You can change your cookie settings at any time by following the instructions in our Cookie Policy. To find out more, you may read our Privacy Policy.
I agree
International Journal of Molecular Medicine is an international journal devoted to molecular mechanisms of human disease.
International Journal of Oncology is an international journal devoted to oncology research and cancer treatment.
Covers molecular medicine topics such as pharmacology, pathology, genetics, neuroscience, infectious diseases, molecular cardiology, and molecular surgery.
Oncology Reports is an international journal devoted to fundamental and applied research in Oncology.
Experimental and Therapeutic Medicine is an international journal devoted to laboratory and clinical medicine.
Oncology Letters is an international journal devoted to Experimental and Clinical Oncology.
Explores a wide range of biological and medical fields, including pharmacology, genetics, microbiology, neuroscience, and molecular cardiology.
International journal addressing all aspects of oncology research, from tumorigenesis and oncogenes to chemotherapy and metastasis.
Multidisciplinary open-access journal spanning biochemistry, genetics, neuroscience, environmental health, and synthetic biology.
Open-access journal combining biochemistry, pharmacology, immunology, and genetics to advance health through functional nutrition.
Publishes open-access research on using epigenetics to advance understanding and treatment of human disease.
An International Open Access Journal Devoted to General Medicine.
![]() |
![]() |
|
Lehmann BD, Jovanović B, Chen X, Estrada MV, Johnson KN, Shyr Y, Moses HL, Sanders ME and Pietenpol JA: Refinement of triple-negative breast cancer molecular subtypes: Implications for neoadjuvant chemotherapy selection. PLoS One. 11:e01573682016. View Article : Google Scholar : PubMed/NCBI | |
|
Ismail-Khan R and Bui MM: A review of triple-negative breast cancer. Cancer Control. 17:173–176. 2010. View Article : Google Scholar : PubMed/NCBI | |
|
Perou CM: Molecular stratification of triple-negative breast cancers. Oncologist. 16(Suppl 1): S61–S70. 2011. View Article : Google Scholar | |
|
Bernardi R and Gianni L: Hallmarks of triple negative breast cancer emerging at last? Cell Res. 24:904–905. 2014. View Article : Google Scholar : PubMed/NCBI | |
|
Mehanna J, Haddad FG, Eid R, Lambertini M and Kourie HR: Triple-negative breast cancer: Current perspective on the evolving therapeutic landscape. Int J Womens Health. 11:431–437. 2019. View Article : Google Scholar : PubMed/NCBI | |
|
Prakash O, Hossain F, Danos D, Lassak A, Scribner R and Miele L: Racial disparities in triple negative breast cancer: A review of the role of biologic and non-biologic factors. Front Public Health. 8:5769642020. View Article : Google Scholar | |
|
Asleh K, Riaz N and Nielsen TO: Heterogeneity of triple negative breast cancer: Currentadvances in subtyping and treatment implications. J Exp Clin Cancer Res. 41:2652022. View Article : Google Scholar | |
|
Newton EE, Mueller LE, Treadwell SM, Morris CA and Machado HL: Molecular targets of triple-negative breast cancer: Where do we stand? Cancers (Basel). 14:4822022. View Article : Google Scholar : PubMed/NCBI | |
|
Zhang HP, Jiang RY, Zhu JY, Sun KN, Huang Y, Zhou HH, Zheng YB and Wang XJ: PI3K/AKT/mTOR signaling pathway: An important driver and therapeutic target in triple-negative breast cancer. Breast Cancer. 31:539–551. 2024. View Article : Google Scholar : PubMed/NCBI | |
|
Atchley DP, Albarracin CT, Lopez A, Valero V, Amos CI, Gonzalez-Angulo AM, Hortobagyi GN and Arun BK: Clinical and pathologic characteristics of patients with BRCA-positive and BRCA-negative breast cancer. J Clin Oncol. 26:4282–4288. 2008. View Article : Google Scholar : PubMed/NCBI | |
|
Porta FM, Sajjadi E, Venetis K, Frascarelli C, Cursano G, Guerini-Rocco E, Fusco N and Ivanova M: Immune biomarkers in triple-negative breast cancer: Improving the predictivity of current testing methods. J Pers Med. 13:11762023. View Article : Google Scholar : PubMed/NCBI | |
|
Ricciardi GR, Adamo B, Ieni A, Licata L, Cardia R, Ferraro G, Franchina T, Tuccari G and Adamo V: Androgen receptor (AR), E-cadherin, and Ki-67 as emerging targets and novel prognostic markers in triple-negative breast cancer (TNBC) patients. PLoS One. 10:e01283682015. View Article : Google Scholar : PubMed/NCBI | |
|
Gerdes J, Li L, Schlueter C, Duchrow M, Wohlenberg C, Gerlach C, Stahmer I, Kloth S, Brandt E and Flad HD: Immunobiochemical and molecular biologic characterization of the cell proliferation-associated nuclear antigen that is defined by monoclonal antibody Ki-67. Am J Pathol. 138:867–873. 1991.PubMed/NCBI | |
|
Schlüter C, Duchrow M, Wohlenberg C, Becker MH, Key G, Flad HD and Gerdes J: The cell proliferation-associated antigen of antibody Ki-67: A very large, ubiquitous nuclear protein with numerous repeated elements, representing a new kind of cell cycle-maintaining proteins. J Cell Biol. 123:513–522. 1993. View Article : Google Scholar : PubMed/NCBI | |
|
Selz J, Stevens D, Jouanneau L, Labib A and Le Scodan R: Prognostic value of molecular subtypes, ki67 expression and impact of postmastectomy radiation therapy in breast cancer patients with negative lymph nodes after mastectomy. Int J Radiat Oncol Bio Phys. 84:1123–1132. 2012. View Article : Google Scholar | |
|
Sobecki M, Mrouj K, Camasses A, Parisis N, Nicolas E, Llères D, Gerbe F, Prieto S, Krasinska L, David A, et al: The cell proliferation antigen Ki-67 organises heterochromatin. Elife. 5:e137222016. View Article : Google Scholar : PubMed/NCBI | |
|
Ishida S, Huang E, Zuzan H, Spang R, Leone G, West M and Nevins JR: Role for E2F in control of both DNA replication and mitotic functions as revealed from DNA microarray analysis. Mol Cell Biol. 21:4684–4699. 2001. View Article : Google Scholar : PubMed/NCBI | |
|
Sobecki M, Mrouj K, Colinge J, Gerbe F, Jay P, Krasinska L, Dulic V and Fisher D: Cell-cycle regulation accounts for variability in Ki-67 expression levels. Cancer Res. 77:2722–2734. 2017. View Article : Google Scholar : PubMed/NCBI | |
|
Keam B, Im SA, Lee KH, Han SW, Oh DY, Kim JH, Lee SH, Han W, Kim DW, Kim TY, et al: Ki-67 can be used for further classification of triple negative breast cancer into two subtypes with different response and prognosis. Breast Cancer Res. 13:R222011. View Article : Google Scholar : PubMed/NCBI | |
|
Li XQ, Pei DS, Qian GW, Yin XX, Cheng Q, Li LT and Zheng JN: The effect of methylated oligonucleotide targeting Ki-67 gene in human 786-0 renal carcinoma cells. Tumour Biol. 32:863–873. 2011. View Article : Google Scholar : PubMed/NCBI | |
|
Scholl SM, Pierga JY, Asselain B, Beuzeboc P, Dorval T, Garcia-Giralt E, Jouve M, Palangié T, Remvikos Y, Durand JC, et al: Breast tumour response to primary chemotherapy predicts local and distant control as well as survival. Eur J Cancer. 31A:1969–1975. 1995. View Article : Google Scholar : PubMed/NCBI | |
|
Benini E, Rao S, Daidone MG, Pilotti S and Silvestrini R: Immunoreactivity to MIB-1 in breast cancer: Methodological assessment and comparison with other proliferation indices. Cell Prolif. 30:107–115. 1997. View Article : Google Scholar : PubMed/NCBI | |
|
Dowsett M, Nielsen TO, A'Hern R, Bartlett J, Coombes RC, Cuzick J, Ellis M, Henry NL, Hugh JC, Lively T, et al: Assessment of Ki67 in breast cancer: Recommendations from the International Ki67 in Breast Cancer working group. J Natl Cancer Inst. 103:1656–1664. 2011. View Article : Google Scholar : PubMed/NCBI | |
|
Urruticoechea A, Smith IE and Dowsett M: Proliferation marker Ki-67 in early breast cancer. J Clin Oncol. 23:7212–7220. 2005. View Article : Google Scholar : PubMed/NCBI | |
|
Cattoretti G, Becker MH, Key G, Duchrow M, Schlüter C, Galle J and Gerdes J: Monoclonal antibodies against recombinant parts of the Ki-67 antigen (MIB 1 and MIB 3) detect proliferating cells in microwave-processed formalin-fixed paraffin sections. J Pathol. 168:357–363. 1992. View Article : Google Scholar : PubMed/NCBI | |
|
Muftah AA, Aleskandarany MA, Al-Kaabi MM, Sonbul SN, Diez-Rodriguez M, Nolan CC, Caldas C, Ellis IO, Rakha EA and Green AR: Ki67 expression in invasive breast cancer: The use of tissue microarrays compared with whole tissue sections. Breast Cancer Res Treat. 164:341–348. 2017. View Article : Google Scholar : PubMed/NCBI | |
|
