|
1
|
Satriano L, Lewinska M, Rodrigues PM,
Banales JM and Andersen JB: Metabolic rearrangements in primary
liver cancers: Cause and consequences. Nat Rev Gastroenterol
Hepatol. 16:748–766. 2019. View Article : Google Scholar : PubMed/NCBI
|
|
2
|
Tan EY, Danpanichkul P, Yong JN, Yu Z, Tan
DJH, Lim WH, Koh B, Lim RYZ, Tham EKJ, Mitra K, et al: Liver cancer
in 2021: Global burden of disease study. J Hepatol. 82:851–860.
2025. View Article : Google Scholar
|
|
3
|
Schmidt DR, Patel R, Kirsch DG, Lewis CA,
Vander Heiden MG and Locasale JW: Metabolomics in cancer research
and emerging applications in clinical oncology. CA Cancer J Clin.
71:333–358. 2021. View Article : Google Scholar : PubMed/NCBI
|
|
4
|
Liao M, Yao D, Wu L, Luo C, Wang Z, Zhang
J and Liu B: Targeting the Warburg effect: A revisited perspective
from molecular mechanisms to traditional and innovative therapeutic
strategies in cancer. Acta Pharm Sin B. 14:953–1008. 2024.
View Article : Google Scholar : PubMed/NCBI
|
|
5
|
Comandatore A, Franczak M, Smolenski RT,
Morelli L, Peters GJ and Giovannetti E: Lactate dehydrogenase and
its clinical significance in pancreatic and thoracic cancers. Semin
Cancer Biol. 86:93–100. 2022. View Article : Google Scholar : PubMed/NCBI
|
|
6
|
Sonveaux P, Végran F, Schroeder T, Wergin
MC, Verrax J, Rabbani ZN, De Saedeleer CJ, Kennedy KM, Diepart C,
Jordan BF, et al: Targeting lactate-fueled respiration selectively
kills hypoxic tumor cells in mice. J Clin Invest. 118:3930–3942.
2008.PubMed/NCBI
|
|
7
|
Sharma D, Singh M and Rani R: Role of LDH
in tumor glycolysis: Regulation of LDHA by small molecules for
cancer therapeutics. Semin Cancer Biol. 87:184–195. 2022.
View Article : Google Scholar : PubMed/NCBI
|
|
8
|
Claps G, Faouzi S, Quidville V, Chehade F,
Shen S, Vagner S and Robert C: The multiple roles of LDH in cancer.
Nat Rev Clin Oncol. 19:749–762. 2022. View Article : Google Scholar : PubMed/NCBI
|
|
9
|
Zhang H, Kang K, Chen S, Su Q, Zhang W,
Zeng L, Lin X, Peng F, Lin J and Chai D: High serum lactate
dehydrogenase as a predictor of cardiac insufficiency at follow-up
in elderly patients with acute myocardial infarction. Arch Gerontol
Geriatr. 117:1052532024. View Article : Google Scholar
|
|
10
|
Feng H, Wu J, Chen P, Wang J, Deng Y, Zhu
G, Xian J, Huang L and Ouyang W: MicroRNA-375-3p inhibitor
suppresses angiotensin II-induced cardiomyocyte hypertrophy by
promoting lactate dehydrogenase B expression. J Cell Physiol.
234:14198–14209. 2019. View Article : Google Scholar : PubMed/NCBI
|
|
11
|
Dai C, Li Q, May HI, Li C, Zhang G, Sharma
G, Sherry AD, Malloy CR, Khemtong C, Zhang Y, et al: Lactate
dehydrogenase A governs cardiac hypertrophic growth in response to
hemodynamic stress. Cell Rep. 32:1080872020. View Article : Google Scholar : PubMed/NCBI
|
|
12
|
Chen Y, Wu G, Li M, Hesse M, Ma Y, Chen W,
Huang H, Liu Y, Xu W, Tang Y, et al: LDHA-mediated metabolic
reprogramming promoted cardiomyocyte proliferation by alleviating
ROS and inducing M2 macrophage polarization. Redox Biol.
56:1024462022. View Article : Google Scholar : PubMed/NCBI
|
|
13
|
Yamaguchi S, Abe M, Arakaki T, Arasaki O
and Shimabukuro M: Prognostic value of lactate dehydrogenase for
mid-term mortality in acute decompensated heart failure: A
comparison to established biomarkers and brain natriuretic peptide.
Heart Lung Circ. 29:1318–1327. 2020. View Article : Google Scholar
|
|
14
|
Wu X, Ye J, Cai W, Yang X, Zou Q, Lin J,
Zheng H, Wang C, Chen L and Li Y: LDHA mediated degradation of
extracellular matrix is a potential target for the treatment of
aortic dissection. Pharmacol Res. 176:1060512022. View Article : Google Scholar : PubMed/NCBI
|
|
15
|
Ibraheem A, Nashwan AJ and Yassin MA:
Elderly patient with hematological and neurological manifestations
of undetermined origin: A diagnostic dilemma of pernicious anemia.
Cureus. 15:e430452023.PubMed/NCBI
|
|
16
|
Wahhab Ali KA, Ahmed AA and Mohammed ST:
Determination of serum myeloperoxidase (MPO) and lactate
dehydrogenase (LDH) as a tumour marker in chronic myeloid leukaemia
(CML). J Pak Med Assoc. 74(10 (Supple-8)): S283–S286. 2024.
