
Molecular targets and therapies associated with poor prognosis of triple‑negative breast cancer (Review)
- Authors:
- Eun-Sook Kim
-
Affiliations: College of Pharmacy, Duksung Women's University, Seoul 01369, Republic of Korea - Published online on: May 27, 2025 https://doi.org/10.3892/ijo.2025.5758
- Article Number: 52
-
Copyright: © Kim . This is an open access article distributed under the terms of Creative Commons Attribution License.
This article is mentioned in:
Abstract
![]() |
![]() |
Lehmann BD, Jovanović B, Chen X, Estrada MV, Johnson KN, Shyr Y, Moses HL, Sanders ME and Pietenpol JA: Refinement of triple-negative breast cancer molecular subtypes: Implications for neoadjuvant chemotherapy selection. PLoS One. 11:e01573682016. View Article : Google Scholar : PubMed/NCBI | |
Ismail-Khan R and Bui MM: A review of triple-negative breast cancer. Cancer Control. 17:173–176. 2010. View Article : Google Scholar : PubMed/NCBI | |
Perou CM: Molecular stratification of triple-negative breast cancers. Oncologist. 16(Suppl 1): S61–S70. 2011. View Article : Google Scholar | |
Bernardi R and Gianni L: Hallmarks of triple negative breast cancer emerging at last? Cell Res. 24:904–905. 2014. View Article : Google Scholar : PubMed/NCBI | |
Mehanna J, Haddad FG, Eid R, Lambertini M and Kourie HR: Triple-negative breast cancer: Current perspective on the evolving therapeutic landscape. Int J Womens Health. 11:431–437. 2019. View Article : Google Scholar : PubMed/NCBI | |
Prakash O, Hossain F, Danos D, Lassak A, Scribner R and Miele L: Racial disparities in triple negative breast cancer: A review of the role of biologic and non-biologic factors. Front Public Health. 8:5769642020. View Article : Google Scholar | |
Asleh K, Riaz N and Nielsen TO: Heterogeneity of triple negative breast cancer: Currentadvances in subtyping and treatment implications. J Exp Clin Cancer Res. 41:2652022. View Article : Google Scholar | |
Newton EE, Mueller LE, Treadwell SM, Morris CA and Machado HL: Molecular targets of triple-negative breast cancer: Where do we stand? Cancers (Basel). 14:4822022. View Article : Google Scholar : PubMed/NCBI | |
Zhang HP, Jiang RY, Zhu JY, Sun KN, Huang Y, Zhou HH, Zheng YB and Wang XJ: PI3K/AKT/mTOR signaling pathway: An important driver and therapeutic target in triple-negative breast cancer. Breast Cancer. 31:539–551. 2024. View Article : Google Scholar : PubMed/NCBI | |
Atchley DP, Albarracin CT, Lopez A, Valero V, Amos CI, Gonzalez-Angulo AM, Hortobagyi GN and Arun BK: Clinical and pathologic characteristics of patients with BRCA-positive and BRCA-negative breast cancer. J Clin Oncol. 26:4282–4288. 2008. View Article : Google Scholar : PubMed/NCBI | |
Porta FM, Sajjadi E, Venetis K, Frascarelli C, Cursano G, Guerini-Rocco E, Fusco N and Ivanova M: Immune biomarkers in triple-negative breast cancer: Improving the predictivity of current testing methods. J Pers Med. 13:11762023. View Article : Google Scholar : PubMed/NCBI | |
Ricciardi GR, Adamo B, Ieni A, Licata L, Cardia R, Ferraro G, Franchina T, Tuccari G and Adamo V: Androgen receptor (AR), E-cadherin, and Ki-67 as emerging targets and novel prognostic markers in triple-negative breast cancer (TNBC) patients. PLoS One. 10:e01283682015. View Article : Google Scholar : PubMed/NCBI | |
Gerdes J, Li L, Schlueter C, Duchrow M, Wohlenberg C, Gerlach C, Stahmer I, Kloth S, Brandt E and Flad HD: Immunobiochemical and molecular biologic characterization of the cell proliferation-associated nuclear antigen that is defined by monoclonal antibody Ki-67. Am J Pathol. 138:867–873. 1991.PubMed/NCBI | |
Schlüter C, Duchrow M, Wohlenberg C, Becker MH, Key G, Flad HD and Gerdes J: The cell proliferation-associated antigen of antibody Ki-67: A very large, ubiquitous nuclear protein with numerous repeated elements, representing a new kind of cell cycle-maintaining proteins. J Cell Biol. 123:513–522. 1993. View Article : Google Scholar : PubMed/NCBI | |
Selz J, Stevens D, Jouanneau L, Labib A and Le Scodan R: Prognostic value of molecular subtypes, ki67 expression and impact of postmastectomy radiation therapy in breast cancer patients with negative lymph nodes after mastectomy. Int J Radiat Oncol Bio Phys. 84:1123–1132. 2012. View Article : Google Scholar | |
Sobecki M, Mrouj K, Camasses A, Parisis N, Nicolas E, Llères D, Gerbe F, Prieto S, Krasinska L, David A, et al: The cell proliferation antigen Ki-67 organises heterochromatin. Elife. 5:e137222016. View Article : Google Scholar : PubMed/NCBI | |
Ishida S, Huang E, Zuzan H, Spang R, Leone G, West M and Nevins JR: Role for E2F in control of both DNA replication and mitotic functions as revealed from DNA microarray analysis. Mol Cell Biol. 21:4684–4699. 2001. View Article : Google Scholar : PubMed/NCBI | |
Sobecki M, Mrouj K, Colinge J, Gerbe F, Jay P, Krasinska L, Dulic V and Fisher D: Cell-cycle regulation accounts for variability in Ki-67 expression levels. Cancer Res. 77:2722–2734. 2017. View Article : Google Scholar : PubMed/NCBI | |
Keam B, Im SA, Lee KH, Han SW, Oh DY, Kim JH, Lee SH, Han W, Kim DW, Kim TY, et al: Ki-67 can be used for further classification of triple negative breast cancer into two subtypes with different response and prognosis. Breast Cancer Res. 13:R222011. View Article : Google Scholar : PubMed/NCBI | |
Li XQ, Pei DS, Qian GW, Yin XX, Cheng Q, Li LT and Zheng JN: The effect of methylated oligonucleotide targeting Ki-67 gene in human 786-0 renal carcinoma cells. Tumour Biol. 32:863–873. 2011. View Article : Google Scholar : PubMed/NCBI | |
Scholl SM, Pierga JY, Asselain B, Beuzeboc P, Dorval T, Garcia-Giralt E, Jouve M, Palangié T, Remvikos Y, Durand JC, et al: Breast tumour response to primary chemotherapy predicts local and distant control as well as survival. Eur J Cancer. 31A:1969–1975. 1995. View Article : Google Scholar : PubMed/NCBI | |
Benini E, Rao S, Daidone MG, Pilotti S and Silvestrini R: Immunoreactivity to MIB-1 in breast cancer: Methodological assessment and comparison with other proliferation indices. Cell Prolif. 30:107–115. 1997. View Article : Google Scholar : PubMed/NCBI | |
Dowsett M, Nielsen TO, A'Hern R, Bartlett J, Coombes RC, Cuzick J, Ellis M, Henry NL, Hugh JC, Lively T, et al: Assessment of Ki67 in breast cancer: Recommendations from the International Ki67 in Breast Cancer working group. J Natl Cancer Inst. 103:1656–1664. 2011. View Article : Google Scholar : PubMed/NCBI | |
Urruticoechea A, Smith IE and Dowsett M: Proliferation marker Ki-67 in early breast cancer. J Clin Oncol. 23:7212–7220. 2005. View Article : Google Scholar : PubMed/NCBI | |
Cattoretti G, Becker MH, Key G, Duchrow M, Schlüter C, Galle J and Gerdes J: Monoclonal antibodies against recombinant parts of the Ki-67 antigen (MIB 1 and MIB 3) detect proliferating cells in microwave-processed formalin-fixed paraffin sections. J Pathol. 168:357–363. 1992. View Article : Google Scholar : PubMed/NCBI | |
Muftah AA, Aleskandarany MA, Al-Kaabi MM, Sonbul SN, Diez-Rodriguez M, Nolan CC, Caldas C, Ellis IO, Rakha EA and Green AR: Ki67 expression in invasive breast cancer: The use of tissue microarrays compared with whole tissue sections. Breast Cancer Res Treat. 164:341–348. 2017. View Article : Google Scholar : PubMed/NCBI | |
Viale G, Hanlon Newell AE, Walker E, Harlow G, Bai I, Russo L, Dell'Orto P and Maisonneuve P: Ki-67 (30-9) scoring and differentiation of luminal A- and luminal B-like breast cancer subtypes. Breast Cancer Res Treat. 178:451–458. 2019. View Article : Google Scholar : PubMed/NCBI | |
Wu Q, Ma G, Deng Y, Luo W, Zhao Y, Li W and Zhou Q: Prognostic value of Ki-67 in patients with resected triple-negative breast cancer: A meta-analysis. Front Oncol. 9:10682019. View Article : Google Scholar : PubMed/NCBI | |
Goldhirsch A, Winer EP, Coates AS, Gelber RD, Piccart-Gebhart M, Thürlimann B and Senn HJ; Panel members: Personalizing the treatment of women with early breast cancer: Highlights of the St Gallen international expert consensus on the primary therapy of early breast cancer 2013. Ann Oncol. 24:2206–2223. 2013. View Article : Google Scholar : PubMed/NCBI | |
Penault-Llorca F and Radosevic-Robin N: Ki67 assessment in breast cancer: An update. Pathology. 49:166–171. 2017. View Article : Google Scholar : PubMed/NCBI | |
