You can change your cookie settings at any time by following the instructions in our Cookie Policy. To find out more, you may read our Privacy Policy.
I agree
International Journal of Molecular Medicine is an international journal devoted to molecular mechanisms of human disease.
International Journal of Oncology is an international journal devoted to oncology research and cancer treatment.
Covers molecular medicine topics such as pharmacology, pathology, genetics, neuroscience, infectious diseases, molecular cardiology, and molecular surgery.
Oncology Reports is an international journal devoted to fundamental and applied research in Oncology.
Experimental and Therapeutic Medicine is an international journal devoted to laboratory and clinical medicine.
Oncology Letters is an international journal devoted to Experimental and Clinical Oncology.
Explores a wide range of biological and medical fields, including pharmacology, genetics, microbiology, neuroscience, and molecular cardiology.
International journal addressing all aspects of oncology research, from tumorigenesis and oncogenes to chemotherapy and metastasis.
Multidisciplinary open-access journal spanning biochemistry, genetics, neuroscience, environmental health, and synthetic biology.
Open-access journal combining biochemistry, pharmacology, immunology, and genetics to advance health through functional nutrition.
Publishes open-access research on using epigenetics to advance understanding and treatment of human disease.
An International Open Access Journal Devoted to General Medicine.
![]() |
![]() |
![]() |
|
Bray F, Laversanne M, Sung H, Ferlay J, Siegel RL, Soerjomataram I and Jemal A: Global cancer statistics 2022: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J Clin. 74:229–263. 2024. View Article : Google Scholar : PubMed/NCBI | |
|
Hepatocellular carcinoma. Nat Rev Dis Primers. 7:72021. View Article : Google Scholar : PubMed/NCBI | |
|
Yang C, Zhang H, Zhang L, Zhu AX, Bernards R, Qin W and Wang C: Evolving therapeutic landscape of advanced hepatocellular carcinoma. Nat Rev Gastroenterol Hepatol. 20:203–222. 2023. View Article : Google Scholar | |
|
Ramos S: Cancer chemoprevention and chemotherapy: Dietary polyphenols and signalling pathways. Mol Nutr Food Res. 52:507–526. 2008. View Article : Google Scholar : PubMed/NCBI | |
|
García Rodríguez LA, Martín-Pérez M, Hennekens CH, Rothwell PM and Lanas A: Bleeding risk with long-term Low-dose aspirin: A systematic review of observational studies. PLoS One. 11:e01600462016. View Article : Google Scholar : PubMed/NCBI | |
|
Laidlaw TM and Cahill KN: Current knowledge and management of hypersensitivity to aspirin and NSAIDs. J Allergy Clin Immunol Pract. 5:537–545. 2017. View Article : Google Scholar : PubMed/NCBI | |
|
Ren W, Wang W and Guo Y: Analysis of adverse reactions of aspirin in prophylaxis medication based on FAERS database. Computational Mathematical Methods Med. 2022:78822772022. View Article : Google Scholar | |
|
Anwanwan D, Singh SK, Singh S, Saikam V and Singh R: Challenges in liver cancer and possible treatment approaches. Biochim Biophys Acta Rev Cancer. 1873:1883142020. View Article : Google Scholar : | |
