol Ther. 19:1119–1126. 2019. View Article : Google Scholar : PubMed/NCBI | |
|
Luchtel RA, Bhagat T, Pradhan K, Jacobs WR Jr, Levine M, Verma A and Shenoy N: High-dose ascorbic acid synergizes with anti-PD1 in a lymphoma mouse model. Proc Natl Acad Sci USA. 117:1666–1677. 2020. View Article : Google Scholar : PubMed/NCBI | |
|
Bedhiafi T, Inchakalody VP, Fernandes Q, Mestiri S, Billa N, Uddin S, Merhi M and Dermime S: The potential role of vitamin C in empowering cancer immunotherapy. Biomed Pharmacother. 146:1125532022. View Article : Google Scholar | |
|
Xu YP, Lv L, Liu Y, Smith MD, Li WC, Tan XM, Cheng M, Li Z, Bovino M, Aubé J and Xiong Y: Tumor suppressor TET2 promotes cancer immunity and immunotherapy efficacy. J Clin Invest. 129:4316–4331. 2019. View Article : Google Scholar : PubMed/NCBI | |
|
Li H, Li Y, Zhang T, Liu S, Song C, Wang K, Yan W, Wang Z, Yang Q, Yang X and Wang H: Genome-wide CRISPR screen reveals specific role of type I interferon signaling pathway in Newcastle disease virus establishment of persistent infection. Vet Microbiol. 300:1102882025. View Article : Google Scholar | |
|
Shapouri-Moghaddam A, Mohammadian S, Vazini H, Taghadosi M, Esmaeili SA, Mardani F, Seifi B, Mohammadi A, Afshari JT and Sahebkar A: Macrophage plasticity, polarization, and function in health and disease. J Cell Physiol. 233:6425–6440. 2018. View Article : Google Scholar : PubMed/NCBI | |
|
Perry CJ, Muñoz-Rojas AR, Meeth KM, Kellman LN, Amezquita RA, Thakral D, Du VY, Wang JX, Damsky W, Kuhlmann AL, et al: Myeloid-targeted immunotherapies act in synergy to induce inflammation and antitumor immunity. J Exp Med. 215:877–893. 2018. View Article : Google Scholar : PubMed/NCBI | |
|
Ngambenjawong C, Gustafson HH and Pun SH: Progress in tumor-associated macrophage (TAM)-targeted therapeutics. Adv Drug Deliv Rev. 114:206–221. 2017. View Article : Google Scholar : PubMed/NCBI | |
|
Afra F, Eftekhar SP, Farid AS and Ala M: Non-coding RNAs in cancer immunotherapy: A solution to overcome immune resistance. Prog Mol Biol Transl Sci. 209:215–240. 2024. View Article : Google Scholar | |
|
Zhu W, Liu L, Wu J, Gao R, Fu L, Yang X, Zou Y, Zhang S and Luo D: SMYD3 activates the TCA cycle to promote M1-M2 conversion in macrophages. Int Immunopharmacol. 127:1113292024. View Article : Google Scholar | |
|
Fang C, Zhong R, Lu S, Yu G, Liu Z, Yan C, Gao J, Tang Y, Wang Y, Zhao Q and Feng X: TREM2 promotes macrophage polarization from M1 to M2 and suppresses osteoarthritis through the NF-κB/CXCL3 axis. Int J Biol Sci. 20:1992–2007. 2024. View Article : Google Scholar : | |
|
Basak U, Sarkar T, Mukherjee S, Chakraborty S, Dutta A, Dutta S, Nayak D, Kaushik S, Das T and Sa G: Tumor-associated macrophages: an effective player of the tumor microenvironment. Front Immunol. 14:12952572023. View Article : Google Scholar : PubMed/NCBI | |
|
Daetwyler E, Wallrabenstein T, König D, Cappelli LC, Naidoo J, Zippelius A and Läubli H: Corticosteroid-resistant immune-related adverse events: A systematic review. J Immunother Cancer. 12:e0074092024. View Article : Google Scholar : PubMed/NCBI | |
|
Ma Z, Yang M, Foda MF, Zhang K, Li S, Liang H, Zhao Y and Han H: Polarization of tumor-associated macrophages promoted by vitamin C-loaded liposomes for cancer immunotherapy. ACS Nano. 16:17389–17401. 2022. View Article : Google Scholar : PubMed/NCBI | |
|
Xu Y, Guo X, Wang G and Zhou C: Vitamin C inhibits metastasis of peritoneal tumors by preventing spheroid formation in ID8 murine epithelial peritoneal cancer model. Front Pharmacol. 11:6452020. View Article : Google Scholar : PubMed/NCBI | |
|
Yao H, Xu J, Wang J, Zheng N, Yue J, Mi J, Zheng L, Dai B, Huang W, Yung S, et al: Combination of magnesium ions and vitamin C alleviates synovitis and osteophyte formation in osteoarthritis of mice. Bioact Mater. 6:1341–1352. 2020.PubMed/NCBI | |
|
Najjar YG and Finke JH: Clinical perspectives on targeting of myeloid derived suppressor cells in the treatment of cancer. Front Oncol. 3:492013. View Article : Google Scholar : PubMed/NCBI | |
|
Hashimoto A, Sarker D, Reebye V, Jarvis S, Sodergren MH, Kossenkov A, Sanseviero E, Raulf N, Vasara J, Andrikakou P, et al: Upregulation of C/EBPα inhibits suppressive activity of myeloid cells and potentiates antitumor response in mice and patients with cancer. Clin Cancer Res. 27:5961–5978. 2021. View Article : Google Scholar : PubMed/NCBI | |