Viale G, Hanlon Newell AE, Walker E, Harlow G, Bai I, Russo L, Dell'Orto P and Maisonneuve P: Ki-67 (30-9) scoring and differentiation of luminal A- and luminal B-like breast cancer subtypes. Breast Cancer Res Treat. 178:451–458. 2019. View Article : Google Scholar : PubMed/NCBI | |
|
Wu Q, Ma G, Deng Y, Luo W, Zhao Y, Li W and Zhou Q: Prognostic value of Ki-67 in patients with resected triple-negative breast cancer: A meta-analysis. Front Oncol. 9:10682019. View Article : Google Scholar : PubMed/NCBI | |
|
Goldhirsch A, Winer EP, Coates AS, Gelber RD, Piccart-Gebhart M, Thürlimann B and Senn HJ; Panel members: Personalizing the treatment of women with early breast cancer: Highlights of the St Gallen international expert consensus on the primary therapy of early breast cancer 2013. Ann Oncol. 24:2206–2223. 2013. View Article : Google Scholar : PubMed/NCBI | |
|
Penault-Llorca F and Radosevic-Robin N: Ki67 assessment in breast cancer: An update. Pathology. 49:166–171. 2017. View Article : Google Scholar : PubMed/NCBI | |
|
Boussiotis VA: Molecular and biochemical aspects of the PD-1 checkpoint pathway. N Engl J Med. 375:1767–1778. 2016. View Article : Google Scholar : PubMed/NCBI | |
|
Kythreotou A, Siddique A, Mauri FA, Bower M and Pinato DJ: PD-L1. J Clin Pathol. 71:189–194. 2018. View Article : Google Scholar | |
|
Thomas R, Al-Khadairi G and Decock J: Immune checkpoint inhibitors in triple negative breast cancer treatment: Promising future prospects. Front Oncol. 10:6005732021. View Article : Google Scholar : PubMed/NCBI | |
|
Mittendorf EA, Philips AV, Meric-Bernstam F, Qiao N, Wu Y, Harrington S, Su X, Wang Y, Gonzalez-Angulo AM, Akcakanat A, et al: PD-L1 expression in triple-negative breast cancer. Cancer Immunol Res. 2:361–370. 2014. View Article : Google Scholar : PubMed/NCBI | |
|
Oner G, Önder S, Karatay H, Ak N, Tükenmez M, Müslümanoğlu M, İğci A, Dincçağ A, Özmen V, Aydiner A, et al: Correction: Clinical impact of PD-L1 expression in triplenegative breast cancer patients with residual tumor burden after neoadjuvant chemotherapy. World J Surg Oncol. 21:542023. View Article : Google Scholar | |
|
Schmid P, Adams S, Rugo HS, Schneeweiss A, Barrios CH, Iwata H, Diéras V, Hegg R, Im SA, Shaw Wright G, et al: Atezolizumab and nab-paclitaxel in advanced triple-negative breast cancer. N Engl J Med. 379:2108–2121. 2018. View Article : Google Scholar : PubMed/NCBI | |
|
Dong H, Strome SE, Salomao DR, Tamura H, Hirano F, Flies DB, Roche PC, Lu J, Zhu G, Tamada K, et al: Tumor-associated B7-H1 promotes T-cell apoptosis: A potential mechanism of immune evasion. Nat Med. 8:793–800. 2002. View Article : Google Scholar : PubMed/NCBI | |
|
Parsa AT, Waldron JS, Panner A, Crane CA, Parney IF, Barry JJ, Cachola KE, Murray JC, Tihan T, Jensen MC, et al: Loss of tumor suppressor PTEN function increases B7-H1 expression and immunoresistance in glioma. Nat Med. 13:84–88. 2007. View Article : Google Scholar | |
|
Gonzalez-Angulo AM, Ferrer-Lozano J, Stemke-Hale K, Sahin A, Liu S, Barrera JA, Burgues O, Lluch AM, Chen H, Hortobagyi GN, et al: PI3K pathway mutations and PTEN levels in primary and metastatic breast cancer. Mol Cancer Ther. 10:1093–1101. 2011. View Article : Google Scholar : PubMed/NCBI | |
|
Cancer Genome Atlas Network: Comprehensive molecular portraits of human breast tumours. Nature. 490:61–70. 2012. View Article : Google Scholar : PubMed/NCBI | |
|
Loi SM: Tumor-infiltrating lymphocytes, breast cancer subtypes and therapeutic efficacy. OncoImmunology. 2:e247202013. View Article : Google Scholar : PubMed/NCBI | |
|
Dieci MV, Tsvetkova V, Orvieto E, Piacentini F, Ficarra G, Griguolo G, Miglietta F, Giarratano T, Omarini C, Bonaguro S, et al: Immune characterization of breast cancer metastases: Prognostic implications. Breast Cancer Res. 20:622018. View Article : Google Scholar : PubMed/NCBI | |
|
Yeong J, Lim JCT, Lee B, Li H, Ong CCH, Thike AA, Yeap WH, Yang Y, Lim AYH, Tay TKY, et al: Prognostic value of CD8 + PD-1+ immune infiltrates and PDCD1 gene expression in triple negative breast cancer. J Immunother Cancer. 7:342019. View Article : Google Scholar | |
|
Lotfinejad P, Asghari Jafarabadi M, Abdoli Shadbad M, Kazemi T, Pashazadeh F, Sandoghchian Shotorbani S, Jadidi Niaragh F, Baghbanzadeh A, Vahed N, Silvestris N and Baradaran B: Prognostic role and clinical significance of tumor-infiltrating lymphocyte (TIL) and programmed death ligand 1 (PD-L1) expression in triple-negative breast cancer (TNBC): A systematic review and meta-analysis study. Diagnostics (Basel). 10:7042020. View Article : Google Scholar : PubMed/NCBI | |
|
Mittendorf EA, Zhang H, Barrios CH, Saji S, Jung KH, Hegg R, Koehler A, Sohn J, Iwata H, Telli ML, et al: Neoadjuvant atezolizumab in combination with sequential nab-paclitaxel and anthracycline-based chemotherapy versus placebo and chemotherapy in patients with early-stage triple-negative breast cancer (IMpassion031): A randomised, double-blind, phase 3 trial. Lancet. 396:1090–1100. 2020. View Article : Google Scholar : PubMed/NCBI | |
|
Baretta Z, Mocellin S, Goldin E, Olopade OI and Huo D: Effect of BRCA germline mutations on breast cancer prognosis: A systematic review and meta-analysis. Medicine (Baltimore). 95:e49752016. View Article : Google Scholar : PubMed/NCBI | |
|
Hughes DJ, Ginolhac SM, Coupier I Corbex M, Bressac-de-Paillerets B, Chompret A, Bignon YJ, Uhrhammer N, Lasset C, Giraud S, et al: Common BRCA2 variants and modification of breast and ovarian cancer risk in BRCA1 mutation carriers. Cancer Epidemiol Biomarkers Prev. 14:265–267. 2005. View Article : Google Scholar : PubMed/NCBI | |
|
Xu K, Yang S and Zhao Y: Prognostic significance of BRCA mutations in ovarian cancer: An updated systematic review with meta-analysis. Oncotarget. 8:285–302. 2017. View Article : Google Scholar : | |
|
Nanda R, Schumm LP, Cummings S, Fackenthal JD, Sveen L, Ademuyiwa F, Cobleigh M, Esserman L, Lindor NM, Neuhausen SL and Olopade OI: Genetic testing in an ethnically diverse cohort of high-risk women: A comparative analysis of BRCA1 and BRCA2 mutations in American families of European and African ancestry. JAMA. 294:1925–1933. 2005. View Article : Google Scholar : PubMed/NCBI | |
|
Wong-Brown MW, Meldrum CJ, Carpenter JE, Clarke CL, Narod SA, Jakubowska A, Rudnicka H, Lubinski J and Scott RJ: Prevalence of BRCA1 and BRCA2 germline mutations in patients with triple-negative breast cancer. Breast Cancer Res Treat. 150:71–80. 2015. View Article : Google Scholar : PubMed/NCBI | |
|
Bianchini G, Balko JM, Mayer IA, Sanders ME and Gianni L: Triple-negative breast cancer: Challenges and opportunities of a heterogeneous disease. Nat Rev Clin Oncol. 13:674–690. 2016. View Article : Google Scholar : PubMed/NCBI | |
|
Lee EH, Park SK, Park B, Kim SW, Lee MH, Ahn SH, Son BH, Yoo KY and Kang D; KOHBRA Research Group; Korean Breast Cancer Society: Effect of BRCA1/2 mutation on short-term and long-term breast cancer survival: A systematic review and meta-analysis. Breast Cancer Res Treat. 122:11–25. 2010. View Article : Google Scholar : PubMed/NCBI | |
|
Stoppa-Lyonnet D: The biological effects and clinical implications of BRCA mutations: Where do we go from here? Eur J Hum Genet. 24(Suppl 1): S3–S9. 2016. View Article : Google Scholar : PubMed/NCBI | |
|
Wu L, Wang F, Xu R, Zhang S, Peng X, Feng Y, Wang J and Lu C: Promoter methylation of BRCA1 in the prognosis of breast cancer: A meta-analysis. Breast Cancer Res Treat. 142:619–627. 2013. View Article : Google Scholar : PubMed/NCBI | |
|
Wang C, Zhang J, Wang Y, Ouyang T, Li J, Wang T, Fan Z, Fan T, Lin B and Xie Y: Prevalence of BRCA1 mutations and responses to neoadjuvant chemotherapy among BRCA1 carriers and non-carriers with triple-negative breast cancer. Ann Oncol. 26:523–528. 2015. View Article : Google Scholar | |
|
Paluch-Shimon S, Friedman E, Berger R, Papa M, Dadiani M, Friedman N, Shabtai M, Zippel D, Gutman M, Golan T, et al: Neo-adjuvant doxorubicin and cyclophosphamide followed by paclitaxel in triple-negative breast cancer among BRCA1 mutation carriers and non-carriers. Breast Cancer Res Treat. 157:157–165. 2016. View Article : Google Scholar : PubMed/NCBI | |
|
Fu X, Tan W, Song Q, Pei H and Li J: BRCA1 and breast cancer: Molecular mechanisms and therapeutic strategies. Front Cell Dev Biol. 10:8134572022. View Article : Google Scholar : PubMed/NCBI | |
|
