Spandidos Publications Logo
  • About
    • About Spandidos
    • Aims and Scopes
    • Abstracting and Indexing
    • Editorial Policies
    • Reprints and Permissions
    • Job Opportunities
    • Terms and Conditions
    • Contact
  • Journals
    • All Journals
    • Oncology Letters
      • Oncology Letters
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Oncology
      • International Journal of Oncology
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Molecular and Clinical Oncology
      • Molecular and Clinical Oncology
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Experimental and Therapeutic Medicine
      • Experimental and Therapeutic Medicine
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Molecular Medicine
      • International Journal of Molecular Medicine
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Biomedical Reports
      • Biomedical Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Oncology Reports
      • Oncology Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Molecular Medicine Reports
      • Molecular Medicine Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • World Academy of Sciences Journal
      • World Academy of Sciences Journal
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Functional Nutrition
      • International Journal of Functional Nutrition
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Epigenetics
      • International Journal of Epigenetics
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Medicine International
      • Medicine International
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
  • Articles
  • Information
    • Information for Authors
    • Information for Reviewers
    • Information for Librarians
    • Information for Advertisers
    • Conferences
  • Language Editing
Spandidos Publications Logo
  • About
    • About Spandidos
    • Aims and Scopes
    • Abstracting and Indexing
    • Editorial Policies
    • Reprints and Permissions
    • Job Opportunities
    • Terms and Conditions
    • Contact
  • Journals
    • All Journals
    • Biomedical Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Experimental and Therapeutic Medicine
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Epigenetics
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Functional Nutrition
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Molecular Medicine
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Oncology
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Medicine International
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Molecular and Clinical Oncology
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Molecular Medicine Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Oncology Letters
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Oncology Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • World Academy of Sciences Journal
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
  • Articles
  • Information
    • For Authors
    • For Reviewers
    • For Librarians
    • For Advertisers
    • Conferences
  • Language Editing
Login Register Submit
  • This site uses cookies
  • You can change your cookie settings at any time by following the instructions in our Cookie Policy. To find out more, you may read our Privacy Policy.

    I agree
Search articles by DOI, keyword, author or affiliation
Search
Advanced Search
presentation
International Journal of Oncology
Join Editorial Board Propose a Special Issue
Print ISSN: 1019-6439 Online ISSN: 1791-2423
Journal Cover
May-2025 Volume 66 Issue 5

Full Size Image

Cover Legend PDF

Sign up for eToc alerts
Recommend to Library

Journals

International Journal of Molecular Medicine

International Journal of Molecular Medicine

International Journal of Molecular Medicine is an international journal devoted to molecular mechanisms of human disease.

International Journal of Oncology

International Journal of Oncology

International Journal of Oncology is an international journal devoted to oncology research and cancer treatment.

Molecular Medicine Reports

Molecular Medicine Reports

Covers molecular medicine topics such as pharmacology, pathology, genetics, neuroscience, infectious diseases, molecular cardiology, and molecular surgery.

Oncology Reports

Oncology Reports

Oncology Reports is an international journal devoted to fundamental and applied research in Oncology.

Experimental and Therapeutic Medicine

Experimental and Therapeutic Medicine

Experimental and Therapeutic Medicine is an international journal devoted to laboratory and clinical medicine.

Oncology Letters

Oncology Letters

Oncology Letters is an international journal devoted to Experimental and Clinical Oncology.

Biomedical Reports

Biomedical Reports

Explores a wide range of biological and medical fields, including pharmacology, genetics, microbiology, neuroscience, and molecular cardiology.

Molecular and Clinical Oncology

Molecular and Clinical Oncology

International journal addressing all aspects of oncology research, from tumorigenesis and oncogenes to chemotherapy and metastasis.

World Academy of Sciences Journal

World Academy of Sciences Journal

Multidisciplinary open-access journal spanning biochemistry, genetics, neuroscience, environmental health, and synthetic biology.

International Journal of Functional Nutrition

International Journal of Functional Nutrition

Open-access journal combining biochemistry, pharmacology, immunology, and genetics to advance health through functional nutrition.

International Journal of Epigenetics

International Journal of Epigenetics

Publishes open-access research on using epigenetics to advance understanding and treatment of human disease.

Medicine International

Medicine International

An International Open Access Journal Devoted to General Medicine.

Journal Cover
May-2025 Volume 66 Issue 5

Full Size Image

Cover Legend PDF

Sign up for eToc alerts
Recommend to Library

  • Article
  • Citations
    • Cite This Article
    • Download Citation
    • Create Citation Alert
    • Remove Citation Alert
    • Cited By
  • Similar Articles
    • Related Articles (in Spandidos Publications)
    • Similar Articles (Google Scholar)
    • Similar Articles (PubMed)
  • Download PDF
  • Download XML
  • View XML
Review Open Access

Unveiling vitamin C: A new hope in the treatment of diffuse large B‑cell lymphoma (Review)

  • Authors:
    • Chunxiao Ren
    • Yaqiong Li
    • Mingrui Li
    • Yuqun Wang
  • View Affiliations / Copyright

    Affiliations: Department of Hematology, Dazhou Central Hospital, Dazhou, Sichuan 635000, P.R. China, Department of Endocrinology and Metabolism, Clinical Research Center, Affiliated Hospital of Shandong Second Medical University, Weifang, Shandong 261031, P.R. China
    Copyright: © Ren et al. This is an open access article distributed under the terms of Creative Commons Attribution License.
  • Article Number: 40
    |
    Published online on: May 2, 2025
       https://doi.org/10.3892/ijo.2025.5746
  • Expand metrics +
Metrics: Total Views: 0 (Spandidos Publications: | PMC Statistics: )
Metrics: Total PDF Downloads: 0 (Spandidos Publications: | PMC Statistics: )
Cited By (CrossRef): 0 citations Loading Articles...

This article is mentioned in:



Abstract

Lymphoma is a malignancy of the immune system, which originates from lymphatic tissues and lymph nodes. Diffuse large B‑cell lymphoma (DLBCL) is a common type of non‑Hodgkin lymphoma, occurring in 30‑40% of all cases, which has persistent clinical challenges. The treatment of DLBCL is challenging due to its diverse genetic and biological characteristics and complex clinical physiology. Despite advancements in overall prognosis, 20‑25% of patients continue to experience relapse and 10‑15% of patients experience refractory disease. Vitamin C is a water‑soluble vitamin with antioxidant properties and notable pharmacological activity, with potential applications in cancer therapy. Pharmacological doses of vitamin C (1‑4 g/kg) can induce apoptosis in malignant cells by inhibiting and/or reversing gene mutations that are associated with hematological malignancies. For example, 10‑25% of patients with myeloid malignancies have tet methylcytosine dioxygenase 2 (TET2) gene mutations and vitamin C can regulate blood stem cell frequency and leukemia production by enhancing TET2 function. Consequently, pharmacological doses of vitamin C can inhibit the development and progression of hematological malignancies. Therefore, the present review aimed to investigate the role of vitamin C in the pathophysiology and treatment of DLBCL, whilst highlighting the potential challenges and future perspectives.
View Figures

Figure 1

Figure 2

Figure 3

View References

1 

Zhao P, Zhao S, Huang C, Li Y, Wang J, Xu J, Li L, Qian Z, Li W, Zhou S, et al: Efficacy and safety of polatuzumab vedotin plus rituximab, cyclophosphamide, doxorubicin and prednisone for previously untreated diffuse large B-cell lymphoma: A real-world, multi-center, retrospective cohort study. Hematol Oncol. 43:e700172025. View Article : Google Scholar

2 

Vaughn JL, Ramdhanny A, Munir M, Rimmalapudi S and Epperla N: A comparative analysis of transformed indolent lymphomas and de novo diffuse large B-cell lymphoma: A population-based cohort study. Blood Cancer J. 14:2122024. View Article : Google Scholar : PubMed/NCBI

3 

Schmitz R, Wright GW, Huang DW, Johnson CA, Phelan JD, Wang JQ, Roulland S, Kasbekar M, Young RM, Shaffer AL, et al: Genetics and pathogenesis of diffuse large B-cell lymphoma. N Engl J Med. 378:1396–1407. 2018. View Article : Google Scholar : PubMed/NCBI

4 

Bantilan KS, Smith AN, Maurer MJ, Teruya-Feldstein J, Matasar MJ, Moskowitz AJ, Straus DJ, Noy A, Palomba ML, Horwitz SM, et al: Matched control analysis suggests that R-CHOP followed by (R)-ICE may improve outcome in non-GCB DLBCL compared with R-CHOP. Blood Adv. 8:2172–2181. 2024. View Article : Google Scholar : PubMed/NCBI

5 

García-Sancho AM, Cabero A and Gutiérrez NC: Treatment of relapsed or refractory diffuse large B-cell lymphoma: New approved options. J Clin Med. 13:702023. View Article : Google Scholar

