Spandidos Publications Logo
  • About
    • About Spandidos
    • Aims and Scopes
    • Abstracting and Indexing
    • Editorial Policies
    • Reprints and Permissions
    • Job Opportunities
    • Terms and Conditions
    • Contact
  • Journals
    • All Journals
    • Oncology Letters
      • Oncology Letters
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Oncology
      • International Journal of Oncology
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Molecular and Clinical Oncology
      • Molecular and Clinical Oncology
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Experimental and Therapeutic Medicine
      • Experimental and Therapeutic Medicine
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Molecular Medicine
      • International Journal of Molecular Medicine
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Biomedical Reports
      • Biomedical Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Oncology Reports
      • Oncology Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Molecular Medicine Reports
      • Molecular Medicine Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • World Academy of Sciences Journal
      • World Academy of Sciences Journal
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Functional Nutrition
      • International Journal of Functional Nutrition
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Epigenetics
      • International Journal of Epigenetics
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Medicine International
      • Medicine International
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
  • Articles
  • Information
    • Information for Authors
    • Information for Reviewers
    • Information for Librarians
    • Information for Advertisers
    • Conferences
  • Language Editing
Spandidos Publications Logo
  • About
    • About Spandidos
    • Aims and Scopes
    • Abstracting and Indexing
    • Editorial Policies
    • Reprints and Permissions
    • Job Opportunities
    • Terms and Conditions
    • Contact
  • Journals
    • All Journals
    • Biomedical Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Experimental and Therapeutic Medicine
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Epigenetics
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Functional Nutrition
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Molecular Medicine
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Oncology
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Medicine International
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Molecular and Clinical Oncology
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Molecular Medicine Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Oncology Letters
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Oncology Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • World Academy of Sciences Journal
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
  • Articles
  • Information
    • For Authors
    • For Reviewers
    • For Librarians
    • For Advertisers
    • Conferences
  • Language Editing
Login Register Submit
  • This site uses cookies
  • You can change your cookie settings at any time by following the instructions in our Cookie Policy. To find out more, you may read our Privacy Policy.

    I agree
Search articles by DOI, keyword, author or affiliation
Search
Advanced Search
presentation
International Journal of Oncology
Join Editorial Board Propose a Special Issue
Print ISSN: 1019-6439 Online ISSN: 1791-2423
Journal Cover
June-2025 Volume 66 Issue 6

Full Size Image

Cover Legend PDF

Sign up for eToc alerts
Recommend to Library

Journals

International Journal of Molecular Medicine

International Journal of Molecular Medicine

International Journal of Molecular Medicine is an international journal devoted to molecular mechanisms of human disease.

International Journal of Oncology

International Journal of Oncology

International Journal of Oncology is an international journal devoted to oncology research and cancer treatment.

Molecular Medicine Reports

Molecular Medicine Reports

Covers molecular medicine topics such as pharmacology, pathology, genetics, neuroscience, infectious diseases, molecular cardiology, and molecular surgery.

Oncology Reports

Oncology Reports

Oncology Reports is an international journal devoted to fundamental and applied research in Oncology.

Experimental and Therapeutic Medicine

Experimental and Therapeutic Medicine

Experimental and Therapeutic Medicine is an international journal devoted to laboratory and clinical medicine.

Oncology Letters

Oncology Letters

Oncology Letters is an international journal devoted to Experimental and Clinical Oncology.

Biomedical Reports

Biomedical Reports

Explores a wide range of biological and medical fields, including pharmacology, genetics, microbiology, neuroscience, and molecular cardiology.

Molecular and Clinical Oncology

Molecular and Clinical Oncology

International journal addressing all aspects of oncology research, from tumorigenesis and oncogenes to chemotherapy and metastasis.

World Academy of Sciences Journal

World Academy of Sciences Journal

Multidisciplinary open-access journal spanning biochemistry, genetics, neuroscience, environmental health, and synthetic biology.

International Journal of Functional Nutrition

International Journal of Functional Nutrition

Open-access journal combining biochemistry, pharmacology, immunology, and genetics to advance health through functional nutrition.

International Journal of Epigenetics

International Journal of Epigenetics

Publishes open-access research on using epigenetics to advance understanding and treatment of human disease.

Medicine International

Medicine International

An International Open Access Journal Devoted to General Medicine.

Journal Cover
June-2025 Volume 66 Issue 6

Full Size Image

Cover Legend PDF

Sign up for eToc alerts
Recommend to Library

  • Article
  • Citations
    • Cite This Article
    • Download Citation
    • Create Citation Alert
    • Remove Citation Alert
    • Cited By
  • Similar Articles
    • Related Articles (in Spandidos Publications)
    • Similar Articles (Google Scholar)
    • Similar Articles (PubMed)
  • Download PDF
  • Download XML
  • View XML
Review Open Access

Multifaceted roles of lactate dehydrogenase in liver cancer (Review)

  • Authors:
    • Hai Jin
    • Qian Liu
    • Jin Li
    • Siyu Zhao
    • Biguang Tuo
  • View Affiliations / Copyright

    Affiliations: Department of Gastroenterology, Digestive Disease Hospital, Affiliated Hospital of Zunyi Medical University, Zunyi, Guizhou 563003, P.R. China
    Copyright: © Jin et al. This is an open access article distributed under the terms of Creative Commons Attribution License.
  • Article Number: 50
    |
    Published online on: May 20, 2025
       https://doi.org/10.3892/ijo.2025.5756
  • Expand metrics +
Metrics: Total Views: 0 (Spandidos Publications: | PMC Statistics: )
Metrics: Total PDF Downloads: 0 (Spandidos Publications: | PMC Statistics: )
Cited By (CrossRef): 0 citations Loading Articles...