View Article : Google Scholar : PubMed/NCBI
|
|
17
|
Oriaifo IA, Gerard JM and Thomas SM:
Diagnostic value of lactate dehydrogenase and uric acid as
screening tools for malignancies in children. Pediatr Emerg Care.
38:e1327–e1331. 2022. View Article : Google Scholar : PubMed/NCBI
|
|
18
|
Labban H, Begum F, Paracha A, John V and
Islam M: Hemolytic anemia and pancytopenia secondary to vitamin B12
deficiency: Evaluation and clinical significance. Cureus.
16:e572862024.PubMed/NCBI
|
|
19
|
Henry BM, Aggarwal G, Wong J, Benoit S,
Vikse J, Plebani M and Lippi G: Lactate dehydrogenase levels
predict coronavirus disease 2019 (COVID-19) severity and mortality:
A pooled analysis. Am J Emerg Med. 38:1722–1726. 2020. View Article : Google Scholar : PubMed/NCBI
|
|
20
|
Assiri A, Al-Tawfiq JA, Al-Rabeeah AA,
Al-Rabiah FA, Al-Hajjar S, Al-Barrak A, Flemban H, Al-Nassir WN,
Balkhy HH, Al-Hakeem RF, et al: Epidemiological, demographic, and
clinical characteristics of 47 cases of Middle East respiratory
syndrome coronavirus disease from Saudi Arabia: A descriptive
study. Lancet Infect Dis. 13:752–761. 2013. View Article : Google Scholar : PubMed/NCBI
|
|
21
|
Martinez-Outschoorn UE, Prisco M, Ertel A,
Tsirigos A, Lin Z, Pavlides S, Wang C, Flomenberg N, Knudsen ES,
Howell A, et al: Ketones and lactate increase cancer cell
'stemness', driving recurrence, metastasis and poor clinical
outcome in breast cancer: Achieving personalized medicine via
metabolo-genomics. Cell Cycle. 10:1271–1286. 2011. View Article : Google Scholar : PubMed/NCBI
|
|
22
|
Lippi G and Favaloro EJ: D-dimer is
associated with severity of coronavirus disease 2019: A pooled
analysis. Thromb Haemost. 120:876–878. 2020. View Article : Google Scholar : PubMed/NCBI
|
|
23
|
Serrano-Lorenzo P, Coya ON, López-Jimenez
A, Blázquez A, Delmiro A, Lucia A, Arenas J and Martín MA; COVID-19
'12 Octubre' Hospital Clinical Biochemistry Study Group: Plasma
LDH: A specific biomarker for lung affectation in COVID-19? Pract
Lab Med. 25:e002262021. View Article : Google Scholar : PubMed/NCBI
|
|
24
|
Zhou Y, Qi M and Yang M: Current status
and future perspectives of lactate dehydrogenase detection and
medical implications: A review. Biosensors (Basel). 12:11452022.
View Article : Google Scholar : PubMed/NCBI
|
|
25
|
Panteghini M: Lactate dehydrogenase: an
old enzyme reborn as a COVID-19 marker (and not only). Clin Chem
Lab Med. 58:1979–1981. 2020. View Article : Google Scholar : PubMed/NCBI
|
|
26
|
Khan AA, Allemailem KS, Alhumaydhi FA,
Gowder SJT and Rahmani AH: The biochemical and clinical
perspectives of lactate dehydrogenase: An enzyme of active
metabolism. Endocr Metab Immune Disord Drug Targets. 20:855–868.
2020. View Article : Google Scholar
|
|
27
|
Forkasiewicz A, Dorociak M, Stach K,
Szelachowski P, Tabola R and Augoff K: The usefulness of lactate
dehydrogenase measurements in current oncological practice. Cell
Mol Biol Lett. 25:352020. View Article : Google Scholar : PubMed/NCBI
|
|
28
|
Fondy TP and Kaplan NO: Structural and
functional properties of the H and M subunits of lactic
dehydrogenases. Ann N Y Acad Sci. 119:888–904. 1965. View Article : Google Scholar : PubMed/NCBI
|
|
29
|
Hicks KG, Cluntun AA, Schubert HL, Hackett
SR, Berg JA, Leonard PG, Ajalla Aleixo MA, Zhou Y, Bott AJ,
Salvatore SR, et al: Protein-metabolite interactomics of
carbohydrate metabolism reveal regulation of lactate dehydrogenase.
Science. 379:996–1003. 2023. View Article : Google Scholar : PubMed/NCBI
|
|
30
|
Eniafe J and Jiang S: The functional roles
of TCA cycle metabolites in cancer. Oncogene. 40:3351–3363. 2021.
View Article : Google Scholar : PubMed/NCBI
|
|
31
|
Tufail M, Jiang CH and Li N: Altered
metabolism in cancer: Insights into energy pathways and therapeutic
targets. Mol Cancer. 23:2032024. View Article : Google Scholar : PubMed/NCBI
|
|
32
|
Schumann G and Klauke R: New IFCC
reference procedures for the determination of catalytic activity
concentrations of five enzymes in serum: Preliminary upper
reference limits obtained in hospitalized subjects. Clin Chim Acta.