|
Sayiner M, Golabi P and Younossi ZM: Disease burden of hepatocellular carcinoma: A global perspective. Dig Dis Sci. 64:910–917. 2019. View Article : Google Scholar : PubMed/NCBI | |
|
Chopra B and Dhingra AK: Natural products: A lead for drug discovery and development. Phytother Res. 35:4660–4702. 2021. View Article : Google Scholar : PubMed/NCBI | |
|
Cheng C, Zhuo S, Zhang B, Zhao X, Liu Y, Liao C, Quan J, Li Z, Bode AM, Cao Y and Luo X: Treatment implications of natural compounds targeting lipid metabolism in nonalcoholic fatty liver disease, obesity and cancer. Int J Biol Sci. 15:1654–1663. 2019. View Article : Google Scholar : PubMed/NCBI | |
|
Newman DJ and Cragg GM: Natural products as sources of new drugs over the nearly four decades from 01/1981 to 09/2019. J Nat Prod. 83:770–803. 2020. View Article : Google Scholar : PubMed/NCBI | |
|
Huang M, Lu JJ, Huang MQ, Bao JL, Chen XP and Wang YT: Terpenoids: Natural products for cancer therapy. Expert Opin Investig Drugs. 21:1801–1818. 2012. View Article : Google Scholar : PubMed/NCBI | |
|
Atanasov AG, Zotchev SB, Dirsch VM; International Natural Product Sciences Taskforce; Supuran CT: Natural products in drug discovery: Advances and opportunities. Nat Rev Drug Discov. 20:200–216. 2021. View Article : Google Scholar : PubMed/NCBI | |
|
Langhasova L, Hanusova V, Rezek J, Stohanslova B, Ambroz M, Kralova V, Vanek T, Lou JD, Yun ZL, Yang J and Skalova L: Essential oil from Myrica rubra leaves inhibits cancer cell proliferation and induces apoptosis in several human intestinal lines. Industrial Crops Products. 59:20–26. 2014. View Article : Google Scholar | |
|
Wang J, Li X, Bai Z, Chi BX, Wei Y and Chen X: Curcumol induces cell cycle arrest in colon cancer cells via reactive oxygen species and Akt/GSK3β/cyclin D1 pathway. J Ethnopharmacol. 210:1–9. 2018. View Article : Google Scholar | |
|
Barcellos Marini M, Rodrigues de Freitas W, Lacerda da Silva Machado F, Correa Ramos Leal I, Ribeiro Soares A, Masahiko Kanashiro M and Frazão Muzitano M: Cytotoxic activity of halogenated sesquiterpenes from Laurencia dendroidea. Phytother Res. 32:1119–1125. 2018. View Article : Google Scholar : PubMed/NCBI | |
|
Choo SJ, Ryoo IJ, Kim KC, Na M, Jang JH, Ahn JS and Yoo ID: Hypo-pigmenting effect of sesquiterpenes from Inula britannica in B16 melanoma cells. Arch Pharm Res. 37:567–574. 2014. View Article : Google Scholar | |
|
Liu W, Wang X, Sun J, Yang Y, Li W and Song J: Parthenolide suppresses pancreatic cell growth by autophagy-mediated apoptosis. Onco Targets Ther. 10:453–461. 2017. View Article : Google Scholar : PubMed/NCBI | |
|
Wang Z, Wang C, Wu Z, Xue J, Shen B, Zuo W, Wang Z and Wang SL: Artesunate suppresses the growth of prostatic cancer cells through inhibiting androgen receptor. Biol Pharm Bull. 40:479–485. 2017. View Article : Google Scholar : PubMed/NCBI | |
|
Mitsui T, Hayashi K, Kawai M, Kido M, Tani H, Takaoka D, Matsuura N and Nozaki H: Culcitiolides E-J, six new eremophilane-type sesquiterpene derivatives from Senecio culcitioides. Chem Pharm Bull (Tokyo). 61:816–822. 2013. View Article : Google Scholar : PubMed/NCBI | |
|