This article is mentioned in:



Abstract

Hepatocellular carcinoma (HCC) has high morbidity and mortality rates, and metabolic reprogramming of HCC cells supports the proliferation and development of tumor cells. Lactate dehydrogenase (LDH), a key metabolic enzyme, can maintain the rapid proliferative demand of tumor cells by promoting glycolysis and lactate production in HCC cells. In addition, LDH regulates redox homeostasis and influences lipid synthesis and signaling pathways, further promoting tumor invasion and metastasis. In the tumor microenvironment, LDH affects the function of immune cells and stromal cells by regulating the lactate concentration in and promoting the immune escape and angiogenesis of tumor cells. Since elevated levels of LDH are closely associated with tumor load, invasiveness and poor prognosis, LDH also has promising applications in the early diagnosis, treatment and prognostic assessment of HCC. The present study reviewed the roles of LDH in the occurrence, development, diagnosis, prognosis and treatment of HCC and explored its value as an important biomarker and potential therapeutic target, with the aim of providing a comprehensive reference for HCC‑related research and clinical practice.
View Figures

Figure 1

Figure 2

Figure 3

View References

1 

Satriano L, Lewinska M, Rodrigues PM, Banales JM and Andersen JB: Metabolic rearrangements in primary liver cancers: Cause and consequences. Nat Rev Gastroenterol Hepatol. 16:748–766. 2019. View Article : Google Scholar : PubMed/NCBI

2 

Tan EY, Danpanichkul P, Yong JN, Yu Z, Tan DJH, Lim WH, Koh B, Lim RYZ, Tham EKJ, Mitra K, et al: Liver cancer in 2021: Global burden of disease study. J Hepatol. 82:851–860. 2025. View Article : Google Scholar

3 

Schmidt DR, Patel R, Kirsch DG, Lewis CA, Vander Heiden MG and Locasale JW: Metabolomics in cancer research and emerging applications in clinical oncology. CA Cancer J Clin. 71:333–358. 2021. View Article : Google Scholar : PubMed/NCBI

4 

Liao M, Yao D, Wu L, Luo C, Wang Z, Zhang J and Liu B: Targeting the Warburg effect: A revisited perspective from molecular mechanisms to traditional and innovative therapeutic strategies in cancer. Acta Pharm Sin B. 14:953–1008. 2024. View Article : Google Scholar : PubMed/NCBI

5 

Comandatore A, Franczak M, Smolenski RT, Morelli L, Peters GJ and Giovannetti E: Lactate dehydrogenase and its clinical significance in pancreatic and thoracic cancers. Semin Cancer Biol. 86:93–100. 2022. View Article : Google Scholar : PubMed/NCBI

6 

Sonveaux P, Végran F, Schroeder T, Wergin MC, Verrax J, Rabbani ZN, De Saedeleer CJ, Kennedy KM, Diepart C, Jordan BF, et al: Targeting lactate-fueled respiration selectively kills hypoxic tumor cells in mice. J Clin Invest. 118:3930–3942. 2008.PubMed/NCBI

7 

Sharma D, Singh M and Rani R: Role of LDH in tumor glycolysis: Regulation of LDHA by small molecules for cancer therapeutics. Semin Cancer Biol. 87:184–195. 2022. View Article : Google Scholar : PubMed/NCBI

8 

Claps G, Faouzi S, Quidville V, Chehade F, Shen S, Vagner S and Robert C: The multiple roles of LDH in cancer. Nat Rev Clin Oncol. 19:749–762. 2022. View Article : Google Scholar : PubMed/NCBI

9 

Zhang H, Kang K, Chen S, Su Q, Zhang W, Zeng L, Lin X, Peng F, Lin J and Chai D: High serum lactate dehydrogenase as a predictor of cardiac insufficiency at follow-up in elderly patients with acute myocardial infarction. Arch Gerontol Geriatr. 117:1052532024. View Article : Google Scholar

10 

Feng H, Wu J, Chen P, Wang J, Deng Y, Zhu G, Xian J, Huang L and Ouyang W: MicroRNA-375-3p inhibitor suppresses angiotensin II-induced cardiomyocyte hypertrophy by promoting lactate dehydrogenase B expression. J Cell Physiol. 234:14198–14209. 2019. View Article : Google Scholar : PubMed/NCBI

11 

Dai C, Li Q, May HI, Li C, Zhang G, Sharma G, Sherry AD, Malloy CR, Khemtong C, Zhang Y, et al: Lactate dehydrogenase A governs cardiac hypertrophic growth in response to hemodynamic stress. Cell Rep. 32:1080872020. View Article : Google Scholar : PubMed/NCBI

12 

Chen Y, Wu G, Li M, Hesse M, Ma Y, Chen W, Huang H, Liu Y, Xu W, Tang Y, et al: LDHA-mediated metabolic reprogramming promoted cardiomyocyte proliferation by alleviating ROS and inducing M2 macrophage polarization. Redox Biol. 56:1024462022. View Article : Google Scholar : PubMed/NCBI

13 

Yamaguchi S, Abe M, Arakaki T, Arasaki O and Shimabukuro M: Prognostic value of lactate dehydrogenase for mid-term mortality in acute decompensated heart failure: A comparison to established biomarkers and brain natriuretic peptide. Heart Lung Circ. 29:1318–1327. 2020. View Article : Google Scholar

14 

Wu X, Ye J, Cai W, Yang X, Zou Q, Lin J, Zheng H, Wang C, Chen L and Li Y: LDHA mediated degradation of extracellular matrix is a potential target for the treatment of aortic dissection. Pharmacol Res. 176:1060512022. View Article : Google Scholar : PubMed/NCBI

15 

Ibraheem A, Nashwan AJ and Yassin MA: Elderly patient with hematological and neurological manifestations of undetermined origin: A diagnostic dilemma of pernicious anemia. Cureus. 15:e430452023.PubMed/NCBI

16 

Wahhab Ali KA, Ahmed AA and Mohammed ST: Determination of serum myeloperoxidase (MPO) and lactate dehydrogenase (LDH) as a tumour marker in chronic myeloid leukaemia (CML). J Pak Med Assoc. 74(10 (Supple-8)): S283–S286. 2024. View Article : Google Scholar : PubMed/NCBI