|
Holtzhausen A, Harris W, Ubil E, Hunter DM, Zhao J, Zhang Y, Zhang D, Liu Q, Wang X, Graham DK, et al: TAM family receptor kinase inhibition reverses MDSC-mediated suppression and augments anti-PD-1 therapy in melanoma. Cancer Immunol Res. 7:1672–1686. 2019. View Article : Google Scholar : PubMed/NCBI | |
|
Azzaoui I, Uhel F, Rossille D, Pangault C, Dulong J, Le Priol J, Lamy T, Houot R, Le Gouill S, Cartron G, et al: T-cell defect in diffuse large B-cell lymphomas involves expansion of myeloid-derived suppressor cells. Blood. 128:1081–1092. 2016. View Article : Google Scholar : PubMed/NCBI | |
|
Sadeghi M, Dehnavi S, Sharifat M, Amiri AM and Khodadadi A: Innate immune cells: Key players of orchestra in modulating tumor microenvironment (TME). Heliyon. 10:e274802024. View Article : Google Scholar : PubMed/NCBI | |
|
Johnson B: Targeting myeloid-derived suppressor cell trafficking as a novel immunotherapeutic approach in microsatellite stable colorectal cancer. Cancers (Basel). 15:54842023. View Article : Google Scholar : PubMed/NCBI | |
|
Wu Y, Yi M, Niu M, Mei Q and Wu K: Myeloid-derived suppressor cells: An emerging target for anticancer immunotherapy. Mol Cancer. 21:1842022. View Article : Google Scholar : PubMed/NCBI | |
|
Dhar S, Chakravarti M, Ganguly N, Saha A, Dasgupta S, Bera S, Sarkar A, Roy K, Das J, Bhuniya A, et al: High monocytic MDSC signature predicts multi-drug resistance and cancer relapse in non-Hodgkin lymphoma patients treated with R-CHOP. Front Immunol. 14:13039592024. View Article : Google Scholar : PubMed/NCBI | |
|
Wu C, Wu X, Liu X, Yang P, Xu J, Chai Y, Guo Q, Wang Z and Zhang L: Prognostic significance of monocytes and monocytic myeloid-derived suppressor cells in diffuse large B-cell lymphoma treated with R-CHOP. Cell Physiol Biochem. 39:521–530. 2016. View Article : Google Scholar : PubMed/NCBI | |
|
Ali Y, Monini C, Russeil E, Létang JM, Testa E, Maigne L and Beuve M: Estimate of the biological dose in hadrontherapy using GATE. Cancers (Basel). 14:16672022. View Article : Google Scholar : PubMed/NCBI | |
|
Adibi A, Tokat ÜM, Özgü E, Aydın E, Demiray İ and Demiray M: PARP inhibitor combinations with high-dose vitamin C in the treatment of Ewing sarcoma: Two case reports and mechanistic overview. Ther Adv Med Oncol. 15:175883592312138412023. View Article : Google Scholar : PubMed/NCBI | |
|
Wang F, He MM, Xiao J, Zhang YQ, Yuan XL, Fang WJ, Zhang Y, Wang W, Hu XH, Ma ZG, et al: A randomized, open-label, multicenter, phase 3 study of high-dose vitamin c plus FOLFOX ± bevacizumab versus FOLFOX ± bevacizumab in unresectable untreated metastatic colorectal cancer (VITALITY study). Clin Cancer Res. 28:4232–4239. 2022. View Article : Google Scholar : PubMed/NCBI | |
|
Zasowska-Nowak A, Nowak PJ and Ciałkowska-Rysz A: High-dose vitamin C in advanced-stage cancer patients. Nutrients. 13:7352021. View Article : Google Scholar : PubMed/NCBI | |
|
Polireddy K, Dong R, Reed G, Yu J, Chen P, Williamson S, Violet PC, Pessetto Z, Godwin AK, Fan F, et al: High dose parenteral ascorbate inhibited pancreatic cancer growth and metastasis: Mechanisms and a phase I/IIa study. Sci Rep. 7:171882017. View Article : Google Scholar : PubMed/NCBI | |
|
Wang L and Lou X: A predictive model for gastric cancer-specific death after gastrectomy: A competing-risk nomogram. Iran J Public Health. 53:2350–2361. 2024.PubMed/NCBI | |
|
Chen P, Reed G, Jiang J, Wang Y, Sunega J, Dong R, Ma Y, Esparham A, Ferrell R, Levine M, et al: Pharmacokinetic evaluation of intravenous vitamin C: A classic pharmacokinetic study. Clin Pharmacokinet. 61:1237–1249. 2022. View Article : Google Scholar : PubMed/NCBI | |
|
Linowiecka K, Foksinski M and Brożyna AA: Vitamin C transporters and their implications in carcinogenesis. Nutrients. 12:38692020. View Article : Google Scholar : PubMed/NCBI | |
|
Cheng YQ, Wang SB, Liu JH, Jin L, Liu Y, Li CY, Su YR, Liu YR, Sang X, Wan Q, et al: Modifying the tumour microenvironment and reverting tumour cells: New strategies for treating malignant tumours. Cell Prolif. 53:e128652020. View Article : Google Scholar : PubMed/NCBI | |
|
Praditi C, Bozonet SM, Dachs GU and Vissers M: Ascorbate uptake and retention by breast cancer cell lines and the intracellular distribution of sodium-dependent vitamin C transporter 2. Antioxidants (Basel). 12:19292023. View Article : Google Scholar : PubMed/NCBI |