Ko W, Park JS, Kim KW, Kim J, Kim YC and Oh H: Nardosinone-type sesquiterpenes from the hexane fraction of Nardostachys jatamansi attenuate NF-κB and MAPK signaling pathways in lipopolysaccharide-stimulated BV2 microglial cells. Inflammation. 41:1215–1228. 2018. View Article : Google Scholar : PubMed/NCBI | |
|
Cheikh IA, El-Baba C, Youssef A, Saliba NA, Ghantous A and Darwiche N: Lessons learned from the discovery and development of the sesquiterpene lactones in cancer therapy and prevention. Expert Opin Drug Discov. 17:1377–1405. 2022. View Article : Google Scholar : PubMed/NCBI | |
|
Matos MS, Anastácio JD and Nunes dos Santos C: Sesquiterpene lactones: Promising natural compounds to fight inflammation. Pharmaceutics. 13:9912021. View Article : Google Scholar : PubMed/NCBI | |
|
Merfort I: Perspectives on sesquiterpene lactones in inflammation and cancer. Curr Drug Targets. 12:1560–1573. 2011. View Article : Google Scholar : PubMed/NCBI | |
|
Hohmann MSN, Longhi-Balbinot DT, Guazelli CFS, Navarro SA, Zarpelon AC, Casagrande R, Arakawa NS and Verri WA Jr: Chapter 7-Sesquiterpene lactones: Structural diversity and perspectives as anti-inflammatory molecules. Studies Natu Products Chemistry. 49:243–264. 2016. View Article : Google Scholar | |
|
Ivanescu B, Miron A and Corciova A: Sesquiterpene lactones from Artemisia Genus: Biological activities and methods of analysis. J Anal Methods Chem. 2015:2476852015. View Article : Google Scholar : PubMed/NCBI | |
|
Ooko E, Saeed MEM, Kadioglu O, Sarvi S, Colak M, Elmasaoudi K, Janah R, Greten HJ and Efferth T: Artemisinin derivatives induce iron-dependent cell death (ferroptosis) in tumor cells. Phytomedicine. 22:1045–1054. 2015. View Article : Google Scholar : PubMed/NCBI | |
|
Efferth T: Molecular pharmacology and pharmacogenomics of artemisinin and its derivatives in cancer cells. Curr Drug Targets. 7:407–421. 2006. View Article : Google Scholar : PubMed/NCBI | |
|
Jia J, Qin Y, Zhang L, Guo C, Wang Y, Yue X and Qian J: Artemisinin inhibits gallbladder cancer cell lines through triggering cell cycle arrest and apoptosis. Mol Med Report. 13:4461–4468. 2016. View Article : Google Scholar | |
|
Zhang M, Wang L, Liu W, Wang T, De Sanctis F, Zhu L, Zhang G, Cheng J, Cao Q, Zhou J, et al: Targeting inhibition of accumulation and function of Myeloid-derived suppressor cells by artemisinin via PI3K/AKT, mTOR, and MAPK pathways enhances Anti-PD-L1 immunotherapy in melanoma and liver tumors. J Immunol Res. 2022:22534362022.PubMed/NCBI | |
|
Tyagi N, Sharma GN, Shrivastava B, Saxena P and Kumar N: Medicinal plants: Used in Anti-cancer treatment. Int J Res Dev Pharmacy Life Sci. 6:2732–2739. 2017. | |
|
He GN, Bao NR, Wang S, Xi M, Zhang TH and Chen FS: Ketamine induces ferroptosis of liver cancer cells by targeting lncRNA PVT1/miR-214-3p/GPX4. Drug Des Devel Ther. 15:3965–3978. 2021. View Article : Google Scholar : PubMed/NCBI | |
|
AbouAitah K and Lojkowski W: Delivery of natural agents by means of mesoporous silica nanospheres as a promising anticancer strategy. Pharmaceutics. 13:1432021. View Article : Google Scholar : PubMed/NCBI | |
|