17 

Oriaifo IA, Gerard JM and Thomas SM: Diagnostic value of lactate dehydrogenase and uric acid as screening tools for malignancies in children. Pediatr Emerg Care. 38:e1327–e1331. 2022. View Article : Google Scholar : PubMed/NCBI

18 

Labban H, Begum F, Paracha A, John V and Islam M: Hemolytic anemia and pancytopenia secondary to vitamin B12 deficiency: Evaluation and clinical significance. Cureus. 16:e572862024.PubMed/NCBI

19 

Henry BM, Aggarwal G, Wong J, Benoit S, Vikse J, Plebani M and Lippi G: Lactate dehydrogenase levels predict coronavirus disease 2019 (COVID-19) severity and mortality: A pooled analysis. Am J Emerg Med. 38:1722–1726. 2020. View Article : Google Scholar : PubMed/NCBI

20 

Assiri A, Al-Tawfiq JA, Al-Rabeeah AA, Al-Rabiah FA, Al-Hajjar S, Al-Barrak A, Flemban H, Al-Nassir WN, Balkhy HH, Al-Hakeem RF, et al: Epidemiological, demographic, and clinical characteristics of 47 cases of Middle East respiratory syndrome coronavirus disease from Saudi Arabia: A descriptive study. Lancet Infect Dis. 13:752–761. 2013. View Article : Google Scholar : PubMed/NCBI

21 

Martinez-Outschoorn UE, Prisco M, Ertel A, Tsirigos A, Lin Z, Pavlides S, Wang C, Flomenberg N, Knudsen ES, Howell A, et al: Ketones and lactate increase cancer cell 'stemness', driving recurrence, metastasis and poor clinical outcome in breast cancer: Achieving personalized medicine via metabolo-genomics. Cell Cycle. 10:1271–1286. 2011. View Article : Google Scholar : PubMed/NCBI

22 

Lippi G and Favaloro EJ: D-dimer is associated with severity of coronavirus disease 2019: A pooled analysis. Thromb Haemost. 120:876–878. 2020. View Article : Google Scholar : PubMed/NCBI

23 

Serrano-Lorenzo P, Coya ON, López-Jimenez A, Blázquez A, Delmiro A, Lucia A, Arenas J and Martín MA; COVID-19 '12 Octubre' Hospital Clinical Biochemistry Study Group: Plasma LDH: A specific biomarker for lung affectation in COVID-19? Pract Lab Med. 25:e002262021. View Article : Google Scholar : PubMed/NCBI

24 

Zhou Y, Qi M and Yang M: Current status and future perspectives of lactate dehydrogenase detection and medical implications: A review. Biosensors (Basel). 12:11452022. View Article : Google Scholar : PubMed/NCBI

25 

Panteghini M: Lactate dehydrogenase: an old enzyme reborn as a COVID-19 marker (and not only). Clin Chem Lab Med. 58:1979–1981. 2020. View Article : Google Scholar : PubMed/NCBI

26 

Khan AA, Allemailem KS, Alhumaydhi FA, Gowder SJT and Rahmani AH: The biochemical and clinical perspectives of lactate dehydrogenase: An enzyme of active metabolism. Endocr Metab Immune Disord Drug Targets. 20:855–868. 2020. View Article : Google Scholar

27 

Forkasiewicz A, Dorociak M, Stach K, Szelachowski P, Tabola R and Augoff K: The usefulness of lactate dehydrogenase measurements in current oncological practice. Cell Mol Biol Lett. 25:352020. View Article : Google Scholar : PubMed/NCBI

28 

Fondy TP and Kaplan NO: Structural and functional properties of the H and M subunits of lactic dehydrogenases. Ann N Y Acad Sci. 119:888–904. 1965. View Article : Google Scholar : PubMed/NCBI

29 

Hicks KG, Cluntun AA, Schubert HL, Hackett SR, Berg JA, Leonard PG, Ajalla Aleixo MA, Zhou Y, Bott AJ, Salvatore SR, et al: Protein-metabolite interactomics of carbohydrate metabolism reveal regulation of lactate dehydrogenase. Science. 379:996–1003. 2023. View Article : Google Scholar : PubMed/NCBI

30 

Eniafe J and Jiang S: The functional roles of TCA cycle metabolites in cancer. Oncogene. 40:3351–3363. 2021. View Article : Google Scholar : PubMed/NCBI

31 

Tufail M, Jiang CH and Li N: Altered metabolism in cancer: Insights into energy pathways and therapeutic targets. Mol Cancer. 23:2032024. View Article : Google Scholar : PubMed/NCBI

32 

Schumann G and Klauke R: New IFCC reference procedures for the determination of catalytic activity concentrations of five enzymes in serum: Preliminary upper reference limits obtained in hospitalized subjects. Clin Chim Acta. 327:69–79. 2003. View Article : Google Scholar

33 

Roman W: Quantitative estimation of lactate dehydrogenase isoenzymes in serum. I. Review of methods and distribution in human tissues. Enzymologia. 36:189–219. 1969.PubMed/NCBI

34 

Du D, Liu C, Qin M, Zhang X, Xi T, Yuan S, Hao H and Xiong J: Metabolic dysregulation and emerging therapeutical targets for hepatocellular carcinoma. Acta Pharm Sin B. 12:558–580. 2022. View Article : Google Scholar : PubMed/NCBI

35 

Gupta GS: The lactate and the lactate dehydrogenase in inflammatory diseases and major risk factors in COVID-19 patients. Inflammation. 45:2091–2123. 2022. View Article : Google Scholar : PubMed/NCBI

36 

Han HS, Kang G, Kim JS, Choi BH and Koo SH: Regulation of glucose metabolism from a liver-centric perspective. Exp Mol Med. 48:e2182016. View Article : Google Scholar : PubMed/NCBI

37 

Piccinin E, Villani G and Moschetta A: Metabolic aspects in NAFLD, NASH and hepatocellular carcinoma: The role of PGC1 coactivators. Nat Rev Gastroenterol Hepatol. 16:160–174. 2019. View Article : Google Scholar