Turk AA and Wisinski KB: PARP inhibitors in breast cancer: Bringing synthetic lethality to the bedside. Cancer. 124:2498–2506. 2018. View Article : Google Scholar : PubMed/NCBI | |
|
Meyer P, Landgraf K, Högel B, Eiermann W and Ataseven B: BRCA2 mutations and triple-negative breast cancer. PLoS One. 7:e383612012. View Article : Google Scholar : PubMed/NCBI | |
|
Mendonsa AM, Na TY and Gumbiner BM: E-cadherin in contact inhibition and cancer. Oncogene. 37:4769–4780. 2018. View Article : Google Scholar : PubMed/NCBI | |
|
Shen T, Zhang K, Siegal GP and Wei S: Prognostic value of E-cadherin and β-catenin in triple-negative breast cancer. Am J Clin Pathol. 146:603–610. 2016. View Article : Google Scholar : PubMed/NCBI | |
|
Liu JB, Feng CY, Deng M, Ge DF, Liu DC, Mi JQ and Feng XS: E-cadherin expression phenotypes associated with molecular subtypes in invasive non-lobular breast cancer: Evidence from a retrospective study and meta-analysis. World J Surg Oncol. 15:1392017. View Article : Google Scholar : PubMed/NCBI | |
|
Fang Y, Wang Y, Ma H, Guo Y, Xu R, Chen X, Chen X, Lv Y, Li P and Gao Y: TFAP2A downregulation mediates tumor-suppressive effect of miR-8072 in triple-negative breast cancer via inhibiting SNAI1 transcription. Breast Cancer Res. 26:1032024. View Article : Google Scholar : PubMed/NCBI | |
|
Tang D, Xu S, Zhang Q and Zhao W: The expression and clinical significance of the androgen receptor and E-cadherin in triple-negative breast cancer. Med Oncol. 29:526–533. 2012. View Article : Google Scholar | |
|
Merikhian P, Eisavand MR and Farahmand L: Triple-negative breast cancer: Understanding Wnt signaling in drug resistance. Cancer Cell Int. 21:4192021. View Article : Google Scholar : PubMed/NCBI | |
|
Loh CY, Chai JY, Tang TF, Wong WF, Sethi G, Shanmugam MK, Chong PP and Looi CY: The E-cadherin and N-cadherin switch in epithelial-to-mesenchymal transition: Signaling, therapeutic implications, and challenges. Cells. 8:11182019. View Article : Google Scholar : PubMed/NCBI | |
|
De Leeuw WJ, Berx G, Vos CB, Peterse JL, Van de Vijver MJ, Litvinov S, Van Roy F, Cornelisse CJ and Cleton-Jansen AM: Simultaneous loss of E-cadherin and catenins in invasive lobular breast cancer and lobular carcinoma in situ. J Pathol. 183:404–411. 1997. View Article : Google Scholar | |
|
Corso G, Figueiredo J, De Angelis SP, Corso F, Girardi A, Pereira J, Seruca R, Bonanni B, Carneiro P, Pravettoni G, et al: E-cadherin deregulation in breast cancer. J Cell Mol Med. 24:5930–5936. 2020. View Article : Google Scholar : PubMed/NCBI | |
|
Droufakou S, Deshmane V, Roylance R, Hanby A, Tomlinson I and Hart IR: Multiple ways of silencing E-cadherin gene expression in lobular carcinoma of the breast. Int J Cancer. 92:404–408. 2001. View Article : Google Scholar : PubMed/NCBI | |
|
Brouxhon SM, Kyrkanides S, Teng X, O'Banion MK, Clarke R, Byers S and Ma L: Soluble-E-cadherin activates HER and IAP family members in HER2+ and TNBC human breast cancers. Mol Carcinog. 53:893–906. 2014. View Article : Google Scholar | |
|
Kuhn PM, Russo GC, Crawford AJ, Venkatraman A, Yang N, Starich BA, Schneiderman Z, Wu PH, Vo T, Wirtz D and Kokkoli E: Local, sustained, and targeted co-delivery of MEK inhibitor and doxorubicin inhibits tumor progression in E-cadherin-positive breast cancer. Pharmaceutics. 16:9812024. View Article : Google Scholar : PubMed/NCBI | |
|
De Schepper M, Vincent-Salomon A, Christgen M, Van Baelen K, Richard F, Tsuda H, Kurozumi S, Brito MJ, Cserni G, Schnitt S, et al: Results of a worldwide survey on the currently used histopathological diagnostic criteria for invasive lobular breast cancer. Mod Pathol. 35:1812–1820. 2022. View Article : Google Scholar : PubMed/NCBI | |
|
Pai K, Baliga P and Shrestha BL: E-cadherin expression: A diagnostic utility for differentiating breast carcinomas with ductal and lobular morphologies. J Clin Diagn Res. 7:840–844. 2013.PubMed/NCBI | |
|
Curtis C, Shah SP, Chin SF, Turashvili G, Rueda OM, Dunning MJ, Speed D, Lynch AG, Samarajiwa S, Yuan Y, et al: The genomic and transcriptomic architecture of 2,000 breast tumours reveals novel subgroups. Nature. 486:346–352. 2012. View Article : Google Scholar : PubMed/NCBI | |
|
Padmanaban V, Krol I, Suhail Y, Szczerba BM, Aceto N, Bader JS and Ewald AJ: E-cadherin is required for metastasis in multiple models of breast cancer. Nature. 573:439–444. 2019. View Article : Google Scholar : PubMed/NCBI | |
|
Russo GC, Crawford AJ, Clark D, Cui J, Carney R, Karl MN, Su B, Starich B, Lih TS, Kamat P, et al: E-cadherin interacts with EGFR resulting in hyper-activation of ERK in multiple models of breast cancer. Oncogene. 43:1445–1462. 2024. View Article : Google Scholar : PubMed/NCBI | |
|
Paez JG, Jänne PA, Lee JC, Tracy S, Greulich H, Gabriel S, Herman P, Kaye FJ, Lindeman N, Boggon TJ, et al: EGFR mutations in lung cancer: Correlation with clinical response to gefitinib therapy. Science. 304:1497–1500. 2004. View Article : Google Scholar : PubMed/NCBI | |
|
Song H, Wu T, Xie D, Li D, Hua K, Hu J and Fang L: WBP2 downregulation inhibits proliferation by blocking YAP transcription and the EGFR/PI3K/Akt signaling pathway in triple negative breast cancer. Cell Physiol Biochem. 48:1968–1982. 2018. View Article : Google Scholar : PubMed/NCBI | |
|
Kim S, You D, Jeong Y, Yu J, Kim SW, Nam SJ and Lee JE: Berberine down-regulates IL-8 expression through inhibition of the EGFR/MEK/ERK pathway in triple-negative breast cancer cells. Phytomedicine. 50:43–49. 2018. View Article : Google Scholar : PubMed/NCBI | |
|
Mok TS, Wu YL, Thongprasert S, Yang CH, Chu DT, Saijo N, Sunpaweravong P, Han B, Margono B, Ichinose Y, et al: Gefitinib or carboplatin-paclitaxel in pulmonary adenocarcinoma. N Engl J Med. 361:947–957. 2009. View Article : Google Scholar : PubMed/NCBI | |
|
Mitsudomi T, Morita S, Yatabe Y, Negoro S, Okamoto I, Tsurutani J, Seto T, Satouchi M, Tada H, Hirashima T, et al: Gefitinib versus cisplatin plus docetaxel in patients with non-small-cell lung cancer harbouring mutations of the epidermal growth factor receptor (WJTOG3405): An open label, randomised phase 3 trial. Lancet Oncol. 11:121–128. 2010. View Article : Google Scholar | |
|
Zhou C, Wu YL, Chen G, Feng J, Liu XQ, Wang C, Zhang S, Wang J, Zhou S, Ren S, et al: Erlotinib versus chemotherapy as first-line treatment for patients with advanced EGFR mutation-positive non-small-cell lung cancer (OPTIMAL, CTONG-0802): A multicentre, open-label, randomised, phase 3 study. Lancet Oncol. 12:735–742. 2011. View Article : Google Scholar : PubMed/NCBI | |
|
Arrieta O, Cardona AF, Federico Bramuglia G, Gallo A, Campos-Parra AD, Serrano S, Castro M, Avilés A, Amorin E, Kirchuk R, et al: Genotyping non-small cell lung cancer (NSCLC) in Latin America. J Thorac Oncol. 6:1955–1959. 2011. View Article : Google Scholar : PubMed/NCBI | |
|
Tilch E, Seidens T, Cocciardi S, Reid LE, Byrne D, Simpson PT, Vargas AC, Cummings C, Fox SB, Lakhani SR and Chenevix Trench G: Mutations in EGFR, BRAF and RAS are rare in triple-negative and basal-like breast cancers from Caucasian women. Breast Cancer Res Treat. 143:385–392. 2014. View Article : Google Scholar | |
|
Jacot W, Lopez-Crapez E, Thezenas S, Senal R, Fina F, Bibeau F, Romieu G and Lamy PJ: Lack of EGFR-activating mutations in European patients with triple-negative breast cancer could emphasise geographic and ethnic variations in breast cancer mutation profiles. Breast Cancer Res. 13:R1332011. View Article : Google Scholar : PubMed/NCBI | |
|
Rosell R, Moran T, Queralt C, Porta R, Cardenal F, Camps C, Majem M, Lopez-Vivanco G, Isla D, Provencio M, et al: Screening for epidermal growth factor receptor mutations in lung cancer. N Engl J Med. 361:958–967. 2009. View Article : Google Scholar : PubMed/NCBI | |
|
Shigematsu H, Lin L, Takahashi T, Nomura M, Suzuki M, Wistuba II, Fong KM, Lee H, Toyooka S, Shimizu N, et al: Clinical and biological features associated with epidermal growth factor receptor gene mutations in lung cancers. J Natl Cancer Inst. 97:339–346. 2005. View Article : Google Scholar : PubMed/NCBI | |
|
Pallis AG, Voutsina A, Kalikaki A, Souglakos J, Briasoulis E, Murray S, Koutsopoulos A, Tripaki M, Stathopoulos E, Mavroudis D and Georgoulias V: 'Classical' but not 'other' mutations of EGFR kinase domain are associated with clinical outcome in gefitinib-treated patients with non-small cell lung cancer. Br J Cancer. 97:1560–1566. 2007. View Article : Google Scholar : PubMed/NCBI | |