Weifeng T, Feng S, Xiangji L, Changqing S, Zhiquan Q, Huazhong Z, Peining Y, Yong Y, Mengchao W, Xiaoqing J and Wan-Yee L: Artemisinin inhibits in vitro and in vivo invasion and metastasis of human hepatocellular carcinoma cells. Phytomedicine. 18:158–162. 2011. View Article : Google Scholar | |
|
Zhang CZ, Zhang H, Yun J, Chen GG and Lai PB: Dihydroartemisinin exhibits antitumor activity toward hepatocellular carcinoma in vitro and in vivo. Biochem Pharmacol. 83:1278–1289. 2012. View Article : Google Scholar : PubMed/NCBI | |
|
Vandewynckel YP, Laukens D, Geerts A, Vanhove C, Descamps B, Colle I, Devisscher L, Bogaerts E, Paridaens A, Verhelst X, et al: Therapeutic effects of artesunate in hepatocellular carcinoma: repurposing an ancient antimalarial agent. Eur J Gastroenterol Hepatol. 26:861–870. 2014. View Article : Google Scholar : PubMed/NCBI | |
|
Ilamathi M, Santhosh S and Sivaramakrishnan V: Artesunate as an anti-cancer agent targets stat-3 and favorably suppresses hepatocellular carcinoma. Curr Top Med Chem. 16:2453–2463. 2016. View Article : Google Scholar : PubMed/NCBI | |
|
Wu J, Liu S, Xing Y, Min M, Runpeng Z, Jun X and Dong H: Artesunate promotes sensitivity to sorafenib in hepatocellular carcinoma. Biochem Biophysical Res Commun. 519:41–45. 2019. View Article : Google Scholar | |
|
Dong W, Ma WJ, Ma YB, Li FJ, Li TZ, Wang YC, He XF, Geng CN, Zhang XM and Chen JJ: Guaiane-type sesquiterpenoid dimers from Artemisia zhongdianensis and antihepatoma carcinoma activity via the p38MAPK pathway. Chin J Chemistry. 41:2453–2468. 2023. View Article : Google Scholar | |
|
Gao Z, Ma WJ, Li TZ, Ma YB, Hu J, Huang XY, Geng CA, He XF, Zhang XM and Chen JJ: Artemidubolides A-T, cytotoxic unreported guaiane-type sesquiterpenoid dimers against three hepatoma cell lines from Artemisia dubia. Phytochemistry. 202:1132992022. View Article : Google Scholar : PubMed/NCBI | |
|
Wang Q, Zhang T, Ke CQ, Tang C, Yao S, Lin L and Ye Y: Sesquiterpene lactone dimers from Artemisia lavandulifolia inhibit interleukin-1β production in macrophages through activating autophagy. Bioorg Chem. 105:1044512020. View Article : Google Scholar | |
|
Su L, Zhang X, Ma Y, Geng C, Huang X, Hu J, Li T, Tang S, Shen C, Gao Z, et al: New guaiane-type sesquiterpenoid dimers from Artemisia atrovirens and their antihepatoma activity. Acta Pharm Sin B. 11:1648–1666. 2021. View Article : Google Scholar : PubMed/NCBI | |
|
Rasul A, Di J, Millimouno FM, Malhi M, Tsuji I, Ali M, Li J and Li X: Reactive oxygen species mediate isoalantolactone-induced apoptosis in human prostate cancer cells. Molecules. 18:9382–9396. 2013. View Article : Google Scholar : PubMed/NCBI | |
|
Wu ZC, Hui XG, Huo L, Sun DX, Peng W, Zhang Y, Li XB, Ma T, Li WH, Liang J and Sun ZQ: Antiproliferative effects of isoalantolactone in human liver cancer cells are mediated through caspase-dependent apoptosis, ROS generation, suppression of cell migration and invasion and targeting Ras/Raf/MEK signalling pathway. Acta Biochim Pol. 69:299–304. 2022.PubMed/NCBI | |
|
Gu W, Zhao H, Yuan H and Zhao S: Dehydrocostus lactone reduced malignancy of HepG2 human hepatocellular carcinoma cells via Down-regulation of the PI3K/AKT signaling pathway. Bull Exp Biol Med. 174:360–365. 2023. View Article : Google Scholar : PubMed/NCBI | |