38 

Yang F, Hilakivi-Clarke L, Shaha A, Wang Y, Wang X, Deng Y, Lai J and Kang N: Metabolic reprogramming and its clinical implication for liver cancer. Hepatology. 78:1602–1624. 2023. View Article : Google Scholar : PubMed/NCBI

39 

Yang Z, Yan C, Ma J, Peng P, Ren X, Cai S, Shen X, Wu Y, Zhang S, Wang X, et al: Lactylome analysis suggests lactylation-dependent mechanisms of metabolic adaptation in hepatocellular carcinoma. Nat Metab. 5:61–79. 2023. View Article : Google Scholar : PubMed/NCBI

40 

Zhao Y, Li M, Yao X, Fei Y, Lin Z, Li Z, Cai K, Zhao Y and Luo Z: HCAR1/MCT1 regulates tumor ferroptosis through the lactate-mediated AMPK-SCD1 activity and its therapeutic implications. Cell Rep. 33:1084872020. View Article : Google Scholar : PubMed/NCBI

41 

Vander Heiden MG, Cantley LC and Thompson CB: Understanding the Warburg effect: The metabolic requirements of cell proliferation. Science. 324:1029–1033. 2009. View Article : Google Scholar : PubMed/NCBI

42 

Ganapathy-Kanniappan S: Molecular intricacies of aerobic glycolysis in cancer: Current insights into the classic metabolic phenotype. Crit Rev Biochem Mol Biol. 53:667–682. 2018. View Article : Google Scholar

43 

Borrelli A, Bonelli P, Tuccillo FM, Goldfine ID, Evans JL, Buonaguro FM and Mancini A: Role of gut microbiota and oxidative stress in the progression of non-alcoholic fatty liver disease to hepatocarcinoma: Current and innovative therapeutic approaches. Redox Biol. 15:467–479. 2018. View Article : Google Scholar : PubMed/NCBI

44 

Cheng Y, He J, Zuo B and He Y: Role of lipid metabolism in hepatocellular carcinoma. Discov Oncol. 15:2062024. View Article : Google Scholar : PubMed/NCBI

45 

Guo D, Zhang X, Cui H, Yu D, Zhang H, Shi X, Pang C, Li J, Guo W and Zhang S: ACADL functions as a tumor suppressor in hepatocellular carcinoma metastasis by inhibiting matrix metalloproteinase 14. Front Oncol. 12:8214842022. View Article : Google Scholar : PubMed/NCBI

46 

Cai J, Chen T, Jiang Z, Yan J, Ye Z, Ruan Y, Tao L, Shen Z, Liang X, Wang Y, et al: Bulk and single-cell transcriptome profiling reveal extracellular matrix mechanical regulation of lipid metabolism reprograming through YAP/TEAD4/ACADL axis in hepatocellular carcinoma. Int J Biol Sci. 19:2114–2131. 2023. View Article : Google Scholar : PubMed/NCBI

47 

Ericksen RE, Lim SL, McDonnell E, Shuen WH, Vadiveloo M, White PJ, Ding Z, Kwok R, Lee P, Radda GK, et al: Loss of BCAA catabolism during carcinogenesis enhances mTORC1 activity and promotes tumor development and progression. Cell Metab. 29:1151–1165.e6. 2019. View Article : Google Scholar : PubMed/NCBI

48 

Tian LY, Smit DJ and Jücker M: The Role of PI3K/AKT/mTOR signaling in hepatocellular carcinoma metabolism. Int J Mol Sci. 24:26522023. View Article : Google Scholar : PubMed/NCBI

49 

Bao MHR and Wong CCL: Hypoxia, metabolic reprogramming, and drug resistance in liver cancer. Cells. 10:17152021. View Article : Google Scholar : PubMed/NCBI

50 

Ng CKY, Dazert E, Boldanova T, Coto-Llerena M, Nuciforo S, Ercan C, Suslov A, Meier MA, Bock T, Schmidt A, et al: Integrative proteogenomic characterization of hepatocellular carcinoma across etiologies and stages. Nat Commun. 13:24362022. View Article : Google Scholar : PubMed/NCBI

51 

An J, Oh M, Kim SY, Oh YJ, Oh B, Oh JH, Kim W, Jung JH, Kim HI, Kim JS, et al: PET-based radiogenomics supports mTOR pathway targeting for hepatocellular carcinoma. Clin Cancer Res. 28:1821–1831. 2022. View Article : Google Scholar : PubMed/NCBI

52 

Chen J, Ding C, Chen Y, Hu W, Yu C, Peng C, Feng X, Cheng Q, Wu W, Lu Y, et al: ACSL4 reprograms fatty acid metabolism in hepatocellular carcinoma via c-Myc/SREBP1 pathway. Cancer Lett. 502:154–165. 2021. View Article : Google Scholar

53 

Luo YD, Liu XY, Fang L, Yu HQ, Zhang YJ, Chen M, Zhang LD and Xie CM: Mutant Kras and mTOR crosstalk drives hepatocellular carcinoma development via PEG3/STAT3/BEX2 signaling. Theranostics. 12:7903–7919. 2022. View Article : Google Scholar : PubMed/NCBI

54 

Lin D and Wu J: Hypoxia inducible factor in hepatocellular carcinoma: A therapeutic target. World J Gastroenterol. 21:12171–12178. 2015. View Article : Google Scholar : PubMed/NCBI

55 

Wang F, Chen L, Kong D, Zhang X, Xia S, Liang B, Li Y, Zhou Y, Zhang Z, Shao J, et al: Canonical Wnt signaling promotes HSC glycolysis and liver fibrosis through an LDH-A/HIF-1α transcriptional complex. Hepatology. 79:606–623. 2024. View Article : Google Scholar

56 

Faloppi L, Bianconi M, Memeo R, Casadei Gardini A, Giampieri R, Bittoni A, Andrikou K, Del Prete M, Cascinu S and Scartozzi M: Lactate dehydrogenase in hepatocellular carcinoma: something old, something new. Biomed Res Int. 2016:71962802016. View Article : Google Scholar : PubMed/NCBI

