
Multifaceted roles of lactate dehydrogenase in liver cancer (Review)
- Authors:
- Hai Jin
- Qian Liu
- Jin Li
- Siyu Zhao
- Biguang Tuo
-
Affiliations: Department of Gastroenterology, Digestive Disease Hospital, Affiliated Hospital of Zunyi Medical University, Zunyi, Guizhou 563003, P.R. China - Published online on: May 20, 2025 https://doi.org/10.3892/ijo.2025.5756
- Article Number: 50
-
Copyright: © Jin et al. This is an open access article distributed under the terms of Creative Commons Attribution License.
This article is mentioned in:
Abstract
![]() |
![]() |
![]() |
Satriano L, Lewinska M, Rodrigues PM, Banales JM and Andersen JB: Metabolic rearrangements in primary liver cancers: Cause and consequences. Nat Rev Gastroenterol Hepatol. 16:748–766. 2019. View Article : Google Scholar : PubMed/NCBI | |
Tan EY, Danpanichkul P, Yong JN, Yu Z, Tan DJH, Lim WH, Koh B, Lim RYZ, Tham EKJ, Mitra K, et al: Liver cancer in 2021: Global burden of disease study. J Hepatol. 82:851–860. 2025. View Article : Google Scholar | |
Schmidt DR, Patel R, Kirsch DG, Lewis CA, Vander Heiden MG and Locasale JW: Metabolomics in cancer research and emerging applications in clinical oncology. CA Cancer J Clin. 71:333–358. 2021. View Article : Google Scholar : PubMed/NCBI | |
Liao M, Yao D, Wu L, Luo C, Wang Z, Zhang J and Liu B: Targeting the Warburg effect: A revisited perspective from molecular mechanisms to traditional and innovative therapeutic strategies in cancer. Acta Pharm Sin B. 14:953–1008. 2024. View Article : Google Scholar : PubMed/NCBI | |
Comandatore A, Franczak M, Smolenski RT, Morelli L, Peters GJ and Giovannetti E: Lactate dehydrogenase and its clinical significance in pancreatic and thoracic cancers. Semin Cancer Biol. 86:93–100. 2022. View Article : Google Scholar : PubMed/NCBI | |
Sonveaux P, Végran F, Schroeder T, Wergin MC, Verrax J, Rabbani ZN, De Saedeleer CJ, Kennedy KM, Diepart C, Jordan BF, et al: Targeting lactate-fueled respiration selectively kills hypoxic tumor cells in mice. J Clin Invest. 118:3930–3942. 2008.PubMed/NCBI | |
Sharma D, Singh M and Rani R: Role of LDH in tumor glycolysis: Regulation of LDHA by small molecules for cancer therapeutics. Semin Cancer Biol. 87:184–195. 2022. View Article : Google Scholar : PubMed/NCBI | |
Claps G, Faouzi S, Quidville V, Chehade F, Shen S, Vagner S and Robert C: The multiple roles of LDH in cancer. Nat Rev Clin Oncol. 19:749–762. 2022. View Article : Google Scholar : PubMed/NCBI | |
Zhang H, Kang K, Chen S, Su Q, Zhang W, Zeng L, Lin X, Peng F, Lin J and Chai D: High serum lactate dehydrogenase as a predictor of cardiac insufficiency at follow-up in elderly patients with acute myocardial infarction. Arch Gerontol Geriatr. 117:1052532024. View Article : Google Scholar | |
Feng H, Wu J, Chen P, Wang J, Deng Y, Zhu G, Xian J, Huang L and Ouyang W: MicroRNA-375-3p inhibitor suppresses angiotensin II-induced cardiomyocyte hypertrophy by promoting lactate dehydrogenase B expression. J Cell Physiol. 234:14198–14209. 2019. View Article : Google Scholar : PubMed/NCBI | |
Dai C, Li Q, May HI, Li C, Zhang G, Sharma G, Sherry AD, Malloy CR, Khemtong C, Zhang Y, et al: Lactate dehydrogenase A governs cardiac hypertrophic growth in response to hemodynamic stress. Cell Rep. 32:1080872020. View Article : Google Scholar : PubMed/NCBI | |
Chen Y, Wu G, Li M, Hesse M, Ma Y, Chen W, Huang H, Liu Y, Xu W, Tang Y, et al: LDHA-mediated metabolic reprogramming promoted cardiomyocyte proliferation by alleviating ROS and inducing M2 macrophage polarization. Redox Biol. 56:1024462022. View Article : Google Scholar : PubMed/NCBI | |
Yamaguchi S, Abe M, Arakaki T, Arasaki O and Shimabukuro M: Prognostic value of lactate dehydrogenase for mid-term mortality in acute decompensated heart failure: A comparison to established biomarkers and brain natriuretic peptide. Heart Lung Circ. 29:1318–1327. 2020. View Article : Google Scholar | |