|
Si H, Genna B, Zhuang X, Wang J, Burenbatu B, Feng Q and Wang H: DaHuangWan targets EGF signaling to inhibit the proliferation of hepatoma cells. PLoS One. 15:e02314662020. View Article : Google Scholar : PubMed/NCBI | |
|
Mao J, Yi M, Tao Y, Huang Y and Chen M: Costunolide isolated from Vladimiria souliei inhibits the proliferation and induces the apoptosis of HepG2 cells. Mol Med Rep. 19:1372–1379. 2019. | |
|
Cui YQ, Liu YJ and Zhang F: The suppressive effects of Britannin (Bri) on human liver cancer through inducing apoptosis and autophagy via AMPK activation regulated by ROS. Biochem Biophys Res Commun. 497:916–923. 2018. View Article : Google Scholar | |
|
Wang B, Zhou TY, Nie CH, Wan DL and Zheng SS: Bigelovin, a sesquiterpene lactone, suppresses tumor growth through inducing apoptosis and autophagy via the inhibition of mTOR pathway regulated by ROS generation in liver cancer. Biochem Biophys Res Commun. 499:156–163. 2018. View Article : Google Scholar : PubMed/NCBI | |
|
Chai T, Meng XH, Wang CB, Wang K, Ma LM, Shi YP and Yang JL: Narjatamolide, an unusual homoguaiane sesquiterpene lactone from Nardostachys jatamansi. J Org Chem. 86:11006–11010. 2020. View Article : Google Scholar : PubMed/NCBI | |
|
Shimizu Y, Polavarapu R, Eskla KL, Nicholson CK, Koczor CA, Wang R, Lewis W, Shiva S, Lefer DJ and Calvert JW: Hydrogen sulfide regulates cardiac mitochondrial biogenesis via the activation of AMPK. J Mol Cell Cardiol. 116:29–40. 2018. View Article : Google Scholar : PubMed/NCBI | |
|
Xu W, Ge K, Guo Y, Zhu W and Liu L: ROS-dependent cell death Induced by parthenolide in human hepatoma cell hepG2. Open Access Library J. 7:1–18. 2020. | |
|
Zhai JD, Li D, Long J, Zhang HL, Lin JP, Qiu CJ, Zhang Q and Chen Y: Biomimetic semisynthesis of arglabin from parthenolide. J Org Chem. 77:7103–7107. 2012. View Article : Google Scholar : PubMed/NCBI | |
|
Zhang Q, Lu Y, Ding Y, Zhai J, Ji Q, Ma W, Yang M, Fan H, Long J, Tong Z, et al: Guaianolide sesquiterpene lactones, a source to discover agents that selectively inhibit acute myelogenous leukemia stem and progenitor cells. J Med Chem. 55:8757–8769. 2012. View Article : Google Scholar : PubMed/NCBI | |
|
Xu Z, Xu J, Sun S, Lin W, Li Y, Lu Q, Li F, Yang Z, Lu Y, Liu W, et al: Mecheliolide elicits ROS-mediated ERS driven immunogenic cell death in hepatocellular carcinoma. Redox Biol. 54:1023512022. View Article : Google Scholar : PubMed/NCBI | |
|
Zhong J, Gong W, Chen J, Qing Y, Wu S, Li H, Huang C, Chen Y, Wang Y, Xu Z, et al: Micheliolide alleviates hepatic steatosis in db/db mice by inhibiting inflammation and promoting autophagy via PPAR-γ-mediated NF-кB and AMPK/mTOR signaling. Int Immunopharmacol. 59:197–208. 2018. View Article : Google Scholar : PubMed/NCBI | |
|
Zhao Y, Chen SJ, Wang JC, Niu HX, Jia QQ, Chen XW, Du XY, Lu L, Huang B, Zhang Q, et al: Sesquiterpene lactones inhibit advanced oxidation protein product-induced MCP-1 expression in podocytes via an IKK/NF-κB-dependent mechanism. Oxid Med Cell Longev. 2015:9340582015. View Article : Google Scholar | |
|
Xu H, Wang J, Wang C, Chang G, Lin Y, Zhang H, Zhang H, Li Q and Pang T: Therapeutic effects of micheliolide on a murine model of rheumatoid arthritis. Mol Med Rep. 11:489–493. 2015. View Article : Google Scholar | |