Boussiotis VA: Molecular and biochemical aspects of the PD-1 checkpoint pathway. N Engl J Med. 375:1767–1778. 2016. View Article : Google Scholar : PubMed/NCBI | |
Kythreotou A, Siddique A, Mauri FA, Bower M and Pinato DJ: PD-L1. J Clin Pathol. 71:189–194. 2018. View Article : Google Scholar | |
Thomas R, Al-Khadairi G and Decock J: Immune checkpoint inhibitors in triple negative breast cancer treatment: Promising future prospects. Front Oncol. 10:6005732021. View Article : Google Scholar : PubMed/NCBI | |
Mittendorf EA, Philips AV, Meric-Bernstam F, Qiao N, Wu Y, Harrington S, Su X, Wang Y, Gonzalez-Angulo AM, Akcakanat A, et al: PD-L1 expression in triple-negative breast cancer. Cancer Immunol Res. 2:361–370. 2014. View Article : Google Scholar : PubMed/NCBI | |
Oner G, Önder S, Karatay H, Ak N, Tükenmez M, Müslümanoğlu M, İğci A, Dincçağ A, Özmen V, Aydiner A, et al: Correction: Clinical impact of PD-L1 expression in triplenegative breast cancer patients with residual tumor burden after neoadjuvant chemotherapy. World J Surg Oncol. 21:542023. View Article : Google Scholar | |
Schmid P, Adams S, Rugo HS, Schneeweiss A, Barrios CH, Iwata H, Diéras V, Hegg R, Im SA, Shaw Wright G, et al: Atezolizumab and nab-paclitaxel in advanced triple-negative breast cancer. N Engl J Med. 379:2108–2121. 2018. View Article : Google Scholar : PubMed/NCBI | |
Dong H, Strome SE, Salomao DR, Tamura H, Hirano F, Flies DB, Roche PC, Lu J, Zhu G, Tamada K, et al: Tumor-associated B7-H1 promotes T-cell apoptosis: A potential mechanism of immune evasion. Nat Med. 8:793–800. 2002. View Article : Google Scholar : PubMed/NCBI | |
Parsa AT, Waldron JS, Panner A, Crane CA, Parney IF, Barry JJ, Cachola KE, Murray JC, Tihan T, Jensen MC, et al: Loss of tumor suppressor PTEN function increases B7-H1 expression and immunoresistance in glioma. Nat Med. 13:84–88. 2007. View Article : Google Scholar | |
Gonzalez-Angulo AM, Ferrer-Lozano J, Stemke-Hale K, Sahin A, Liu S, Barrera JA, Burgues O, Lluch AM, Chen H, Hortobagyi GN, et al: PI3K pathway mutations and PTEN levels in primary and metastatic breast cancer. Mol Cancer Ther. 10:1093–1101. 2011. View Article : Google Scholar : PubMed/NCBI | |
Cancer Genome Atlas Network: Comprehensive molecular portraits of human breast tumours. Nature. 490:61–70. 2012. View Article : Google Scholar : PubMed/NCBI | |
Loi SM: Tumor-infiltrating lymphocytes, breast cancer subtypes and therapeutic efficacy. OncoImmunology. 2:e247202013. View Article : Google Scholar : PubMed/NCBI | |
Dieci MV, Tsvetkova V, Orvieto E, Piacentini F, Ficarra G, Griguolo G, Miglietta F, Giarratano T, Omarini C, Bonaguro S, et al: Immune characterization of breast cancer metastases: Prognostic implications. Breast Cancer Res. 20:622018. View Article : Google Scholar : PubMed/NCBI | |
Yeong J, Lim JCT, Lee B, Li H, Ong CCH, Thike AA, Yeap WH, Yang Y, Lim AYH, Tay TKY, et al: Prognostic value of CD8 + PD-1+ immune infiltrates and PDCD1 gene expression in triple negative breast cancer. J Immunother Cancer. 7:342019. View Article : Google Scholar | |
Lotfinejad P, Asghari Jafarabadi M, Abdoli Shadbad M, Kazemi T, Pashazadeh F, Sandoghchian Shotorbani S, Jadidi Niaragh F, Baghbanzadeh A, Vahed N, Silvestris N and Baradaran B: Prognostic role and clinical significance of tumor-infiltrating lymphocyte (TIL) and programmed death ligand 1 (PD-L1) expression in triple-negative breast cancer (TNBC): A systematic review and meta-analysis study. Diagnostics (Basel). 10:7042020. View Article : Google Scholar : PubMed/NCBI | |
Mittendorf EA, Zhang H, Barrios CH, Saji S, Jung KH, Hegg R, Koehler A, Sohn J, Iwata H, Telli ML, et al: Neoadjuvant atezolizumab in combination with sequential nab-paclitaxel and anthracycline-based chemotherapy versus placebo and chemotherapy in patients with early-stage triple-negative breast cancer (IMpassion031): A randomised, double-blind, phase 3 trial. Lancet. 396:1090–1100. 2020. View Article : Google Scholar : PubMed/NCBI | |
Baretta Z, Mocellin S, Goldin E, Olopade OI and Huo D: Effect of BRCA germline mutations on breast cancer prognosis: A systematic review and meta-analysis. Medicine (Baltimore). 95:e49752016. View Article : Google Scholar : PubMed/NCBI | |
Hughes DJ, Ginolhac SM, Coupier I Corbex M, Bressac-de-Paillerets B, Chompret A, Bignon YJ, Uhrhammer N, Lasset C, Giraud S, et al: Common BRCA2 variants and modification of breast and ovarian cancer risk in BRCA1 mutation carriers. Cancer Epidemiol Biomarkers Prev. 14:265–267. 2005. View Article : Google Scholar : PubMed/NCBI | |
Xu K, Yang S and Zhao Y: Prognostic significance of BRCA mutations in ovarian cancer: An updated systematic review with meta-analysis. Oncotarget. 8:285–302. 2017. View Article : Google Scholar : | |
Nanda R, Schumm LP, Cummings S, Fackenthal JD, Sveen L, Ademuyiwa F, Cobleigh M, Esserman L, Lindor NM, Neuhausen SL and Olopade OI: Genetic testing in an ethnically diverse cohort of high-risk women: A comparative analysis of BRCA1 and BRCA2 mutations in American families of European and African ancestry. JAMA. 294:1925–1933. 2005. View Article : Google Scholar : PubMed/NCBI | |
Wong-Brown MW, Meldrum CJ, Carpenter JE, Clarke CL, Narod SA, Jakubowska A, Rudnicka H, Lubinski J and Scott RJ: Prevalence of BRCA1 and BRCA2 germline mutations in patients with triple-negative breast cancer. Breast Cancer Res Treat. 150:71–80. 2015. View Article : Google Scholar : PubMed/NCBI | |
Bianchini G, Balko JM, Mayer IA, Sanders ME and Gianni L: Triple-negative breast cancer: Challenges and opportunities of a heterogeneous disease. Nat Rev Clin Oncol. 13:674–690. 2016. View Article : Google Scholar : PubMed/NCBI | |
Lee EH, Park SK, Park B, Kim SW, Lee MH, Ahn SH, Son BH, Yoo KY and Kang D; KOHBRA Research Group; Korean Breast Cancer Society: Effect of BRCA1/2 mutation on short-term and long-term breast cancer survival: A systematic review and meta-analysis. Breast Cancer Res Treat. 122:11–25. 2010. View Article : Google Scholar : PubMed/NCBI | |
Stoppa-Lyonnet D: The biological effects and clinical implications of BRCA mutations: Where do we go from here? Eur J Hum Genet. 24(Suppl 1): S3–S9. 2016. View Article : Google Scholar : PubMed/NCBI | |
Wu L, Wang F, Xu R, Zhang S, Peng X, Feng Y, Wang J and Lu C: Promoter methylation of BRCA1 in the prognosis of breast cancer: A meta-analysis. Breast Cancer Res Treat. 142:619–627. 2013. View Article : Google Scholar : PubMed/NCBI | |
Wang C, Zhang J, Wang Y, Ouyang T, Li J, Wang T, Fan Z, Fan T, Lin B and Xie Y: Prevalence of BRCA1 mutations and responses to neoadjuvant chemotherapy among BRCA1 carriers and non-carriers with triple-negative breast cancer. Ann Oncol. 26:523–528. 2015. View Article : Google Scholar | |
Paluch-Shimon S, Friedman E, Berger R, Papa M, Dadiani M, Friedman N, Shabtai M, Zippel D, Gutman M, Golan T, et al: Neo-adjuvant doxorubicin and cyclophosphamide followed by paclitaxel in triple-negative breast cancer among BRCA1 mutation carriers and non-carriers. Breast Cancer Res Treat. 157:157–165. 2016. View Article : Google Scholar : PubMed/NCBI | |
Fu X, Tan W, Song Q, Pei H and Li J: BRCA1 and breast cancer: Molecular mechanisms and therapeutic strategies. Front Cell Dev Biol. 10:8134572022. View Article : Google Scholar : PubMed/NCBI | |
Turk AA and Wisinski KB: PARP inhibitors in breast cancer: Bringing synthetic lethality to the bedside. Cancer. 124:2498–2506. 2018. View Article : Google Scholar : PubMed/NCBI | |
Meyer P, Landgraf K, Högel B, Eiermann W and Ataseven B: BRCA2 mutations and triple-negative breast cancer. PLoS One. 7:e383612012. View Article : Google Scholar : PubMed/NCBI | |
Mendonsa AM, Na TY and Gumbiner BM: E-cadherin in contact inhibition and cancer. Oncogene. 37:4769–4780. 2018. View Article : Google Scholar : PubMed/NCBI | |
Shen T, Zhang K, Siegal GP and Wei S: Prognostic value of E-cadherin and β-catenin in triple-negative breast cancer. Am J Clin Pathol. 146:603–610. 2016. View Article : Google Scholar : PubMed/NCBI | |