57 

Feng J, Li J, Wu L, Yu Q, Ji J, Wu J, Dai W and Guo C: Emerging roles and the regulation of aerobic glycolysis in hepatocellular carcinoma. J Exp Clin Cancer Res. 39:1262020. View Article : Google Scholar : PubMed/NCBI

58 

Vaupel P, Schmidberger H and Mayer A: The Warburg effect: Essential part of metabolic reprogramming and central contributor to cancer progression. Int J Radiat Biol. 95:912–919. 2019. View Article : Google Scholar : PubMed/NCBI

59 

Zhang Y, Li W, Bian Y, Li Y and Cong L: Multifaceted roles of aerobic glycolysis and oxidative phosphorylation in hepatocellular carcinoma. PeerJ. 11:e147972023. View Article : Google Scholar : PubMed/NCBI

60 

Manerba M, Di Ianni L, Govoni M, Roberti M, Recanatini M and Di Stefano G: LDH inhibition impacts on heat shock response and induces senescence of hepatocellular carcinoma cells. Eur J Pharm Sci. 105:91–8. 2017. View Article : Google Scholar : PubMed/NCBI

61 

Sun Z, Liu L, Liang H and Zhang L: Nicotinamide mononucleotide induces autophagy and ferroptosis via AMPK/mTOR pathway in hepatocellular carcinoma. Mol Carcinog. 63:577–588. 2024. View Article : Google Scholar : PubMed/NCBI

62 

Certo M, Tsai CH, Pucino V, Ho PC and Mauro C: Lactate modulation of immune responses in inflammatory versus tumour microenvironments. Nat Rev Immunol. 21:151–161. 2021. View Article : Google Scholar

63 

Jeong DW, Cho IT, Kim TS, Bae GW, Kim IH and Kim IY: Effects of lactate dehydrogenase suppression and glycerol-3-phosphate dehydrogenase overexpression on cellular metabolism. Mol Cell Biochem. 284:1–8. 2006. View Article : Google Scholar : PubMed/NCBI

64 

Xia L, Oyang L, Lin J, Tan S, Han Y, Wu N, Yi P, Tang L, Pan Q, Rao S, et al: The cancer metabolic reprogramming and immune response. Mol Cancer. 20:282021. View Article : Google Scholar : PubMed/NCBI

65 

Lin J, Rao D, Zhang M and Gao Q: Metabolic reprogramming in the tumor microenvironment of liver cancer. J Hematol Oncol. 17:62024. View Article : Google Scholar : PubMed/NCBI

66 

Zhang RN and Fan JG: Lipid metabolism-related long noncoding RNAs: A potential prognostic biomarker for hepatocellular carcinoma. World J Gastroenterol. 30:3799–3802. 2024. View Article : Google Scholar : PubMed/NCBI

67 

Koukourakis MI, Kakouratos C, Kalamida D, Bampali Z, Mavropoulou S, Sivridis E and Giatromanolaki A: Hypoxia-inducible proteins HIF1α and lactate dehydrogenase LDH5, key markers of anaerobic metabolism, relate with stem cell markers and poor post-radiotherapy outcome in bladder cancer. Int J Radiat Biol. 92:353–363. 2016. View Article : Google Scholar : PubMed/NCBI

68 

He W, Li Q and Li X: Acetyl-CoA regulates lipid metabolism and histone acetylation modification in cancer. Biochim Biophys Acta Rev Cancer. 1878:1888372023. View Article : Google Scholar

69 

Zhao X, Jiang P, Deng X, Li Z, Tian F, Guo F, Li X and Wang S: Inhibition of mTORC1 signaling sensitizes hepatocellular carcinoma cells to glycolytic stress. Am J Cancer Res. 6:2289–2298. 2016.PubMed/NCBI

70 

Sas Z, Cendrowicz E, Weinhäuser I and Rygiel TP: Tumor microenvironment of hepatocellular carcinoma: Challenges and opportunities for new treatment options. Int J Mol Sci. 23:37782022. View Article : Google Scholar : PubMed/NCBI

71 

Fares J, Fares MY, Khachfe HH, Salhab HA and Fares Y: Molecular principles of metastasis: A hallmark of cancer revisited. Signal Transduct Target Ther. 5:282020. View Article : Google Scholar : PubMed/NCBI

72 

Neophytou CM, Panagi M, Stylianopoulos T and Papageorgis P: The role of tumor microenvironment in cancer metastasis: Molecular mechanisms and therapeutic opportunities. Cancers (Basel). 13:20532021. View Article : Google Scholar : PubMed/NCBI

73 

Peng X, He Z, Yuan D, Liu Z and Rong P: Lactic acid: The culprit behind the immunosuppressive microenvironment in hepatocellular carcinoma. Biochim Biophys Acta Rev Cancer. 1879:1891642024. View Article : Google Scholar : PubMed/NCBI

74 

Luo Y, Li L, Chen X, Gou H, Yan K and Xu Y: Effects of lactate in immunosuppression and inflammation: Progress and prospects. Int Rev Immunol. 41:19–29. 2022. View Article : Google Scholar

75 

Zhang Y, Zhai Z, Duan J, Wang X, Zhong J, Wu L, Li A, Cao M, Wu Y, Shi H, et al: Lactate: The mediator of metabolism and immunosuppression. Front Endocrinol (Lausanne). 13:9014952022. View Article : Google Scholar : PubMed/NCBI

76 

Maeda M, Ko M, Mane MM, Cohen IJ, Shindo M, Vemuri K, Serganova I and Blasberg R: Genetic and drug inhibition of LDH-A: Effects on murine gliomas. Cancers (Basel). 14:23062022. View Article : Google Scholar : PubMed/NCBI

77 

Sarkar T, Dhar S and Sa G: Tumor-infiltrating T-regulatory cells adapt to altered metabolism to promote tumor-immune escape. Curr Res Immunol. 2:132–141. 2021. View Article : Google Scholar