Wu X, Ye J, Cai W, Yang X, Zou Q, Lin J, Zheng H, Wang C, Chen L and Li Y: LDHA mediated degradation of extracellular matrix is a potential target for the treatment of aortic dissection. Pharmacol Res. 176:1060512022. View Article : Google Scholar : PubMed/NCBI | |
Ibraheem A, Nashwan AJ and Yassin MA: Elderly patient with hematological and neurological manifestations of undetermined origin: A diagnostic dilemma of pernicious anemia. Cureus. 15:e430452023.PubMed/NCBI | |
Wahhab Ali KA, Ahmed AA and Mohammed ST: Determination of serum myeloperoxidase (MPO) and lactate dehydrogenase (LDH) as a tumour marker in chronic myeloid leukaemia (CML). J Pak Med Assoc. 74(10 (Supple-8)): S283–S286. 2024. View Article : Google Scholar : PubMed/NCBI | |
Oriaifo IA, Gerard JM and Thomas SM: Diagnostic value of lactate dehydrogenase and uric acid as screening tools for malignancies in children. Pediatr Emerg Care. 38:e1327–e1331. 2022. View Article : Google Scholar : PubMed/NCBI | |
Labban H, Begum F, Paracha A, John V and Islam M: Hemolytic anemia and pancytopenia secondary to vitamin B12 deficiency: Evaluation and clinical significance. Cureus. 16:e572862024.PubMed/NCBI | |
Henry BM, Aggarwal G, Wong J, Benoit S, Vikse J, Plebani M and Lippi G: Lactate dehydrogenase levels predict coronavirus disease 2019 (COVID-19) severity and mortality: A pooled analysis. Am J Emerg Med. 38:1722–1726. 2020. View Article : Google Scholar : PubMed/NCBI | |
Assiri A, Al-Tawfiq JA, Al-Rabeeah AA, Al-Rabiah FA, Al-Hajjar S, Al-Barrak A, Flemban H, Al-Nassir WN, Balkhy HH, Al-Hakeem RF, et al: Epidemiological, demographic, and clinical characteristics of 47 cases of Middle East respiratory syndrome coronavirus disease from Saudi Arabia: A descriptive study. Lancet Infect Dis. 13:752–761. 2013. View Article : Google Scholar : PubMed/NCBI | |
Martinez-Outschoorn UE, Prisco M, Ertel A, Tsirigos A, Lin Z, Pavlides S, Wang C, Flomenberg N, Knudsen ES, Howell A, et al: Ketones and lactate increase cancer cell 'stemness', driving recurrence, metastasis and poor clinical outcome in breast cancer: Achieving personalized medicine via metabolo-genomics. Cell Cycle. 10:1271–1286. 2011. View Article : Google Scholar : PubMed/NCBI | |
Lippi G and Favaloro EJ: D-dimer is associated with severity of coronavirus disease 2019: A pooled analysis. Thromb Haemost. 120:876–878. 2020. View Article : Google Scholar : PubMed/NCBI | |
Serrano-Lorenzo P, Coya ON, López-Jimenez A, Blázquez A, Delmiro A, Lucia A, Arenas J and Martín MA; COVID-19 '12 Octubre' Hospital Clinical Biochemistry Study Group: Plasma LDH: A specific biomarker for lung affectation in COVID-19? Pract Lab Med. 25:e002262021. View Article : Google Scholar : PubMed/NCBI | |
Zhou Y, Qi M and Yang M: Current status and future perspectives of lactate dehydrogenase detection and medical implications: A review. Biosensors (Basel). 12:11452022. View Article : Google Scholar : PubMed/NCBI | |
Panteghini M: Lactate dehydrogenase: an old enzyme reborn as a COVID-19 marker (and not only). Clin Chem Lab Med. 58:1979–1981. 2020. View Article : Google Scholar : PubMed/NCBI | |
Khan AA, Allemailem KS, Alhumaydhi FA, Gowder SJT and Rahmani AH: The biochemical and clinical perspectives of lactate dehydrogenase: An enzyme of active metabolism. Endocr Metab Immune Disord Drug Targets. 20:855–868. 2020. View Article : Google Scholar | |
Forkasiewicz A, Dorociak M, Stach K, Szelachowski P, Tabola R and Augoff K: The usefulness of lactate dehydrogenase measurements in current oncological practice. Cell Mol Biol Lett. 25:352020. View Article : Google Scholar : PubMed/NCBI | |
Fondy TP and Kaplan NO: Structural and functional properties of the H and M subunits of lactic dehydrogenases. Ann N Y Acad Sci. 119:888–904. 1965. View Article : Google Scholar : PubMed/NCBI | |
Hicks KG, Cluntun AA, Schubert HL, Hackett SR, Berg JA, Leonard PG, Ajalla Aleixo MA, Zhou Y, Bott AJ, Salvatore SR, et al: Protein-metabolite interactomics of carbohydrate metabolism reveal regulation of lactate dehydrogenase. Science. 379:996–1003. 2023. View Article : Google Scholar : PubMed/NCBI | |