Liu JB, Feng CY, Deng M, Ge DF, Liu DC, Mi JQ and Feng XS: E-cadherin expression phenotypes associated with molecular subtypes in invasive non-lobular breast cancer: Evidence from a retrospective study and meta-analysis. World J Surg Oncol. 15:1392017. View Article : Google Scholar : PubMed/NCBI | |
Fang Y, Wang Y, Ma H, Guo Y, Xu R, Chen X, Chen X, Lv Y, Li P and Gao Y: TFAP2A downregulation mediates tumor-suppressive effect of miR-8072 in triple-negative breast cancer via inhibiting SNAI1 transcription. Breast Cancer Res. 26:1032024. View Article : Google Scholar : PubMed/NCBI | |
Tang D, Xu S, Zhang Q and Zhao W: The expression and clinical significance of the androgen receptor and E-cadherin in triple-negative breast cancer. Med Oncol. 29:526–533. 2012. View Article : Google Scholar | |
Merikhian P, Eisavand MR and Farahmand L: Triple-negative breast cancer: Understanding Wnt signaling in drug resistance. Cancer Cell Int. 21:4192021. View Article : Google Scholar : PubMed/NCBI | |
Loh CY, Chai JY, Tang TF, Wong WF, Sethi G, Shanmugam MK, Chong PP and Looi CY: The E-cadherin and N-cadherin switch in epithelial-to-mesenchymal transition: Signaling, therapeutic implications, and challenges. Cells. 8:11182019. View Article : Google Scholar : PubMed/NCBI | |
De Leeuw WJ, Berx G, Vos CB, Peterse JL, Van de Vijver MJ, Litvinov S, Van Roy F, Cornelisse CJ and Cleton-Jansen AM: Simultaneous loss of E-cadherin and catenins in invasive lobular breast cancer and lobular carcinoma in situ. J Pathol. 183:404–411. 1997. View Article : Google Scholar | |
Corso G, Figueiredo J, De Angelis SP, Corso F, Girardi A, Pereira J, Seruca R, Bonanni B, Carneiro P, Pravettoni G, et al: E-cadherin deregulation in breast cancer. J Cell Mol Med. 24:5930–5936. 2020. View Article : Google Scholar : PubMed/NCBI | |
Droufakou S, Deshmane V, Roylance R, Hanby A, Tomlinson I and Hart IR: Multiple ways of silencing E-cadherin gene expression in lobular carcinoma of the breast. Int J Cancer. 92:404–408. 2001. View Article : Google Scholar : PubMed/NCBI | |
Brouxhon SM, Kyrkanides S, Teng X, O'Banion MK, Clarke R, Byers S and Ma L: Soluble-E-cadherin activates HER and IAP family members in HER2+ and TNBC human breast cancers. Mol Carcinog. 53:893–906. 2014. View Article : Google Scholar | |
Kuhn PM, Russo GC, Crawford AJ, Venkatraman A, Yang N, Starich BA, Schneiderman Z, Wu PH, Vo T, Wirtz D and Kokkoli E: Local, sustained, and targeted co-delivery of MEK inhibitor and doxorubicin inhibits tumor progression in E-cadherin-positive breast cancer. Pharmaceutics. 16:9812024. View Article : Google Scholar : PubMed/NCBI | |
De Schepper M, Vincent-Salomon A, Christgen M, Van Baelen K, Richard F, Tsuda H, Kurozumi S, Brito MJ, Cserni G, Schnitt S, et al: Results of a worldwide survey on the currently used histopathological diagnostic criteria for invasive lobular breast cancer. Mod Pathol. 35:1812–1820. 2022. View Article : Google Scholar : PubMed/NCBI | |
Pai K, Baliga P and Shrestha BL: E-cadherin expression: A diagnostic utility for differentiating breast carcinomas with ductal and lobular morphologies. J Clin Diagn Res. 7:840–844. 2013.PubMed/NCBI | |
Curtis C, Shah SP, Chin SF, Turashvili G, Rueda OM, Dunning MJ, Speed D, Lynch AG, Samarajiwa S, Yuan Y, et al: The genomic and transcriptomic architecture of 2,000 breast tumours reveals novel subgroups. Nature. 486:346–352. 2012. View Article : Google Scholar : PubMed/NCBI | |
Padmanaban V, Krol I, Suhail Y, Szczerba BM, Aceto N, Bader JS and Ewald AJ: E-cadherin is required for metastasis in multiple models of breast cancer. Nature. 573:439–444. 2019. View Article : Google Scholar : PubMed/NCBI | |
Russo GC, Crawford AJ, Clark D, Cui J, Carney R, Karl MN, Su B, Starich B, Lih TS, Kamat P, et al: E-cadherin interacts with EGFR resulting in hyper-activation of ERK in multiple models of breast cancer. Oncogene. 43:1445–1462. 2024. View Article : Google Scholar : PubMed/NCBI | |
Paez JG, Jänne PA, Lee JC, Tracy S, Greulich H, Gabriel S, Herman P, Kaye FJ, Lindeman N, Boggon TJ, et al: EGFR mutations in lung cancer: Correlation with clinical response to gefitinib therapy. Science. 304:1497–1500. 2004. View Article : Google Scholar : PubMed/NCBI | |
Song H, Wu T, Xie D, Li D, Hua K, Hu J and Fang L: WBP2 downregulation inhibits proliferation by blocking YAP transcription and the EGFR/PI3K/Akt signaling pathway in triple negative breast cancer. Cell Physiol Biochem. 48:1968–1982. 2018. View Article : Google Scholar : PubMed/NCBI | |
Kim S, You D, Jeong Y, Yu J, Kim SW, Nam SJ and Lee JE: Berberine down-regulates IL-8 expression through inhibition of the EGFR/MEK/ERK pathway in triple-negative breast cancer cells. Phytomedicine. 50:43–49. 2018. View Article : Google Scholar : PubMed/NCBI | |
Mok TS, Wu YL, Thongprasert S, Yang CH, Chu DT, Saijo N, Sunpaweravong P, Han B, Margono B, Ichinose Y, et al: Gefitinib or carboplatin-paclitaxel in pulmonary adenocarcinoma. N Engl J Med. 361:947–957. 2009. View Article : Google Scholar : PubMed/NCBI | |
Mitsudomi T, Morita S, Yatabe Y, Negoro S, Okamoto I, Tsurutani J, Seto T, Satouchi M, Tada H, Hirashima T, et al: Gefitinib versus cisplatin plus docetaxel in patients with non-small-cell lung cancer harbouring mutations of the epidermal growth factor receptor (WJTOG3405): An open label, randomised phase 3 trial. Lancet Oncol. 11:121–128. 2010. View Article : Google Scholar | |
Zhou C, Wu YL, Chen G, Feng J, Liu XQ, Wang C, Zhang S, Wang J, Zhou S, Ren S, et al: Erlotinib versus chemotherapy as first-line treatment for patients with advanced EGFR mutation-positive non-small-cell lung cancer (OPTIMAL, CTONG-0802): A multicentre, open-label, randomised, phase 3 study. Lancet Oncol. 12:735–742. 2011. View Article : Google Scholar : PubMed/NCBI | |
Arrieta O, Cardona AF, Federico Bramuglia G, Gallo A, Campos-Parra AD, Serrano S, Castro M, Avilés A, Amorin E, Kirchuk R, et al: Genotyping non-small cell lung cancer (NSCLC) in Latin America. J Thorac Oncol. 6:1955–1959. 2011. View Article : Google Scholar : PubMed/NCBI | |
Tilch E, Seidens T, Cocciardi S, Reid LE, Byrne D, Simpson PT, Vargas AC, Cummings C, Fox SB, Lakhani SR and Chenevix Trench G: Mutations in EGFR, BRAF and RAS are rare in triple-negative and basal-like breast cancers from Caucasian women. Breast Cancer Res Treat. 143:385–392. 2014. View Article : Google Scholar | |
Jacot W, Lopez-Crapez E, Thezenas S, Senal R, Fina F, Bibeau F, Romieu G and Lamy PJ: Lack of EGFR-activating mutations in European patients with triple-negative breast cancer could emphasise geographic and ethnic variations in breast cancer mutation profiles. Breast Cancer Res. 13:R1332011. View Article : Google Scholar : PubMed/NCBI | |
Rosell R, Moran T, Queralt C, Porta R, Cardenal F, Camps C, Majem M, Lopez-Vivanco G, Isla D, Provencio M, et al: Screening for epidermal growth factor receptor mutations in lung cancer. N Engl J Med. 361:958–967. 2009. View Article : Google Scholar : PubMed/NCBI | |
Shigematsu H, Lin L, Takahashi T, Nomura M, Suzuki M, Wistuba II, Fong KM, Lee H, Toyooka S, Shimizu N, et al: Clinical and biological features associated with epidermal growth factor receptor gene mutations in lung cancers. J Natl Cancer Inst. 97:339–346. 2005. View Article : Google Scholar : PubMed/NCBI | |
Pallis AG, Voutsina A, Kalikaki A, Souglakos J, Briasoulis E, Murray S, Koutsopoulos A, Tripaki M, Stathopoulos E, Mavroudis D and Georgoulias V: 'Classical' but not 'other' mutations of EGFR kinase domain are associated with clinical outcome in gefitinib-treated patients with non-small cell lung cancer. Br J Cancer. 97:1560–1566. 2007. View Article : Google Scholar : PubMed/NCBI | |
Yamane H, Ochi N, Yasugi M, Tabayashi T, Yamagishi T, Monobe Y, Hisamoto A, Kiura K and Takigawa N: Docetaxel for non-small-cell lung cancer harboring the activated EGFR mutation with T790M at initial presentation. Onco Targets Ther. 6:155–160. 2013. View Article : Google Scholar : PubMed/NCBI | |
Lee HJ, Kim YT, Kang CH, Zhao B, Tan Y, Schwartz LH, Persigehl T, Jeon YK and Chung DH: Epidermal growth factor receptor mutation in lung adenocarcinomas: Relationship with CT characteristics and histologic subtypes. Radiology. 268:254–264. 2013. View Article : Google Scholar : PubMed/NCBI | |