|
Yamane H, Ochi N, Yasugi M, Tabayashi T, Yamagishi T, Monobe Y, Hisamoto A, Kiura K and Takigawa N: Docetaxel for non-small-cell lung cancer harboring the activated EGFR mutation with T790M at initial presentation. Onco Targets Ther. 6:155–160. 2013. View Article : Google Scholar : PubMed/NCBI | |
|
Lee HJ, Kim YT, Kang CH, Zhao B, Tan Y, Schwartz LH, Persigehl T, Jeon YK and Chung DH: Epidermal growth factor receptor mutation in lung adenocarcinomas: Relationship with CT characteristics and histologic subtypes. Radiology. 268:254–264. 2013. View Article : Google Scholar : PubMed/NCBI | |
|
Gupta GK, Collier AL, Lee D, Hoefer RA, Zheleva V, Siewertsz van Reesema LL, Tang-Tan AM, Guye ML, Chang DZ, Winston JS, et al: Perspectives on triple-negativebreast cancer: Current treatment strategies, unmet needs, and potential targets for future therapies. Cancers (Basel). 12:23922020. View Article : Google Scholar | |
|
Gumuskaya B, Alper M, Hucumenoglu S, Altundag K, Uner A and Guler G: EGFR expression and gene copy number in triple-negative breast carcinoma. Cancer Genet Cytogenet. 203:222–229. 2010. View Article : Google Scholar : PubMed/NCBI | |
|
Nakai K, Hung MC and Yamaguchi H: A perspective on anti-EGFR therapies targeting triple-negative breast cancer. Am J Cancer Res. 6:1609–1623. 2016.PubMed/NCBI | |
|
Choi J, Jung WH and Koo JS: Clinicopathologic features of molecular subtypes of triple negative breast cancer based on immunohistochemical markers. Histol Histopathol. 27:1481–1493. 2012.PubMed/NCBI | |
|
Tan DSP, Marchió C, Jones RL, Savage K, Smith IE, Dowsett M and Reis-Filho JS: Triple negative breast cancer: Molecular profiling and prognostic impact in adjuvant anthracycline-treated patients. Breast Cancer Res Treat. 111:27–44. 2008. View Article : Google Scholar | |
|
Martin V, Botta F, Zanellato E, Molinari F, Crippa S, Mazzucchelli L and Frattini M: Molecular characterization of EGFR and EGFR-downstream pathways in triple negative breast carcinomas with basal like features. Histol Histopathol. 27:785–792. 2012.PubMed/NCBI | |
|
Meseure D, Vacher S, Drak Alsibai K, Trassard M, Susini A, Le Ray C, Lerebours F, Le Scodan R, Spyratos F, Marc Guinebretiere J, et al: Profiling of EGFR mRNA and protein expression in 471 breast cancers compared with 10 normal tissues: A candidate biomarker to predict EGFR inhibitor effectiveness. Int J Cancer. 131:1009–1010. 2012. View Article : Google Scholar | |
|
Medić-Milijić N, Jovanić I, Nedeljković M, Marković I, Spurnić I, Milovanović Z, Ademović N, Tomić T and Tanić N and Tanić N: Prognostic and clinical significance of PD-L1, EGFR and androgen receptor (AR) expression in triple-negative breast cancer (TNBC) patients. Life (Basel). 14:6822024. | |
|
Ueno NT and Zhang D: Targeting EGFR in Triple negative breast cancer. J Cancer. 2:324–328. 2011. View Article : Google Scholar : PubMed/NCBI | |
|
Miricescu D, Totan A, Stanescu-Spinu II, Badoiu SC, Stefani C and Greabu M: PI3K/AKT/mTOR signaling pathway in breast cancer: From molecular landscape to clinical aspects. Int J Mol Sci. 22:1732020. View Article : Google Scholar : PubMed/NCBI | |
|
Pascual J and Turner NC: Targeting the PI3-kinase pathway in triple-negative breast cancer. Ann Oncol. 30:1051–1060. 2019. View Article : Google Scholar : PubMed/NCBI | |
|
Fruman DA, Chiu H, Hopkins BD, Bagrodia S, Cantley LC and Abraham RT: The PI3K pathway in human disease. Cell. 170:605–635. 2017. View Article : Google Scholar : PubMed/NCBI | |
|
Yoshida T and Delafontaine P: Mechanisms of IGF-1-mediated regulation of skeletal muscle hypertrophy and atrophy. Cells. 9:19702020. View Article : Google Scholar : PubMed/NCBI | |
|
Shi X, Wang J, Lei Y, Cong C, Tan D and Zhou X: Research progress on the PI3K/AKT signaling pathway in gynecological cancer (Review). Mol. Med. Rep. 19:4529–4535. 2019.PubMed/NCBI | |
|
Revathidevi S and Munirajan AK: Akt in cancer: Mediator and more. Semin Cancer Biol. 59:80–91. 2019. View Article : Google Scholar : PubMed/NCBI | |
|
Carpten JD, Faber AL, Horn C, Donoho GP, Briggs SL, Robbins CM, Hostetter G, Boguslawski S, Moses TY, Savage S, et al: A transforming mutation in the pleckstrin homology domain of AKT1 in cancer. Nature. 448:439–444. 2007. View Article : Google Scholar : PubMed/NCBI | |
|
Chin YR, Yoshida T, Marusyk A, Beck AH, Polyak K and Toker A: Targeting Akt3 signaling in triple-negative breast cancer. Can Res. 74:964–973. 2014. View Article : Google Scholar | |
|
Li H, Prever L, Hirsch E and Gulluni F: Targeting PI3K/AKT/mTOR signaling pathway in breast cancer. Cancers (Basel). 13:35172021. View Article : Google Scholar : PubMed/NCBI | |
|
Costa RLB, Han HS and Gradishar WJ: Targeting the PI3K/AKT/mTOR pathway in triple-negative breast cancer: A review. Breast Cancer Res Treat. 169:397–406. 2018. View Article : Google Scholar : PubMed/NCBI | |
|
Carey LA: Finding the positive in triple-negative breast cancer. Nat Cancer. 2:476–478. 2021. View Article : Google Scholar | |
|
Xia P and Xu XY: PI3K/Akt/mTOR signaling pathway in cancer stem cells: From basic research to clinical application. Am J Cancer Res. 5:1602–1609. 2015.PubMed/NCBI | |
|
Karami Fath M, Ebrahimi M, Nourbakhsh E, Zia Hazara A, Mirzaei A, Shafieyari S, Salehi A, Hoseinzadeh M, Payandeh Z and Barati G: PI3K/Akt/mTOR signaling pathway in cancer stem cells. Pathol Res Pract. 237:1540102022. View Article : Google Scholar : PubMed/NCBI | |
|
Reinhardt HC and Schumacher B: The p53 network: Cellular and systemic DNA damage responses in aging and cancer. Trends Genet. 28:128–136. 2012. View Article : Google Scholar : PubMed/NCBI | |
|
Sionov RV and Haupt Y: The cellular response to p53: The decision between life and death. Oncogene. 18:6145–6157. 1999. View Article : Google Scholar : PubMed/NCBI | |
|
Kubbutat MH, Jones SN and Vousden KH: Regulation of p53 stability by MDM2. Nature. 387:299–303. 1997. View Article : Google Scholar : PubMed/NCBI | |
|
Lacroix M, Toillon RA and Leclercq G: p53 and breast cancer, an update. Endocr Relat Cancer. 13:293–325. 2006. View Article : Google Scholar : PubMed/NCBI | |
|
Ozaki T and Nakagawara A: Role of p53 in cell death and human cancers. Cancers (Basel). 3:994–1013. 2011. View Article : Google Scholar : PubMed/NCBI | |
|
Babikir HA, Afjei R, Paulmurugan R and Massoud TF: Restoring guardianship of the genome: Anticancer drug strategies to reverse oncogenic mutant p53 misfolding. Cancer Treat Rev. 71:19–31. 2018. View Article : Google Scholar : PubMed/NCBI | |
|
Costa DCF, de Oliveira GAP, Cino EA, Soares IN, Rangel LP and Silva JL: Aggregation and prion-like properties of misfolded tumor suppressors: Is cancer a prion disease? Cold Spring Harbor Perspect Biol. 8:a0236142016. View Article : Google Scholar | |
|
Silva JL, De Moura Gallo CV, Costa DCF and Rangel LP: Prion-like aggregation of mutant p53 in cancer. Trends Biochem Sci. 39:260–267. 2014. View Article : Google Scholar : PubMed/NCBI | |
|
Eriksson SE, Ceder S, Bykov VJN and Wiman KG: p53 as a hub in cellular redox regulation and therapeutic target in cancer. J Mol Cell Biol. 11:330–341. 2019. View Article : Google Scholar : PubMed/NCBI | |
|
D'Orazi G and Givol D: p53 reactivation: The link to zinc. Cell Cycle. 11:2581–2582. 2012. View Article : Google Scholar : PubMed/NCBI | |
|
Wang G and Fersht AR: First-order rate-determining aggregation mechanism of p53 and its implications. Proc Natl Acad Sci USA. 109:13590–13595. 2012. View Article : Google Scholar : PubMed/NCBI | |
|
Ghosh S, Salot S, Sengupta S, Navalkar A, Ghosh D, Jacob R, Das S, Kumar R, Jha NN, Sahay S, et al: p53 amyloid formation leading to its loss of function: Implications in cancer pathogenesis. Cell Death Differ. 24:1784–1798. 2017. View Article : Google Scholar : PubMed/NCBI | |
|
Li JP, Zhang XM, Zhang Z, Zheng LH, Jindal S and Liu YJ: Association of p53 expression with poor prognosis in patients with triple-negative breast invasive ductal carcinoma. Medicine (Baltimore). 98:e154492019. View Article : Google Scholar : PubMed/NCBI | |
|
Muller PA and Vousden KH: p53 mutations in cancer. Nat Cell Biol. 15:2–8. 2013. View Article : Google Scholar | |
|
Neilsen PM, Noll JE, Suetani RJ, Schulz RB, Al-Ejeh F, Evdokiou A, Lane DP and Callen DF: Mutant p53 uses p63 as a molecular chaperone to alter gene expression and induce a pro-invasive secretome. Oncotarget. 2:1203–1217. 2011. View Article : Google Scholar : PubMed/NCBI | |