6 

Coiffier B, Thieblemont C, Van Den Neste E, Lepeu G, Plantier I, Castaigne S, Lefort S, Marit G, Macro M, Sebban C, et al: Long-term outcome of patients in the LNH-98.5 trial, the first randomized study comparing rituximab-CHOP to standard CHOP chemotherapy in DLBCL patients: a study by the Groupe d'Etudes des Lymphomes de l'Adulte. Blood. 116:2040–2045. 2010. View Article : Google Scholar : PubMed/NCBI

7 

Pfreundschuh M, Trümper L, Osterborg A, Pettengell R, Trneny M, Imrie K, Ma D, Gill D, Walewski J, Zinzani PL, et al: CHOP-like chemotherapy plus rituximab versus CHOP-like chemotherapy alone in young patients with good-prognosis diffuse large-B-cell lymphoma: A randomised controlled trial by the MabThera international trial (MInT) group. Lancet Oncol. 7:379–391. 2006. View Article : Google Scholar : PubMed/NCBI

8 

Pinzone MR, Berretta M, Cacopardo B and Nunnari G: Epstein-barr virus- and Kaposi sarcoma-associated herpesvirus-related malignancies in the setting of human immunodeficiency virus infection. Semin Oncol. 42:258–271. 2015. View Article : Google Scholar : PubMed/NCBI

9 

Chapman JR, Bouska AC, Zhang W, Alderuccio JP, Lossos IS, Rimsza LM, Maguire A, Yi S, Chan WC, Vega F and Song JY: EBV-positive HIV-associated diffuse large B cell lymphomas are characterized by JAK/STAT (STAT3) pathway mutations and unique clinicopathologic features. Br J Haematol. 194:870–878. 2021. View Article : Google Scholar : PubMed/NCBI

10 

Gianella S, Anderson CM, Var SR, Oliveira MF, Lada SM, Vargas MV, Massanella M, Little SJ, Richman DD, Strain MC, et al: Replication of human herpesviruses is associated with higher HIV DNA levels during antiretroviral therapy started at early phases of HIV infection. J Virol. 90:3944–3952. 2016. View Article : Google Scholar : PubMed/NCBI

11 

Wang SS: Epidemiology and etiology of diffuse large B-cell lymphoma. Semin Hematol. 60:255–266. 2023. View Article : Google Scholar

12 

Ekström Smedby K, Vajdic CM, Falster M, Engels EA, Martínez-Maza O, Turner J, Hjalgrim H, Vineis P, Seniori Costantini A, Bracci PM, et al: Autoimmune disorders and risk of non-Hodgkin lymphoma subtypes: A pooled analysis within the InterLymph consortium. Blood. 111:4029–4038. 2008. View Article : Google Scholar : PubMed/NCBI

13 

Yang L, Liang Y, Pu J, Cai L, Gao R, Han F, Chang K, Pan S, Wu Z, Zhang Y, et al: Dysregulated serum lipid profile is associated with inflammation and disease activity in primary Sjögren's syndrome: A retrospective study in China. Immunol Lett. 267:1068652024. View Article : Google Scholar

14 

Almasmoum HA: Molecular complexity of diffuse large B-cell lymphoma: A molecular perspective and therapeutic implications. J Appl Genet. 65:57–72. 2024. View Article : Google Scholar

15 

Serganova I, Chakraborty S, Yamshon S, Isshiki Y, Bucktrout R, Melnick A, Béguelin W and Zappasodi R: Epigenetic, metabolic, and immune crosstalk in germinal-center-derived B-cell lymphomas: Unveiling new vulnerabilities for rational combination therapies. Front Cell Dev Biol. 9:8051952022. View Article : Google Scholar : PubMed/NCBI

16 

Horn H, Ziepert M, Becher C, Barth TF, Bernd HW, Feller AC, Klapper W, Hummel M, Stein H, Hansmann ML, et al: MYC status in concert with BCL2 and BCL6 expression predicts outcome in diffuse large B-cell lymphoma. Blood. 121:2253–2263. 2013. View Article : Google Scholar : PubMed/NCBI

17 

Riedell PA and Smith SM: Double hit and double expressors in lymphoma: Definition and treatment. Cancer. 124:4622–4632. 2018. View Article : Google Scholar : PubMed/NCBI

18 

Cioroianu AI, Stinga PI, Sticlaru L, Cioplea MD, Nichita L, Popp C and Staniceanu F: Tumor microenvironment in diffuse large B-cell lymphoma: role and prognosis. Anal Cell Pathol (Amst). 2019:85863542019.

19 

Momivand M, Razaghi M, Mohammadi F, Hoseinzadeh E and Najafi-Vosough R: The status of serum 25(OH)D levels is related to breast cancer. Cancer Treat Res Commun. 42:1008702024. View Article : Google Scholar

20 

Jang Y and Kim CY: The role of vitamin e isoforms and metabolites in cancer prevention: Mechanistic insights into sphingolipid metabolism modulation. Nutrients. 16:41152024. View Article : Google Scholar : PubMed/NCBI

21 

Paller CJ, Zahurak ML, Mandl A, Metri NA, Lalji A, Heath E, Kelly WK, Hoimes C, Barata P, Taksey J, et al: High-dose intravenous vitamin C combined with docetaxel in men with metastatic castration-resistant prostate cancer: A randomized placebo-controlled phase II trial. Cancer Res Commun. 4:2174–2182. 2024. View Article : Google Scholar : PubMed/NCBI

22 

Gillberg L, Ørskov AD, Nasif A, Ohtani H, Madaj Z, Hansen JW, Rapin N, Mogensen JB, Liu M, Dufva IH, et al: Oral vitamin C supplementation to patients with myeloid cancer on azacitidine treatment: Normalization of plasma vitamin C induces epigenetic changes. Clin Epigenetics. 11:1432019. View Article : Google Scholar : PubMed/NCBI

23 

O'Leary BR, Alexander MS, Du J, Moose DL, Henry MD and Cullen JJ: Pharmacological ascorbate inhibits pancreatic cancer metastases via a peroxide-mediated mechanism. Sci Rep. 10:176492020. View Article : Google Scholar : PubMed/NCBI

24 

Furqan M, Abu-Hejleh T, Stephens LM, Hartwig SM, Mott SL, Pulliam CF, Petronek M, Henrich JB, Fath MA, Houtman JC, et al: Pharmacological ascorbate improves the response to platinum-based chemotherapy in advanced stage non-small cell lung cancer. Redox Biol. 53:1023182022. View Article : Google Scholar : PubMed/NCBI

25 

Bodeker KL, Smith BJ, Berg DJ, Chandrasekharan C, Sharif S, Fei N, Vollstedt S, Brown H, Chandler M, Lorack A, et al: A randomized trial of pharmacological ascorbate, gemcitabine, and nab-paclitaxel for metastatic pancreatic cancer. Redox Biol. 77:1033752024. View Article : Google Scholar : PubMed/NCBI

26 

Su X, Shen Z, Yang Q, Sui F, Pu J, Ma J, Ma S, Yao D, Ji M and Hou P: Vitamin C kills thyroid cancer cells through ROS-dependent inhibition of MAPK/ERK and PI3K/AKT pathways via distinct mechanisms. Theranostics. 9:4461–4473. 2019. View Article : Google Scholar : PubMed/NCBI

27 

Zhou J, Chen C, Chen X, Fei Y, Jiang L and Wang G: Vitamin C promotes apoptosis and cell cycle arrest in oral squamous cell carcinoma. Front Oncol. 10:9762020. View Article : Google Scholar : PubMed/NCBI

28 

Su X, Li P, Han B, Jia H, Liang Q, Wang H, Gu M, Cai J, Li S, Zhou Y, et al: Vitamin C sensitizes BRAFV600E thyroid cancer to PLX4032 via inhibiting the feedback activation of MAPK/ERK signal by PLX4032. J Exp Clin Cancer Res. 40:342021. View Article : Google Scholar

29 

Zhao X, Liu M, Li C, Liu X, Zhao J, Ma H, Zhang S and Qu J: High dose vitamin C inhibits PD-L1 by ROS-pSTAT3 signal pathway and enhances T cell function in TNBC. Int Immunopharmacol. 126:1113212024. View Article : Google Scholar

30 

Lv H, Zong Q, Chen C, Lv G, Xiang W, Xing F, Jiang G, Yan B, Sun X, Ma Y, et al: TET2-mediated tumor cGAS triggers endothelial STING activation to regulate vasculature remodeling and anti-tumor immunity in liver cancer. Nat Commun. 15:62024. View Article : Google Scholar : PubMed/NCBI

31 

Williams DJ, Edwards D, Pun S, Chaliha M, Burren B, Tinggi U and Sultanbawa Y: Organic acids in Kakadu plum (Terminalia ferdinandiana): The good (ellagic), the bad (oxalic) and the uncertain (ascorbic). Food Res Int. 89:237–244. 2016. View Article : Google Scholar

32 

Böttger F, Vallés-Martí A, Cahn L and Jimenez CR: High-dose intravenous vitamin C, a promising multi-targeting agent in the treatment of cancer. J Exp Clin Cancer Res. 40:3432021. View Article : Google Scholar : PubMed/NCBI