Gupta GK, Collier AL, Lee D, Hoefer RA, Zheleva V, Siewertsz van Reesema LL, Tang-Tan AM, Guye ML, Chang DZ, Winston JS, et al: Perspectives on triple-negativebreast cancer: Current treatment strategies, unmet needs, and potential targets for future therapies. Cancers (Basel). 12:23922020. View Article : Google Scholar | |
Gumuskaya B, Alper M, Hucumenoglu S, Altundag K, Uner A and Guler G: EGFR expression and gene copy number in triple-negative breast carcinoma. Cancer Genet Cytogenet. 203:222–229. 2010. View Article : Google Scholar : PubMed/NCBI | |
Nakai K, Hung MC and Yamaguchi H: A perspective on anti-EGFR therapies targeting triple-negative breast cancer. Am J Cancer Res. 6:1609–1623. 2016.PubMed/NCBI | |
Choi J, Jung WH and Koo JS: Clinicopathologic features of molecular subtypes of triple negative breast cancer based on immunohistochemical markers. Histol Histopathol. 27:1481–1493. 2012.PubMed/NCBI | |
Tan DSP, Marchió C, Jones RL, Savage K, Smith IE, Dowsett M and Reis-Filho JS: Triple negative breast cancer: Molecular profiling and prognostic impact in adjuvant anthracycline-treated patients. Breast Cancer Res Treat. 111:27–44. 2008. View Article : Google Scholar | |
Martin V, Botta F, Zanellato E, Molinari F, Crippa S, Mazzucchelli L and Frattini M: Molecular characterization of EGFR and EGFR-downstream pathways in triple negative breast carcinomas with basal like features. Histol Histopathol. 27:785–792. 2012.PubMed/NCBI | |
Meseure D, Vacher S, Drak Alsibai K, Trassard M, Susini A, Le Ray C, Lerebours F, Le Scodan R, Spyratos F, Marc Guinebretiere J, et al: Profiling of EGFR mRNA and protein expression in 471 breast cancers compared with 10 normal tissues: A candidate biomarker to predict EGFR inhibitor effectiveness. Int J Cancer. 131:1009–1010. 2012. View Article : Google Scholar | |
Medić-Milijić N, Jovanić I, Nedeljković M, Marković I, Spurnić I, Milovanović Z, Ademović N, Tomić T and Tanić N and Tanić N: Prognostic and clinical significance of PD-L1, EGFR and androgen receptor (AR) expression in triple-negative breast cancer (TNBC) patients. Life (Basel). 14:6822024. | |
Ueno NT and Zhang D: Targeting EGFR in Triple negative breast cancer. J Cancer. 2:324–328. 2011. View Article : Google Scholar : PubMed/NCBI | |
Miricescu D, Totan A, Stanescu-Spinu II, Badoiu SC, Stefani C and Greabu M: PI3K/AKT/mTOR signaling pathway in breast cancer: From molecular landscape to clinical aspects. Int J Mol Sci. 22:1732020. View Article : Google Scholar : PubMed/NCBI | |
Pascual J and Turner NC: Targeting the PI3-kinase pathway in triple-negative breast cancer. Ann Oncol. 30:1051–1060. 2019. View Article : Google Scholar : PubMed/NCBI | |
Fruman DA, Chiu H, Hopkins BD, Bagrodia S, Cantley LC and Abraham RT: The PI3K pathway in human disease. Cell. 170:605–635. 2017. View Article : Google Scholar : PubMed/NCBI | |
Yoshida T and Delafontaine P: Mechanisms of IGF-1-mediated regulation of skeletal muscle hypertrophy and atrophy. Cells. 9:19702020. View Article : Google Scholar : PubMed/NCBI | |
Shi X, Wang J, Lei Y, Cong C, Tan D and Zhou X: Research progress on the PI3K/AKT signaling pathway in gynecological cancer (Review). Mol. Med. Rep. 19:4529–4535. 2019.PubMed/NCBI | |
Revathidevi S and Munirajan AK: Akt in cancer: Mediator and more. Semin Cancer Biol. 59:80–91. 2019. View Article : Google Scholar : PubMed/NCBI | |
Carpten JD, Faber AL, Horn C, Donoho GP, Briggs SL, Robbins CM, Hostetter G, Boguslawski S, Moses TY, Savage S, et al: A transforming mutation in the pleckstrin homology domain of AKT1 in cancer. Nature. 448:439–444. 2007. View Article : Google Scholar : PubMed/NCBI | |
Chin YR, Yoshida T, Marusyk A, Beck AH, Polyak K and Toker A: Targeting Akt3 signaling in triple-negative breast cancer. Can Res. 74:964–973. 2014. View Article : Google Scholar | |
Li H, Prever L, Hirsch E and Gulluni F: Targeting PI3K/AKT/mTOR signaling pathway in breast cancer. Cancers (Basel). 13:35172021. View Article : Google Scholar : PubMed/NCBI | |
Costa RLB, Han HS and Gradishar WJ: Targeting the PI3K/AKT/mTOR pathway in triple-negative breast cancer: A review. Breast Cancer Res Treat. 169:397–406. 2018. View Article : Google Scholar : PubMed/NCBI | |
Carey LA: Finding the positive in triple-negative breast cancer. Nat Cancer. 2:476–478. 2021. View Article : Google Scholar | |
Xia P and Xu XY: PI3K/Akt/mTOR signaling pathway in cancer stem cells: From basic research to clinical application. Am J Cancer Res. 5:1602–1609. 2015.PubMed/NCBI | |
Karami Fath M, Ebrahimi M, Nourbakhsh E, Zia Hazara A, Mirzaei A, Shafieyari S, Salehi A, Hoseinzadeh M, Payandeh Z and Barati G: PI3K/Akt/mTOR signaling pathway in cancer stem cells. Pathol Res Pract. 237:1540102022. View Article : Google Scholar : PubMed/NCBI | |
Reinhardt HC and Schumacher B: The p53 network: Cellular and systemic DNA damage responses in aging and cancer. Trends Genet. 28:128–136. 2012. View Article : Google Scholar : PubMed/NCBI | |
Sionov RV and Haupt Y: The cellular response to p53: The decision between life and death. Oncogene. 18:6145–6157. 1999. View Article : Google Scholar : PubMed/NCBI | |
Kubbutat MH, Jones SN and Vousden KH: Regulation of p53 stability by MDM2. Nature. 387:299–303. 1997. View Article : Google Scholar : PubMed/NCBI | |
Lacroix M, Toillon RA and Leclercq G: p53 and breast cancer, an update. Endocr Relat Cancer. 13:293–325. 2006. View Article : Google Scholar : PubMed/NCBI | |
Ozaki T and Nakagawara A: Role of p53 in cell death and human cancers. Cancers (Basel). 3:994–1013. 2011. View Article : Google Scholar : PubMed/NCBI | |
Babikir HA, Afjei R, Paulmurugan R and Massoud TF: Restoring guardianship of the genome: Anticancer drug strategies to reverse oncogenic mutant p53 misfolding. Cancer Treat Rev. 71:19–31. 2018. View Article : Google Scholar : PubMed/NCBI | |
Costa DCF, de Oliveira GAP, Cino EA, Soares IN, Rangel LP and Silva JL: Aggregation and prion-like properties of misfolded tumor suppressors: Is cancer a prion disease? Cold Spring Harbor Perspect Biol. 8:a0236142016. View Article : Google Scholar | |
Silva JL, De Moura Gallo CV, Costa DCF and Rangel LP: Prion-like aggregation of mutant p53 in cancer. Trends Biochem Sci. 39:260–267. 2014. View Article : Google Scholar : PubMed/NCBI | |
Eriksson SE, Ceder S, Bykov VJN and Wiman KG: p53 as a hub in cellular redox regulation and therapeutic target in cancer. J Mol Cell Biol. 11:330–341. 2019. View Article : Google Scholar : PubMed/NCBI | |
D'Orazi G and Givol D: p53 reactivation: The link to zinc. Cell Cycle. 11:2581–2582. 2012. View Article : Google Scholar : PubMed/NCBI | |
Wang G and Fersht AR: First-order rate-determining aggregation mechanism of p53 and its implications. Proc Natl Acad Sci USA. 109:13590–13595. 2012. View Article : Google Scholar : PubMed/NCBI | |
Ghosh S, Salot S, Sengupta S, Navalkar A, Ghosh D, Jacob R, Das S, Kumar R, Jha NN, Sahay S, et al: p53 amyloid formation leading to its loss of function: Implications in cancer pathogenesis. Cell Death Differ. 24:1784–1798. 2017. View Article : Google Scholar : PubMed/NCBI | |
Li JP, Zhang XM, Zhang Z, Zheng LH, Jindal S and Liu YJ: Association of p53 expression with poor prognosis in patients with triple-negative breast invasive ductal carcinoma. Medicine (Baltimore). 98:e154492019. View Article : Google Scholar : PubMed/NCBI | |
Muller PA and Vousden KH: p53 mutations in cancer. Nat Cell Biol. 15:2–8. 2013. View Article : Google Scholar | |
Neilsen PM, Noll JE, Suetani RJ, Schulz RB, Al-Ejeh F, Evdokiou A, Lane DP and Callen DF: Mutant p53 uses p63 as a molecular chaperone to alter gene expression and induce a pro-invasive secretome. Oncotarget. 2:1203–1217. 2011. View Article : Google Scholar : PubMed/NCBI | |
Lim LY, Vidnovic N, Ellisen LW and Leong CO: Mutant p53 mediates survival of breast cancer cells. Br J Cancer. 101:1606–1612. 2009. View Article : Google Scholar : PubMed/NCBI | |
Adorno M, Cordenonsi M, Montagner M, Dupont S, Wong C, Hann B, Solari A, Bobisse S, Rondina MB, Guzzardo V, et al: A mutant-p53/Smad complex opposes p63 to empower TGFbeta-induced metastasis. Cell. 137:87–98. 2009. View Article : Google Scholar : PubMed/NCBI | |