|
Lim LY, Vidnovic N, Ellisen LW and Leong CO: Mutant p53 mediates survival of breast cancer cells. Br J Cancer. 101:1606–1612. 2009. View Article : Google Scholar : PubMed/NCBI | |
|
Adorno M, Cordenonsi M, Montagner M, Dupont S, Wong C, Hann B, Solari A, Bobisse S, Rondina MB, Guzzardo V, et al: A mutant-p53/Smad complex opposes p63 to empower TGFbeta-induced metastasis. Cell. 137:87–98. 2009. View Article : Google Scholar : PubMed/NCBI | |
|
Muller PAJ, Trinidad AG, Timpson P, Morton JP, Zanivan S, van den Berghe PVE, Nixon C, Karim SA, Caswell PT, Noll JE, et al: Mutant p53 enhances MET trafficking and signalling to drive cell scattering and invasion. Oncogene. 32:1252–1265. 2013. View Article : Google Scholar : | |
|
Huang G, Zhong X, Yao L, Ma Q, Liao H, Xu L, Zou J, Sun R, Wang D and Guo X: MicroRNA-449a inhibits cell proliferation and migration by regulating mutant p53 in MDA-MB-468 cells. Exp Ther Med. 22:10202021. View Article : Google Scholar : PubMed/NCBI | |
|
Marvalim C, Datta A and Lee SC: Role of p53 in breast cancer progression: An insight into p53 targeted therapy. Theranostics. 13:1421–1442. 2023. View Article : Google Scholar : PubMed/NCBI | |
|
Shah SP, Roth A, Goya R, Oloumi A, Ha G, Zhao Y, Turashvili G, Ding J, Tse K, Haffari G, et al: The clonal and mutational evolution spectrum of primary triple-negative breast cancers. Nature. 486:395–399. 2012. View Article : Google Scholar : PubMed/NCBI | |
|
Bae SY, Nam SJ, Jung Y, Lee SB, Park BW, Lim W, Jung SH, Yang HW and Jung SP: Differences in prognosis and efficacy of chemotherapy by p53 expression in triple-negative breast cancer. Breast Cancer Res Treat. 172:437–444. 2018. View Article : Google Scholar : PubMed/NCBI | |
|
Jasar D, Smichkoska S, Kubelka K, Filipovski V and Petrushevska G: Expression of p53 protein product in triple negative breast cancers and relation with clinical and histopathological parameters. Pril (Makedon Akad Nauk Umet Odd Med Nauki). 36:69–79. 2015.PubMed/NCBI | |
|
Karamitopoulou E, Perentes E, Tolnay M and Probst A: Prognostic significance of MIB-1, p53, and bcl-2 immunoreactivity in meningiomas. Hum Pathol. 29:140–145. 1998. View Article : Google Scholar : PubMed/NCBI | |
|
Geyer FC, Rodrigues DN, Weigelt B and Reis-Filho JS: Molecular classification of estrogen receptor-positive/luminal breast cancers. Adv Anat Pathol. 19:39–53. 2012. View Article : Google Scholar | |
|
Zizi-Sermpetzoglou A, Moustou E, Petrakopoulou N, Arkoumani E, Tepelenis N and Savvaidou V: Atypical polypoid adenomyoma of the uterus. A case report and a review of the literature. Eur J Gynaecol Oncol. 33:118–121. 2012.PubMed/NCBI | |
|
Ibrahim T, Farolfi A, Scarpi E, Mercatali L, Medri L, Ricci M, Nanni O, Serra L and Amadori D: Hormonal receptor, human epidermal growth factor receptor-2, and Ki67 discordance between primary breast cancer and paired metastases: Clinical impact. Oncology. 84:150–157. 2013. View Article : Google Scholar | |
|
Niikura N, Masuda S, Kumaki N, Xiaoyan T, Terada M, Terao M, Iwamoto T, Oshitanai R, Morioka T, Tuda B, et al: Prognostic significance of the Ki67 scoring categories in breast cancer subgroups. Clin Breast Cancer. 14:323–329.e3. 2014. View Article : Google Scholar : PubMed/NCBI | |
|
Polley MYC, Leung SCY, McShane LM, Gao D, Hugh JC, Mastropasqua MG, Viale G, Zabaglo LA, Penault-Llorca F, Bartlett JMS, et al: An international Ki67 reproducibility study. J Natl Cancer Inst. 105:1897–1906. 2013. View Article : Google Scholar : PubMed/NCBI | |
|
Polley MYC, Leung SCY, Gao D, Mastropasqua MG, Zabaglo LA, Bartlett JMS, McShane LM, Enos RA, Badve SS, Bane AL, et al: An international study to increase concordance in Ki67 scoring. Mod Pathol. 28:778–786. 2015. View Article : Google Scholar : PubMed/NCBI | |
|
Baum M, Buzdar A, Cuzick J, Forbes J, Houghton J, Howell A and Sahmoud T; ATAC (Arimidex Tamoxifen Alone or in Combination) Trialists' Group: Anastrozole alone or in combination with tamoxifen versus tamoxifen alone for adjuvant treatment of postmenopausal women with early-stage breast cancer: Results of the ATAC (Arimidex, Tamoxifen Alone or in Combination) trial efficacy and safety update analyses. Cancer. 98:1802–1810. 2003. View Article : Google Scholar : PubMed/NCBI | |
|
Wyatt CA, Geoghegan JC and Brinckerhoff CE: Short hairpin RNA-mediated inhibition of matrix metalloproteinase-1 in MDA-231 cells: Effects on matrix destruction and tumor growth. Cancer Res. 65:11101–11108. 2005. View Article : Google Scholar : PubMed/NCBI | |
|
Zuckerman JE and Davis ME: Clinical experiences with systemically administered siRNA-based therapeutics in cancer. Nat Rev Drug Discov. 14:843–856. 2015. View Article : Google Scholar : PubMed/NCBI | |
|
Zheng JN, Ma TX, Cao JY, Sun XQ, Chen JC, Li W, Wen RM, Sun YF and Pei DS: Knockdown of Ki-67 by small interfering RNA leads to inhibition of proliferation and induction of apoptosis in human renal carcinoma cells. Life Sci. 78:724–729. 2006. View Article : Google Scholar | |
|
Zheng JN, Sun YF, Pei DS, Liu JJ, Ma TX, Han RF, Li W, Zheng DB, Chen JC and Sun XQ: Treatment with vector-expressed small hairpin RNAs against Ki67 RNA-induced cell growth inhibition and apoptosis in human renal carcinoma cells. Acta Biochim Biophys Sin (Shanghai). 38:254–261. 2006. View Article : Google Scholar : PubMed/NCBI | |
|
Burnett JC and Rossi JJ: RNA-based therapeutics: Current progress and future prospects. Chem Biol. 19:60–71. 2012. View Article : Google Scholar : PubMed/NCBI | |
|
de Carvalho Vicentini FTM, Borgheti-Cardoso LN, Depieri LV, de Macedo Mano D, Abelha TF and Petrilli R: Delivery systems and local administration routes for therapeutic siRNA. Pharm Res. 30:915–931. 2013. View Article : Google Scholar | |
|
Conde J, Edelman ER and Artzi N: Target-responsive DNA/RNA nanomaterials for microRNA sensing and inhibition: The jack-of-all-trades in cancer nanotheranostics? Adv Drug Deliv Rev. 81:169–183. 2015. View Article : Google Scholar | |
|
Bischoff JR, Kirn DH, Williams A, Heise C, Horn S, Muna M, Ng L, Nye JA, Sampson-Johannes A, Fattaey A and McCormick F: An adenovirus mutant that replicates selectively in p53-eficient human tumor cells. Science. 274:373–376. 1996. View Article : Google Scholar : PubMed/NCBI | |
|
Yu DC, Chen Y, Dilley J, Li Y, Embry M, Zhang H, Nguyen N, Amin P, Oh J and Henderson DR: Antitumor synergy of CV787, a prostate cancer-specific adenovirus, and paclitaxel and docetaxel. Cancer Res. 61:517–525. 2001.PubMed/NCBI | |
|
Rajecki M, Kanerva A, Stenman UH, Tenhunen M, Kangasniemi L, Särkioja M, Ala-Opas MY, Alfthan H, Sankila A, Rintala E, et al: Treatment of prostate cancer with Ad5/3Delta24hCG allows non-invasive detection of the magnitude and persistence of virus replication in vivo. Mol Cancer Ther. 6:742–751. 2007. View Article : Google Scholar : PubMed/NCBI | |
|
Chen RF, Li YY, Li LT, Cheng Q, Jiang G and Zheng JN: Novel oncolytic adenovirus sensitizes renal cell carcinoma cells to radiotherapy via mitochondrial apoptotic cell death. Mol Med Rep. 11:2141–2146. 2015. View Article : Google Scholar | |
|
Toth K and Wold WSM: Increasing the efficacy of oncolytic adenovirus vectors. Viruses. 2:1844–1866. 2010. View Article : Google Scholar | |
|
Liu J, Fang L, Cheng Q, Li L, Su C, Zhang B, Pei D, Yang J, Li W and Zheng J: Effects of G250 promoter controlled conditionally replicative adenovirus expressing Ki67-siRNA on renal cancer cell. Cancer Sci. 103:1880–1888. 2012. View Article : Google Scholar : PubMed/NCBI | |
|
Gaudet D, Alexander VJ, Baker BF, Brisson D, Tremblay K, Singleton W, Geary RS, Hughes SG, Viney NJ, Graham MJ, et al: Antisense inhibition of apolipoprotein C-III in patients with hypertriglyceridemia. N Engl J Med. 373:438–447. 2015. View Article : Google Scholar : PubMed/NCBI | |
|
Kennedy BWC: Mongersen, an oral SMAD7 antisense oligonucleotide, and Crohn's disease. N Engl J Med. 372:24612015. View Article : Google Scholar : PubMed/NCBI | |
|
Wheeler TM, Leger AJ, Pandey SK, MacLeod AR, Nakamori M, Cheng SH, Wentworth BM, Bennett CF and Thornton CA: Targeting nuclear RNA for in vivo correction of myotonic dystrophy. Nature. 488:111–115. 2012. View Article : Google Scholar : PubMed/NCBI | |
|