|
Bian M, Fan R, Zhao S and Liu W: Targeting the thioredoxin system as a strategy for cancer therapy: Miniperspective. J Med Chem. 62:7309–7321. 2019. View Article : Google Scholar : PubMed/NCBI | |
|
An Y, Guo W, Li L, Xu C, Yang D, Wang S, Lu Y, Zhang Q, Zhai J, Fan H, et al: Micheliolide derivative DMAMCL inhibits glioma cell growth in vitro and in vivo. PLoS One. 10:e01162022015. View Article : Google Scholar : PubMed/NCBI | |
|
Yao S, Ye J, Yin M and Yu R: DMAMCL exerts antitumor effects on hepatocellular carcinoma both in vitro and in vivo. Cancer Lett. 483:87–97. 2020. View Article : Google Scholar : PubMed/NCBI | |
|
Sulistyani N: Screening of anticancer, hepatoprotective and nephroprotective effects of ethanol extract of Elephantopus scaber L. Pak J Pharm Sci. 33:901–907. 2020.PubMed/NCBI | |
|
Fu L, Pei D, Yu M, Shang H, Si JG, Zhang HW, Zhang T and Zou ZM: New phenolic acids from the whole herb of Elephantopus scaber Linn. and their anti-inflammatory activity. Nat Prod Res. 35:3667–3674. 2021. View Article : Google Scholar | |
|
Ariesta I and Sukma MG: Extract of Elephantopus scaber as therapy for insulin resistance by decreasing damage of heart and Liver in STZ-Na induced diabetic rats (Rattus novergicus). Am Heart J. 229:1682020. View Article : Google Scholar | |
|
Divya GS, Mansoor KP, Rasheed SP and Kumar A: PPAR gamma agonists: An effective strategy for cancer treatment. J Pharm Sci Innov. 2:1–3. 2013. View Article : Google Scholar | |
|
Bich Ngoc TT, Hoai Nga NT, My Trinh NT, Thuoc TL and Phuong Thao DT: Elephantopus mollis Kunth extracts induce antiproliferation and apoptosis in human lung cancer and myeloid leukemia cells. J Ethnopharmacol. 263:1132222020. View Article : Google Scholar : PubMed/NCBI | |
|
Beeran AA, Maliyakkal N, Rao CM and Udupa N: The enriched fraction of Elephantopus scaber Triggers apoptosis and inhibits Multi-drug resistance transporters in human epithelial cancer cells. Pharmacogn Mag. 11:257–268. 2015. View Article : Google Scholar : PubMed/NCBI | |
|
Mehmood T, Maryam A, Zhang H, Li Y, Khan M and Ma T: Deoxyelephantopin induces apoptosis in HepG2 cells via oxidative stress, NF-κB inhibition and mitochondrial dysfunction. Biofactors. 43:63–72. 2017. View Article : Google Scholar | |
|
Bai M, Chen JJ, Xu W, Dong SH, Liu QB, Yao GD, Lin B, Huang XX and Song SJ: Germacranolides from Elephantopus scaber L. and their cytotoxic activities. Phytochemistry. 178:1124792020. View Article : Google Scholar : PubMed/NCBI | |
|
Bai M, Chen JJ, Xu W, Dong SH, Liu QB, Lin B, Huang XX, Yao GD and Song SJ: Elephantopinolide AP, germacrane-type sesquiterpene lactones from Elephantopus scaber induce apoptosis, autophagy and G2/M phase arrest in hepatocellular carcinoma cells. Eur J Med Chem. 198:1123622020. View Article : Google Scholar | |
|
Mehmood T, Maryam A, Tian X, Khan M and Ma T: Santamarine inhibits NF-кB and STAT3 activation and induces apoptosis in HepG2 liver cancer cells via oxidative stress. J Cancer. 8:3707–3717. 2017. View Article : Google Scholar : | |
|