33 

Ngo B, Van Riper JM, Cantley LC and Yun J: Targeting cancer vulnerabilities with high-dose vitamin C. Nat Rev Cancer. 19:271–282. 2019. View Article : Google Scholar : PubMed/NCBI

34 

Chang JE, Voorhees PM, Kolesar JM, Ahuja HG, Sanchez FA, Rodriguez GA, Kim K, Werndli J, Bailey HH and Kahl BS: Phase II study of arsenic trioxide and ascorbic acid for relapsed or refractory lymphoid malignancies: A wisconsin oncology network study. Hematol Oncol. 27:11–16. 2009. View Article : Google Scholar

35 

Kawada H, Sawanobori M, Tsuma-Kaneko M, Wasada I, Miyamoto M, Murayama H, Toyosaki M, Onizuka M, Tsuboi K, Tazume K, et al: Phase I clinical trial of intravenous l-ascorbic acid following salvage chemotherapy for relapsed B-cell non-Hodgkin's lymphoma. Tokai J Exp Clin Med. 39:111–115. 2014.PubMed/NCBI

36 

Carr AC and Maggini S: Vitamin C and immune function. Nutrients. 9:12112017. View Article : Google Scholar : PubMed/NCBI

37 

Padayatty SJ and Levine M: Vitamin C: The known and the unknown and goldilocks. Oral Dis. 22:463–493. 2016. View Article : Google Scholar : PubMed/NCBI

38 

Bhoot HR, Zamwar UM, Chakole S and Anjankar A: Dietary sources, bioavailability, and functions of ascorbic acid (vitamin C) and its role in the common cold, tissue healing, and iron metabolism. Cureus. 15:e493082023.PubMed/NCBI

39 

Bowry SK: Dialysis membranes today. Int J Artif Organs. 25:447–460. 2002. View Article : Google Scholar : PubMed/NCBI

40 

Bürzle M, Suzuki Y, Ackermann D, Miyazaki H, Maeda N, Clémençon B, Burrier R and Hediger MA: The sodium-dependent ascorbic acid transporter family SLC23. Mol Aspects Med. 34:436–454. 2013. View Article : Google Scholar : PubMed/NCBI

41 

Lykkesfeldt J and Tveden-Nyborg P: The pharmacokinetics of vitamin C. Nutrients. 11:24122019. View Article : Google Scholar : PubMed/NCBI

42 

Doseděl M, Jirkovský E, Macáková K, Krčmová LK, Javorská L, Pourová J, Mercolini L, Remião F, Nováková L, Mladěnka P, et al: Vitamin C-sources, physiological role, kinetics, deficiency, use, toxicity, and determination. Nutrients. 13:6152021. View Article : Google Scholar : PubMed/NCBI

43 

Hasselholt S, Tveden-Nyborg P and Lykkesfeldt J: Distribution of vitamin C is tissue specific with early saturation of the brain and adrenal glands following differential oral dose regimens in guinea pigs. Br J Nutr. 113:1539–1549. 2015. View Article : Google Scholar : PubMed/NCBI

44 

Mohammed BM, Fisher BJ, Kraskauskas D, Ward S, Wayne JS, Brophy DF, Fowler AA III, Yager DR and Natarajan R: Vitamin C promotes wound healing through novel pleiotropic mechanisms. Int Wound J. 13:572–584. 2016. View Article : Google Scholar

45 

Moores J: Vitamin C: A wound healing perspective. Br J Community Nurs. Suppl:S6S8–S11. 2013. View Article : Google Scholar

46 

Fisher BJ, Kraskauskas D, Martin EJ, Farkas D, Puri P, Massey HD, Idowu MO, Brophy DF, Voelkel NF, Fowler AA III and Natarajan R: Attenuation of sepsis-induced organ injury in mice by vitamin C. JPEN J Parenter Enteral Nutr. 38:825–839. 2014. View Article : Google Scholar

47 

Carr AC, Shaw GM, Fowler AA and Natarajan R: Ascorbate-dependent vasopressor synthesis: A rationale for vitamin C administration in severe sepsis and septic shock? Crit Care. 19:4182015. View Article : Google Scholar : PubMed/NCBI

48 

Bozonet SM, Carr AC, Pullar JM and Vissers MC: Enhanced human neutrophil vitamin C status, chemotaxis and oxidant generation following dietary supplementation with vitamin C-rich SunGold kiwifruit. Nutrients. 7:2574–2588. 2015. View Article : Google Scholar : PubMed/NCBI

49 

Hong JM, Kim JH, Kang JS, Lee WJ and Hwang YI: Vitamin C is taken up by human T cells via sodium-dependent vitamin C transporter 2 (SVCT2) and exerts inhibitory effects on the activation of these cells in vitro. Anat Cell Biol. 49:88–98. 2016. View Article : Google Scholar : PubMed/NCBI

50 

Molina N, Morandi AC, Bolin AP and Otton R: Comparative effect of fucoxanthin and vitamin C on oxidative and functional parameters of human lymphocytes. Int Immunopharmacol. 22:41–50. 2014. View Article : Google Scholar : PubMed/NCBI

51 

van Gorkom GNY, Klein Wolterink RGJ, Van Elssen CHMJ, Wieten L, Germeraad WTV and Bos GMJ: Influence of vitamin C on lymphocytes: An overview. Antioxidants (Basel). 7:412018. View Article : Google Scholar : PubMed/NCBI

52 

Zhang X, Zhang Y, Wang C and Wang X: TET (Ten-eleven translocation) family proteins: Structure, biological functions and applications. Signal Transduct Target Ther. 8:2972023. View Article : Google Scholar : PubMed/NCBI

53 

Yue X, Trifari S, Äijö T, Tsagaratou A, Pastor WA, Zepeda-Martínez JA, Lio CW, Li X, Huang Y, Vijayanand P, et al: Control of Foxp3 stability through modulation of TET activity. J Exp Med. 213:377–397. 2016. View Article : Google Scholar : PubMed/NCBI

54 

Warren CFA, Wong-Brown MW and Bowden NA: BCL-2 family isoforms in apoptosis and cancer. Cell Death Dis. 10:1772019. View Article : Google Scholar : PubMed/NCBI

55 

Singh R, Letai A and Sarosiek K: Regulation of apoptosis in health and disease: The balancing act of BCL-2 family proteins. Nat Rev Mol Cell Biol. 20:175–193. 2019. View Article : Google Scholar : PubMed/NCBI

56 

Deng X, Gao F and May WS Jr: Bcl2 retards G1/S cell cycle transition by regulating intracellular ROS. Blood. 102:3179–3185. 2003. View Article : Google Scholar : PubMed/NCBI

57 

Güler A, Yardımcı BK and Özek NŞ: Human anti-apoptotic Bcl-2 and Bcl-xL proteins protect yeast cells from aging induced oxidative stress. Biochimie. 229:69–83. 2025. View Article : Google Scholar

58 

Yu X, Wang Y, Tan J, Li Y, Yang P, Liu X, Lai J, Zhang Y, Cai L, Gu Y, et al: Inhibition of NRF2 enhances the acute myeloid leukemia cell death induced by venetoclax via the ferroptosis pathway. Cell Death Discov. 10:352024. View Article : Google Scholar : PubMed/NCBI

59 

Sies H: Oxidative stress: A concept in redox biology and medicine. Redox Biol. 4:180–183. 2015. View Article : Google Scholar : PubMed/NCBI

60 

Assi M: The differential role of reactive oxygen species in early and late stages of cancer. Am J Physiol Regul Integr Comp Physiol. 313:R646–R653. 2017. View Article : Google Scholar : PubMed/NCBI

61 

Hayes JD, Dinkova-Kostova AT and Tew KD: Oxidative stress in cancer. Cancer Cell. 38:167–197. 2020. View Article : Google Scholar : PubMed/NCBI

62 

Sahoo BM, Banik BK, Borah P and Jain A: Reactive oxygen species (ROS): Key components in cancer therapies. Anticancer Agents Med Chem. 22:215–222. 2022. View Article : Google Scholar

63 

Ebrahim AS, Sabbagh H, Liddane A, Raufi A, Kandouz M and Al-Katib A: Hematologic malignancies: Newer strategies to counter the BCL-2 protein. J Cancer Res Clin Oncol. 142:2013–2022. 2016. View Article : Google Scholar : PubMed/NCBI

64 

Ashkenazi A, Fairbrother WJ, Leverson JD and Souers AJ: From basic apoptosis discoveries to advanced selective BCL-2 family inhibitors. Nat Rev Drug Discov. 16:273–284. 2017. View Article : Google Scholar : PubMed/NCBI

65 

Sermer D, Bobillo S, Dogan A, Zhang Y, Seshan V, Lavery JA, Batlevi C, Caron P, Hamilton A, Hamlin P, et al: Extra copies of MYC, BCL2, and BCL6 and outcome in patients with diffuse large B-cell lymphoma. Blood Adv. 4:3382–3390. 2020. View Article : Google Scholar : PubMed/NCBI