Natale R, Blackhall F, Kowalski D, Ramlau R, Bepler G, Grossi F, Lerchenmüller C, Pinder-Schenck M, Mezger J, Danson S, et al: Evaluation of antitumor activity using change in tumor size of the survivin antisense oligonucleotide LY2181308 in combination with docetaxel for second-line treatment of patients with non-small-cell lung cancer: a randomized open-label phase II study. J Thorac Oncol. 9:1704–1708. 2014. View Article : Google Scholar : PubMed/NCBI | |
|
Sen M, Thomas SM, Kim S, Yeh JI, Ferris RL, Johnson JT, Duvvuri U, Lee J, Sahu N, Joyce S, et al: First-in-human trial of a STAT3 decoy oligonucleotide in head and neck tumors: Implications for cancer therapy. Cancer Discov. 2:694–705. 2012. View Article : Google Scholar : PubMed/NCBI | |
|
Kausch I, Lingnau A, Endl E, Sellmann K, Deinert I, Ratliff TL, Jocham D, Sczakiel G, Gerdes J and Böhle A: Antisense treatment against Ki-67 mRNA inhibits proliferation and tumor growth in vitro and in vivo. Int J Cancer. 105:710–716. 2003. View Article : Google Scholar : PubMed/NCBI | |
|
Kausch I, Jiang H, Ewerdwalbesloh N, Doehn C, Krüger S, Sczakiel G and Jocham D: Inhibition of Ki-67 in a renal cell carcinoma severe combined immunodeficiency disease mouse model is associated with induction of apoptosis and tumour growth inhibition. BJU Int. 95:416–420. 2005. View Article : Google Scholar : PubMed/NCBI | |
|
Lingnau A, Steiner U, Kurzidim H, Jocham D and Kausch I: Phase I dose-escalation study of intravesical instillation of antisense oligonucleotide FFC15-01 against Ki-67 in patients with non-muscle invasive bladder cancer. Debates Bladder Cancer. 2:12010. | |
|
Ratilainen T, Holmén A, Tuite E, Nielsen PE and Nordén B: Thermodynamics of sequence-specific binding of PNA to DNA. Biochemistry. 39:7781–7791. 2000. View Article : Google Scholar : PubMed/NCBI | |
|
Thomas SM, Sahu B, Rapireddy S, Bahal R, Wheeler SE, Procopio EM, Kim J, Joyce SC, Contrucci S, Wang Y, et al: Antitumor effects of EGFR antisense guanidine-based peptide nucleic acids in cancer models. ACS Chem Biol. 8:345–352. 2013. View Article : Google Scholar : | |
|
Thompson ED, Taube JM, Asch-Kendrick RJ, Ogurtsova A, Xu H, Sharma R, Meeker A, Argani P, Emens LA and Cimino-Mathews A: PD-L1 expression and the immune microenvironment in primary invasive lobular carcinomas of the breast. Mod Pathol. 30:1551–1560. 2017. View Article : Google Scholar : PubMed/NCBI | |
|
Sabatier R, Finetti P, Mamessier E, Adelaide J, Chaffanet M, Ali HR, Viens P, Caldas C, Birnbaum D and Bertucci F: Prognostic and predictive value of PDL1 expression in breast cancer. Oncotarget. 6:5449–5464. 2015. View Article : Google Scholar : PubMed/NCBI | |
|
Baracco EE, Pietrocola F, Buqué A, Bloy N, Senovilla L, Zitvogel L, Vacchelli E and Kroemer G: Inhibition of formyl peptide receptor 1 reduces the efficacy of anticancer chemotherapy against carcinogen-induced breast cancer. Oncoimmunology. 5:e11392752016. View Article : Google Scholar : PubMed/NCBI | |
|
Rey-Cárdenas M, Guerrero-Ramos F, Gómez de Liaño Lista A, Carretero-González A, Bote H, Herrera-Juárez M, Carril-Ajuria L, Martín-Soberón M, Sepulveda JM, Billalabeitia EG, et al: Recent advances in neoadjuvant immunotherapy for urothelial bladder cancer: What to expect in the near future. Cancer Treat Rev. 93:1021422021. View Article : Google Scholar : PubMed/NCBI | |
|
Reck M, Remon J and Hellmann MD: First-line immunotherapy for non-small-cell lung cancer. J Clin Oncol. 40:586–597. 2022. View Article : Google Scholar : PubMed/NCBI | |
|
Huang AC and Zappasodi R: A decade of checkpoint blockade immunotherapy in melanoma: Understanding the molecular basis for immune sensitivity and resistance. Nat Immunol. 23:660–670. 2022. View Article : Google Scholar : PubMed/NCBI | |
|
Sendur MAN: Adjuvant immunotherapy for renal cell carcinoma. Lancet Oncol. 23:1110–1111. 2022. View Article : Google Scholar : PubMed/NCBI | |
|
Romero D: Benefit in patients with PD-L1-positive TNBC. Nat Rev Clin Oncol. 16:62019. | |
|
Loi S, Drubay D, Adams S, Pruneri G, Francis PA, Lacroix-Triki M, Joensuu H, Dieci MV, Badve S, Demaria S, et al: Tumor-infiltrating lymphocytes and prognosis: A pooled individual patient analysis of early-stage triple-negative breast cancers. J Clin Oncol. 37:559–569. 2019. View Article : Google Scholar : PubMed/NCBI | |
|
Yarchoan M, Johnson BR, Lutz ER, Laheru DA and Jaffee EM: Targeting neoantigens to augment antitumour immunity. Nat Rev Cancer. 17:209–222. 2017. View Article : Google Scholar : PubMed/NCBI | |
|
Dudley JC, Lin MT, Le DT and Eshleman JR: Microsatellite instability as a biomarker for PD-1 blockade. Clin Cancer Res. 22:813–820. 2016. View Article : Google Scholar : PubMed/NCBI | |
|
Bonneville R, Krook MA, Kautto EA, Miya J, Wing MR, Chen HZ, Reeser JW, Yu L and Roychowdhury S: Landscape of microsatellite instability across 39 cancer types. JCO Precis Oncol. 2017:PO.17.000732017.PubMed/NCBI | |
|
Lipson EJ, Forde PM, Hammers HJ, Emens LA, Taube JM and Topalian SL: Antagonists of PD-1 and PD-L1 in cancer treatment. Semin Oncol. 42:587–600. 2015. View Article : Google Scholar : PubMed/NCBI | |
|
Brahmer JR, Tykodi SS, Chow LQM, Hwu WJ, Topalian SL, Hwu P, Drake CG, Camacho LH, Kauh J, Odunsi K, et al: Safety and activity of anti-PD-L1 antibody in patients with advanced cancer. N Engl J Med. 366:2455–2465. 2012. View Article : Google Scholar : PubMed/NCBI | |
|
Pusztai L, Karn T, Safonov A, Abu-Khalaf MM and Bianchini G: New strategies in breast cancer: Immunotherapy. Clin Cancer Res. 22:2105–2110. 2016. View Article : Google Scholar : PubMed/NCBI | |
|
Loi S, Dushyanthen S, Beavis PA, Salgado R, Denkert C, Savas P, Combs S, Rimm DL, Giltnane JM, Estrada MV, et al: RAS/MAPK activation is associated with reduced tumor-infiltrating lymphocytes in triple-negative breast cancer: Therapeutic cooperation between MEK and PD-1/PD-L1 immune checkpoint inhibitors. Clin Cancer Res. 22:1499–1509. 2016. View Article : Google Scholar : | |
|
Sagiv-Barfi I, Kohrt HE, Czerwinski DK, Ng PP, Chang BY and Levy R: Therapeutic antitumor immunity by checkpoint blockade is enhanced by ibrutinib, an inhibitor of both BTK and ITK. Proc Natl Acad Sci USA. 112:E966–E972. 2015. View Article : Google Scholar : PubMed/NCBI | |
|
Hodgson D, Lai Z, Dearden S, Barrett JC, Harrington EA, Timms K, Lanchbury J, Wu W, Allen A, Senkus E, et al: Analysis of mutation status and homologous recombination deficiency in tumors of patients with germline BRCA1 or BRCA2 mutations and metastatic breast cancer: OlympiAD. Ann Oncol. 32:1582–1589. 2021. View Article : Google Scholar : PubMed/NCBI | |
|
U.S. Food and Drug Administration (FDA): TALZENNA® (talazoparib) prescribing information. FDA; Silver Spring, MD: 2025, https://www.accessdata.fda.gov/drugsatfda_docs/label/2024/217439s000lbl.pdf (May 2025). Accessed on May 9 2025. | |
|
Litton JK, Scoggins ME, Hess KR, Adrada BE, Murthy RK, Damodaran S, DeSnyder SM, Brewster AM, Barcenas CH, Valero V, et al: Neoadjuvant talazoparib for patients with operable breast cancer with a germline BRCA pathogenic variant. J Clin Oncol. 38:388–394. 2020. View Article : Google Scholar : | |
|
Pop L, Suciu ID, Ionescu P and Ionescu OD: The dual blockade in the neoadjuvant setting of HER-2 positive early-stage breast cancer. J Med Life. 12:329–331. 2019. View Article : Google Scholar | |
|
Isakoff SJ, Overmoyer B, Tung NM, Gelman RS, Giranda VL, Bernhard KM, Habin KR, Ellisen LW, Winer EP and Goss PE: A phase II trial of the PARP inhibitor veliparib (ABT888) and temozolomide for metastatic breast cancer. J Clin Oncol. 28(15 Suppl): S10192010. View Article : Google Scholar | |
|
Rodler ET, Gralow J, Kurland BF, Griffin M, Yeh R, Thompson JA, Porter P, Swisher EM, Gadi VK, Korde LA, et al: Phase I: Veliparib with cisplatin (CP) and vinorelbine (VNR) in advanced triple-negative breast cancer (TNBC) and/or BRCA mutation-associated breast cancer. J Clin Oncol. 32(15 Suppl): S25692014. View Article : Google Scholar | |
|
Samol J, Ranson M, Scott E, Macpherson E, Carmichael J, Thomas A and Cassidy J: Safety and tolerability of the poly(ADP-ribose) polymerase (PARP) inhibitor, olaparib (AZD2281) in combination with topotecan for the treatment of patients with advanced solid tumors: A phase I study. Invest New Drugs. 30:1493–1500. 2012. View Article : Google Scholar | |
|
Dent RA, Lindeman GJ, Clemons M, Wildiers H, Chan A, McCarthy NJ, Singer CF, Lowe ES, Watkins CL and Carmichael J: Phase I trial of the oral PARP inhibitor olaparib in combination with paclitaxel for first- or second-line treatment of patients with metastatic triple-negative breast cancer. Breast Cancer Res. 15:R882013. View Article : Google Scholar : PubMed/NCBI | |