Kim JK, Cho IJ, Kim EO, Lee DG, Jung DH, Ki SH, Ku SK and Kim SC: Hemistepsin A inhibits T0901317-induced lipogenesis in the liver. BMB Rep. 54:1062021. View Article : Google Scholar : | |
|
Kim JK, Han NR, Park SM, Jegal KH, Jung JY, Jung EH, Kim EO, Kim D, Jung DH, Lee JR, et al: Hemistepsin A alleviates liver fibrosis by inducing apoptosis of activated hepatic stellate cells via inhibition of nuclear factor-κB and Akt. Food Chem Toxicol. 135:1110442020. View Article : Google Scholar | |
|
Kim JK, Cho IJ, Kim EO, Jung DH, Ku SK and Kim SC: The effects of Hemistepta lyrata Bunge (Bunge) fractionated extract on liver X receptor α-dependent lipogenic genes in hepatocyte-derived cells. Herbal Formula Sci. 28:255–269. 2020. | |
|
Kim JK, Lee JE, Jung EH, Jung JY, Jung DH, Ku SK, Cho IJ and Kim SC: Hemistepsin A ameliorates acute inflammation in macrophages via inhibition of nuclear factor-κB and activation of nuclear factor erythroid 2-related factor 2. Food Chem Toxicol. 111:176–188. 2018. View Article : Google Scholar | |
|
Baek SY, Hwang UW, Suk HY and Kim YW: Hemistepsin a inhibits cell proliferation and induces G0/G1-Phase arrest, cellular senescence and apoptosis via the AMPK and p53/p21 signals in human hepatocellular carcinoma. Biomolecules. 10:7132020. View Article : Google Scholar : PubMed/NCBI | |
|
Cho IJ, Kim JK, Kim EO, Park SM, Kim SC, Ki SH and Ku SK: Hemistepsin A induces apoptosis of hepatocellular carcinoma cells by downregulating STAT3. Int J Mol Sci. 22:47432021. View Article : Google Scholar : PubMed/NCBI | |
|
Nibret E, Youns M, Krauth-Siegel RL and Wink M: Biological activities of x1anthatin from Xanthium strumarium leaves. Phytother Res. 25:1883–1890. 2011. View Article : Google Scholar : PubMed/NCBI | |
|
Kovács A, Vasas A, Forgo P, Réthy B, Zupkó I and Hohmann J: Xanthanolides with antitumour activity from Xanthium italicum. Z Naturforsch C J Biosci. 64:343–349. 2009. View Article : Google Scholar : PubMed/NCBI | |
|
Ramírez-Erosa I, Huang Y, Hickie RA, Sutherland RG and Barl B: Xanthatin and xanthinosin from the burs of Xanthium strumarium L. as potential anticancer agents. Can J Physiol Pharmacol. 85:1160–1172. 2007. View Article : Google Scholar : PubMed/NCBI | |
|
Shi T, Zhang L, Cheng Q, Yu JS, Liu J, Shen YJ, Feng XJ and Shen YX: Xanthatin induces apoptosis by activating endoplasmic reticulum stress in hepatoma cells. Eur J Pharmacol. 843:1–11. 2019. View Article : Google Scholar | |
|
Kuck K, Jürgenliemk G, Lipowicz B and Heilmann J: Sesquiterpenes from myrrh and their ICAM-1 inhibitory activity in vitro. Molecules. 26:422020. View Article : Google Scholar : PubMed/NCBI | |
|
Li L, Zheng BB, Ma LS, Sun X, Chang JJ, Xie WD and Li X: Telekin suppresses human hepatocellular carcinoma cells in vitro by inducing G2/M phase arrest via the p38 MAPK signaling pathway. Acta Pharmacol Sin. 35:1311–1322. 2014. View Article : Google Scholar : PubMed/NCBI | |
|
Su LH, Ma WJ, Ma YB, Li TZ, Geng CA, Dong W, He XF, Zhang XM and Chen JJ: Artemiprincepsolides A-F, Novel Germacrane-guaiane and Eudesmane-guaiane Sesquiterpenoid Dimers from Artemisia princeps and Their Antihepatoma Activity. Chin J Chem. 41:2648–2656. 2023. View Article : Google Scholar | |
|