327:69–79. 2003. View Article : Google Scholar
|
|
33
|
Roman W: Quantitative estimation of
lactate dehydrogenase isoenzymes in serum. I. Review of methods and
distribution in human tissues. Enzymologia. 36:189–219.
1969.PubMed/NCBI
|
|
34
|
Du D, Liu C, Qin M, Zhang X, Xi T, Yuan S,
Hao H and Xiong J: Metabolic dysregulation and emerging
therapeutical targets for hepatocellular carcinoma. Acta Pharm Sin
B. 12:558–580. 2022. View Article : Google Scholar : PubMed/NCBI
|
|
35
|
Gupta GS: The lactate and the lactate
dehydrogenase in inflammatory diseases and major risk factors in
COVID-19 patients. Inflammation. 45:2091–2123. 2022. View Article : Google Scholar : PubMed/NCBI
|
|
36
|
Han HS, Kang G, Kim JS, Choi BH and Koo
SH: Regulation of glucose metabolism from a liver-centric
perspective. Exp Mol Med. 48:e2182016. View Article : Google Scholar : PubMed/NCBI
|
|
37
|
Piccinin E, Villani G and Moschetta A:
Metabolic aspects in NAFLD, NASH and hepatocellular carcinoma: The
role of PGC1 coactivators. Nat Rev Gastroenterol Hepatol.
16:160–174. 2019. View Article : Google Scholar
|
|
38
|
Yang F, Hilakivi-Clarke L, Shaha A, Wang
Y, Wang X, Deng Y, Lai J and Kang N: Metabolic reprogramming and
its clinical implication for liver cancer. Hepatology.
78:1602–1624. 2023. View Article : Google Scholar : PubMed/NCBI
|
|
39
|
Yang Z, Yan C, Ma J, Peng P, Ren X, Cai S,
Shen X, Wu Y, Zhang S, Wang X, et al: Lactylome analysis suggests
lactylation-dependent mechanisms of metabolic adaptation in
hepatocellular carcinoma. Nat Metab. 5:61–79. 2023. View Article : Google Scholar : PubMed/NCBI
|
|
40
|
Zhao Y, Li M, Yao X, Fei Y, Lin Z, Li Z,
Cai K, Zhao Y and Luo Z: HCAR1/MCT1 regulates tumor ferroptosis
through the lactate-mediated AMPK-SCD1 activity and its therapeutic
implications. Cell Rep. 33:1084872020. View Article : Google Scholar : PubMed/NCBI
|
|
41
|
Vander Heiden MG, Cantley LC and Thompson
CB: Understanding the Warburg effect: The metabolic requirements of
cell proliferation. Science. 324:1029–1033. 2009. View Article : Google Scholar : PubMed/NCBI
|
|
42
|
Ganapathy-Kanniappan S: Molecular
intricacies of aerobic glycolysis in cancer: Current insights into
the classic metabolic phenotype. Crit Rev Biochem Mol Biol.
53:667–682. 2018. View Article : Google Scholar
|
|
43
|
Borrelli A, Bonelli P, Tuccillo FM,
Goldfine ID, Evans JL, Buonaguro FM and Mancini A: Role of gut
microbiota and oxidative stress in the progression of non-alcoholic
fatty liver disease to hepatocarcinoma: Current and innovative
therapeutic approaches. Redox Biol. 15:467–479. 2018. View Article : Google Scholar : PubMed/NCBI
|
|
44
|
Cheng Y, He J, Zuo B and He Y: Role of
lipid metabolism in hepatocellular carcinoma. Discov Oncol.
15:2062024. View Article : Google Scholar : PubMed/NCBI
|
|
45
|
Guo D, Zhang X, Cui H, Yu D, Zhang H, Shi
X, Pang C, Li J, Guo W and Zhang S: ACADL functions as a tumor
suppressor in hepatocellular carcinoma metastasis by inhibiting
matrix metalloproteinase 14. Front Oncol. 12:8214842022. View Article : Google Scholar : PubMed/NCBI
|
|
46
|
Cai J, Chen T, Jiang Z, Yan J, Ye Z, Ruan
Y, Tao L, Shen Z, Liang X, Wang Y, et al: Bulk and single-cell
transcriptome profiling reveal extracellular matrix mechanical
regulation of lipid metabolism reprograming through YAP/TEAD4/ACADL
axis in hepatocellular carcinoma. Int J Biol Sci. 19:2114–2131.
2023. View Article : Google Scholar : PubMed/NCBI
|
|
47
|
Ericksen RE, Lim SL, McDonnell E, Shuen
WH, Vadiveloo M, White PJ, Ding Z, Kwok R, Lee P, Radda GK, et al:
Loss of BCAA catabolism during carcinogenesis enhances mTORC1
activity and promotes tumor development and progression. Cell
Metab. 29:1151–1165.e6. 2019. View Article : Google Scholar : PubMed/NCBI
|
|
48
|
Tian LY, Smit DJ and Jücker M: The Role of
PI3K/AKT/mTOR signaling in hepatocellular carcinoma metabolism. Int
J Mol Sci. 24:26522023. View Article : Google Scholar : PubMed/NCBI
|
|
49
|
Bao MHR and Wong CCL: Hypoxia, metabolic
reprogramming, and drug resistance in liver cancer. Cells.