Eniafe J and Jiang S: The functional roles of TCA cycle metabolites in cancer. Oncogene. 40:3351–3363. 2021. View Article : Google Scholar : PubMed/NCBI | |
Tufail M, Jiang CH and Li N: Altered metabolism in cancer: Insights into energy pathways and therapeutic targets. Mol Cancer. 23:2032024. View Article : Google Scholar : PubMed/NCBI | |
Schumann G and Klauke R: New IFCC reference procedures for the determination of catalytic activity concentrations of five enzymes in serum: Preliminary upper reference limits obtained in hospitalized subjects. Clin Chim Acta. 327:69–79. 2003. View Article : Google Scholar | |
Roman W: Quantitative estimation of lactate dehydrogenase isoenzymes in serum. I. Review of methods and distribution in human tissues. Enzymologia. 36:189–219. 1969.PubMed/NCBI | |
Du D, Liu C, Qin M, Zhang X, Xi T, Yuan S, Hao H and Xiong J: Metabolic dysregulation and emerging therapeutical targets for hepatocellular carcinoma. Acta Pharm Sin B. 12:558–580. 2022. View Article : Google Scholar : PubMed/NCBI | |
Gupta GS: The lactate and the lactate dehydrogenase in inflammatory diseases and major risk factors in COVID-19 patients. Inflammation. 45:2091–2123. 2022. View Article : Google Scholar : PubMed/NCBI | |
Han HS, Kang G, Kim JS, Choi BH and Koo SH: Regulation of glucose metabolism from a liver-centric perspective. Exp Mol Med. 48:e2182016. View Article : Google Scholar : PubMed/NCBI | |
Piccinin E, Villani G and Moschetta A: Metabolic aspects in NAFLD, NASH and hepatocellular carcinoma: The role of PGC1 coactivators. Nat Rev Gastroenterol Hepatol. 16:160–174. 2019. View Article : Google Scholar | |
Yang F, Hilakivi-Clarke L, Shaha A, Wang Y, Wang X, Deng Y, Lai J and Kang N: Metabolic reprogramming and its clinical implication for liver cancer. Hepatology. 78:1602–1624. 2023. View Article : Google Scholar : PubMed/NCBI | |
Yang Z, Yan C, Ma J, Peng P, Ren X, Cai S, Shen X, Wu Y, Zhang S, Wang X, et al: Lactylome analysis suggests lactylation-dependent mechanisms of metabolic adaptation in hepatocellular carcinoma. Nat Metab. 5:61–79. 2023. View Article : Google Scholar : PubMed/NCBI | |
Zhao Y, Li M, Yao X, Fei Y, Lin Z, Li Z, Cai K, Zhao Y and Luo Z: HCAR1/MCT1 regulates tumor ferroptosis through the lactate-mediated AMPK-SCD1 activity and its therapeutic implications. Cell Rep. 33:1084872020. View Article : Google Scholar : PubMed/NCBI | |
Vander Heiden MG, Cantley LC and Thompson CB: Understanding the Warburg effect: The metabolic requirements of cell proliferation. Science. 324:1029–1033. 2009. View Article : Google Scholar : PubMed/NCBI | |
Ganapathy-Kanniappan S: Molecular intricacies of aerobic glycolysis in cancer: Current insights into the classic metabolic phenotype. Crit Rev Biochem Mol Biol. 53:667–682. 2018. View Article : Google Scholar | |
Borrelli A, Bonelli P, Tuccillo FM, Goldfine ID, Evans JL, Buonaguro FM and Mancini A: Role of gut microbiota and oxidative stress in the progression of non-alcoholic fatty liver disease to hepatocarcinoma: Current and innovative therapeutic approaches. Redox Biol. 15:467–479. 2018. View Article : Google Scholar : PubMed/NCBI | |
Cheng Y, He J, Zuo B and He Y: Role of lipid metabolism in hepatocellular carcinoma. Discov Oncol. 15:2062024. View Article : Google Scholar : PubMed/NCBI | |
Guo D, Zhang X, Cui H, Yu D, Zhang H, Shi X, Pang C, Li J, Guo W and Zhang S: ACADL functions as a tumor suppressor in hepatocellular carcinoma metastasis by inhibiting matrix metalloproteinase 14. Front Oncol. 12:8214842022. View Article : Google Scholar : PubMed/NCBI | |
Cai J, Chen T, Jiang Z, Yan J, Ye Z, Ruan Y, Tao L, Shen Z, Liang X, Wang Y, et al: Bulk and single-cell transcriptome profiling reveal extracellular matrix mechanical regulation of lipid metabolism reprograming through YAP/TEAD4/ACADL axis in hepatocellular carcinoma. Int J Biol Sci. 19:2114–2131. 2023. View Article : Google Scholar : PubMed/NCBI | |