66 

Cerón R, Martínez A, Ramos C, De la Cruz A, García A, Mendoza I, Palmeros G, Montaño Figueroa EH, Navarrete J, Jiménez-Morales S, et al: Overexpression of BCL2, BCL6, VEGFR1 and TWIST1 in circulating tumor cells derived from patients with DLBCL decreases event-free survival. Onco Targets Ther. 15:1583–1595. 2022. View Article : Google Scholar

67 

Low IC, Kang J and Pervaiz S: Bcl-2: A prime regulator of mitochondrial redox metabolism in cancer cells. Antioxid Redox Signal. 15:2975–2987. 2011. View Article : Google Scholar : PubMed/NCBI

68 

Krishna S, Low ICC and Pervaiz S: Regulation of mitochondrial metabolism: Yet another facet in the biology of the oncoprotein Bcl-2. Biochem J. 435:545–551. 2011. View Article : Google Scholar : PubMed/NCBI

69 

Eno CO, Zhao G, Olberding KE and Li C: The Bcl-2 proteins Noxa and Bcl-xL co-ordinately regulate oxidative stress-induced apoptosis. Biochem J. 444:69–78. 2012. View Article : Google Scholar : PubMed/NCBI

70 

Lagadinou ED, Sach A, Callahan K, Rossi RM, Neering SJ, Minhajuddin M, Ashton JM, Pei S, Grose V, O'Dwyer KM, et al: BCL-2 inhibition targets oxidative phosphorylation and selectively eradicates quiescent human leukemia stem cells. Cell Stem Cell. 12:329–341. 2013. View Article : Google Scholar : PubMed/NCBI

71 

Lv H, Wang C, Fang T, Li T, Lv G, Han Q, Yang W and Wang H: Vitamin C preferentially kills cancer stem cells in hepatocellular carcinoma via SVCT-2. NPJ Precis Oncol. 2:12018. View Article : Google Scholar : PubMed/NCBI

72 

Ghanem A, Melzer AM, Zaal E, Neises L, Baltissen D, Matar O, Glennemeier-Marke H, Almouhanna F, Theobald J, Abu El Maaty MA, et al: Ascorbate kills breast cancer cells by rewiring metabolism via redox imbalance and energy crisis. Free Radic Biol Med. 163:196–209. 2021. View Article : Google Scholar

73 

Chen Q, Espey MG, Krishna MC, Mitchell JB, Corpe CP, Buettner GR, Shacter E and Levine M: Pharmacologic ascorbic acid concentrations selectively kill cancer cells: Action as a pro-drug to deliver hydrogen peroxide to tissues. Proc Natl Acad Sci USA. 102:13604–13609. 2005. View Article : Google Scholar : PubMed/NCBI

74 

Fan D, Liu X, Shen Z, Wu P, Zhong L and Lin F: Cell signaling pathways based on vitamin C and their application in cancer therapy. Biomed Pharmacother. 162:1146952023. View Article : Google Scholar : PubMed/NCBI

75 

El-Garawani IM, El-Nabi SH, El-Shafey S, Elfiky M and Nafie E: Coffea arabica bean extracts and vitamin C: A novel combination unleashes MCF-7 cell death. Curr Pharm Biotechnol. 21:23–36. 2020. View Article : Google Scholar

76 

Chen MS, Zhao HK, Cheng YY, Yuan ZH and Zhang YL: Toxic effects of vitamin C combined with temozolomide on glioma cells and its mechanism. Zhongguo Ying Yong Sheng Li Xue Za Zhi. 36:616–621. 2020.In Chinese.

77 

Liongue C, Almohaisen F and Ward AC: B cell lymphoma 6 (BCL6): A conserved regulator of immunity and beyond. Int J Mol Sci. 25:109682024. View Article : Google Scholar : PubMed/NCBI

78 

Basso K and Dalla-Favera R: Roles of BCL6 in normal and transformed germinal center B cells. Immunol Rev. 247:172–183. 2012. View Article : Google Scholar : PubMed/NCBI

79 

Phan RT and Dalla-Favera R: The BCL6 proto-oncogene suppresses p53 expression in germinal-centre B cells. Nature. 432:635–639. 2004. View Article : Google Scholar : PubMed/NCBI

80 

Kerckaert JP, Deweindt C, Tilly H, Quief S, Lecocq G and Bastard C: LAZ3, a novel zinc-finger encoding gene, is disrupted by recurring chromosome 3q27 translocations in human lymphomas. Nat Genet. 5:66–70. 1993. View Article : Google Scholar : PubMed/NCBI

81 

Johnston RJ, Poholek AC, DiToro D, Yusuf I, Eto D, Barnett B, Dent AL, Craft J and Crotty S: Bcl6 and Blimp-1 are reciprocal and antagonistic regulators of T follicular helper cell differentiation. Science. 325:1006–1010. 2009. View Article : Google Scholar : PubMed/NCBI

82 

Zan H, Wu X, Komori A, Holloman WK and Casali P: AID-dependent generation of resected double-strand DNA breaks and recruitment of Rad52/Rad51 in somatic hypermutation. Immunity. 18:727–738. 2003. View Article : Google Scholar : PubMed/NCBI

83 

Liu Y, Feng J, Yuan K, Wu Z, Hu L, Lu Y, Li K, Guo J, Chen J, Ma C and Pang X: The oncoprotein BCL6 enables solid tumor cells to evade genotoxic stress. Elife. 11:e692552022. View Article : Google Scholar : PubMed/NCBI

84 

McLachlan T, Matthews WC, Jackson ER, Staudt DE, Douglas AM, Findlay IJ, Persson ML, Duchatel RJ, Mannan A, Germon ZP and Dun MD: B-cell lymphoma 6 (BCL6): From master regulator of humoral immunity to oncogenic driver in pediatric cancers. Mol Cancer Res. 20:1711–1723. 2022. View Article : Google Scholar : PubMed/NCBI

85 

Louwen F, Kreis NN, Ritter A, Friemel A, Solbach C and Yuan J: BCL6, a key oncogene, in the placenta, pre-eclampsia and endometriosis. Hum Reprod Update. 28:890–909. 2022. View Article : Google Scholar : PubMed/NCBI

86 

Leeman-Neill RJ and Bhagat G: BCL6 as a therapeutic target for lymphoma. Expert Opin Ther Targets. 22:143–152. 2018. View Article : Google Scholar

87 

Huang C and Melnick A: Mechanisms of action of BCL6 during germinal center B cell development. Sci China Life Sci. 58:1226–1232. 2015. View Article : Google Scholar : PubMed/NCBI

88 

Krull JE, Wenzl K, Hartert KT, Manske MK, Sarangi V, Maurer MJ, Larson MC, Nowakowski GS, Ansell SM, McPhail E, et al: Somatic copy number gains in MYC, BCL2, and BCL6 identifies a subset of aggressive alternative-DH/TH DLBCL patients. Blood Cancer J. 10:1172020. View Article : Google Scholar : PubMed/NCBI

89 

Ting CY, Chang KM, Kuan JW, Sathar J, Chew LP, Wong OJ, Yusuf Y, Wong L, Samsudin AT, Pana MNBM, et al: Clinical significance of BCL2, C-MYC, and BCL6 genetic abnormalities, epstein-barr virus infection, CD5 protein expression, germinal center B Cell/non-germinal center B-cell subtypes, co-expression of MYC/BCL2 proteins and co-expression of MYC/BCL2/BCL6 proteins in diffuse large B-cell lymphoma: a clinical and pathological correlation study of 120 patients. Int J Med Sci. 16:556–566. 2019. View Article : Google Scholar :

90 

Ferretti GDS, Quarti J, Dos Santos G, Rangel LP and Silva JL: Anticancer therapeutic strategies targeting p53 aggregation. Int J Mol Sci. 23:110232022. View Article : Google Scholar : PubMed/NCBI

91 

Bieging KT, Mello SS and Attardi LD: Unravelling mechanisms of p53-mediated tumour suppression. Nat Rev Cancer. 14:359–370. 2014. View Article : Google Scholar : PubMed/NCBI

92 

Williams AB and Schumacher B: p53 in the DNA-damage-repair process. Cold Spring Harb Perspect Med. 6:a0260702016. View Article : Google Scholar : PubMed/NCBI

93 

Sermeus A and Michiels C: Reciprocal influence of the p53 and the hypoxic pathways. Cell Death Dis. 2:e1642011. View Article : Google Scholar : PubMed/NCBI

94 

Miyata S, Ishii T and Kitanaka S: Reduction of HIF-1α/PD-L1 by catalytic topoisomerase inhibitor induces cell death through caspase activation in cancer cells under hypoxia. Anticancer Res. 44:49–59. 2024. View Article : Google Scholar : PubMed/NCBI

95 

Madan E, Parker TM, Pelham CJ, Palma AM, Peixoto ML, Nagane M, Chandaria A, Tomás AR, Canas-Marques R, Henriques V, et al: HIF-transcribed p53 chaperones HIF-1α. Nucleic Acids Res. 47:10212–10234. 2019. View Article : Google Scholar : PubMed/NCBI