10:17152021. View Article : Google Scholar : PubMed/NCBI
|
|
50
|
Ng CKY, Dazert E, Boldanova T,
Coto-Llerena M, Nuciforo S, Ercan C, Suslov A, Meier MA, Bock T,
Schmidt A, et al: Integrative proteogenomic characterization of
hepatocellular carcinoma across etiologies and stages. Nat Commun.
13:24362022. View Article : Google Scholar : PubMed/NCBI
|
|
51
|
An J, Oh M, Kim SY, Oh YJ, Oh B, Oh JH,
Kim W, Jung JH, Kim HI, Kim JS, et al: PET-based radiogenomics
supports mTOR pathway targeting for hepatocellular carcinoma. Clin
Cancer Res. 28:1821–1831. 2022. View Article : Google Scholar : PubMed/NCBI
|
|
52
|
Chen J, Ding C, Chen Y, Hu W, Yu C, Peng
C, Feng X, Cheng Q, Wu W, Lu Y, et al: ACSL4 reprograms fatty acid
metabolism in hepatocellular carcinoma via c-Myc/SREBP1 pathway.
Cancer Lett. 502:154–165. 2021. View Article : Google Scholar
|
|
53
|
Luo YD, Liu XY, Fang L, Yu HQ, Zhang YJ,
Chen M, Zhang LD and Xie CM: Mutant Kras and mTOR crosstalk drives
hepatocellular carcinoma development via PEG3/STAT3/BEX2 signaling.
Theranostics. 12:7903–7919. 2022. View Article : Google Scholar : PubMed/NCBI
|
|
54
|
Lin D and Wu J: Hypoxia inducible factor
in hepatocellular carcinoma: A therapeutic target. World J
Gastroenterol. 21:12171–12178. 2015. View Article : Google Scholar : PubMed/NCBI
|
|
55
|
Wang F, Chen L, Kong D, Zhang X, Xia S,
Liang B, Li Y, Zhou Y, Zhang Z, Shao J, et al: Canonical Wnt
signaling promotes HSC glycolysis and liver fibrosis through an
LDH-A/HIF-1α transcriptional complex. Hepatology. 79:606–623. 2024.
View Article : Google Scholar
|
|
56
|
Faloppi L, Bianconi M, Memeo R, Casadei
Gardini A, Giampieri R, Bittoni A, Andrikou K, Del Prete M, Cascinu
S and Scartozzi M: Lactate dehydrogenase in hepatocellular
carcinoma: something old, something new. Biomed Res Int.
2016:71962802016. View Article : Google Scholar : PubMed/NCBI
|
|
57
|
Feng J, Li J, Wu L, Yu Q, Ji J, Wu J, Dai
W and Guo C: Emerging roles and the regulation of aerobic
glycolysis in hepatocellular carcinoma. J Exp Clin Cancer Res.
39:1262020. View Article : Google Scholar : PubMed/NCBI
|
|
58
|
Vaupel P, Schmidberger H and Mayer A: The
Warburg effect: Essential part of metabolic reprogramming and
central contributor to cancer progression. Int J Radiat Biol.
95:912–919. 2019. View Article : Google Scholar : PubMed/NCBI
|
|
59
|
Zhang Y, Li W, Bian Y, Li Y and Cong L:
Multifaceted roles of aerobic glycolysis and oxidative
phosphorylation in hepatocellular carcinoma. PeerJ. 11:e147972023.
View Article : Google Scholar : PubMed/NCBI
|
|
60
|
Manerba M, Di Ianni L, Govoni M, Roberti
M, Recanatini M and Di Stefano G: LDH inhibition impacts on heat
shock response and induces senescence of hepatocellular carcinoma
cells. Eur J Pharm Sci. 105:91–8. 2017. View Article : Google Scholar : PubMed/NCBI
|
|
61
|
Sun Z, Liu L, Liang H and Zhang L:
Nicotinamide mononucleotide induces autophagy and ferroptosis via
AMPK/mTOR pathway in hepatocellular carcinoma. Mol Carcinog.
63:577–588. 2024. View Article : Google Scholar : PubMed/NCBI
|
|
62
|
Certo M, Tsai CH, Pucino V, Ho PC and
Mauro C: Lactate modulation of immune responses in inflammatory
versus tumour microenvironments. Nat Rev Immunol. 21:151–161. 2021.
View Article : Google Scholar
|
|
63
|
Jeong DW, Cho IT, Kim TS, Bae GW, Kim IH
and Kim IY: Effects of lactate dehydrogenase suppression and
glycerol-3-phosphate dehydrogenase overexpression on cellular
metabolism. Mol Cell Biochem. 284:1–8. 2006. View Article : Google Scholar : PubMed/NCBI
|
|
64
|
Xia L, Oyang L, Lin J, Tan S, Han Y, Wu N,
Yi P, Tang L, Pan Q, Rao S, et al: The cancer metabolic
reprogramming and immune response. Mol Cancer. 20:282021.