Ericksen RE, Lim SL, McDonnell E, Shuen WH, Vadiveloo M, White PJ, Ding Z, Kwok R, Lee P, Radda GK, et al: Loss of BCAA catabolism during carcinogenesis enhances mTORC1 activity and promotes tumor development and progression. Cell Metab. 29:1151–1165.e6. 2019. View Article : Google Scholar : PubMed/NCBI | |
Tian LY, Smit DJ and Jücker M: The Role of PI3K/AKT/mTOR signaling in hepatocellular carcinoma metabolism. Int J Mol Sci. 24:26522023. View Article : Google Scholar : PubMed/NCBI | |
Bao MHR and Wong CCL: Hypoxia, metabolic reprogramming, and drug resistance in liver cancer. Cells. 10:17152021. View Article : Google Scholar : PubMed/NCBI | |
Ng CKY, Dazert E, Boldanova T, Coto-Llerena M, Nuciforo S, Ercan C, Suslov A, Meier MA, Bock T, Schmidt A, et al: Integrative proteogenomic characterization of hepatocellular carcinoma across etiologies and stages. Nat Commun. 13:24362022. View Article : Google Scholar : PubMed/NCBI | |
An J, Oh M, Kim SY, Oh YJ, Oh B, Oh JH, Kim W, Jung JH, Kim HI, Kim JS, et al: PET-based radiogenomics supports mTOR pathway targeting for hepatocellular carcinoma. Clin Cancer Res. 28:1821–1831. 2022. View Article : Google Scholar : PubMed/NCBI | |
Chen J, Ding C, Chen Y, Hu W, Yu C, Peng C, Feng X, Cheng Q, Wu W, Lu Y, et al: ACSL4 reprograms fatty acid metabolism in hepatocellular carcinoma via c-Myc/SREBP1 pathway. Cancer Lett. 502:154–165. 2021. View Article : Google Scholar | |
Luo YD, Liu XY, Fang L, Yu HQ, Zhang YJ, Chen M, Zhang LD and Xie CM: Mutant Kras and mTOR crosstalk drives hepatocellular carcinoma development via PEG3/STAT3/BEX2 signaling. Theranostics. 12:7903–7919. 2022. View Article : Google Scholar : PubMed/NCBI | |
Lin D and Wu J: Hypoxia inducible factor in hepatocellular carcinoma: A therapeutic target. World J Gastroenterol. 21:12171–12178. 2015. View Article : Google Scholar : PubMed/NCBI | |
Wang F, Chen L, Kong D, Zhang X, Xia S, Liang B, Li Y, Zhou Y, Zhang Z, Shao J, et al: Canonical Wnt signaling promotes HSC glycolysis and liver fibrosis through an LDH-A/HIF-1α transcriptional complex. Hepatology. 79:606–623. 2024. View Article : Google Scholar | |
Faloppi L, Bianconi M, Memeo R, Casadei Gardini A, Giampieri R, Bittoni A, Andrikou K, Del Prete M, Cascinu S and Scartozzi M: Lactate dehydrogenase in hepatocellular carcinoma: something old, something new. Biomed Res Int. 2016:71962802016. View Article : Google Scholar : PubMed/NCBI | |
Feng J, Li J, Wu L, Yu Q, Ji J, Wu J, Dai W and Guo C: Emerging roles and the regulation of aerobic glycolysis in hepatocellular carcinoma. J Exp Clin Cancer Res. 39:1262020. View Article : Google Scholar : PubMed/NCBI | |
Vaupel P, Schmidberger H and Mayer A: The Warburg effect: Essential part of metabolic reprogramming and central contributor to cancer progression. Int J Radiat Biol. 95:912–919. 2019. View Article : Google Scholar : PubMed/NCBI | |
Zhang Y, Li W, Bian Y, Li Y and Cong L: Multifaceted roles of aerobic glycolysis and oxidative phosphorylation in hepatocellular carcinoma. PeerJ. 11:e147972023. View Article : Google Scholar : PubMed/NCBI | |
Manerba M, Di Ianni L, Govoni M, Roberti M, Recanatini M and Di Stefano G: LDH inhibition impacts on heat shock response and induces senescence of hepatocellular carcinoma cells. Eur J Pharm Sci. 105:91–8. 2017. View Article : Google Scholar : PubMed/NCBI | |
Sun Z, Liu L, Liang H and Zhang L: Nicotinamide mononucleotide induces autophagy and ferroptosis via AMPK/mTOR pathway in hepatocellular carcinoma. Mol Carcinog. 63:577–588. 2024. View Article : Google Scholar : PubMed/NCBI | |
Certo M, Tsai CH, Pucino V, Ho PC and Mauro C: Lactate modulation of immune responses in inflammatory versus tumour microenvironments. Nat Rev Immunol. 21:151–161. 2021. View Article : Google Scholar | |
Jeong DW, Cho IT, Kim TS, Bae GW, Kim IH and Kim IY: Effects of lactate dehydrogenase suppression and glycerol-3-phosphate dehydrogenase overexpression on cellular metabolism. Mol Cell Biochem. 284:1–8. 2006. View Article : Google Scholar : PubMed/NCBI | |