96 

Ismail S, Elshimali Y, Daoud A and Alshehabi Z: Immunohistochemical expression of transcription factors PAX5, OCT2, BCL6 and transcription regulator P53 in Non-Hodgkin lymphomas: A diagnostic cross-sectional study. Ann Med Surg (Lond). 78:1037862022.PubMed/NCBI

97 

Choi SH, Koh DI, Cho SY, Kim MK, Kim KS and Hur MW: Temporal and differential regulation of KAISO-controlled transcription by phosphorylated and acetylated p53 highlights a crucial regulatory role of apoptosis. J Biol Chem. 294:12957–12974. 2019. View Article : Google Scholar : PubMed/NCBI

98 

Margalit O, Amram H, Amariglio N, Simon AJ, Shaklai S, Granot G, Minsky N, Shimoni A, Harmelin A, Givol D, et al: BCL6 is regulated by p53 through a response element frequently disrupted in B-cell non-Hodgkin lymphoma. Blood. 107:1599–1607. 2006. View Article : Google Scholar

99 

Kaźmierczak-Barańska J, Boguszewska K, Adamus-Grabicka A and Karwowski BT: Two faces of vitamin C-antioxidative and pro-oxidative agent. Nutrients. 12:15012020. View Article : Google Scholar

100 

Xiong Y, Xu S, Fu B, Tang W, Zaky MY, Tian R, Yao R, Zhang S, Zhao Q, Nian W, et al: Vitamin C-induced competitive binding of HIF-1α and p53 to ubiquitin E3 ligase CBL contributes to anti-breast cancer progression through p53 deacetylation. Food Chem Toxicol. 168:1133212022. View Article : Google Scholar

101 

Kim J, Lee SD, Chang B, Jin DH, Jung SI, Park MY, Han Y, Yang Y, Il Kim K, Lim JS, et al: Enhanced antitumor activity of vitamin C via p53 in cancer cells. Free Radic Biol Med. 53:1607–1615. 2012. View Article : Google Scholar : PubMed/NCBI

102 

Huang K: Chemical inducers of proximity: Precision tools for apoptosis in transcriptional regulation. Signal Transduct Target Ther. 9:3642024. View Article : Google Scholar : PubMed/NCBI

103 

Duffy MJ, O'Grady S, Tang M and Crown J: MYC as a target for cancer treatment. Cancer Treat Rev. 94:1021542021. View Article : Google Scholar : PubMed/NCBI

104 

Das SK, Lewis BA and Levens D: MYC: A complex problem. Trends Cell Biol. 33:235–246. 2023. View Article : Google Scholar :

105 

Ellenbroek BD, Kahler JP, Arella D, Lin C, Jespers W, Züger EA, Drukker M and Pomplun SJ: Development of DuoMYC: A synthetic cell penetrant miniprotein that efficiently inhibits the oncogenic transcription factor MYC. Angew Chem Int Ed Engl. 64:e2024160822025. View Article : Google Scholar :

106 

Baluapuri A, Wolf E and Eilers M: Target gene-independent functions of MYC oncoproteins. Nat Rev Mol Cell Biol. 21:255–267. 2020. View Article : Google Scholar : PubMed/NCBI

107 

Liu Z, Chen SS, Clarke S, Veschi V and Thiele CJ: Targeting MYCN in pediatric and adult cancers. Front Oncol. 10:6236792021. View Article : Google Scholar : PubMed/NCBI

108 

Massó-Vallés D, Beaulieu ME and Soucek L: MYC, MYCL, and MYCN as therapeutic targets in lung cancer. Expert Opin Ther Targets. 24:101–114. 2020. View Article : Google Scholar : PubMed/NCBI

109 

Stoelzle T, Schwarb P, Trumpp A and Hynes NE: c-Myc affects mRNA translation, cell proliferation and progenitor cell function in the mammary gland. BMC Biol. 7:632009. View Article : Google Scholar : PubMed/NCBI

110 

Felipe I, Martínez-de-Villarreal J, Patel K, Martínez-Torrecuadrada J, Grossmann LD, Roncador G, Cubells M, Farrell A, Kendsersky N, Sabroso-Lasa S, et al: BPTF cooperates with MYCN and MYC to link neuroblastoma cell cycle control to epigenetic cellular states. bioRxiv [Preprint]: 2024.02.11.579816. 2024.

111 

Mahdavi P, Panahipoor Javaherdehi A, Khanjanpoor P, Aminian H, Zakeri M, Zafarani A and Razizadeh MH: The role of c-Myc in Epstein-Barr virus-associated cancers: Mechanistic insights and therapeutic implications. Microb Pathog. 197:1070252024. View Article : Google Scholar : PubMed/NCBI

112 

Yoon J, Jeon T, Kwon JA and Yoon SY: Characterization of MYC rearrangements in multiple myeloma: An optical genome mapping approach. Blood Cancer J. 14:1652024. View Article : Google Scholar : PubMed/NCBI

113 

Jakobsen ST and Siersbæk R: Transcriptional regulation by MYC: An emerging new model. Oncogene. 44:1–7. 2025. View Article : Google Scholar

114 

Bisso A, Filipuzzi M, Gamarra Figueroa GP, Brumana G, Biagioni F, Doni M, Ceccotti G, Tanaskovic N, Morelli MJ, Pendino V, et al: Cooperation between MYC and β-catenin in liver tumorigenesis requires Yap/Taz. Hepatology. 72:1430–1443. 2020. View Article : Google Scholar : PubMed/NCBI

115 

Dhanasekaran R, Deutzmann A, Mahauad-Fernandez WD, Hansen AS, Gouw AM and Felsher DW: The MYC oncogene-the grand orchestrator of cancer growth and immune evasion. Nat Rev Clin Oncol. 19:23–36. 2022. View Article : Google Scholar

116 

Baena E, Ortiz M, Martínez-A C and de Alborán IM: c-Myc is essential for hematopoietic stem cell differentiation and regulates Lin(-)Sca-1(+)c-Kit(-) cell generation through p21. Exp Hematol. 35:1333–1343. 2007. View Article : Google Scholar : PubMed/NCBI

117 

Sewastianik T, Prochorec-Sobieszek M, Chapuy B and Juszczyński P: MYC deregulation in lymphoid tumors: Molecular mechanisms, clinical consequences and therapeutic implications. Biochim Biophys Acta. 1846:457–467. 2014.PubMed/NCBI

118 

Susanibar-Adaniya S and Barta SK: 2021 Update on diffuse large B cell lymphoma: A review of current data and potential applications on risk stratification and management. Am J Hematol. 96:617–629. 2021. View Article : Google Scholar : PubMed/NCBI

119 

Candelaria M, Cerrato-Izaguirre D, Gutierrez O, Diaz-Chavez J, Aviles A, Dueñas-Gonzalez A and Malpica L: Characterizing the mutational landscape of diffuse large B-cell lymphoma in a prospective cohort of mexican patients. Int J Mol Sci. 25:93282024. View Article : Google Scholar : PubMed/NCBI

120 

Hashmi AA, Iftikhar SN, Nargus G, Ahmed O, Asghar IA, Shirazi UA, Afzal A, Irfan M and Ali J: Double-expressor phenotype (BCL-2/c-MYC co-expression) of diffuse large B-cell lymphoma and its clinicopathological correlation. Cureus. 13:e131552021.PubMed/NCBI

121 

Wu G, Liu T, Li H, Li Y, Li D and Li W: c-MYC and reactive oxygen species play roles in tetrandrine-induced leukemia differentiation. Cell Death Dis. 9:4732018. View Article : Google Scholar : PubMed/NCBI

122 

Koo JI, Sim DY, Lee HJ, Ahn CH, Park J, Park SY, Lee D, Shim BS, Kim B and Kim SH: Apoptotic and anti-Warburg effect of Morusin via ROS mediated inhibition of FOXM1/c-Myc signaling in prostate cancer cells. Phytother Res. 37:4473–4487. 2023. View Article : Google Scholar : PubMed/NCBI

123 

Meng L, Gao J, Mo W, Wang B, Shen H, Cao W, Ding M, Diao W, Chen W, Zhang Q, et al: MIOX inhibits autophagy to regulate the ROS-driven inhibition of STAT3/c-Myc-mediated epithelial-mesenchymal transition in clear cell renal cell carcinoma. Redox Biol. 68:1029562023. View Article : Google Scholar

124 

Yao L, Wu P, Yao F, Huang B, Zhong F and Wang X: ZCCHC4 regulates esophageal cancer progression and cisplatin resistance through ROS/c-myc axis. Sci Rep. 15:51492025. View Article : Google Scholar : PubMed/NCBI

125 

Donati G, Nicoli P, Verrecchia A, Vallelonga V, Croci O, Rodighiero S, Audano M, Cassina L, Ghsein A, Binelli G, et al: Oxidative stress enhances the therapeutic action of a respiratory inhibitor in MYC-driven lymphoma. EMBO Mol Med. 15:e169102023. View Article : Google Scholar : PubMed/NCBI

126 

Firouzjaei AA and Mohammadi-Yeganeh S: The intricate interplay between ferroptosis and efferocytosis in cancer: Unraveling novel insights and therapeutic opportunities. Front Oncol. 14:14242182024. View Article : Google Scholar : PubMed/NCBI