|
Marullo R, Werner E, Degtyareva N, Moore B, Altavilla G, Ramalingam SS and Doetsch PW: Cisplatin induces a mitochondrial-ROS response that contributes to cytotoxicity depending on mitochondrial redox status and bioenergetic functions. PLoS One. 8:e811622013. View Article : Google Scholar : PubMed/NCBI | |
|
Song X, Kong F, Zong ZF, Ren M, Meng Q, Li Y and Sun Z: miR-124 and miR-142 enhance cisplatin sensitivity of non-small cell lung cancer cells through repressing autophagy via directly targeting SIRT1. RSC Adv. 9:5234–5243. 2019. View Article : Google Scholar : PubMed/NCBI | |
|
Pabla N and Dong Z: Curtailing side effects in chemotherapy: A tale of PKCδ in cisplatin treatment. Oncotarget. 3:107–111. 2012. View Article : Google Scholar : PubMed/NCBI | |
|
McCabe N, Turner NC, Lord CJ, Kluzek K, Bialkowska A, Swift S, Giavara S, O'Connor MJ, Tutt AN, Zdzienicka MZ, et al: Deficiency in the repair of DNA damage by homologous recombination and sensitivity to poly(ADP-ribose) polymerase inhibition. Cancer Res. 66:8109–8115. 2006. View Article : Google Scholar : PubMed/NCBI | |
|
Jia X, Wang K, Xu L, Li N, Zhao Z and Li M: A systematic review and meta-analysis of BRCA1/2 mutation for predicting the effect of platinum-based chemotherapy in triple-negative breast cancer. Breast. 66:31–39. 2022. View Article : Google Scholar : PubMed/NCBI | |
|
Teo K, Gómez-Cuadrado L, Tenhagen M, Byron A, Rätze M, van Amersfoort M, Renes J, Strengman E, Mandoli A, Singh AA, et al: E-cadherin loss induces targetable autocrine activation of growth factor signalling in lobular breast cancer. Sci Rep. 8:154542018. View Article : Google Scholar : PubMed/NCBI | |
|
Bajrami I, Marlow R, van de Ven M, Brough R, Pemberton HN, Frankum J, Song F, Rafiq R, Konde A, Krastev DB, et al: E-cadherin/ROS1 inhibitor synthetic lethality in breast cancer. Cancer Discov. 8:498–515. 2018. View Article : Google Scholar : PubMed/NCBI | |
|
Mateus AR, Simões-Correia J, Figueiredo J, Heindl S, Alves CC, Suriano G, Luber B and Seruca R: E-cadherin mutations and cell motility: A genotype-phenotype correlation. Exp Cell Res. 315:1393–1402. 2009. View Article : Google Scholar : PubMed/NCBI | |
|
Watabe M, Nagafuchi A, Tsukita S and Takeichi M: Induction of polarized cell-cell association and retardation of growth by activation of the E-cadherin-catenin adhesion system in a dispersed carcinoma line. J Cell Biol. 127:247–256. 1994. View Article : Google Scholar : PubMed/NCBI | |
|
Green SK, Francia G, Isidoro C and Kerbel RS: Antiadhesive antibodies targeting E-cadherin sensitize multicellular tumor spheroids to chemotherapy in vitro. Mol Cancer Ther. 3:149–159. 2004. View Article : Google Scholar : PubMed/NCBI | |
|
Masuda H, Zhang D, Bartholomeusz C, Doihara H, Hortobagyi GN and Ueno NT: Role of epidermal growth factor receptor in breast cancer. Breast Cancer Res Treat. 136:331–345. 2012. View Article : Google Scholar : PubMed/NCBI | |
|
Li S, Schmitz KR, Jeffrey PD, Wiltzius JJ, Kussie P and Ferguson KM: Structural basis for inhibition of the epidermal growth factor receptor by cetuximab. Cancer Cell. 7:301–311. 2005. View Article : Google Scholar : PubMed/NCBI | |
|
Qin S, Li J, Wang L, Xu J, Cheng Y, Bai Y, Li W, Xu N, Lin LZ, Wu Q, et al: Efficacy and tolerability of first-line cetuximab plus leucovorin, fluorouracil, and oxaliplatin (FOLFOX-4) versus FOLFOX-4 in patients with RAS wild-type metastatic colorectal cancer: The open-label, randomized, phase III TAILOR trial. J Clin Oncol. 36:3031–3039. 2018. View Article : Google Scholar : PubMed/NCBI | |
|
Bonner JA, Harari PM, Giralt J, Azarnia N, Shin DM, Cohen RB, Jones CU, Sur R, Raben D, Jassem J, et al: Radiotherapy plus cetuximab for squamous-cell carcinoma of the head and neck. N Engl J Med. 354:567–578. 2006. View Article : Google Scholar : PubMed/NCBI | |
|
Hirsch FR, Redman MW, Moon J, Agustoni F, Herbst RS, Semrad TJ, Varella-Garcia M, Rivard CJ, Kelly K, Gandara DR and Mack PC: EGFR high copy number together with high EGFR protein expression predicts improved outcome for cetuximab-based therapy in squamous cell lung cancer: Analysis from SWOG S0819, a phase III trial of chemotherapy with or without cetuximab in advanced NSCLC. Clin Lung Cancer. 23:60–71. 2022. View Article : Google Scholar : | |
|
Cai WQ, Zeng LS, Wang LF, Wang YY, Cheng JT, Zhang Y, Han ZW, Zhou Y, Huang SL, Wang XW, et al: The latest battles between EGFR monoclonal antibodies and resistant tumor cells. Front Oncol. 10:12492020. View Article : Google Scholar : PubMed/NCBI | |
|
Xu MJ, Johnson DE and Grandis JR: EGFR-targeted therapies in the post-genomic era. Cancer Metastasis Rev. 36:463–473. 2017. View Article : Google Scholar : PubMed/NCBI | |
|
Mazorra Z, Lavastida A, Concha-Benavente F, Valdés A, Srivastava RM, García-Bates TM, Hechavarría E, González Z, González A, Lugiollo M, et al: Nimotuzumab induces NK cell activation, cytotoxicity, dendritic cell maturation and expansion of EGFR-specific T cells in head and neck cancer patients. Front Pharmacol. 8:3822017. View Article : Google Scholar : PubMed/NCBI | |
|
Benmebarek MR, Karches CH, Cadilha BL, Lesch S, Endres S and Kobold S: Killing mechanisms of chimeric antigen receptor (CAR) T cells. Int J Mol Sci. 20:12832019. View Article : Google Scholar : PubMed/NCBI | |
|
Byrd TT, Fousek K, Pignata A, Szot C, Samaha H, Seaman S, Dobrolecki L, Salsman VS, Oo HZ, Bielamowicz K, et al: TEM8/ANTXR1-specific CAR T cells as a targeted therapy for triple-negative breast cancer. Cancer Res. 78:489–500. 2018. View Article : Google Scholar : | |
|
Xia L, Zheng Z, Liu JY, Chen YJ, Ding J, Hu GS, Hu YH, Liu S, Luo WX, Xia NS and Liu W: Targeting triple-negative breast cancer with combination therapy of EGFR CAR T cells and CDK7 inhibition. Cancer Immunol Res. 9:707–722. 2021. View Article : Google Scholar : PubMed/NCBI | |
|
Hübner J, Raschke M, Rütschle I, Gräßle S, Hasenberg T, Schirrmann K, Lorenz A, Schnurre S, Lauster R, Maschmeyer I, et al: Simultaneous evaluation of anti-EGFR-induced tumour and adverse skin effects in a microfluidic human 3D co-culture model. Sci Rep. 8:150102018. View Article : Google Scholar : PubMed/NCBI | |
|
Jungbluth AA, Stockert E, Huang HJ, Collins VP, Coplan K, Iversen K, Kolb D, Johns TJ, Scott AM, Gullick WJ, et al: A monoclonal antibody recognizing human cancers with amplification/overexpression of the human epidermal growth factor receptor. Proc Natl Acad Sci USA. 100:639–644. 2003. View Article : Google Scholar : PubMed/NCBI | |
|
Scott AM, Lee FT, Tebbutt N, Herbertson R, Gill SS, Liu Z, Skrinos E, Murone C, Saunder TH, Chappell B, et al: A phase I clinical trial with monoclonal antibody ch806 targeting transitional state and mutant epidermal growth factor receptors. Proc Natl Acad Sci USA. 104:4071–4076. 2007. View Article : Google Scholar : PubMed/NCBI | |
|
Vitanza N, Gust J, Wilson A, Huang W, Perez F, Wright J, Leary S, Cole B, Albert C, Pinto N, et al: IMMU-03. Updates on brainchild-01, -02, and -03: Phase 1 locoregional car T cell trials targeting HER2, EGFR, and B7-H3 for children with recurrent CNS tumors and DIPG. Neuro Oncol. 22(Suppl 3): iii3602020. View Article : Google Scholar : | |
|
Huerta JJ, Diaz-Trelles R, Naves FJ, Llamosas MM, Del Valle ME and Vega JA: Epidermal growth factor receptor in adult human dorsal root ganglia. Anat Embryol (Berl). 194:253–257. 1996. View Article : Google Scholar : PubMed/NCBI | |
|
Atwell B, Chen CY, Christofferson M, Montfort WR and Schroeder J: Sorting nexin-dependent therapeutic targeting of oncogenic epidermal growth factor receptor. Cancer Gene Ther. 30:267–276. 2023. View Article : Google Scholar : | |
|
André F, Ciruelos E, Rubovszky G, Campone M, Loibl S, Rugo HS, Iwata H, Conte P, Mayer IA, Kaufman B, et al: Alpelisib for PIK3CA-mutated, hormone receptor-positive advanced breast cancer. N Engl J Med. 380:1929–1940. 2019. View Article : Google Scholar : PubMed/NCBI | |
|
Cataldo ML, De Placido P, Esposito D, Formisano L, Arpino G, Giuliano M, Bianco R, De Angelis C and Veneziani BM: The effect of the alpha-specific PI3K inhibitor alpelisib combined with anti-HER2 therapy in HER2+/PIK3CA mutant breast cancer. Front Oncol. 13:11082422023. View Article : Google Scholar : PubMed/NCBI | |
|