Xia L, Oyang L, Lin J, Tan S, Han Y, Wu N, Yi P, Tang L, Pan Q, Rao S, et al: The cancer metabolic reprogramming and immune response. Mol Cancer. 20:282021. View Article : Google Scholar : PubMed/NCBI | |
Lin J, Rao D, Zhang M and Gao Q: Metabolic reprogramming in the tumor microenvironment of liver cancer. J Hematol Oncol. 17:62024. View Article : Google Scholar : PubMed/NCBI | |
Zhang RN and Fan JG: Lipid metabolism-related long noncoding RNAs: A potential prognostic biomarker for hepatocellular carcinoma. World J Gastroenterol. 30:3799–3802. 2024. View Article : Google Scholar : PubMed/NCBI | |
Koukourakis MI, Kakouratos C, Kalamida D, Bampali Z, Mavropoulou S, Sivridis E and Giatromanolaki A: Hypoxia-inducible proteins HIF1α and lactate dehydrogenase LDH5, key markers of anaerobic metabolism, relate with stem cell markers and poor post-radiotherapy outcome in bladder cancer. Int J Radiat Biol. 92:353–363. 2016. View Article : Google Scholar : PubMed/NCBI | |
He W, Li Q and Li X: Acetyl-CoA regulates lipid metabolism and histone acetylation modification in cancer. Biochim Biophys Acta Rev Cancer. 1878:1888372023. View Article : Google Scholar | |
Zhao X, Jiang P, Deng X, Li Z, Tian F, Guo F, Li X and Wang S: Inhibition of mTORC1 signaling sensitizes hepatocellular carcinoma cells to glycolytic stress. Am J Cancer Res. 6:2289–2298. 2016.PubMed/NCBI | |
Sas Z, Cendrowicz E, Weinhäuser I and Rygiel TP: Tumor microenvironment of hepatocellular carcinoma: Challenges and opportunities for new treatment options. Int J Mol Sci. 23:37782022. View Article : Google Scholar : PubMed/NCBI | |
Fares J, Fares MY, Khachfe HH, Salhab HA and Fares Y: Molecular principles of metastasis: A hallmark of cancer revisited. Signal Transduct Target Ther. 5:282020. View Article : Google Scholar : PubMed/NCBI | |
Neophytou CM, Panagi M, Stylianopoulos T and Papageorgis P: The role of tumor microenvironment in cancer metastasis: Molecular mechanisms and therapeutic opportunities. Cancers (Basel). 13:20532021. View Article : Google Scholar : PubMed/NCBI | |
Peng X, He Z, Yuan D, Liu Z and Rong P: Lactic acid: The culprit behind the immunosuppressive microenvironment in hepatocellular carcinoma. Biochim Biophys Acta Rev Cancer. 1879:1891642024. View Article : Google Scholar : PubMed/NCBI | |
Luo Y, Li L, Chen X, Gou H, Yan K and Xu Y: Effects of lactate in immunosuppression and inflammation: Progress and prospects. Int Rev Immunol. 41:19–29. 2022. View Article : Google Scholar | |
Zhang Y, Zhai Z, Duan J, Wang X, Zhong J, Wu L, Li A, Cao M, Wu Y, Shi H, et al: Lactate: The mediator of metabolism and immunosuppression. Front Endocrinol (Lausanne). 13:9014952022. View Article : Google Scholar : PubMed/NCBI | |
Maeda M, Ko M, Mane MM, Cohen IJ, Shindo M, Vemuri K, Serganova I and Blasberg R: Genetic and drug inhibition of LDH-A: Effects on murine gliomas. Cancers (Basel). 14:23062022. View Article : Google Scholar : PubMed/NCBI | |
Sarkar T, Dhar S and Sa G: Tumor-infiltrating T-regulatory cells adapt to altered metabolism to promote tumor-immune escape. Curr Res Immunol. 2:132–141. 2021. View Article : Google Scholar | |
Verma S, Budhu S, Serganova I, Dong L, Mangarin LM, Khan JF, Bah MA, Assouvie A, Marouf Y, Schulze I, et al: Pharmacologic LDH inhibition redirects intratumoral glucose uptake and improves antitumor immunity in solid tumor models. J Clin Invest. 134:e1776062024. View Article : Google Scholar : PubMed/NCBI | |
O'Neill LA, Kishton RJ and Rathmell J: A guide to immunometabolism for immunologists. Nat Rev Immunol. 16:553–565. 2016. View Article : Google Scholar : PubMed/NCBI | |
Niu D, Luo T, Wang H, Xia Y and Xie Z: Lactic acid in tumor invasion. Clin Chim Acta. 522:61–69. 2021. View Article : Google Scholar : PubMed/NCBI | |
Han S, Bao X, Zou Y, Wang L, Li Y, Yang L, Liao A, Zhang X, Jiang X, Liang D, et al: d-lactate modulates M2 tumor-associated macrophages and remodels immunosuppressive tumor microenvironment for hepatocellular carcinoma. Sci Adv. 9:eadg26972023. View Article : Google Scholar : PubMed/NCBI | |