127 

Ahn M, Ali A and Seo JH: Mitochondrial regulation in the tumor microenvironment: Targeting mitochondria for immunotherapy. Front Immunol. 15:14538862024. View Article : Google Scholar : PubMed/NCBI

128 

Shen M and Kang Y: Complex interplay between tumor microenvironment and cancer therapy. Front Med. 12:426–439. 2018. View Article : Google Scholar : PubMed/NCBI

129 

Manea AJ and Ray SK: Advanced bioinformatics analysis and genetic technologies for targeting autophagy in glioblastoma multiforme. Cells. 12:8972023. View Article : Google Scholar : PubMed/NCBI

130 

Pitt JM, Marabelle A, Eggermont A, Soria JC, Kroemer G and Zitvogel L: Targeting the tumor microenvironment: Removing obstruction to anticancer immune responses and immunotherapy. Ann Oncol. 27:1482–1492. 2016. View Article : Google Scholar : PubMed/NCBI

131 

Tong X, Tang R, Xiao M, Xu J, Wang W, Zhang B, Liu J, Yu X and Shi S: Targeting cell death pathways for cancer therapy: Recent developments in necroptosis, pyroptosis, ferroptosis, and cuproptosis research. J Hematol Oncol. 15:1742022. View Article : Google Scholar : PubMed/NCBI

132 

Babar Q, Saeed A, Tabish TA, Sarwar M and Thorat ND: Targeting the tumor microenvironment: Potential strategy for cancer therapeutics. Biochim Biophys Acta Mol Basis Dis. 1869:1667462023. View Article : Google Scholar : PubMed/NCBI

133 

Worbs T, Hammerschmidt SI and Förster R: Dendritic cell migration in health and disease. Nat Rev Immunol. 17:30–48. 2017. View Article : Google Scholar

134 

Wculek SK, Cueto FJ, Mujal AM, Melero I, Krummel MF and Sancho D: Dendritic cells in cancer immunology and immunotherapy. Nat Rev Immunol. 20:7–24. 2020. View Article : Google Scholar

135 

Gardner A and Ruffell B: Dendritic cells and cancer immunity. Trends Immunol. 37:855–865. 2016. View Article : Google Scholar : PubMed/NCBI

136 

Noubade R, Majri-Morrison S and Tarbell KV: Beyond cDC1: Emerging roles of DC crosstalk in cancer immunity. Front Immunol. 10:10142019. View Article : Google Scholar : PubMed/NCBI

137 

Böttcher JP and Reis e Sousa C: The role of type 1 conventional dendritic cells in cancer immunity. Trends Cancer. 4:784–792. 2018. View Article : Google Scholar : PubMed/NCBI

138 

Wculek SK, Amores-Iniesta J, Conde-Garrosa R, Khouili SC, Melero I and Sancho D: Effective cancer immunotherapy by natural mouse conventional type-1 dendritic cells bearing dead tumor antigen. J Immunother Cancer. 7:1002019. View Article : Google Scholar : PubMed/NCBI

139 

Binnewies M, Mujal AM, Pollack JL, Combes AJ, Hardison EA, Barry KC, Tsui J, Ruhland MK, Kersten K, Abushawish MA, et al: Unleashing type-2 dendritic cells to drive protective antitumor CD4+ T cell immunity. Cell. 177:556–571.e16. 2019. View Article : Google Scholar

140 

Ruhland MK, Roberts EW, Cai E, Mujal AM, Marchuk K, Beppler C, Nam D, Serwas NK, Binnewies M and Krummel MF: Visualizing synaptic transfer of tumor antigens among dendritic cells. Cancer Cell. 37:786–799.e5. 2020. View Article : Google Scholar : PubMed/NCBI

141 

Holicek P, Guilbaud E, Klapp V, Truxova I, Spisek R, Galluzzi L and Fucikova J: Type I interferon and cancer. Immunol Rev. 321:115–127. 2024. View Article : Google Scholar

142 

Chrisikos TT, Zhou Y, Slone N, Babcock R, Watowich SS and Li HS: Molecular regulation of dendritic cell development and function in homeostasis, inflammation, and cancer. Mol Immunol. 110:24–39. 2019. View Article : Google Scholar

143 

Veglia F and Gabrilovich DI: Dendritic cells in cancer: The role revisited. Curr Opin Immunol. 45:43–51. 2017. View Article : Google Scholar : PubMed/NCBI

144 

Han SH and Ju MH: Characterizing the tumor microenvironment and its correlation with cDC1-related gene expression in gastric cancer. J Immunol Res. 2024:44681452024. View Article : Google Scholar : PubMed/NCBI

145 

Kießler M, Plesca I, Sommer U, Wehner R, Wilczkowski F, Müller L, Tunger A, Lai X, Rentsch A, Peuker K, et al: Tumor-infiltrating plasmacytoid dendritic cells are associated with survival in human colon cancer. J Immunother Cancer. 9:e0018132021. View Article : Google Scholar

146 

Aspord C, Leccia MT, Charles J and Plumas J: Melanoma hijacks plasmacytoid dendritic cells to promote its own progression. Oncoimmunology. 3:e274022014. View Article : Google Scholar : PubMed/NCBI

147 

De Sá Fernandes C, Novoszel P, Gastaldi T, Krauß D, Lang M, Rica R, Kutschat AP, Holcmann M, Ellmeier W, Seruggia D, et al: The histone deacetylase HDAC1 controls dendritic cell development and anti-tumor immunity. Cell Rep. 43:1143082024. View Article : Google Scholar : PubMed/NCBI

148 

Verneau J, Sautés-Fridman C and Sun CM: Dendritic cells in the tumor microenvironment: Prognostic and theranostic impact. Semin Immunol. 48:1014102020. View Article : Google Scholar : PubMed/NCBI

149 

Ennishi D: The biology of the tumor microenvironment in DLBCL: Targeting the 'don't eat me' signal. J Clin Exp Hematop. 61:210–215. 2021. View Article : Google Scholar : PubMed/NCBI

150 

Jeong YJ, Kim JH, Hong JM, Kang JS, Kim HR, Lee WJ and Hwang YI: Vitamin C treatment of mouse bone marrow-derived dendritic cells enhanced CD8(+) memory T cell production capacity of these cells in vivo. Immunobiology. 219:554–564. 2014. View Article : Google Scholar : PubMed/NCBI

151 

Kim HW, Cho SI, Bae S, Kim H, Kim Y, Hwang YI, Kang JS and Lee WJ: Vitamin C up-regulates expression of CD80, CD86 and MHC class II on dendritic cell line, DC-1 via the activation of p38 MAPK. Immune Netw. 12:277–283. 2012. View Article : Google Scholar

152 

Morante-Palacios O, Godoy-Tena G, Calafell-Segura J, Ciudad L, Martínez-Cáceres EM, Sardina JL and Ballestar E: Vitamin C enhances NF-κB-driven epigenomic reprogramming and boosts the immunogenic properties of dendritic cells. Nucleic Acids Res. 50:10981–10994. 2022. View Article : Google Scholar : PubMed/NCBI

153 

Magrì A, Germano G, Lorenzato A, Lamba S, Chilà R, Montone M, Amodio V, Ceruti T, Sassi F, Arena S, et al: High-dose vitamin C enhances cancer immunotherapy. Sci Transl Med. 12:eaay87072020. View Article : Google Scholar : PubMed/NCBI

154 

Chopp L, Redmond C, O'Shea JJ and Schwartz DM: From thymus to tissues and tumors: A review of T-cell biology. J Allergy Clin Immunol. 151:81–97. 2023. View Article : Google Scholar

155 

Lawrence T: The nuclear factor NF-kappaB pathway in inflammation. Cold Spring Harb Perspect Biol. 1:a0016512009. View Article : Google Scholar

156 

Kina E, Larouche JD, Thibault P and Perreault C: The cryptic immunopeptidome in health and disease. Trends Genet. 41:162–169. 2025. View Article : Google Scholar

157 

Zhao Y, Shao Q and Peng G: Exhaustion and senescence: Two crucial dysfunctional states of T cells in the tumor microenvironment. Cell Mol Immunol. 17:27–35. 2020. View Article : Google Scholar :

158 

Knez J, Kovačič B and Goropevšek A: The role of regulatory T-cells in the development of endometriosis. Hum Reprod. deae1032024.Epub ahead of print. PubMed/NCBI

159 

Sawant DV, Yano H, Chikina M, Zhang Q, Liao M, Liu C, Callahan DJ, Sun Z, Sun T, Tabib T, et al: Adaptive plasticity of IL-10+ and IL-35+ Treg cells cooperatively promotes tumor T cell exhaustion. Nat Immunol. 20:724–735. 2019. View Article : Google Scholar : PubMed/NCBI

160 

Yi M, Niu M, Wu Y, Ge H, Jiao D, Zhu S, Zhang J, Yan Y, Zhou P, Chu Q and Wu K: Combination of oral STING agonist MSA-2 and anti-TGF-β/PD-L1 bispecific antibody YM101: A novel immune cocktail therapy for non-inflamed tumors. J Hematol Oncol. 15:1422022. View Article : Google Scholar