78 

Verma S, Budhu S, Serganova I, Dong L, Mangarin LM, Khan JF, Bah MA, Assouvie A, Marouf Y, Schulze I, et al: Pharmacologic LDH inhibition redirects intratumoral glucose uptake and improves antitumor immunity in solid tumor models. J Clin Invest. 134:e1776062024. View Article : Google Scholar : PubMed/NCBI

79 

O'Neill LA, Kishton RJ and Rathmell J: A guide to immunometabolism for immunologists. Nat Rev Immunol. 16:553–565. 2016. View Article : Google Scholar : PubMed/NCBI

80 

Niu D, Luo T, Wang H, Xia Y and Xie Z: Lactic acid in tumor invasion. Clin Chim Acta. 522:61–69. 2021. View Article : Google Scholar : PubMed/NCBI

81 

Han S, Bao X, Zou Y, Wang L, Li Y, Yang L, Liao A, Zhang X, Jiang X, Liang D, et al: d-lactate modulates M2 tumor-associated macrophages and remodels immunosuppressive tumor microenvironment for hepatocellular carcinoma. Sci Adv. 9:eadg26972023. View Article : Google Scholar : PubMed/NCBI

82 

Jiang Y, Han Q, Zhao H and Zhang J: Promotion of epithelial-mesenchymal transformation by hepatocellular carcinoma-educated macrophages through Wnt2b/β-catenin/c-Myc signaling and reprogramming glycolysis. J Exp Clin Cancer Res. 40:132021. View Article : Google Scholar

83 

Li D, Zhang T, Guo Y, Bi C, Liu M and Wang G: Biological impact and therapeutic implication of tumor-associated macrophages in hepatocellular carcinoma. Cell Death Dis. 15:4982024. View Article : Google Scholar : PubMed/NCBI

84 

Jin M, Cao W, Chen B, Xiong M and Cao G: Tumor-derived lactate creates a favorable niche for tumor via supplying energy source for tumor and modulating the tumor microenvironment. Front Cell Dev Biol. 10:8088592022. View Article : Google Scholar : PubMed/NCBI

85 

Ye J, Gao X, Huang X, Huang S, Zeng D, Luo W, Zeng C, Lu C, Lu L, Huang H, et al: Integrating single-cell and spatial transcriptomics to uncover and elucidate GP73-mediated pro-angiogenic regulatory networks in hepatocellular carcinoma. Research (Wash D C). 7:03872024.PubMed/NCBI

86 

Wang S, Wang X, Shan Y, Tan Z, Su Y, Cao Y, Wang S, Dong J, Gu J and Wang Y: Region-specific cellular and molecular basis of liver regeneration after acute pericentral injury. Cell Stem Cell. 31:341–358.e7. 2024. View Article : Google Scholar : PubMed/NCBI

87 

Hu S, Yang Z, Li L, Yan Q, Hu Y, Zhou F, Tan Y and Pei G: Salvianolic acid B alleviates liver injury by regulating lactate-mediated histone lactylation in macrophages. Molecules. 29:2362024. View Article : Google Scholar : PubMed/NCBI

88 

Lei Y, Han P, Chen Y, Wang H, Wang S, Wang M, Liu J, Yan W, Tian D and Liu M: Protein arginine methyltransferase 3 promotes glycolysis and hepatocellular carcinoma growth by enhancing arginine methylation of lactate dehydrogenase A. Clin Transl Med. 12:e6862022. View Article : Google Scholar : PubMed/NCBI

89 

Agarwala SS, Keilholz U, Gilles E, Bedikian AY, Wu J, Kay R, Stein CA, Itri LM, Suciu S and Eggermont AM: LDH correlation with survival in advanced melanoma from two large, randomised trials (Oblimersen GM301 and EORTC 18951). Eur J Cancer. 45:1807–1814. 2009. View Article : Google Scholar : PubMed/NCBI

90 

Bouafia F, Drai J, Bienvenu J, Thieblemont C, Espinouse D, Salles G and Coiffier B: Profiles and prognostic values of serum LDH isoenzymes in patients with haematopoietic malignancies. Bull Cancer. 91:E229–E240. 2004.PubMed/NCBI

91 

Ho J, de Moura MB, Lin Y, Vincent G, Thorne S, Duncan LM, Hui-Min L, Kirkwood JM, Becker D, Van Houten B and Moschos SJ: Importance of glycolysis and oxidative phosphorylation in advanced melanoma. Mol Cancer. 11:762012. View Article : Google Scholar : PubMed/NCBI

92 

Rafaqat S, Sattar A, Khalid A and Rafaqat S: Role of liver parameters in diabetes mellitus-a narrative review. Endocr Regul. 57:200–220. 2023. View Article : Google Scholar : PubMed/NCBI

93 

Dercle L, Ammari S, Roblin E, Bigorgne A, Champiat S, Taihi L, Plaian A, Hans S, Lakiss S, Tselikas L, et al: High serum LDH and liver metastases are the dominant predictors of primary cancer resistance to anti-PD(L)1 immunotherapy. Eur J Cancer. 177:80–93. 2022. View Article : Google Scholar : PubMed/NCBI

94 

Zhu W and Huang Y: Research progress of serum biomarkers for early screening of hepatocellular carcinoma. Zhonghua Gan Zang Bing Za Zhi. 29:308–312. 2021.In Chinese. PubMed/NCBI

95 

Liao XM, Zhao SR, Dai WC and Fan R: Research advances of metabolomics in early diagnosis of hepatocellular carcinoma. Zhonghua Gan Zang Bing Za Zhi. 30:803–808. 2022.In Chinese. PubMed/NCBI

96 

Sevinc A, Sari R and Fadillioglu E: The utility of lactate dehydrogenase isoenzyme pattern in the diagnostic evaluation of malignant and nonmalignant ascites. J Natl Med Assoc. 97:79–84. 2005.PubMed/NCBI

97 

Nagasue N: Changes in lactic dehydrogenase isoenzymes after hepatic artery ligation in patients with hepatic carcinoma. Gastroenterol Jpn. 10:150–156. 1975. View Article : Google Scholar : PubMed/NCBI