Jiang Y, Han Q, Zhao H and Zhang J: Promotion of epithelial-mesenchymal transformation by hepatocellular carcinoma-educated macrophages through Wnt2b/β-catenin/c-Myc signaling and reprogramming glycolysis. J Exp Clin Cancer Res. 40:132021. View Article : Google Scholar | |
Li D, Zhang T, Guo Y, Bi C, Liu M and Wang G: Biological impact and therapeutic implication of tumor-associated macrophages in hepatocellular carcinoma. Cell Death Dis. 15:4982024. View Article : Google Scholar : PubMed/NCBI | |
Jin M, Cao W, Chen B, Xiong M and Cao G: Tumor-derived lactate creates a favorable niche for tumor via supplying energy source for tumor and modulating the tumor microenvironment. Front Cell Dev Biol. 10:8088592022. View Article : Google Scholar : PubMed/NCBI | |
Ye J, Gao X, Huang X, Huang S, Zeng D, Luo W, Zeng C, Lu C, Lu L, Huang H, et al: Integrating single-cell and spatial transcriptomics to uncover and elucidate GP73-mediated pro-angiogenic regulatory networks in hepatocellular carcinoma. Research (Wash D C). 7:03872024.PubMed/NCBI | |
Wang S, Wang X, Shan Y, Tan Z, Su Y, Cao Y, Wang S, Dong J, Gu J and Wang Y: Region-specific cellular and molecular basis of liver regeneration after acute pericentral injury. Cell Stem Cell. 31:341–358.e7. 2024. View Article : Google Scholar : PubMed/NCBI | |
Hu S, Yang Z, Li L, Yan Q, Hu Y, Zhou F, Tan Y and Pei G: Salvianolic acid B alleviates liver injury by regulating lactate-mediated histone lactylation in macrophages. Molecules. 29:2362024. View Article : Google Scholar : PubMed/NCBI | |
Lei Y, Han P, Chen Y, Wang H, Wang S, Wang M, Liu J, Yan W, Tian D and Liu M: Protein arginine methyltransferase 3 promotes glycolysis and hepatocellular carcinoma growth by enhancing arginine methylation of lactate dehydrogenase A. Clin Transl Med. 12:e6862022. View Article : Google Scholar : PubMed/NCBI | |
Agarwala SS, Keilholz U, Gilles E, Bedikian AY, Wu J, Kay R, Stein CA, Itri LM, Suciu S and Eggermont AM: LDH correlation with survival in advanced melanoma from two large, randomised trials (Oblimersen GM301 and EORTC 18951). Eur J Cancer. 45:1807–1814. 2009. View Article : Google Scholar : PubMed/NCBI | |
Bouafia F, Drai J, Bienvenu J, Thieblemont C, Espinouse D, Salles G and Coiffier B: Profiles and prognostic values of serum LDH isoenzymes in patients with haematopoietic malignancies. Bull Cancer. 91:E229–E240. 2004.PubMed/NCBI | |
Ho J, de Moura MB, Lin Y, Vincent G, Thorne S, Duncan LM, Hui-Min L, Kirkwood JM, Becker D, Van Houten B and Moschos SJ: Importance of glycolysis and oxidative phosphorylation in advanced melanoma. Mol Cancer. 11:762012. View Article : Google Scholar : PubMed/NCBI | |
Rafaqat S, Sattar A, Khalid A and Rafaqat S: Role of liver parameters in diabetes mellitus-a narrative review. Endocr Regul. 57:200–220. 2023. View Article : Google Scholar : PubMed/NCBI | |
Dercle L, Ammari S, Roblin E, Bigorgne A, Champiat S, Taihi L, Plaian A, Hans S, Lakiss S, Tselikas L, et al: High serum LDH and liver metastases are the dominant predictors of primary cancer resistance to anti-PD(L)1 immunotherapy. Eur J Cancer. 177:80–93. 2022. View Article : Google Scholar : PubMed/NCBI | |
Zhu W and Huang Y: Research progress of serum biomarkers for early screening of hepatocellular carcinoma. Zhonghua Gan Zang Bing Za Zhi. 29:308–312. 2021.In Chinese. PubMed/NCBI | |
Liao XM, Zhao SR, Dai WC and Fan R: Research advances of metabolomics in early diagnosis of hepatocellular carcinoma. Zhonghua Gan Zang Bing Za Zhi. 30:803–808. 2022.In Chinese. PubMed/NCBI | |
Sevinc A, Sari R and Fadillioglu E: The utility of lactate dehydrogenase isoenzyme pattern in the diagnostic evaluation of malignant and nonmalignant ascites. J Natl Med Assoc. 97:79–84. 2005.PubMed/NCBI | |