Muller PAJ, Trinidad AG, Timpson P, Morton JP, Zanivan S, van den Berghe PVE, Nixon C, Karim SA, Caswell PT, Noll JE, et al: Mutant p53 enhances MET trafficking and signalling to drive cell scattering and invasion. Oncogene. 32:1252–1265. 2013. View Article : Google Scholar : | |
Huang G, Zhong X, Yao L, Ma Q, Liao H, Xu L, Zou J, Sun R, Wang D and Guo X: MicroRNA-449a inhibits cell proliferation and migration by regulating mutant p53 in MDA-MB-468 cells. Exp Ther Med. 22:10202021. View Article : Google Scholar : PubMed/NCBI | |
Marvalim C, Datta A and Lee SC: Role of p53 in breast cancer progression: An insight into p53 targeted therapy. Theranostics. 13:1421–1442. 2023. View Article : Google Scholar : PubMed/NCBI | |
Shah SP, Roth A, Goya R, Oloumi A, Ha G, Zhao Y, Turashvili G, Ding J, Tse K, Haffari G, et al: The clonal and mutational evolution spectrum of primary triple-negative breast cancers. Nature. 486:395–399. 2012. View Article : Google Scholar : PubMed/NCBI | |
Bae SY, Nam SJ, Jung Y, Lee SB, Park BW, Lim W, Jung SH, Yang HW and Jung SP: Differences in prognosis and efficacy of chemotherapy by p53 expression in triple-negative breast cancer. Breast Cancer Res Treat. 172:437–444. 2018. View Article : Google Scholar : PubMed/NCBI | |
Jasar D, Smichkoska S, Kubelka K, Filipovski V and Petrushevska G: Expression of p53 protein product in triple negative breast cancers and relation with clinical and histopathological parameters. Pril (Makedon Akad Nauk Umet Odd Med Nauki). 36:69–79. 2015.PubMed/NCBI | |
Karamitopoulou E, Perentes E, Tolnay M and Probst A: Prognostic significance of MIB-1, p53, and bcl-2 immunoreactivity in meningiomas. Hum Pathol. 29:140–145. 1998. View Article : Google Scholar : PubMed/NCBI | |
Geyer FC, Rodrigues DN, Weigelt B and Reis-Filho JS: Molecular classification of estrogen receptor-positive/luminal breast cancers. Adv Anat Pathol. 19:39–53. 2012. View Article : Google Scholar | |
Zizi-Sermpetzoglou A, Moustou E, Petrakopoulou N, Arkoumani E, Tepelenis N and Savvaidou V: Atypical polypoid adenomyoma of the uterus. A case report and a review of the literature. Eur J Gynaecol Oncol. 33:118–121. 2012.PubMed/NCBI | |
Ibrahim T, Farolfi A, Scarpi E, Mercatali L, Medri L, Ricci M, Nanni O, Serra L and Amadori D: Hormonal receptor, human epidermal growth factor receptor-2, and Ki67 discordance between primary breast cancer and paired metastases: Clinical impact. Oncology. 84:150–157. 2013. View Article : Google Scholar | |
Niikura N, Masuda S, Kumaki N, Xiaoyan T, Terada M, Terao M, Iwamoto T, Oshitanai R, Morioka T, Tuda B, et al: Prognostic significance of the Ki67 scoring categories in breast cancer subgroups. Clin Breast Cancer. 14:323–329.e3. 2014. View Article : Google Scholar : PubMed/NCBI | |
Polley MYC, Leung SCY, McShane LM, Gao D, Hugh JC, Mastropasqua MG, Viale G, Zabaglo LA, Penault-Llorca F, Bartlett JMS, et al: An international Ki67 reproducibility study. J Natl Cancer Inst. 105:1897–1906. 2013. View Article : Google Scholar : PubMed/NCBI | |
Polley MYC, Leung SCY, Gao D, Mastropasqua MG, Zabaglo LA, Bartlett JMS, McShane LM, Enos RA, Badve SS, Bane AL, et al: An international study to increase concordance in Ki67 scoring. Mod Pathol. 28:778–786. 2015. View Article : Google Scholar : PubMed/NCBI | |
Baum M, Buzdar A, Cuzick J, Forbes J, Houghton J, Howell A and Sahmoud T; ATAC (Arimidex Tamoxifen Alone or in Combination) Trialists' Group: Anastrozole alone or in combination with tamoxifen versus tamoxifen alone for adjuvant treatment of postmenopausal women with early-stage breast cancer: Results of the ATAC (Arimidex, Tamoxifen Alone or in Combination) trial efficacy and safety update analyses. Cancer. 98:1802–1810. 2003. View Article : Google Scholar : PubMed/NCBI | |
Wyatt CA, Geoghegan JC and Brinckerhoff CE: Short hairpin RNA-mediated inhibition of matrix metalloproteinase-1 in MDA-231 cells: Effects on matrix destruction and tumor growth. Cancer Res. 65:11101–11108. 2005. View Article : Google Scholar : PubMed/NCBI | |
Zuckerman JE and Davis ME: Clinical experiences with systemically administered siRNA-based therapeutics in cancer. Nat Rev Drug Discov. 14:843–856. 2015. View Article : Google Scholar : PubMed/NCBI | |
Zheng JN, Ma TX, Cao JY, Sun XQ, Chen JC, Li W, Wen RM, Sun YF and Pei DS: Knockdown of Ki-67 by small interfering RNA leads to inhibition of proliferation and induction of apoptosis in human renal carcinoma cells. Life Sci. 78:724–729. 2006. View Article : Google Scholar | |
Zheng JN, Sun YF, Pei DS, Liu JJ, Ma TX, Han RF, Li W, Zheng DB, Chen JC and Sun XQ: Treatment with vector-expressed small hairpin RNAs against Ki67 RNA-induced cell growth inhibition and apoptosis in human renal carcinoma cells. Acta Biochim Biophys Sin (Shanghai). 38:254–261. 2006. View Article : Google Scholar : PubMed/NCBI | |
Burnett JC and Rossi JJ: RNA-based therapeutics: Current progress and future prospects. Chem Biol. 19:60–71. 2012. View Article : Google Scholar : PubMed/NCBI | |
de Carvalho Vicentini FTM, Borgheti-Cardoso LN, Depieri LV, de Macedo Mano D, Abelha TF and Petrilli R: Delivery systems and local administration routes for therapeutic siRNA. Pharm Res. 30:915–931. 2013. View Article : Google Scholar | |
Conde J, Edelman ER and Artzi N: Target-responsive DNA/RNA nanomaterials for microRNA sensing and inhibition: The jack-of-all-trades in cancer nanotheranostics? Adv Drug Deliv Rev. 81:169–183. 2015. View Article : Google Scholar | |
Bischoff JR, Kirn DH, Williams A, Heise C, Horn S, Muna M, Ng L, Nye JA, Sampson-Johannes A, Fattaey A and McCormick F: An adenovirus mutant that replicates selectively in p53-eficient human tumor cells. Science. 274:373–376. 1996. View Article : Google Scholar : PubMed/NCBI | |
Yu DC, Chen Y, Dilley J, Li Y, Embry M, Zhang H, Nguyen N, Amin P, Oh J and Henderson DR: Antitumor synergy of CV787, a prostate cancer-specific adenovirus, and paclitaxel and docetaxel. Cancer Res. 61:517–525. 2001.PubMed/NCBI | |
Rajecki M, Kanerva A, Stenman UH, Tenhunen M, Kangasniemi L, Särkioja M, Ala-Opas MY, Alfthan H, Sankila A, Rintala E, et al: Treatment of prostate cancer with Ad5/3Delta24hCG allows non-invasive detection of the magnitude and persistence of virus replication in vivo. Mol Cancer Ther. 6:742–751. 2007. View Article : Google Scholar : PubMed/NCBI | |
Chen RF, Li YY, Li LT, Cheng Q, Jiang G and Zheng JN: Novel oncolytic adenovirus sensitizes renal cell carcinoma cells to radiotherapy via mitochondrial apoptotic cell death. Mol Med Rep. 11:2141–2146. 2015. View Article : Google Scholar | |
Toth K and Wold WSM: Increasing the efficacy of oncolytic adenovirus vectors. Viruses. 2:1844–1866. 2010. View Article : Google Scholar | |
Liu J, Fang L, Cheng Q, Li L, Su C, Zhang B, Pei D, Yang J, Li W and Zheng J: Effects of G250 promoter controlled conditionally replicative adenovirus expressing Ki67-siRNA on renal cancer cell. Cancer Sci. 103:1880–1888. 2012. View Article : Google Scholar : PubMed/NCBI | |
Gaudet D, Alexander VJ, Baker BF, Brisson D, Tremblay K, Singleton W, Geary RS, Hughes SG, Viney NJ, Graham MJ, et al: Antisense inhibition of apolipoprotein C-III in patients with hypertriglyceridemia. N Engl J Med. 373:438–447. 2015. View Article : Google Scholar : PubMed/NCBI | |
Kennedy BWC: Mongersen, an oral SMAD7 antisense oligonucleotide, and Crohn's disease. N Engl J Med. 372:24612015. View Article : Google Scholar : PubMed/NCBI | |
Wheeler TM, Leger AJ, Pandey SK, MacLeod AR, Nakamori M, Cheng SH, Wentworth BM, Bennett CF and Thornton CA: Targeting nuclear RNA for in vivo correction of myotonic dystrophy. Nature. 488:111–115. 2012. View Article : Google Scholar : PubMed/NCBI | |
Natale R, Blackhall F, Kowalski D, Ramlau R, Bepler G, Grossi F, Lerchenmüller C, Pinder-Schenck M, Mezger J, Danson S, et al: Evaluation of antitumor activity using change in tumor size of the survivin antisense oligonucleotide LY2181308 in combination with docetaxel for second-line treatment of patients with non-small-cell lung cancer: a randomized open-label phase II study. J Thorac Oncol. 9:1704–1708. 2014. View Article : Google Scholar : PubMed/NCBI | |