98 

Yan Q, Sun YS, An R, Liu F, Fang Q, Wang Z, Xu T, Chen L and Du J: Application and progress of the detection technologies in hepatocellular carcinoma. Genes Dis. 10:1857–1869. 2022. View Article : Google Scholar : PubMed/NCBI

99 

Faloppi L, Scartozzi M, Bianconi M, Svegliati Baroni G, Toniutto P, Giampieri R, Del Prete M, De Minicis S, Bitetto D, Loretelli C, et al: The role of LDH serum levels in predicting global outcome in HCC patients treated with sorafenib: Implications for clinical management. BMC Cancer. 14:1102014. View Article : Google Scholar : PubMed/NCBI

100 

Wang T and Zhang KH: New blood biomarkers for the diagnosis of AFP-negative hepatocellular carcinoma. Front Oncol. 10:13162020. View Article : Google Scholar : PubMed/NCBI

101 

Kong W, Zuo X, Liang H, Hu J, Zhang H, Wang X and Chen W: Prognostic value of lactate dehydrogenase in patients with hepatocellular carcinoma: A meta-analysis. Biomed Res Int. 2018:17231842018. View Article : Google Scholar

102 

Augoff K and Grabowski K: Significance of lactate dehydrogenase measurements in diagnosis of malignancies. Pol Merkur Lekarski. 17:644–647. 2004.In Polish.

103 

Lee SC, Kao MC, Yin SJ and Lin CY: Serum lactate dehydrogenase isoenzymes in patients with hepatocellular carcinoma. Taiwan Yi Xue Hui Za Zhi. 81:218–223. 1982.PubMed/NCBI

104 

Urbańska K and Orzechowski A: Unappreciated role of LDHA and LDHB to control apoptosis and autophagy in tumor cells. Int J Mol Sci. 20:20852019. View Article : Google Scholar

105 

Yuan C, Li Z, Wang Y, Qi B, Zhang W, Ye J, Wu H, Jiang H, Song LN, Yang J and Cheng J: Overexpression of metabolic markers PKM2 and LDH5 correlates with aggressive clinicopathological features and adverse patient prognosis in tongue cancer. Histopathology. 65:595–605. 2014. View Article : Google Scholar : PubMed/NCBI

106 

Su K, Huang W, Li X, Xu K, Gu T, Liu Y, Song J, Qian K, Xu Y, Zeng H, et al: Evaluation of lactate dehydrogenase and alkaline phosphatase as predictive biomarkers in the prognosis of hepatocellular carcinoma and development of a new nomogram. J Hepatocell Carcinoma. 10:69–79. 2023. View Article : Google Scholar : PubMed/NCBI

107 

Wu SJ, Lin YX, Ye H, Xiong XZ, Li FY and Cheng NS: Prognostic value of alkaline phosphatase, gamma-glutamyl transpeptidase and lactate dehydrogenase in hepatocellular carcinoma patients treated with liver resection. Int J Surg. 36:143–151. 2016. View Article : Google Scholar : PubMed/NCBI

108 

Li J, Wu MF, Lu HW, Chen Q, Lin ZQ and Wang LJ: Pretreatment serum lactate dehydrogenase is an independent prognostic factor for patients receiving neoadjuvant chemotherapy for locally advanced cervical cancer. Cancer Med. 5:1863–1872. 2016. View Article : Google Scholar : PubMed/NCBI

109 

Hu Z, Yuan Y, Hu Z, Liu Q, Fu Y, Hou J, Sun X, Li S, Duan W and Chen M: Development and validation of prognostic nomograms for hepatocellular carcinoma after hepatectomy based on inflammatory markers. J Hepatocell Carcinoma. 9:1403–1413. 2022. View Article : Google Scholar

110 

Krishnamurthy K, Medina AM and Howard L: The utility of elevated serum lactate dehydrogenase in current clinical practice. Lab Med. 52:e17–e22. 2021. View Article : Google Scholar

111 

Han L, Lin X, Yan Q, Gu C, Li M, Pan L, Meng Y, Zhao X, Liu S and Li A: PBLD inhibits angiogenesis via impeding VEGF/VEGFR2-mediated microenvironmental cross-talk between HCC cells and endothelial cells. Oncogene. 41:1851–1865. 2022. View Article : Google Scholar : PubMed/NCBI

112 

Liu L, Cao Y, Chen C, Zhang X, McNabola A, Wilkie D, Wilhelm S, Lynch M and Carter C: Sorafenib blocks the RAF/MEK/ERK pathway, inhibits tumor angiogenesis, and induces tumor cell apoptosis in hepatocellular carcinoma model PLC/PRF/5. Cancer Res. 66:11851–11858. 2006. View Article : Google Scholar : PubMed/NCBI

113 

Man S, Yao J, Lv P, Liu Y, Yang L and Ma L: Curcumin-enhanced antitumor effects of sorafenib via regulating the metabolism and tumor microenvironment. Food Funct. 11:6422–6432. 2020. View Article : Google Scholar : PubMed/NCBI

114 

Sim DY, Lee HJ, Ahn CH, Park J, Park SY, Kil BJ, Shim BS, Kim B and Kim SH: Negative regulation of CPSF6 suppresses the warburg effect and angiogenesis leading to tumor progression via c-Myc signaling network: Potential therapeutic target for liver cancer therapy. Int J Biol Sci. 20:3442–3460. 2024. View Article : Google Scholar : PubMed/NCBI

115 

Fiume L, Manerba M, Vettraino M and Di Stefano G: Inhibition of lactate dehydrogenase activity as an approach to cancer therapy. Future Med Chem. 6:429–445. 2014. View Article : Google Scholar : PubMed/NCBI

116 

Miao P, Sheng S, Sun X, Liu J and Huang G: Lactate dehydrogenase A in cancer: A promising target for diagnosis and therapy. IUBMB Life. 65:904–910. 2013. View Article : Google Scholar : PubMed/NCBI

117 

Schwab M, Thunborg K, Azimzadeh O, von Toerne C, Werner C, Shevtsov M, Di Genio T, Zdralevic M, Pouyssegur J, Renner K, et al: Targeting cancer metabolism breaks radioresistance by impairing the stress response. Cancers (Basel). 13:37622021. View Article : Google Scholar : PubMed/NCBI