Nagasue N: Changes in lactic dehydrogenase isoenzymes after hepatic artery ligation in patients with hepatic carcinoma. Gastroenterol Jpn. 10:150–156. 1975. View Article : Google Scholar : PubMed/NCBI | |
Yan Q, Sun YS, An R, Liu F, Fang Q, Wang Z, Xu T, Chen L and Du J: Application and progress of the detection technologies in hepatocellular carcinoma. Genes Dis. 10:1857–1869. 2022. View Article : Google Scholar : PubMed/NCBI | |
Faloppi L, Scartozzi M, Bianconi M, Svegliati Baroni G, Toniutto P, Giampieri R, Del Prete M, De Minicis S, Bitetto D, Loretelli C, et al: The role of LDH serum levels in predicting global outcome in HCC patients treated with sorafenib: Implications for clinical management. BMC Cancer. 14:1102014. View Article : Google Scholar : PubMed/NCBI | |
Wang T and Zhang KH: New blood biomarkers for the diagnosis of AFP-negative hepatocellular carcinoma. Front Oncol. 10:13162020. View Article : Google Scholar : PubMed/NCBI | |
Kong W, Zuo X, Liang H, Hu J, Zhang H, Wang X and Chen W: Prognostic value of lactate dehydrogenase in patients with hepatocellular carcinoma: A meta-analysis. Biomed Res Int. 2018:17231842018. View Article : Google Scholar | |
Augoff K and Grabowski K: Significance of lactate dehydrogenase measurements in diagnosis of malignancies. Pol Merkur Lekarski. 17:644–647. 2004.In Polish. | |
Lee SC, Kao MC, Yin SJ and Lin CY: Serum lactate dehydrogenase isoenzymes in patients with hepatocellular carcinoma. Taiwan Yi Xue Hui Za Zhi. 81:218–223. 1982.PubMed/NCBI | |
Urbańska K and Orzechowski A: Unappreciated role of LDHA and LDHB to control apoptosis and autophagy in tumor cells. Int J Mol Sci. 20:20852019. View Article : Google Scholar | |
Yuan C, Li Z, Wang Y, Qi B, Zhang W, Ye J, Wu H, Jiang H, Song LN, Yang J and Cheng J: Overexpression of metabolic markers PKM2 and LDH5 correlates with aggressive clinicopathological features and adverse patient prognosis in tongue cancer. Histopathology. 65:595–605. 2014. View Article : Google Scholar : PubMed/NCBI | |
Su K, Huang W, Li X, Xu K, Gu T, Liu Y, Song J, Qian K, Xu Y, Zeng H, et al: Evaluation of lactate dehydrogenase and alkaline phosphatase as predictive biomarkers in the prognosis of hepatocellular carcinoma and development of a new nomogram. J Hepatocell Carcinoma. 10:69–79. 2023. View Article : Google Scholar : PubMed/NCBI | |
Wu SJ, Lin YX, Ye H, Xiong XZ, Li FY and Cheng NS: Prognostic value of alkaline phosphatase, gamma-glutamyl transpeptidase and lactate dehydrogenase in hepatocellular carcinoma patients treated with liver resection. Int J Surg. 36:143–151. 2016. View Article : Google Scholar : PubMed/NCBI | |
Li J, Wu MF, Lu HW, Chen Q, Lin ZQ and Wang LJ: Pretreatment serum lactate dehydrogenase is an independent prognostic factor for patients receiving neoadjuvant chemotherapy for locally advanced cervical cancer. Cancer Med. 5:1863–1872. 2016. View Article : Google Scholar : PubMed/NCBI | |
Hu Z, Yuan Y, Hu Z, Liu Q, Fu Y, Hou J, Sun X, Li S, Duan W and Chen M: Development and validation of prognostic nomograms for hepatocellular carcinoma after hepatectomy based on inflammatory markers. J Hepatocell Carcinoma. 9:1403–1413. 2022. View Article : Google Scholar | |
Krishnamurthy K, Medina AM and Howard L: The utility of elevated serum lactate dehydrogenase in current clinical practice. Lab Med. 52:e17–e22. 2021. View Article : Google Scholar | |
Han L, Lin X, Yan Q, Gu C, Li M, Pan L, Meng Y, Zhao X, Liu S and Li A: PBLD inhibits angiogenesis via impeding VEGF/VEGFR2-mediated microenvironmental cross-talk between HCC cells and endothelial cells. Oncogene. 41:1851–1865. 2022. View Article : Google Scholar : PubMed/NCBI | |
Liu L, Cao Y, Chen C, Zhang X, McNabola A, Wilkie D, Wilhelm S, Lynch M and Carter C: Sorafenib blocks the RAF/MEK/ERK pathway, inhibits tumor angiogenesis, and induces tumor cell apoptosis in hepatocellular carcinoma model PLC/PRF/5. Cancer Res. 66:11851–11858. 2006. View Article : Google Scholar : PubMed/NCBI | |