Juric D, Krop I, Ramanathan RK, Wilson TR, Ware JA, Sanabria Bohorquez SM, Savage HM, Sampath D, Salphati L, Lin RS, et al: Phase I dose-escalation study of taselisib, an oral PI3K inhibitor, in patients with advanced solid tumors. Cancer Discov. 7:704–715. 2017. View Article : Google Scholar : PubMed/NCBI | |
|
Schmid P, Zaiss M, Harper-Wynne C, Ferreira M, Dubey S, Chan S, Makris A, Nemsadze G, Brunt AM, Kuemmel S, et al: Abstract GS2-07: MANTA-a randomized phase II study of fulvestrant in combination with the dual mTOR inhibitor AZD2014 or everolimus or fulvestrant alone in estrogen receptor-positive advanced or metastatic breast cancer. Cancer Res. 78(4 Suppl): GS2–07. 2018. View Article : Google Scholar | |
|
Dent S, Cortés J, Im YH, Diéras V, Harbeck N, Krop IE, Wilson TR, Cui N, Schimmoller F, Hsu JY, et al: Phase III randomized study of taselisib or placebo with Fulvestrant in estrogen receptor-positive, PIK3CA-mutant, HER2-negative, advanced breast cancer: The SANDPIPER trial. Ann Oncol. 32:197–207. 2021. View Article : Google Scholar | |
|
Baselga J, Im SA, Iwata H, Cortés J, De Laurentiis M, Jiang Z, Arteaga CL, Jonat W, Clemons M, Ito Y, et al: Buparlisib plus fulvestrant versus placebo plus fulvestrant in postmenopausal, hormone receptor-positive, HER2-negative, advanced breast cancer (BELLE-2): A randomised, double-blind, placebo-controlled, phase 3 trial. Lancet Oncol. 18:904–916. 2017. View Article : Google Scholar : PubMed/NCBI | |
|
Mallick S, Duttaroy AK and Dutta S: The PIK3CA gene and its pivotal role in tumor tropism of triple-negative breast cancer. Transl Oncol. 50:1021402024. View Article : Google Scholar : PubMed/NCBI | |
|
Xu S, Li S, Guo Z, Luo J, Ellis MJ and Ma CX: Combined targeting of mTOR and AKT is an effective strategy for basal-like breast cancer in patient-derived xenograft models. Mol Cancer Ther. 12:1665–1675. 2013. View Article : Google Scholar : PubMed/NCBI | |
|
Mishra R, Patel H, Alanazi S, Kilroy MK and Garrett JT: PI3K inhibitors in cancer: Clinical implications and adverse effects. Int J Mol Sci. 22:34642021. View Article : Google Scholar : PubMed/NCBI | |
|
Bachelot T, Bourgier C, Cropet C, Ray-Coquard I, Ferrero JM, Freyer G, Abadie-Lacourtoisie S, Eymard JC, Debled M, Spaëth D, et al: Randomized phase II trial of everolimus in combination with tamoxifen in patients with hormone receptor-positive, human epidermal growth factor receptor 2-negative metastatic breast cancer with prior exposure to aromatase inhibitors: A GINECO study. J Clin Oncol. 30:2718–2724. 2012. View Article : Google Scholar : PubMed/NCBI | |
|
Kornblum N, Zhao F, Manola J, Klein P, Ramaswamy B, Brufsky A, Stella PJ, Burnette B, Telli M, Makower DF, et al: Randomized phase II trial of fulvestrant plus everolimus or placebo in postmenopausal women with hormone receptor-positive, human epidermal growth factor receptor 2-negative metastatic breast cancer resistant to aromatase inhibitor therapy: Results of PrE0102. J Clin Oncol. 36:1556–1563. 2018. View Article : Google Scholar : PubMed/NCBI | |
|
Carlino F, Diana A, Terminiello M, Ventriglia A, Piccolo A, Bruno V, Lobianco L, Caterino M, Ciardiello F, Danielee B, et al: 302P Clinical implication of tissue re-biopsy in metastatic breast cancer (MBC) patients: A single centre retrospective analysis. Ann Oncol. 32:S495–S496. 2021. View Article : Google Scholar | |
|
Basho RK, Gilcrease M, Murthy RK, Helgason T, Karp DD, Meric-Bernstam F, Hess KR, Herbrich SM, Valero V, Albarracin C, et al: Targeting the PI3K/AKT/mTOR pathway for the treatment of mesenchymal triple-negative breast cancer: Evidence from a phase 1 trial of mTOR inhibition in combination with liposomal doxorubicin and bevacizumab. JAMA Oncol. 3:509–515. 2017. View Article : Google Scholar | |
|
Kastenhuber ER and Lowe SW: Putting p53 in context. Cell. 170:1062–1078. 2017. View Article : Google Scholar : PubMed/NCBI | |
|
Joerger AC and Fersht AR: Structural biology of the tumor suppressor p53 and cancer-associated mutants. Adv Cancer Res. 97:1–23. 2007. View Article : Google Scholar : PubMed/NCBI | |
|
Loh SN: Follow the mutations: Toward class-specific, small-molecule reactivation of p53. Biomolecules. 10:3032020. View Article : Google Scholar : PubMed/NCBI | |
|
Puca R, Nardinocchi L, Porru M, Simon AJ, Rechavi G, Leonetti C, Givol D and D'Orazi G: Restoring p53 active conformation by zinc increases the response of Mutant p53 tumor cells to anticancer drugs. Cell Cycle. 10:1679–1689. 2011. View Article : Google Scholar : PubMed/NCBI | |
|
Kwan K, Castro-Sandoval O, Gaiddon C and Storr T: Inhibition of p53 protein aggregation as a cancer treatment strategy. Curr Opin Chem Biol. 72:1022302023. View Article : Google Scholar | |
|
P SS, Naresh P, A J, Wadhwani A, M SK and Jubie S: Dual modulators of p53 and cyclin D in ER alpha signaling by albumin nanovectors bearing zinc chaperones for ER-positive breast cancer therapy. Mini Rev Med Chem. 21:792–802. 2012. View Article : Google Scholar | |
|
Yu X, Na B, Zaman S, Withers T, Gilleran J, Blayney AJ, Bencivenga AF, Blanden AR, Liu Y, Boothman DA, et al: Abstract 3432: Zinc metallochaperones for mutant p53 reactivation in cancer therapeutics. Cancer Res. 80(16 Suppl): S34322020. View Article : Google Scholar | |
|
Parrales A, Ranjan A, Iyer SV, Padhye S, Weir SJ, Roy A and Iwakuma T: DNAJA1 controls the fate of misfolded mutant p53 through the mevalonate pathway. Nat Cell Biol. 18:1233–1243. 2016. View Article : Google Scholar : PubMed/NCBI | |
|
Alalem M, Bhosale M, Ranjan A, Yamamoto S, Kaida A, Nishikawa S, Parrales A, Farooki S, Anant S, Padhye S and Iwakuma T: Mutant p53 depletion by novel inhibitors for HSP40/J-domain proteins derived from the natural compound plumbagin. Cancers (Basel). 14:41872022. View Article : Google Scholar : PubMed/NCBI | |
|
Kamada R, Toguchi Y, Nomura T, Imagawa T and Sakaguchi K: Tetramer formation of tumor suppressor protein p53: Structure, function, and applications. Biopolymers. 106:598–612. 2016. View Article : Google Scholar | |
|
Synnott NC, Murray A, McGowan PM, Kiely M, Kiely PA, O'Donovan N, O'Connor DP, Gallagher WM, Crown J and Duffy MJ: Mutant p53: A novel target for the treatment of patients with triple-negative breast cancer? Int J Cancer. 140:234–246. 2017. View Article : Google Scholar | |
|
Rangel LP, Ferretti GDS, Costa CL, Andrade SMMV, Carvalho RS, Costa DCF and Silva JL: p53 reactivation with induction of massive apoptosis-1 (PRIMA-1) inhibits amyloid aggregation of mutant p53 in cancer cells. J Biol Chem. 294:3670–3682. 2019. View Article : Google Scholar : PubMed/NCBI | |
|
Duffy MJ, Synnott NC and Crown J: Mutant p53 in breast cancer: Potential as a therapeutic target and biomarker. Breast Cancer Res Treat. 170:213–219. 2018. View Article : Google Scholar : PubMed/NCBI | |
|
Reza MN, Ferdous N, Emon MTH, Islam MS, Mohiuddin AKM and Hossain MU: Pathogenic genetic variants from highly connected cancer susceptibility genes confer the loss of structural stability. Sci Rep. 11:192642021. View Article : Google Scholar : PubMed/NCBI | |
|
Tonsing-Carter E, Bailey BJ, Saadatzadeh MR, Ding J, Wang H, Sinn AL, Peterman KM, Spragins TK, Silver JM, Sprouse AA, et al: Potentiation of carboplatin-mediated DNA damage by the Mdm2 modulator nutlin-3a in a humanized orthotopic breast-to-lung metastatic model. Mol Cancer Therapeut. 14:2850–2863. 2015. View Article : Google Scholar | |
|
da Costa DCF, Campos NPC, Santos RA, Guedes-da-Silva FH, Martins-Dinis MMDC, Zanphorlin L, Ramos C, Rangel LP and Silva JL: Resveratrol prevents p53 aggregation in vitro and in breast cancer cells. Oncotarget. 9:29112–29122. 2018. View Article : Google Scholar | |
|
Chen X and Cubillos-Ruiz JR: Endoplasmic reticulum stress signals in the tumour and its microenvironment. Nat Rev Cancer. 21:71–88. 2021. View Article : Google Scholar : | |
|
Hassin O and Oren M: Drugging p53 in cancer: One protein, many targets. Nat Rev Drug Discov. 22:127–144. 2023. View Article : Google Scholar | |
|
Ubby I, Krueger C, Rosato R, Qian W, Chang J and Sabapathy K: Cancer therapeutic targeting using mutant-p53-specific siRNAs. Oncogene. 38:3415–3427. 2019. View Article : Google Scholar : PubMed/NCBI | |
|
Braicu C, Pileczki V, Irimie A and Berindan-Neagoe I: p53siRNA therapy reduces cell proliferation, migration and induces apoptosis in triple negative breast cancer cells. Mol Cell Biochem. 381:61–68. 2013. View Article : Google Scholar : PubMed/NCBI |