Sen M, Thomas SM, Kim S, Yeh JI, Ferris RL, Johnson JT, Duvvuri U, Lee J, Sahu N, Joyce S, et al: First-in-human trial of a STAT3 decoy oligonucleotide in head and neck tumors: Implications for cancer therapy. Cancer Discov. 2:694–705. 2012. View Article : Google Scholar : PubMed/NCBI | |
Kausch I, Lingnau A, Endl E, Sellmann K, Deinert I, Ratliff TL, Jocham D, Sczakiel G, Gerdes J and Böhle A: Antisense treatment against Ki-67 mRNA inhibits proliferation and tumor growth in vitro and in vivo. Int J Cancer. 105:710–716. 2003. View Article : Google Scholar : PubMed/NCBI | |
Kausch I, Jiang H, Ewerdwalbesloh N, Doehn C, Krüger S, Sczakiel G and Jocham D: Inhibition of Ki-67 in a renal cell carcinoma severe combined immunodeficiency disease mouse model is associated with induction of apoptosis and tumour growth inhibition. BJU Int. 95:416–420. 2005. View Article : Google Scholar : PubMed/NCBI | |
Lingnau A, Steiner U, Kurzidim H, Jocham D and Kausch I: Phase I dose-escalation study of intravesical instillation of antisense oligonucleotide FFC15-01 against Ki-67 in patients with non-muscle invasive bladder cancer. Debates Bladder Cancer. 2:12010. | |
Ratilainen T, Holmén A, Tuite E, Nielsen PE and Nordén B: Thermodynamics of sequence-specific binding of PNA to DNA. Biochemistry. 39:7781–7791. 2000. View Article : Google Scholar : PubMed/NCBI | |
Thomas SM, Sahu B, Rapireddy S, Bahal R, Wheeler SE, Procopio EM, Kim J, Joyce SC, Contrucci S, Wang Y, et al: Antitumor effects of EGFR antisense guanidine-based peptide nucleic acids in cancer models. ACS Chem Biol. 8:345–352. 2013. View Article : Google Scholar : | |
Thompson ED, Taube JM, Asch-Kendrick RJ, Ogurtsova A, Xu H, Sharma R, Meeker A, Argani P, Emens LA and Cimino-Mathews A: PD-L1 expression and the immune microenvironment in primary invasive lobular carcinomas of the breast. Mod Pathol. 30:1551–1560. 2017. View Article : Google Scholar : PubMed/NCBI | |
Sabatier R, Finetti P, Mamessier E, Adelaide J, Chaffanet M, Ali HR, Viens P, Caldas C, Birnbaum D and Bertucci F: Prognostic and predictive value of PDL1 expression in breast cancer. Oncotarget. 6:5449–5464. 2015. View Article : Google Scholar : PubMed/NCBI | |
Baracco EE, Pietrocola F, Buqué A, Bloy N, Senovilla L, Zitvogel L, Vacchelli E and Kroemer G: Inhibition of formyl peptide receptor 1 reduces the efficacy of anticancer chemotherapy against carcinogen-induced breast cancer. Oncoimmunology. 5:e11392752016. View Article : Google Scholar : PubMed/NCBI | |
Rey-Cárdenas M, Guerrero-Ramos F, Gómez de Liaño Lista A, Carretero-González A, Bote H, Herrera-Juárez M, Carril-Ajuria L, Martín-Soberón M, Sepulveda JM, Billalabeitia EG, et al: Recent advances in neoadjuvant immunotherapy for urothelial bladder cancer: What to expect in the near future. Cancer Treat Rev. 93:1021422021. View Article : Google Scholar : PubMed/NCBI | |
Reck M, Remon J and Hellmann MD: First-line immunotherapy for non-small-cell lung cancer. J Clin Oncol. 40:586–597. 2022. View Article : Google Scholar : PubMed/NCBI | |
Huang AC and Zappasodi R: A decade of checkpoint blockade immunotherapy in melanoma: Understanding the molecular basis for immune sensitivity and resistance. Nat Immunol. 23:660–670. 2022. View Article : Google Scholar : PubMed/NCBI | |
Sendur MAN: Adjuvant immunotherapy for renal cell carcinoma. Lancet Oncol. 23:1110–1111. 2022. View Article : Google Scholar : PubMed/NCBI | |
Romero D: Benefit in patients with PD-L1-positive TNBC. Nat Rev Clin Oncol. 16:62019. | |
Loi S, Drubay D, Adams S, Pruneri G, Francis PA, Lacroix-Triki M, Joensuu H, Dieci MV, Badve S, Demaria S, et al: Tumor-infiltrating lymphocytes and prognosis: A pooled individual patient analysis of early-stage triple-negative breast cancers. J Clin Oncol. 37:559–569. 2019. View Article : Google Scholar : PubMed/NCBI | |
Yarchoan M, Johnson BR, Lutz ER, Laheru DA and Jaffee EM: Targeting neoantigens to augment antitumour immunity. Nat Rev Cancer. 17:209–222. 2017. View Article : Google Scholar : PubMed/NCBI | |
Dudley JC, Lin MT, Le DT and Eshleman JR: Microsatellite instability as a biomarker for PD-1 blockade. Clin Cancer Res. 22:813–820. 2016. View Article : Google Scholar : PubMed/NCBI | |
Bonneville R, Krook MA, Kautto EA, Miya J, Wing MR, Chen HZ, Reeser JW, Yu L and Roychowdhury S: Landscape of microsatellite instability across 39 cancer types. JCO Precis Oncol. 2017:PO.17.000732017.PubMed/NCBI | |
Lipson EJ, Forde PM, Hammers HJ, Emens LA, Taube JM and Topalian SL: Antagonists of PD-1 and PD-L1 in cancer treatment. Semin Oncol. 42:587–600. 2015. View Article : Google Scholar : PubMed/NCBI | |
Brahmer JR, Tykodi SS, Chow LQM, Hwu WJ, Topalian SL, Hwu P, Drake CG, Camacho LH, Kauh J, Odunsi K, et al: Safety and activity of anti-PD-L1 antibody in patients with advanced cancer. N Engl J Med. 366:2455–2465. 2012. View Article : Google Scholar : PubMed/NCBI | |
Pusztai L, Karn T, Safonov A, Abu-Khalaf MM and Bianchini G: New strategies in breast cancer: Immunotherapy. Clin Cancer Res. 22:2105–2110. 2016. View Article : Google Scholar : PubMed/NCBI | |
Loi S, Dushyanthen S, Beavis PA, Salgado R, Denkert C, Savas P, Combs S, Rimm DL, Giltnane JM, Estrada MV, et al: RAS/MAPK activation is associated with reduced tumor-infiltrating lymphocytes in triple-negative breast cancer: Therapeutic cooperation between MEK and PD-1/PD-L1 immune checkpoint inhibitors. Clin Cancer Res. 22:1499–1509. 2016. View Article : Google Scholar : | |
Sagiv-Barfi I, Kohrt HE, Czerwinski DK, Ng PP, Chang BY and Levy R: Therapeutic antitumor immunity by checkpoint blockade is enhanced by ibrutinib, an inhibitor of both BTK and ITK. Proc Natl Acad Sci USA. 112:E966–E972. 2015. View Article : Google Scholar : PubMed/NCBI | |
Hodgson D, Lai Z, Dearden S, Barrett JC, Harrington EA, Timms K, Lanchbury J, Wu W, Allen A, Senkus E, et al: Analysis of mutation status and homologous recombination deficiency in tumors of patients with germline BRCA1 or BRCA2 mutations and metastatic breast cancer: OlympiAD. Ann Oncol. 32:1582–1589. 2021. View Article : Google Scholar : PubMed/NCBI | |
U.S. Food and Drug Administration (FDA): TALZENNA® (talazoparib) prescribing information. FDA; Silver Spring, MD: 2025, https://www.accessdata.fda.gov/drugsatfda_docs/label/2024/217439s000lbl.pdf (May 2025). Accessed on May 9 2025. | |
Litton JK, Scoggins ME, Hess KR, Adrada BE, Murthy RK, Damodaran S, DeSnyder SM, Brewster AM, Barcenas CH, Valero V, et al: Neoadjuvant talazoparib for patients with operable breast cancer with a germline BRCA pathogenic variant. J Clin Oncol. 38:388–394. 2020. View Article : Google Scholar : | |
Pop L, Suciu ID, Ionescu P and Ionescu OD: The dual blockade in the neoadjuvant setting of HER-2 positive early-stage breast cancer. J Med Life. 12:329–331. 2019. View Article : Google Scholar | |
Isakoff SJ, Overmoyer B, Tung NM, Gelman RS, Giranda VL, Bernhard KM, Habin KR, Ellisen LW, Winer EP and Goss PE: A phase II trial of the PARP inhibitor veliparib (ABT888) and temozolomide for metastatic breast cancer. J Clin Oncol. 28(15 Suppl): S10192010. View Article : Google Scholar | |
Rodler ET, Gralow J, Kurland BF, Griffin M, Yeh R, Thompson JA, Porter P, Swisher EM, Gadi VK, Korde LA, et al: Phase I: Veliparib with cisplatin (CP) and vinorelbine (VNR) in advanced triple-negative breast cancer (TNBC) and/or BRCA mutation-associated breast cancer. J Clin Oncol. 32(15 Suppl): S25692014. View Article : Google Scholar | |
Samol J, Ranson M, Scott E, Macpherson E, Carmichael J, Thomas A and Cassidy J: Safety and tolerability of the poly(ADP-ribose) polymerase (PARP) inhibitor, olaparib (AZD2281) in combination with topotecan for the treatment of patients with advanced solid tumors: A phase I study. Invest New Drugs. 30:1493–1500. 2012. View Article : Google Scholar | |
Dent RA, Lindeman GJ, Clemons M, Wildiers H, Chan A, McCarthy NJ, Singer CF, Lowe ES, Watkins CL and Carmichael J: Phase I trial of the oral PARP inhibitor olaparib in combination with paclitaxel for first- or second-line treatment of patients with metastatic triple-negative breast cancer. Breast Cancer Res. 15:R882013. View Article : Google Scholar : PubMed/NCBI | |
Marullo R, Werner E, Degtyareva N, Moore B, Altavilla G, Ramalingam SS and Doetsch PW: Cisplatin induces a mitochondrial-ROS response that contributes to cytotoxicity depending on mitochondrial redox status and bioenergetic functions. PLoS One. 8:e811622013. View Article : Google Scholar : PubMed/NCBI | |