Man S, Yao J, Lv P, Liu Y, Yang L and Ma L: Curcumin-enhanced antitumor effects of sorafenib via regulating the metabolism and tumor microenvironment. Food Funct. 11:6422–6432. 2020. View Article : Google Scholar : PubMed/NCBI | |
Sim DY, Lee HJ, Ahn CH, Park J, Park SY, Kil BJ, Shim BS, Kim B and Kim SH: Negative regulation of CPSF6 suppresses the warburg effect and angiogenesis leading to tumor progression via c-Myc signaling network: Potential therapeutic target for liver cancer therapy. Int J Biol Sci. 20:3442–3460. 2024. View Article : Google Scholar : PubMed/NCBI | |
Fiume L, Manerba M, Vettraino M and Di Stefano G: Inhibition of lactate dehydrogenase activity as an approach to cancer therapy. Future Med Chem. 6:429–445. 2014. View Article : Google Scholar : PubMed/NCBI | |
Miao P, Sheng S, Sun X, Liu J and Huang G: Lactate dehydrogenase A in cancer: A promising target for diagnosis and therapy. IUBMB Life. 65:904–910. 2013. View Article : Google Scholar : PubMed/NCBI | |
Schwab M, Thunborg K, Azimzadeh O, von Toerne C, Werner C, Shevtsov M, Di Genio T, Zdralevic M, Pouyssegur J, Renner K, et al: Targeting cancer metabolism breaks radioresistance by impairing the stress response. Cancers (Basel). 13:37622021. View Article : Google Scholar : PubMed/NCBI | |
Alobaidi B, Hashimi SM, Alqosaibi AI, AlQurashi N and Alhazmi S: Targeting the monocarboxylate transporter MCT2 and lactate dehydrogenase A LDHA in cancer cells with FX-11 and AR-C155858 inhibitors. Eur Rev Med Pharmacol Sci. 27:6605–6617. 2023.PubMed/NCBI | |
Li X, Lu P, Li B, Yang R, Chu Y, Zhang Z, Wan H, Niu C, Wang C and Luo K: Sensitization of hepatocellular carcinoma cells to irradiation by miR-34a through targeting lactate dehydrogenase-A. Mol Med Rep. 13:3661–3667. 2016. View Article : Google Scholar : PubMed/NCBI | |
Paul SK, Dutta Chowdhury K, Dey SR, Paul A and Haldar R: Exploring the possibility of drug repurposing for cancer therapy targeting human lactate dehydrogenase A: A computational approach. J Biomol Struct Dyn. 41:9967–9976. 2023. View Article : Google Scholar | |
Brower V: Sorafenib plus cisplatin for hepatocellular carcinoma. Lancet Oncol. 17:e4242016. View Article : Google Scholar : PubMed/NCBI | |
Han JH, Lee EJ, Park W, Ha KT and Chung HS: Natural compounds as lactate dehydrogenase inhibitors: Potential therapeutics for lactate dehydrogenase inhibitors-related diseases. Front Pharmacol. 14:12750002023. View Article : Google Scholar : PubMed/NCBI | |
Zheng R, Fang X, Chen X, Huang Y, Xu G, He L, Li Y, Niu X, Yang L, Wang L, et al: Knockdown of lactate dehydrogenase by adeno-associated virus-delivered CRISPR/Cas9 system alleviates primary hyperoxaluria type 1. Clin Transl Med. 10:e2612020. View Article : Google Scholar : PubMed/NCBI | |
Ariceta G, Barrios K, Brown BD, Hoppe B, Rosskamp R and Langman CB: Hepatic lactate dehydrogenase A: An RNA interference target for the treatment of all known types of primary hyperoxaluria. Kidney Int Rep. 6:1088–1098. 2021. View Article : Google Scholar : PubMed/NCBI | |
Tang Q and Khvorova A: RNAi-based drug design: Considerations and future directions. Nat Rev Drug Discov. 23:341–364. 2024. View Article : Google Scholar : PubMed/NCBI | |
Alshaer W, Zureigat H, Al Karaki A, Al-Kadash A, Gharaibeh L, Hatmal MM, Aljabali AAA and Awidi A: siRNA: Mechanism of action, challenges, and therapeutic approaches. Eur J Pharmacol. 905:1741782021. View Article : Google Scholar : PubMed/NCBI | |
Cheng X, Fan S, Wen C and Du X: CRISPR/Cas9 for cancer treatment: Technology, clinical applications and challenges. Brief Funct Genomics. 19:209–214. 2020. View Article : Google Scholar : PubMed/NCBI | |
Van Wilpe S, Koornstra R, Den Brok M, De Groot JW, Blank C, De Vries J, Gerritsen W and Mehra N: Lactate dehydrogenase: A marker of diminished antitumor immunity. Oncoimmunology. 9:17319422020. View Article : Google Scholar : PubMed/NCBI | |
Lin Y, Wang Y and Li PF: Mutual regulation of lactate dehydrogenase and redox robustness. Front Physiol. 13:10384212022. View Article : Google Scholar : PubMed/NCBI |