161 

Naulaerts S, Datsi A, Borras DM, Antoranz Martinez A, Messiaen J, Vanmeerbeek I, Sprooten J, Laureano RS, Govaerts J, Panovska D, et al: Multiomics and spatial mapping characterizes human CD8+ T cell states in cancer. Sci Transl Med. 15:eadd10162023. View Article : Google Scholar

162 

Li S, Li K, Wang K, Yu H, Wang X, Shi M, Liang Z, Yang Z, Hu Y, Li Y, et al: Low-dose radiotherapy combined with dual PD-L1 and VEGFA blockade elicits antitumor response in hepatocellular carcinoma mediated by activated intratumoral CD8+ exhausted-like T cells. Nat Commun. 14:77092023. View Article : Google Scholar

163 

Opinto G, Vegliante MC, Negri A, Skrypets T, Loseto G, Pileri SA, Guarini A and Ciavarella S: The tumor microenvironment of DLBCL in the computational era. Front Oncol. 10:3512020. View Article : Google Scholar : PubMed/NCBI

164 

Thommen DS, Koelzer VH, Herzig P, Roller A, Trefny M, Dimeloe S, Kiialainen A, Hanhart J, Schill C, Hess C, et al: A transcriptionally and functionally distinct PD-1+ CD8+ T cell pool with predictive potential in non-small-cell lung cancer treated with PD-1 blockade. Nat Med. 24:994–1004. 2018. View Article : Google Scholar : PubMed/NCBI

165 

van der Leun AM, Thommen DS and Schumacher TN: CD8+ T cell states in human cancer: Insights from single-cell analysis. Nat Rev Cancer. 20:218–232. 2020. View Article : Google Scholar : PubMed/NCBI

166 

Dolina JS, Van Braeckel-Budimir N, Thomas GD and Salek-Ardakani S: CD8+ T cell exhaustion in cancer. Front Immunol. 12:7152342021. View Article : Google Scholar

167 

Baitsch L, Fuertes-Marraco SA, Legat A, Meyer C and Speiser DE: The three main stumbling blocks for anticancer T cells. Trends Immunol. 33:364–372. 2012. View Article : Google Scholar : PubMed/NCBI

168 

Thinyakul C, Sakamoto Y, Shimoda M, Liu Y, Thongchot S, Reda O, Nita A, Sakamula R, Sampattavanich S, Maeda A, et al: Hippo pathway in cancer cells induces NCAM1+αSMA+ fibroblasts to modulate tumor microenvironment. Commun Biol. 7:13432024. View Article : Google Scholar

169 

Sarhan D, Hippen KL, Lemire A, Hying S, Luo X, Lenvik T, Curtsinger J, Davis Z, Zhang B, Cooley S, et al: Adaptive NK cells resist regulatory T-cell suppression driven by IL37. Cancer Immunol Res. 6:766–775. 2018. View Article : Google Scholar : PubMed/NCBI

170 

Li L, Nong J, Li J, Fang L, Pan M, Qiu H, Huang S, Li Y, Wei M and Yin H: Dendrobine suppresses tumor growth by regulating the PD-1/PD-L1 checkpoint pathway in lung cancer. Curr Cancer Drug Targets. Sep 18–2024.Epub ahead of print. View Article : Google Scholar

171 

Tang Q, Chen Y, Li X, Long S, Shi Y, Yu Y, Wu W, Han L and Wang S: The role of PD-1/PD-L1 and application of immune-checkpoint inhibitors in human cancers. Front Immunol. 13:9644422022. View Article : Google Scholar : PubMed/NCBI

172 

Ma J, Pang X, Li J, Zhang W and Cui W: The immune checkpoint expression in the tumor immune microenvironment of DLBCL: Clinicopathologic features and prognosis. Front Oncol. 12:10693782022. View Article : Google Scholar : PubMed/NCBI

173 

Roussel M, Le KS, Granier C, Llamas Gutierrez F, Foucher E, Le Gallou S, Pangault C, Xerri L, Launay V, Lamy T, et al: Functional characterization of PD1+TIM3+ tumor-infiltrating T cells in DLBCL and effects of PD1 or TIM3 blockade. Blood Adv. 5:1816–1829. 2021. View Article : Google Scholar : PubMed/NCBI

174 

Forde PM, Spicer J, Lu S, Provencio M, Mitsudomi T, Awad MM, Felip E, Broderick SR, Brahmer JR, Swanson SJ, et al: Neoadjuvant nivolumab plus chemotherapy in resectable lung cancer. N Engl J Med. 386:1973–1985. 2022. View Article : Google Scholar : PubMed/NCBI

175 

Sheikh S and Kuruvilla J: Pembrolizumab for the treatment of diffuse large B-cell lymphoma. Expert Opin Biol Ther. 19:1119–1126. 2019. View Article : Google Scholar : PubMed/NCBI

176 

Luchtel RA, Bhagat T, Pradhan K, Jacobs WR Jr, Levine M, Verma A and Shenoy N: High-dose ascorbic acid synergizes with anti-PD1 in a lymphoma mouse model. Proc Natl Acad Sci USA. 117:1666–1677. 2020. View Article : Google Scholar : PubMed/NCBI

177 

Bedhiafi T, Inchakalody VP, Fernandes Q, Mestiri S, Billa N, Uddin S, Merhi M and Dermime S: The potential role of vitamin C in empowering cancer immunotherapy. Biomed Pharmacother. 146:1125532022. View Article : Google Scholar

178 

Xu YP, Lv L, Liu Y, Smith MD, Li WC, Tan XM, Cheng M, Li Z, Bovino M, Aubé J and Xiong Y: Tumor suppressor TET2 promotes cancer immunity and immunotherapy efficacy. J Clin Invest. 129:4316–4331. 2019. View Article : Google Scholar : PubMed/NCBI

179 

Li H, Li Y, Zhang T, Liu S, Song C, Wang K, Yan W, Wang Z, Yang Q, Yang X and Wang H: Genome-wide CRISPR screen reveals specific role of type I interferon signaling pathway in Newcastle disease virus establishment of persistent infection. Vet Microbiol. 300:1102882025. View Article : Google Scholar

180 

Shapouri-Moghaddam A, Mohammadian S, Vazini H, Taghadosi M, Esmaeili SA, Mardani F, Seifi B, Mohammadi A, Afshari JT and Sahebkar A: Macrophage plasticity, polarization, and function in health and disease. J Cell Physiol. 233:6425–6440. 2018. View Article : Google Scholar : PubMed/NCBI

181 

Perry CJ, Muñoz-Rojas AR, Meeth KM, Kellman LN, Amezquita RA, Thakral D, Du VY, Wang JX, Damsky W, Kuhlmann AL, et al: Myeloid-targeted immunotherapies act in synergy to induce inflammation and antitumor immunity. J Exp Med. 215:877–893. 2018. View Article : Google Scholar : PubMed/NCBI

182 

Ngambenjawong C, Gustafson HH and Pun SH: Progress in tumor-associated macrophage (TAM)-targeted therapeutics. Adv Drug Deliv Rev. 114:206–221. 2017. View Article : Google Scholar : PubMed/NCBI

183 

Afra F, Eftekhar SP, Farid AS and Ala M: Non-coding RNAs in cancer immunotherapy: A solution to overcome immune resistance. Prog Mol Biol Transl Sci. 209:215–240. 2024. View Article : Google Scholar

184 

Zhu W, Liu L, Wu J, Gao R, Fu L, Yang X, Zou Y, Zhang S and Luo D: SMYD3 activates the TCA cycle to promote M1-M2 conversion in macrophages. Int Immunopharmacol. 127:1113292024. View Article : Google Scholar

185 

Fang C, Zhong R, Lu S, Yu G, Liu Z, Yan C, Gao J, Tang Y, Wang Y, Zhao Q and Feng X: TREM2 promotes macrophage polarization from M1 to M2 and suppresses osteoarthritis through the NF-κB/CXCL3 axis. Int J Biol Sci. 20:1992–2007. 2024. View Article : Google Scholar :

186 

Basak U, Sarkar T, Mukherjee S, Chakraborty S, Dutta A, Dutta S, Nayak D, Kaushik S, Das T and Sa G: Tumor-associated macrophages: an effective player of the tumor microenvironment. Front Immunol. 14:12952572023. View Article : Google Scholar : PubMed/NCBI

187 

Daetwyler E, Wallrabenstein T, König D, Cappelli LC, Naidoo J, Zippelius A and Läubli H: Corticosteroid-resistant immune-related adverse events: A systematic review. J Immunother Cancer. 12:e0074092024. View Article : Google Scholar : PubMed/NCBI

188 

Ma Z, Yang M, Foda MF, Zhang K, Li S, Liang H, Zhao Y and Han H: Polarization of tumor-associated macrophages promoted by vitamin C-loaded liposomes for cancer immunotherapy. ACS Nano. 16:17389–17401. 2022. View Article : Google Scholar : PubMed/NCBI