View Article : Google Scholar : PubMed/NCBI
|
|
65
|
Lin J, Rao D, Zhang M and Gao Q: Metabolic
reprogramming in the tumor microenvironment of liver cancer. J
Hematol Oncol. 17:62024. View Article : Google Scholar : PubMed/NCBI
|
|
66
|
Zhang RN and Fan JG: Lipid
metabolism-related long noncoding RNAs: A potential prognostic
biomarker for hepatocellular carcinoma. World J Gastroenterol.
30:3799–3802. 2024. View Article : Google Scholar : PubMed/NCBI
|
|
67
|
Koukourakis MI, Kakouratos C, Kalamida D,
Bampali Z, Mavropoulou S, Sivridis E and Giatromanolaki A:
Hypoxia-inducible proteins HIF1α and lactate dehydrogenase LDH5,
key markers of anaerobic metabolism, relate with stem cell markers
and poor post-radiotherapy outcome in bladder cancer. Int J Radiat
Biol. 92:353–363. 2016. View Article : Google Scholar : PubMed/NCBI
|
|
68
|
He W, Li Q and Li X: Acetyl-CoA regulates
lipid metabolism and histone acetylation modification in cancer.
Biochim Biophys Acta Rev Cancer. 1878:1888372023. View Article : Google Scholar
|
|
69
|
Zhao X, Jiang P, Deng X, Li Z, Tian F, Guo
F, Li X and Wang S: Inhibition of mTORC1 signaling sensitizes
hepatocellular carcinoma cells to glycolytic stress. Am J Cancer
Res. 6:2289–2298. 2016.PubMed/NCBI
|
|
70
|
Sas Z, Cendrowicz E, Weinhäuser I and
Rygiel TP: Tumor microenvironment of hepatocellular carcinoma:
Challenges and opportunities for new treatment options. Int J Mol
Sci. 23:37782022. View Article : Google Scholar : PubMed/NCBI
|
|
71
|
Fares J, Fares MY, Khachfe HH, Salhab HA
and Fares Y: Molecular principles of metastasis: A hallmark of
cancer revisited. Signal Transduct Target Ther. 5:282020.
View Article : Google Scholar : PubMed/NCBI
|
|
72
|
Neophytou CM, Panagi M, Stylianopoulos T
and Papageorgis P: The role of tumor microenvironment in cancer
metastasis: Molecular mechanisms and therapeutic opportunities.
Cancers (Basel). 13:20532021. View Article : Google Scholar : PubMed/NCBI
|
|
73
|
Peng X, He Z, Yuan D, Liu Z and Rong P:
Lactic acid: The culprit behind the immunosuppressive
microenvironment in hepatocellular carcinoma. Biochim Biophys Acta
Rev Cancer. 1879:1891642024. View Article : Google Scholar : PubMed/NCBI
|
|
74
|
Luo Y, Li L, Chen X, Gou H, Yan K and Xu
Y: Effects of lactate in immunosuppression and inflammation:
Progress and prospects. Int Rev Immunol. 41:19–29. 2022. View Article : Google Scholar
|
|
75
|
Zhang Y, Zhai Z, Duan J, Wang X, Zhong J,
Wu L, Li A, Cao M, Wu Y, Shi H, et al: Lactate: The mediator of
metabolism and immunosuppression. Front Endocrinol (Lausanne).
13:9014952022. View Article : Google Scholar : PubMed/NCBI
|
|
76
|
Maeda M, Ko M, Mane MM, Cohen IJ, Shindo
M, Vemuri K, Serganova I and Blasberg R: Genetic and drug
inhibition of LDH-A: Effects on murine gliomas. Cancers (Basel).
14:23062022. View Article : Google Scholar : PubMed/NCBI
|
|
77
|
Sarkar T, Dhar S and Sa G:
Tumor-infiltrating T-regulatory cells adapt to altered metabolism
to promote tumor-immune escape. Curr Res Immunol. 2:132–141. 2021.
View Article : Google Scholar
|
|
78
|
Verma S, Budhu S, Serganova I, Dong L,
Mangarin LM, Khan JF, Bah MA, Assouvie A, Marouf Y, Schulze I, et
al: Pharmacologic LDH inhibition redirects intratumoral glucose
uptake and improves antitumor immunity in solid tumor models. J
Clin Invest. 134:e1776062024. View Article : Google Scholar : PubMed/NCBI
|
|
79
|
O'Neill LA, Kishton RJ and Rathmell J: A
guide to immunometabolism for immunologists. Nat Rev Immunol.
16:553–565. 2016. View Article : Google Scholar : PubMed/NCBI
|
|
80
|
Niu D, Luo T, Wang H, Xia Y and Xie Z:
Lactic acid in tumor invasion. Clin Chim Acta. 522:61–69. 2021.
View Article : Google Scholar : PubMed/NCBI
|
|
81
|
Han S, Bao X, Zou Y, Wang L, Li Y, Yang L,
Liao A, Zhang X, Jiang X, Liang D, et al: d-lactate modulates M2
tumor-associated macrophages and remodels immunosuppressive tumor
microenvironment for hepatocellular carcinoma. Sci Adv.