Song X, Kong F, Zong ZF, Ren M, Meng Q, Li Y and Sun Z: miR-124 and miR-142 enhance cisplatin sensitivity of non-small cell lung cancer cells through repressing autophagy via directly targeting SIRT1. RSC Adv. 9:5234–5243. 2019. View Article : Google Scholar : PubMed/NCBI | |
Pabla N and Dong Z: Curtailing side effects in chemotherapy: A tale of PKCδ in cisplatin treatment. Oncotarget. 3:107–111. 2012. View Article : Google Scholar : PubMed/NCBI | |
McCabe N, Turner NC, Lord CJ, Kluzek K, Bialkowska A, Swift S, Giavara S, O'Connor MJ, Tutt AN, Zdzienicka MZ, et al: Deficiency in the repair of DNA damage by homologous recombination and sensitivity to poly(ADP-ribose) polymerase inhibition. Cancer Res. 66:8109–8115. 2006. View Article : Google Scholar : PubMed/NCBI | |
Jia X, Wang K, Xu L, Li N, Zhao Z and Li M: A systematic review and meta-analysis of BRCA1/2 mutation for predicting the effect of platinum-based chemotherapy in triple-negative breast cancer. Breast. 66:31–39. 2022. View Article : Google Scholar : PubMed/NCBI | |
Teo K, Gómez-Cuadrado L, Tenhagen M, Byron A, Rätze M, van Amersfoort M, Renes J, Strengman E, Mandoli A, Singh AA, et al: E-cadherin loss induces targetable autocrine activation of growth factor signalling in lobular breast cancer. Sci Rep. 8:154542018. View Article : Google Scholar : PubMed/NCBI | |
Bajrami I, Marlow R, van de Ven M, Brough R, Pemberton HN, Frankum J, Song F, Rafiq R, Konde A, Krastev DB, et al: E-cadherin/ROS1 inhibitor synthetic lethality in breast cancer. Cancer Discov. 8:498–515. 2018. View Article : Google Scholar : PubMed/NCBI | |
Mateus AR, Simões-Correia J, Figueiredo J, Heindl S, Alves CC, Suriano G, Luber B and Seruca R: E-cadherin mutations and cell motility: A genotype-phenotype correlation. Exp Cell Res. 315:1393–1402. 2009. View Article : Google Scholar : PubMed/NCBI | |
Watabe M, Nagafuchi A, Tsukita S and Takeichi M: Induction of polarized cell-cell association and retardation of growth by activation of the E-cadherin-catenin adhesion system in a dispersed carcinoma line. J Cell Biol. 127:247–256. 1994. View Article : Google Scholar : PubMed/NCBI | |
Green SK, Francia G, Isidoro C and Kerbel RS: Antiadhesive antibodies targeting E-cadherin sensitize multicellular tumor spheroids to chemotherapy in vitro. Mol Cancer Ther. 3:149–159. 2004. View Article : Google Scholar : PubMed/NCBI | |
Masuda H, Zhang D, Bartholomeusz C, Doihara H, Hortobagyi GN and Ueno NT: Role of epidermal growth factor receptor in breast cancer. Breast Cancer Res Treat. 136:331–345. 2012. View Article : Google Scholar : PubMed/NCBI | |
Li S, Schmitz KR, Jeffrey PD, Wiltzius JJ, Kussie P and Ferguson KM: Structural basis for inhibition of the epidermal growth factor receptor by cetuximab. Cancer Cell. 7:301–311. 2005. View Article : Google Scholar : PubMed/NCBI | |
Qin S, Li J, Wang L, Xu J, Cheng Y, Bai Y, Li W, Xu N, Lin LZ, Wu Q, et al: Efficacy and tolerability of first-line cetuximab plus leucovorin, fluorouracil, and oxaliplatin (FOLFOX-4) versus FOLFOX-4 in patients with RAS wild-type metastatic colorectal cancer: The open-label, randomized, phase III TAILOR trial. J Clin Oncol. 36:3031–3039. 2018. View Article : Google Scholar : PubMed/NCBI | |
Bonner JA, Harari PM, Giralt J, Azarnia N, Shin DM, Cohen RB, Jones CU, Sur R, Raben D, Jassem J, et al: Radiotherapy plus cetuximab for squamous-cell carcinoma of the head and neck. N Engl J Med. 354:567–578. 2006. View Article : Google Scholar : PubMed/NCBI | |
Hirsch FR, Redman MW, Moon J, Agustoni F, Herbst RS, Semrad TJ, Varella-Garcia M, Rivard CJ, Kelly K, Gandara DR and Mack PC: EGFR high copy number together with high EGFR protein expression predicts improved outcome for cetuximab-based therapy in squamous cell lung cancer: Analysis from SWOG S0819, a phase III trial of chemotherapy with or without cetuximab in advanced NSCLC. Clin Lung Cancer. 23:60–71. 2022. View Article : Google Scholar : | |
Cai WQ, Zeng LS, Wang LF, Wang YY, Cheng JT, Zhang Y, Han ZW, Zhou Y, Huang SL, Wang XW, et al: The latest battles between EGFR monoclonal antibodies and resistant tumor cells. Front Oncol. 10:12492020. View Article : Google Scholar : PubMed/NCBI | |
Xu MJ, Johnson DE and Grandis JR: EGFR-targeted therapies in the post-genomic era. Cancer Metastasis Rev. 36:463–473. 2017. View Article : Google Scholar : PubMed/NCBI | |
Mazorra Z, Lavastida A, Concha-Benavente F, Valdés A, Srivastava RM, García-Bates TM, Hechavarría E, González Z, González A, Lugiollo M, et al: Nimotuzumab induces NK cell activation, cytotoxicity, dendritic cell maturation and expansion of EGFR-specific T cells in head and neck cancer patients. Front Pharmacol. 8:3822017. View Article : Google Scholar : PubMed/NCBI | |
Benmebarek MR, Karches CH, Cadilha BL, Lesch S, Endres S and Kobold S: Killing mechanisms of chimeric antigen receptor (CAR) T cells. Int J Mol Sci. 20:12832019. View Article : Google Scholar : PubMed/NCBI | |
Byrd TT, Fousek K, Pignata A, Szot C, Samaha H, Seaman S, Dobrolecki L, Salsman VS, Oo HZ, Bielamowicz K, et al: TEM8/ANTXR1-specific CAR T cells as a targeted therapy for triple-negative breast cancer. Cancer Res. 78:489–500. 2018. View Article : Google Scholar : | |
Xia L, Zheng Z, Liu JY, Chen YJ, Ding J, Hu GS, Hu YH, Liu S, Luo WX, Xia NS and Liu W: Targeting triple-negative breast cancer with combination therapy of EGFR CAR T cells and CDK7 inhibition. Cancer Immunol Res. 9:707–722. 2021. View Article : Google Scholar : PubMed/NCBI | |
Hübner J, Raschke M, Rütschle I, Gräßle S, Hasenberg T, Schirrmann K, Lorenz A, Schnurre S, Lauster R, Maschmeyer I, et al: Simultaneous evaluation of anti-EGFR-induced tumour and adverse skin effects in a microfluidic human 3D co-culture model. Sci Rep. 8:150102018. View Article : Google Scholar : PubMed/NCBI | |
Jungbluth AA, Stockert E, Huang HJ, Collins VP, Coplan K, Iversen K, Kolb D, Johns TJ, Scott AM, Gullick WJ, et al: A monoclonal antibody recognizing human cancers with amplification/overexpression of the human epidermal growth factor receptor. Proc Natl Acad Sci USA. 100:639–644. 2003. View Article : Google Scholar : PubMed/NCBI | |
Scott AM, Lee FT, Tebbutt N, Herbertson R, Gill SS, Liu Z, Skrinos E, Murone C, Saunder TH, Chappell B, et al: A phase I clinical trial with monoclonal antibody ch806 targeting transitional state and mutant epidermal growth factor receptors. Proc Natl Acad Sci USA. 104:4071–4076. 2007. View Article : Google Scholar : PubMed/NCBI | |
Vitanza N, Gust J, Wilson A, Huang W, Perez F, Wright J, Leary S, Cole B, Albert C, Pinto N, et al: IMMU-03. Updates on brainchild-01, -02, and -03: Phase 1 locoregional car T cell trials targeting HER2, EGFR, and B7-H3 for children with recurrent CNS tumors and DIPG. Neuro Oncol. 22(Suppl 3): iii3602020. View Article : Google Scholar : | |
Huerta JJ, Diaz-Trelles R, Naves FJ, Llamosas MM, Del Valle ME and Vega JA: Epidermal growth factor receptor in adult human dorsal root ganglia. Anat Embryol (Berl). 194:253–257. 1996. View Article : Google Scholar : PubMed/NCBI | |
Atwell B, Chen CY, Christofferson M, Montfort WR and Schroeder J: Sorting nexin-dependent therapeutic targeting of oncogenic epidermal growth factor receptor. Cancer Gene Ther. 30:267–276. 2023. View Article : Google Scholar : | |
André F, Ciruelos E, Rubovszky G, Campone M, Loibl S, Rugo HS, Iwata H, Conte P, Mayer IA, Kaufman B, et al: Alpelisib for PIK3CA-mutated, hormone receptor-positive advanced breast cancer. N Engl J Med. 380:1929–1940. 2019. View Article : Google Scholar : PubMed/NCBI | |
Cataldo ML, De Placido P, Esposito D, Formisano L, Arpino G, Giuliano M, Bianco R, De Angelis C and Veneziani BM: The effect of the alpha-specific PI3K inhibitor alpelisib combined with anti-HER2 therapy in HER2+/PIK3CA mutant breast cancer. Front Oncol. 13:11082422023. View Article : Google Scholar : PubMed/NCBI | |
Juric D, Krop I, Ramanathan RK, Wilson TR, Ware JA, Sanabria Bohorquez SM, Savage HM, Sampath D, Salphati L, Lin RS, et al: Phase I dose-escalation study of taselisib, an oral PI3K inhibitor, in patients with advanced solid tumors. Cancer Discov. 7:704–715. 2017. View Article : Google Scholar : PubMed/NCBI | |