189 

Xu Y, Guo X, Wang G and Zhou C: Vitamin C inhibits metastasis of peritoneal tumors by preventing spheroid formation in ID8 murine epithelial peritoneal cancer model. Front Pharmacol. 11:6452020. View Article : Google Scholar : PubMed/NCBI

190 

Yao H, Xu J, Wang J, Zheng N, Yue J, Mi J, Zheng L, Dai B, Huang W, Yung S, et al: Combination of magnesium ions and vitamin C alleviates synovitis and osteophyte formation in osteoarthritis of mice. Bioact Mater. 6:1341–1352. 2020.PubMed/NCBI

191 

Najjar YG and Finke JH: Clinical perspectives on targeting of myeloid derived suppressor cells in the treatment of cancer. Front Oncol. 3:492013. View Article : Google Scholar : PubMed/NCBI

192 

Hashimoto A, Sarker D, Reebye V, Jarvis S, Sodergren MH, Kossenkov A, Sanseviero E, Raulf N, Vasara J, Andrikakou P, et al: Upregulation of C/EBPα inhibits suppressive activity of myeloid cells and potentiates antitumor response in mice and patients with cancer. Clin Cancer Res. 27:5961–5978. 2021. View Article : Google Scholar : PubMed/NCBI

193 

Holtzhausen A, Harris W, Ubil E, Hunter DM, Zhao J, Zhang Y, Zhang D, Liu Q, Wang X, Graham DK, et al: TAM family receptor kinase inhibition reverses MDSC-mediated suppression and augments anti-PD-1 therapy in melanoma. Cancer Immunol Res. 7:1672–1686. 2019. View Article : Google Scholar : PubMed/NCBI

194 

Azzaoui I, Uhel F, Rossille D, Pangault C, Dulong J, Le Priol J, Lamy T, Houot R, Le Gouill S, Cartron G, et al: T-cell defect in diffuse large B-cell lymphomas involves expansion of myeloid-derived suppressor cells. Blood. 128:1081–1092. 2016. View Article : Google Scholar : PubMed/NCBI

195 

Sadeghi M, Dehnavi S, Sharifat M, Amiri AM and Khodadadi A: Innate immune cells: Key players of orchestra in modulating tumor microenvironment (TME). Heliyon. 10:e274802024. View Article : Google Scholar : PubMed/NCBI

196 

Johnson B: Targeting myeloid-derived suppressor cell trafficking as a novel immunotherapeutic approach in microsatellite stable colorectal cancer. Cancers (Basel). 15:54842023. View Article : Google Scholar : PubMed/NCBI

197 

Wu Y, Yi M, Niu M, Mei Q and Wu K: Myeloid-derived suppressor cells: An emerging target for anticancer immunotherapy. Mol Cancer. 21:1842022. View Article : Google Scholar : PubMed/NCBI

198 

Dhar S, Chakravarti M, Ganguly N, Saha A, Dasgupta S, Bera S, Sarkar A, Roy K, Das J, Bhuniya A, et al: High monocytic MDSC signature predicts multi-drug resistance and cancer relapse in non-Hodgkin lymphoma patients treated with R-CHOP. Front Immunol. 14:13039592024. View Article : Google Scholar : PubMed/NCBI

199 

Wu C, Wu X, Liu X, Yang P, Xu J, Chai Y, Guo Q, Wang Z and Zhang L: Prognostic significance of monocytes and monocytic myeloid-derived suppressor cells in diffuse large B-cell lymphoma treated with R-CHOP. Cell Physiol Biochem. 39:521–530. 2016. View Article : Google Scholar : PubMed/NCBI

200 

Ali Y, Monini C, Russeil E, Létang JM, Testa E, Maigne L and Beuve M: Estimate of the biological dose in hadrontherapy using GATE. Cancers (Basel). 14:16672022. View Article : Google Scholar : PubMed/NCBI

201 

Adibi A, Tokat ÜM, Özgü E, Aydın E, Demiray İ and Demiray M: PARP inhibitor combinations with high-dose vitamin C in the treatment of Ewing sarcoma: Two case reports and mechanistic overview. Ther Adv Med Oncol. 15:175883592312138412023. View Article : Google Scholar : PubMed/NCBI

202 

Wang F, He MM, Xiao J, Zhang YQ, Yuan XL, Fang WJ, Zhang Y, Wang W, Hu XH, Ma ZG, et al: A randomized, open-label, multicenter, phase 3 study of high-dose vitamin c plus FOLFOX ± bevacizumab versus FOLFOX ± bevacizumab in unresectable untreated metastatic colorectal cancer (VITALITY study). Clin Cancer Res. 28:4232–4239. 2022. View Article : Google Scholar : PubMed/NCBI

203 

Zasowska-Nowak A, Nowak PJ and Ciałkowska-Rysz A: High-dose vitamin C in advanced-stage cancer patients. Nutrients. 13:7352021. View Article : Google Scholar : PubMed/NCBI

204 

Polireddy K, Dong R, Reed G, Yu J, Chen P, Williamson S, Violet PC, Pessetto Z, Godwin AK, Fan F, et al: High dose parenteral ascorbate inhibited pancreatic cancer growth and metastasis: Mechanisms and a phase I/IIa study. Sci Rep. 7:171882017. View Article : Google Scholar : PubMed/NCBI

205 

Wang L and Lou X: A predictive model for gastric cancer-specific death after gastrectomy: A competing-risk nomogram. Iran J Public Health. 53:2350–2361. 2024.PubMed/NCBI

206 

Chen P, Reed G, Jiang J, Wang Y, Sunega J, Dong R, Ma Y, Esparham A, Ferrell R, Levine M, et al: Pharmacokinetic evaluation of intravenous vitamin C: A classic pharmacokinetic study. Clin Pharmacokinet. 61:1237–1249. 2022. View Article : Google Scholar : PubMed/NCBI

207 

Linowiecka K, Foksinski M and Brożyna AA: Vitamin C transporters and their implications in carcinogenesis. Nutrients. 12:38692020. View Article : Google Scholar : PubMed/NCBI

208 

Cheng YQ, Wang SB, Liu JH, Jin L, Liu Y, Li CY, Su YR, Liu YR, Sang X, Wan Q, et al: Modifying the tumour microenvironment and reverting tumour cells: New strategies for treating malignant tumours. Cell Prolif. 53:e128652020. View Article : Google Scholar : PubMed/NCBI

209 

Praditi C, Bozonet SM, Dachs GU and Vissers M: Ascorbate uptake and retention by breast cancer cell lines and the intracellular distribution of sodium-dependent vitamin C transporter 2. Antioxidants (Basel). 12:19292023. View Article : Google Scholar : PubMed/NCBI

Related Articles

  • Abstract
  • View
  • Download
  • Twitter
Copy and paste a formatted citation
Spandidos Publications style
Ren C, Li Y, Li M and Wang Y: Unveiling vitamin C: A new hope in the treatment of diffuse large B‑cell lymphoma (Review). Int J Oncol 66: 40, 2025.
APA
Ren, C., Li, Y., Li, M., & Wang, Y. (2025). Unveiling vitamin C: A new hope in the treatment of diffuse large B‑cell lymphoma (Review). International Journal of Oncology, 66, 40. https://doi.org/10.3892/ijo.2025.5746
MLA
Ren, C., Li, Y., Li, M., Wang, Y."Unveiling vitamin C: A new hope in the treatment of diffuse large B‑cell lymphoma (Review)". International Journal of Oncology 66.5 (2025): 40.
Chicago
Ren, C., Li, Y., Li, M., Wang, Y."Unveiling vitamin C: A new hope in the treatment of diffuse large B‑cell lymphoma (Review)". International Journal of Oncology 66, no. 5 (2025): 40. https://doi.org/10.3892/ijo.2025.5746
Copy and paste a formatted citation
x
Spandidos Publications style
Ren C, Li Y, Li M and Wang Y: Unveiling vitamin C: A new hope in the treatment of diffuse large B‑cell lymphoma (Review). Int J Oncol 66: 40, 2025.
APA
Ren, C., Li, Y., Li, M., & Wang, Y. (2025). Unveiling vitamin C: A new hope in the treatment of diffuse large B‑cell lymphoma (Review). International Journal of Oncology, 66, 40. https://doi.org/10.3892/ijo.2025.5746
MLA
Ren, C., Li, Y., Li, M., Wang, Y."Unveiling vitamin C: A new hope in the treatment of diffuse large B‑cell lymphoma (Review)". International Journal of Oncology 66.5 (2025): 40.
Chicago
Ren, C., Li, Y., Li, M., Wang, Y."Unveiling vitamin C: A new hope in the treatment of diffuse large B‑cell lymphoma (Review)". International Journal of Oncology 66, no. 5 (2025): 40. https://doi.org/10.3892/ijo.2025.5746
Follow us
  • Twitter
  • LinkedIn
  • Facebook
About
  • Spandidos Publications
  • Careers
  • Cookie Policy
  • Privacy Policy
How can we help?
  • Help
  • Live Chat
  • Contact
  • Email to our Support Team