9:eadg26972023. View Article : Google Scholar : PubMed/NCBI
|
|
82
|
Jiang Y, Han Q, Zhao H and Zhang J:
Promotion of epithelial-mesenchymal transformation by
hepatocellular carcinoma-educated macrophages through
Wnt2b/β-catenin/c-Myc signaling and reprogramming glycolysis. J Exp
Clin Cancer Res. 40:132021. View Article : Google Scholar
|
|
83
|
Li D, Zhang T, Guo Y, Bi C, Liu M and Wang
G: Biological impact and therapeutic implication of
tumor-associated macrophages in hepatocellular carcinoma. Cell
Death Dis. 15:4982024. View Article : Google Scholar : PubMed/NCBI
|
|
84
|
Jin M, Cao W, Chen B, Xiong M and Cao G:
Tumor-derived lactate creates a favorable niche for tumor via
supplying energy source for tumor and modulating the tumor
microenvironment. Front Cell Dev Biol. 10:8088592022. View Article : Google Scholar : PubMed/NCBI
|
|
85
|
Ye J, Gao X, Huang X, Huang S, Zeng D, Luo
W, Zeng C, Lu C, Lu L, Huang H, et al: Integrating single-cell and
spatial transcriptomics to uncover and elucidate GP73-mediated
pro-angiogenic regulatory networks in hepatocellular carcinoma.
Research (Wash D C). 7:03872024.PubMed/NCBI
|
|
86
|
Wang S, Wang X, Shan Y, Tan Z, Su Y, Cao
Y, Wang S, Dong J, Gu J and Wang Y: Region-specific cellular and
molecular basis of liver regeneration after acute pericentral
injury. Cell Stem Cell. 31:341–358.e7. 2024. View Article : Google Scholar : PubMed/NCBI
|
|
87
|
Hu S, Yang Z, Li L, Yan Q, Hu Y, Zhou F,
Tan Y and Pei G: Salvianolic acid B alleviates liver injury by
regulating lactate-mediated histone lactylation in macrophages.
Molecules. 29:2362024. View Article : Google Scholar : PubMed/NCBI
|
|
88
|
Lei Y, Han P, Chen Y, Wang H, Wang S, Wang
M, Liu J, Yan W, Tian D and Liu M: Protein arginine
methyltransferase 3 promotes glycolysis and hepatocellular
carcinoma growth by enhancing arginine methylation of lactate
dehydrogenase A. Clin Transl Med. 12:e6862022. View Article : Google Scholar : PubMed/NCBI
|
|
89
|
Agarwala SS, Keilholz U, Gilles E,
Bedikian AY, Wu J, Kay R, Stein CA, Itri LM, Suciu S and Eggermont
AM: LDH correlation with survival in advanced melanoma from two
large, randomised trials (Oblimersen GM301 and EORTC 18951). Eur J
Cancer. 45:1807–1814. 2009. View Article : Google Scholar : PubMed/NCBI
|
|
90
|
Bouafia F, Drai J, Bienvenu J, Thieblemont
C, Espinouse D, Salles G and Coiffier B: Profiles and prognostic
values of serum LDH isoenzymes in patients with haematopoietic
malignancies. Bull Cancer. 91:E229–E240. 2004.PubMed/NCBI
|
|
91
|
Ho J, de Moura MB, Lin Y, Vincent G,
Thorne S, Duncan LM, Hui-Min L, Kirkwood JM, Becker D, Van Houten B
and Moschos SJ: Importance of glycolysis and oxidative
phosphorylation in advanced melanoma. Mol Cancer. 11:762012.
View Article : Google Scholar : PubMed/NCBI
|
|
92
|
Rafaqat S, Sattar A, Khalid A and Rafaqat
S: Role of liver parameters in diabetes mellitus-a narrative
review. Endocr Regul. 57:200–220. 2023. View Article : Google Scholar : PubMed/NCBI
|
|
93
|
Dercle L, Ammari S, Roblin E, Bigorgne A,
Champiat S, Taihi L, Plaian A, Hans S, Lakiss S, Tselikas L, et al:
High serum LDH and liver metastases are the dominant predictors of
primary cancer resistance to anti-PD(L)1 immunotherapy. Eur J
Cancer. 177:80–93. 2022. View Article : Google Scholar : PubMed/NCBI
|
|
94
|
Zhu W and Huang Y: Research progress of
serum biomarkers for early screening of hepatocellular carcinoma.
Zhonghua Gan Zang Bing Za Zhi. 29:308–312. 2021.In Chinese.
PubMed/NCBI
|
|
95
|
Liao XM, Zhao SR, Dai WC and Fan R:
Research advances of metabolomics in early diagnosis of
hepatocellular carcinoma. Zhonghua Gan Zang Bing Za Zhi.
30:803–808. 2022.In Chinese. PubMed/NCBI
|
|
96
|
Sevinc A, Sari R and Fadillioglu E: The
utility of lactate dehydrogenase isoenzyme pattern in the
diagnostic evaluation of malignant and nonmalignant ascites. J Natl
Med Assoc. 97:79–84. 2005.PubMed/NCBI
|
|
97
|
Nagasue N: Changes in lactic dehydrogenase
isoenzymes after hepatic artery ligation in patients with hepatic
carcinoma. Gastroenterol Jpn. 10:150–156. 1975. View Article : Google Scholar : PubMed/NCBI
|
|
98
|
Yan Q, Sun YS, An R, Liu F, Fang Q, Wang
Z, Xu T, Chen L and Du J: Application and progress of the detection
technologies in hepatocellular carcinoma. Genes Dis. 10:1857–1869.