Schmid P, Zaiss M, Harper-Wynne C, Ferreira M, Dubey S, Chan S, Makris A, Nemsadze G, Brunt AM, Kuemmel S, et al: Abstract GS2-07: MANTA-a randomized phase II study of fulvestrant in combination with the dual mTOR inhibitor AZD2014 or everolimus or fulvestrant alone in estrogen receptor-positive advanced or metastatic breast cancer. Cancer Res. 78(4 Suppl): GS2–07. 2018. View Article : Google Scholar | |
Dent S, Cortés J, Im YH, Diéras V, Harbeck N, Krop IE, Wilson TR, Cui N, Schimmoller F, Hsu JY, et al: Phase III randomized study of taselisib or placebo with Fulvestrant in estrogen receptor-positive, PIK3CA-mutant, HER2-negative, advanced breast cancer: The SANDPIPER trial. Ann Oncol. 32:197–207. 2021. View Article : Google Scholar | |
Baselga J, Im SA, Iwata H, Cortés J, De Laurentiis M, Jiang Z, Arteaga CL, Jonat W, Clemons M, Ito Y, et al: Buparlisib plus fulvestrant versus placebo plus fulvestrant in postmenopausal, hormone receptor-positive, HER2-negative, advanced breast cancer (BELLE-2): A randomised, double-blind, placebo-controlled, phase 3 trial. Lancet Oncol. 18:904–916. 2017. View Article : Google Scholar : PubMed/NCBI | |
Mallick S, Duttaroy AK and Dutta S: The PIK3CA gene and its pivotal role in tumor tropism of triple-negative breast cancer. Transl Oncol. 50:1021402024. View Article : Google Scholar : PubMed/NCBI | |
Xu S, Li S, Guo Z, Luo J, Ellis MJ and Ma CX: Combined targeting of mTOR and AKT is an effective strategy for basal-like breast cancer in patient-derived xenograft models. Mol Cancer Ther. 12:1665–1675. 2013. View Article : Google Scholar : PubMed/NCBI | |
Mishra R, Patel H, Alanazi S, Kilroy MK and Garrett JT: PI3K inhibitors in cancer: Clinical implications and adverse effects. Int J Mol Sci. 22:34642021. View Article : Google Scholar : PubMed/NCBI | |
Bachelot T, Bourgier C, Cropet C, Ray-Coquard I, Ferrero JM, Freyer G, Abadie-Lacourtoisie S, Eymard JC, Debled M, Spaëth D, et al: Randomized phase II trial of everolimus in combination with tamoxifen in patients with hormone receptor-positive, human epidermal growth factor receptor 2-negative metastatic breast cancer with prior exposure to aromatase inhibitors: A GINECO study. J Clin Oncol. 30:2718–2724. 2012. View Article : Google Scholar : PubMed/NCBI | |
Kornblum N, Zhao F, Manola J, Klein P, Ramaswamy B, Brufsky A, Stella PJ, Burnette B, Telli M, Makower DF, et al: Randomized phase II trial of fulvestrant plus everolimus or placebo in postmenopausal women with hormone receptor-positive, human epidermal growth factor receptor 2-negative metastatic breast cancer resistant to aromatase inhibitor therapy: Results of PrE0102. J Clin Oncol. 36:1556–1563. 2018. View Article : Google Scholar : PubMed/NCBI | |
Carlino F, Diana A, Terminiello M, Ventriglia A, Piccolo A, Bruno V, Lobianco L, Caterino M, Ciardiello F, Danielee B, et al: 302P Clinical implication of tissue re-biopsy in metastatic breast cancer (MBC) patients: A single centre retrospective analysis. Ann Oncol. 32:S495–S496. 2021. View Article : Google Scholar | |
Basho RK, Gilcrease M, Murthy RK, Helgason T, Karp DD, Meric-Bernstam F, Hess KR, Herbrich SM, Valero V, Albarracin C, et al: Targeting the PI3K/AKT/mTOR pathway for the treatment of mesenchymal triple-negative breast cancer: Evidence from a phase 1 trial of mTOR inhibition in combination with liposomal doxorubicin and bevacizumab. JAMA Oncol. 3:509–515. 2017. View Article : Google Scholar | |
Kastenhuber ER and Lowe SW: Putting p53 in context. Cell. 170:1062–1078. 2017. View Article : Google Scholar : PubMed/NCBI | |
Joerger AC and Fersht AR: Structural biology of the tumor suppressor p53 and cancer-associated mutants. Adv Cancer Res. 97:1–23. 2007. View Article : Google Scholar : PubMed/NCBI | |
Loh SN: Follow the mutations: Toward class-specific, small-molecule reactivation of p53. Biomolecules. 10:3032020. View Article : Google Scholar : PubMed/NCBI | |
Puca R, Nardinocchi L, Porru M, Simon AJ, Rechavi G, Leonetti C, Givol D and D'Orazi G: Restoring p53 active conformation by zinc increases the response of Mutant p53 tumor cells to anticancer drugs. Cell Cycle. 10:1679–1689. 2011. View Article : Google Scholar : PubMed/NCBI | |
Kwan K, Castro-Sandoval O, Gaiddon C and Storr T: Inhibition of p53 protein aggregation as a cancer treatment strategy. Curr Opin Chem Biol. 72:1022302023. View Article : Google Scholar | |
P SS, Naresh P, A J, Wadhwani A, M SK and Jubie S: Dual modulators of p53 and cyclin D in ER alpha signaling by albumin nanovectors bearing zinc chaperones for ER-positive breast cancer therapy. Mini Rev Med Chem. 21:792–802. 2012. View Article : Google Scholar | |
Yu X, Na B, Zaman S, Withers T, Gilleran J, Blayney AJ, Bencivenga AF, Blanden AR, Liu Y, Boothman DA, et al: Abstract 3432: Zinc metallochaperones for mutant p53 reactivation in cancer therapeutics. Cancer Res. 80(16 Suppl): S34322020. View Article : Google Scholar | |
Parrales A, Ranjan A, Iyer SV, Padhye S, Weir SJ, Roy A and Iwakuma T: DNAJA1 controls the fate of misfolded mutant p53 through the mevalonate pathway. Nat Cell Biol. 18:1233–1243. 2016. View Article : Google Scholar : PubMed/NCBI | |
Alalem M, Bhosale M, Ranjan A, Yamamoto S, Kaida A, Nishikawa S, Parrales A, Farooki S, Anant S, Padhye S and Iwakuma T: Mutant p53 depletion by novel inhibitors for HSP40/J-domain proteins derived from the natural compound plumbagin. Cancers (Basel). 14:41872022. View Article : Google Scholar : PubMed/NCBI | |
Kamada R, Toguchi Y, Nomura T, Imagawa T and Sakaguchi K: Tetramer formation of tumor suppressor protein p53: Structure, function, and applications. Biopolymers. 106:598–612. 2016. View Article : Google Scholar | |
Synnott NC, Murray A, McGowan PM, Kiely M, Kiely PA, O'Donovan N, O'Connor DP, Gallagher WM, Crown J and Duffy MJ: Mutant p53: A novel target for the treatment of patients with triple-negative breast cancer? Int J Cancer. 140:234–246. 2017. View Article : Google Scholar | |
Rangel LP, Ferretti GDS, Costa CL, Andrade SMMV, Carvalho RS, Costa DCF and Silva JL: p53 reactivation with induction of massive apoptosis-1 (PRIMA-1) inhibits amyloid aggregation of mutant p53 in cancer cells. J Biol Chem. 294:3670–3682. 2019. View Article : Google Scholar : PubMed/NCBI | |
Duffy MJ, Synnott NC and Crown J: Mutant p53 in breast cancer: Potential as a therapeutic target and biomarker. Breast Cancer Res Treat. 170:213–219. 2018. View Article : Google Scholar : PubMed/NCBI | |
Reza MN, Ferdous N, Emon MTH, Islam MS, Mohiuddin AKM and Hossain MU: Pathogenic genetic variants from highly connected cancer susceptibility genes confer the loss of structural stability. Sci Rep. 11:192642021. View Article : Google Scholar : PubMed/NCBI | |
Tonsing-Carter E, Bailey BJ, Saadatzadeh MR, Ding J, Wang H, Sinn AL, Peterman KM, Spragins TK, Silver JM, Sprouse AA, et al: Potentiation of carboplatin-mediated DNA damage by the Mdm2 modulator nutlin-3a in a humanized orthotopic breast-to-lung metastatic model. Mol Cancer Therapeut. 14:2850–2863. 2015. View Article : Google Scholar | |
da Costa DCF, Campos NPC, Santos RA, Guedes-da-Silva FH, Martins-Dinis MMDC, Zanphorlin L, Ramos C, Rangel LP and Silva JL: Resveratrol prevents p53 aggregation in vitro and in breast cancer cells. Oncotarget. 9:29112–29122. 2018. View Article : Google Scholar | |
Chen X and Cubillos-Ruiz JR: Endoplasmic reticulum stress signals in the tumour and its microenvironment. Nat Rev Cancer. 21:71–88. 2021. View Article : Google Scholar : | |
Hassin O and Oren M: Drugging p53 in cancer: One protein, many targets. Nat Rev Drug Discov. 22:127–144. 2023. View Article : Google Scholar | |
Ubby I, Krueger C, Rosato R, Qian W, Chang J and Sabapathy K: Cancer therapeutic targeting using mutant-p53-specific siRNAs. Oncogene. 38:3415–3427. 2019. View Article : Google Scholar : PubMed/NCBI | |
Braicu C, Pileczki V, Irimie A and Berindan-Neagoe I: p53siRNA therapy reduces cell proliferation, migration and induces apoptosis in triple negative breast cancer cells. Mol Cell Biochem. 381:61–68. 2013. View Article : Google Scholar : PubMed/NCBI |