118 

Alobaidi B, Hashimi SM, Alqosaibi AI, AlQurashi N and Alhazmi S: Targeting the monocarboxylate transporter MCT2 and lactate dehydrogenase A LDHA in cancer cells with FX-11 and AR-C155858 inhibitors. Eur Rev Med Pharmacol Sci. 27:6605–6617. 2023.PubMed/NCBI

119 

Li X, Lu P, Li B, Yang R, Chu Y, Zhang Z, Wan H, Niu C, Wang C and Luo K: Sensitization of hepatocellular carcinoma cells to irradiation by miR-34a through targeting lactate dehydrogenase-A. Mol Med Rep. 13:3661–3667. 2016. View Article : Google Scholar : PubMed/NCBI

120 

Paul SK, Dutta Chowdhury K, Dey SR, Paul A and Haldar R: Exploring the possibility of drug repurposing for cancer therapy targeting human lactate dehydrogenase A: A computational approach. J Biomol Struct Dyn. 41:9967–9976. 2023. View Article : Google Scholar

121 

Brower V: Sorafenib plus cisplatin for hepatocellular carcinoma. Lancet Oncol. 17:e4242016. View Article : Google Scholar : PubMed/NCBI

122 

Han JH, Lee EJ, Park W, Ha KT and Chung HS: Natural compounds as lactate dehydrogenase inhibitors: Potential therapeutics for lactate dehydrogenase inhibitors-related diseases. Front Pharmacol. 14:12750002023. View Article : Google Scholar : PubMed/NCBI

123 

Zheng R, Fang X, Chen X, Huang Y, Xu G, He L, Li Y, Niu X, Yang L, Wang L, et al: Knockdown of lactate dehydrogenase by adeno-associated virus-delivered CRISPR/Cas9 system alleviates primary hyperoxaluria type 1. Clin Transl Med. 10:e2612020. View Article : Google Scholar : PubMed/NCBI

124 

Ariceta G, Barrios K, Brown BD, Hoppe B, Rosskamp R and Langman CB: Hepatic lactate dehydrogenase A: An RNA interference target for the treatment of all known types of primary hyperoxaluria. Kidney Int Rep. 6:1088–1098. 2021. View Article : Google Scholar : PubMed/NCBI

125 

Tang Q and Khvorova A: RNAi-based drug design: Considerations and future directions. Nat Rev Drug Discov. 23:341–364. 2024. View Article : Google Scholar : PubMed/NCBI

126 

Alshaer W, Zureigat H, Al Karaki A, Al-Kadash A, Gharaibeh L, Hatmal MM, Aljabali AAA and Awidi A: siRNA: Mechanism of action, challenges, and therapeutic approaches. Eur J Pharmacol. 905:1741782021. View Article : Google Scholar : PubMed/NCBI

127 

Cheng X, Fan S, Wen C and Du X: CRISPR/Cas9 for cancer treatment: Technology, clinical applications and challenges. Brief Funct Genomics. 19:209–214. 2020. View Article : Google Scholar : PubMed/NCBI

128 

Van Wilpe S, Koornstra R, Den Brok M, De Groot JW, Blank C, De Vries J, Gerritsen W and Mehra N: Lactate dehydrogenase: A marker of diminished antitumor immunity. Oncoimmunology. 9:17319422020. View Article : Google Scholar : PubMed/NCBI

129 

Lin Y, Wang Y and Li PF: Mutual regulation of lactate dehydrogenase and redox robustness. Front Physiol. 13:10384212022. View Article : Google Scholar : PubMed/NCBI

Related Articles

  • Abstract
  • View
  • Download
  • Twitter
Copy and paste a formatted citation
Spandidos Publications style
Jin H, Liu Q, Li J, Zhao S and Tuo B: Multifaceted roles of lactate dehydrogenase in liver cancer (Review). Int J Oncol 66: 50, 2025.
APA
Jin, H., Liu, Q., Li, J., Zhao, S., & Tuo, B. (2025). Multifaceted roles of lactate dehydrogenase in liver cancer (Review). International Journal of Oncology, 66, 50. https://doi.org/10.3892/ijo.2025.5756
MLA
Jin, H., Liu, Q., Li, J., Zhao, S., Tuo, B."Multifaceted roles of lactate dehydrogenase in liver cancer (Review)". International Journal of Oncology 66.6 (2025): 50.
Chicago
Jin, H., Liu, Q., Li, J., Zhao, S., Tuo, B."Multifaceted roles of lactate dehydrogenase in liver cancer (Review)". International Journal of Oncology 66, no. 6 (2025): 50. https://doi.org/10.3892/ijo.2025.5756
Copy and paste a formatted citation
x
Spandidos Publications style
Jin H, Liu Q, Li J, Zhao S and Tuo B: Multifaceted roles of lactate dehydrogenase in liver cancer (Review). Int J Oncol 66: 50, 2025.
APA
Jin, H., Liu, Q., Li, J., Zhao, S., & Tuo, B. (2025). Multifaceted roles of lactate dehydrogenase in liver cancer (Review). International Journal of Oncology, 66, 50. https://doi.org/10.3892/ijo.2025.5756
MLA
Jin, H., Liu, Q., Li, J., Zhao, S., Tuo, B."Multifaceted roles of lactate dehydrogenase in liver cancer (Review)". International Journal of Oncology 66.6 (2025): 50.
Chicago
Jin, H., Liu, Q., Li, J., Zhao, S., Tuo, B."Multifaceted roles of lactate dehydrogenase in liver cancer (Review)". International Journal of Oncology 66, no. 6 (2025): 50. https://doi.org/10.3892/ijo.2025.5756
Follow us
  • Twitter
  • LinkedIn
  • Facebook
About
  • Spandidos Publications
  • Careers
  • Cookie Policy
  • Privacy Policy
How can we help?
  • Help
  • Live Chat
  • Contact
  • Email to our Support Team