2022. View Article : Google Scholar : PubMed/NCBI
|
|
99
|
Faloppi L, Scartozzi M, Bianconi M,
Svegliati Baroni G, Toniutto P, Giampieri R, Del Prete M, De
Minicis S, Bitetto D, Loretelli C, et al: The role of LDH serum
levels in predicting global outcome in HCC patients treated with
sorafenib: Implications for clinical management. BMC Cancer.
14:1102014. View Article : Google Scholar : PubMed/NCBI
|
|
100
|
Wang T and Zhang KH: New blood biomarkers
for the diagnosis of AFP-negative hepatocellular carcinoma. Front
Oncol. 10:13162020. View Article : Google Scholar : PubMed/NCBI
|
|
101
|
Kong W, Zuo X, Liang H, Hu J, Zhang H,
Wang X and Chen W: Prognostic value of lactate dehydrogenase in
patients with hepatocellular carcinoma: A meta-analysis. Biomed Res
Int. 2018:17231842018. View Article : Google Scholar
|
|
102
|
Augoff K and Grabowski K: Significance of
lactate dehydrogenase measurements in diagnosis of malignancies.
Pol Merkur Lekarski. 17:644–647. 2004.In Polish.
|
|
103
|
Lee SC, Kao MC, Yin SJ and Lin CY: Serum
lactate dehydrogenase isoenzymes in patients with hepatocellular
carcinoma. Taiwan Yi Xue Hui Za Zhi. 81:218–223. 1982.PubMed/NCBI
|
|
104
|
Urbańska K and Orzechowski A:
Unappreciated role of LDHA and LDHB to control apoptosis and
autophagy in tumor cells. Int J Mol Sci. 20:20852019. View Article : Google Scholar
|
|
105
|
Yuan C, Li Z, Wang Y, Qi B, Zhang W, Ye J,
Wu H, Jiang H, Song LN, Yang J and Cheng J: Overexpression of
metabolic markers PKM2 and LDH5 correlates with aggressive
clinicopathological features and adverse patient prognosis in
tongue cancer. Histopathology. 65:595–605. 2014. View Article : Google Scholar : PubMed/NCBI
|
|
106
|
Su K, Huang W, Li X, Xu K, Gu T, Liu Y,
Song J, Qian K, Xu Y, Zeng H, et al: Evaluation of lactate
dehydrogenase and alkaline phosphatase as predictive biomarkers in
the prognosis of hepatocellular carcinoma and development of a new
nomogram. J Hepatocell Carcinoma. 10:69–79. 2023. View Article : Google Scholar : PubMed/NCBI
|
|
107
|
Wu SJ, Lin YX, Ye H, Xiong XZ, Li FY and
Cheng NS: Prognostic value of alkaline phosphatase, gamma-glutamyl
transpeptidase and lactate dehydrogenase in hepatocellular
carcinoma patients treated with liver resection. Int J Surg.
36:143–151. 2016. View Article : Google Scholar : PubMed/NCBI
|
|
108
|
Li J, Wu MF, Lu HW, Chen Q, Lin ZQ and
Wang LJ: Pretreatment serum lactate dehydrogenase is an independent
prognostic factor for patients receiving neoadjuvant chemotherapy
for locally advanced cervical cancer. Cancer Med. 5:1863–1872.
2016. View Article : Google Scholar : PubMed/NCBI
|
|
109
|
Hu Z, Yuan Y, Hu Z, Liu Q, Fu Y, Hou J,
Sun X, Li S, Duan W and Chen M: Development and validation of
prognostic nomograms for hepatocellular carcinoma after hepatectomy
based on inflammatory markers. J Hepatocell Carcinoma. 9:1403–1413.
2022. View Article : Google Scholar
|
|
110
|
Krishnamurthy K, Medina AM and Howard L:
The utility of elevated serum lactate dehydrogenase in current
clinical practice. Lab Med. 52:e17–e22. 2021. View Article : Google Scholar
|
|
111
|
Han L, Lin X, Yan Q, Gu C, Li M, Pan L,
Meng Y, Zhao X, Liu S and Li A: PBLD inhibits angiogenesis via
impeding VEGF/VEGFR2-mediated microenvironmental cross-talk between
HCC cells and endothelial cells. Oncogene. 41:1851–1865. 2022.
View Article : Google Scholar : PubMed/NCBI
|
|
112
|
Liu L, Cao Y, Chen C, Zhang X, McNabola A,
Wilkie D, Wilhelm S, Lynch M and Carter C: Sorafenib blocks the
RAF/MEK/ERK pathway, inhibits tumor angiogenesis, and induces tumor
cell apoptosis in hepatocellular carcinoma model PLC/PRF/5. Cancer
Res. 66:11851–11858. 2006. View Article : Google Scholar : PubMed/NCBI
|
|
113
|
Man S, Yao J, Lv P, Liu Y, Yang L and Ma
L: Curcumin-enhanced antitumor effects of sorafenib via regulating
the metabolism and tumor microenvironment. Food Funct.
11:6422–6432. 2020. View Article : Google Scholar : PubMed/NCBI
|
|
114
|
Sim DY, Lee HJ, Ahn CH, Park J, Park SY,
Kil BJ, Shim BS, Kim B and Kim SH: Negative regulation of CPSF6
suppresses the warburg effect and angiogenesis leading to tumor
progression via c-Myc signaling network: Potential therapeutic
target for liver cancer therapy. Int J Biol Sci. 20:3442–3460.
2024. View Article : Google Scholar : PubMed/NCBI
|
|
115
|
Fiume L, Manerba M, Vettraino M and Di
Stefano G: Inhibition of lactate dehydrogenase activity as an
approach to cancer therapy. Future Med Chem. 6:429–445. 2014.
View Article : Google Scholar : PubMed/NCBI
|
|
116
|
Miao P, Sheng S, Sun X, Liu J and Huang G:
Lactate dehydrogenase A in cancer: A promising target for diagnosis
and therapy. IUBMB Life. 65:904–910. 2013. View Article : Google Scholar : PubMed/NCBI
|
|
117
|
Schwab M, Thunborg K, Azimzadeh O, von
Toerne C, Werner C, Shevtsov M, Di Genio T, Zdralevic M, Pouyssegur
J, Renner K, et al: Targeting cancer metabolism breaks
radioresistance by impairing the stress response. Cancers (Basel).
13:37622021. View Article : Google Scholar : PubMed/NCBI
|
|
118
|
Alobaidi B, Hashimi SM, Alqosaibi AI,
AlQurashi N and Alhazmi S: Targeting the monocarboxylate
transporter MCT2 and lactate dehydrogenase A LDHA in cancer cells
with FX-11 and AR-C155858 inhibitors. Eur Rev Med Pharmacol Sci.
27:6605–6617. 2023.PubMed/NCBI
|
|
119
|
Li X, Lu P, Li B, Yang R, Chu Y, Zhang Z,
Wan H, Niu C, Wang C and Luo K: Sensitization of hepatocellular
carcinoma cells to irradiation by miR-34a through targeting lactate
dehydrogenase-A. Mol Med Rep. 13:3661–3667. 2016. View Article : Google Scholar : PubMed/NCBI
|
|
120
|
Paul SK, Dutta Chowdhury K, Dey SR, Paul A
and Haldar R: Exploring the possibility of drug repurposing for
cancer therapy targeting human lactate dehydrogenase A: A
computational approach. J Biomol Struct Dyn. 41:9967–9976. 2023.
View Article : Google Scholar
|
|
121
|
Brower V: Sorafenib plus cisplatin for
hepatocellular carcinoma. Lancet Oncol. 17:e4242016. View Article : Google Scholar : PubMed/NCBI
|
|
122
|
Han JH, Lee EJ, Park W, Ha KT and Chung
HS: Natural compounds as lactate dehydrogenase inhibitors:
Potential therapeutics for lactate dehydrogenase inhibitors-related
diseases. Front Pharmacol. 14:12750002023. View Article : Google Scholar : PubMed/NCBI
|
|
123
|
Zheng R, Fang X, Chen X, Huang Y, Xu G, He
L, Li Y, Niu X, Yang L, Wang L, et al: Knockdown of lactate
dehydrogenase by adeno-associated virus-delivered CRISPR/Cas9
system alleviates primary hyperoxaluria type 1. Clin Transl Med.
10:e2612020. View Article : Google Scholar : PubMed/NCBI
|
|
124
|
Ariceta G, Barrios K, Brown BD, Hoppe B,
Rosskamp R and Langman CB: Hepatic lactate dehydrogenase A: An RNA
interference target for the treatment of all known types of primary
hyperoxaluria. Kidney Int Rep. 6:1088–1098. 2021. View Article : Google Scholar : PubMed/NCBI
|
|
125
|
Tang Q and Khvorova A: RNAi-based drug
design: Considerations and future directions. Nat Rev Drug Discov.
23:341–364. 2024. View Article : Google Scholar : PubMed/NCBI
|
|
126
|
Alshaer W, Zureigat H, Al Karaki A,
Al-Kadash A, Gharaibeh L, Hatmal MM, Aljabali AAA and Awidi A:
siRNA: Mechanism of action, challenges, and therapeutic approaches.
Eur J Pharmacol. 905:1741782021. View Article : Google Scholar : PubMed/NCBI
|
|
127
|
Cheng X, Fan S, Wen C and Du X:
CRISPR/Cas9 for cancer treatment: Technology, clinical applications
and challenges. Brief Funct Genomics. 19:209–214. 2020. View Article : Google Scholar : PubMed/NCBI
|
|
128
|
Van Wilpe S, Koornstra R, Den Brok M, De
Groot JW, Blank C, De Vries J, Gerritsen W and Mehra N: Lactate
dehydrogenase: A marker of diminished antitumor immunity.
Oncoimmunology. 9:17319422020. View Article : Google Scholar : PubMed/NCBI
|
|
129
|
Lin Y, Wang Y and Li PF: Mutual regulation
of lactate dehydrogenase and redox robustness. Front Physiol.
13:10384212022. View Article : Google Scholar : PubMed/NCBI
|