Wu H, Wu H, Wang W, Liu TT, Qi MG, Feng JC, Li XY and Liu Y: Insecticidal activity of sesquiterpene lactones and monoterpenoid from the fruits of Carpesium abrotanoides. Industrial Crops Products. 92:77–83. 2016. View Article : Google Scholar | |
|
Wang F, Yang K, Ren FC and Liu JK: Sesquiterpene lactones from Carpesium abrotanoides. Fitoterapia. 80:21–24. 2009. View Article : Google Scholar | |
|
Lee J, Min B, Lee S, Na M, Kwon B, Lee C, Kim Y and Bae K: Cytotoxic sesquiterpene lactones from Carpesium abrotanoides. Planta Med. 68:745–747. 2002. View Article : Google Scholar : PubMed/NCBI | |
|
Yang C, Yuan C and Jia Z: Xanthanolides, Germacranolides, and Other Constituents from Carpesium longifolium. J Nat Prod. 66:1554–1557. 2003. View Article : Google Scholar : PubMed/NCBI | |
|
Yan Y, Chen J, Peng M, Zhang X, Feng E, Li Q, Guo B, Ding X, Zhang Y and Tang L: Sesquiterpenes from Carpesium faberi triggered ROS-induced apoptosis and protective autophagy in hepatocellular carcinoma cells. Phytochemistry. 214:1138052023. View Article : Google Scholar : PubMed/NCBI | |
|
Lo Cantore P, Iacobellis NS, De Marco A, Capasso F and Senatore F: Antibacterial activity of Coriandrum sativum L. and Foeniculum vulgare Miller var. vulgare (Miller) essential oils. J Agric Food Chem. 52:7862–7866. 2004. View Article : Google Scholar : PubMed/NCBI | |
|
Emamghoreishi M, Khasaki M and Aazam MF: Coriandrum sativum: Evaluation of its anxiolytic effect in the elevated plus-maze. J Ethnopharmacol. 96:365–370. 2005. View Article : Google Scholar | |
|
Bickers D, Calow P, Greim H, Hanifin JM, Rogers AE, Saurat JH, Sipes IG, Smith RL and Tagami H: A toxicologic and dermatologic assessment of linalool and related esters when used as fragrance ingredients. Food Chem Toxicol. 41:919–942. 2003. View Article : Google Scholar : PubMed/NCBI | |
|
Usta J, Kreydiyyeh S, Knio K, Barnabe P, Bou-Moughlabay Y and Dagher S: Linalool decreases HepG2 viability by inhibiting mitochondrial complexes I and II, increasing reactive oxygen species and decreasing ATP and GSH levels. Chem Biol Interact. 180:39–46. 2009. View Article : Google Scholar : PubMed/NCBI | |
|
Simamora A, Timotius KH, Yerer MB, Setiawan H and Mun'im A: Xanthorrhizol, a potential anticancer agent, from Curcuma xanthorrhiza Roxb. Phytomedicine. 105:1543592022. View Article : Google Scholar : PubMed/NCBI | |
|
Tee TT, Cheah YH, Meenakshii N, Mohd Sharom MY and Azimahtol Hawariah LP: Xanthorrhizol induced DNA fragmentation in HepG2 cells involving Bcl-2 family proteins. Biochem Biophys Res Commun. 420:834–838. 2012. View Article : Google Scholar : PubMed/NCBI | |
|
Fonseca DV, Salgado PR, de Carvalho FL, Salvadori MG, Penha AR, Leite FC, Borges CJ, Piuvezam MR, Pordeus LC, Sousa DP and Almeida RN: Nerolidol exhibits antinociceptive and anti-inflammatory activity: Involvement of the GABAergic system and proinflammatory cytokines. Fundam Clin Pharmacol. 30:14–22. 2016. View Article : Google Scholar : PubMed/NCBI | |
|
Krist S, Banovac D, Tabanca N, Wedge DE, Gochev VK, Wanner J, Schmidt E and Jirovetz L: Antimicrobial activity of nerolidol and its derivatives against airborne microbes and further biological activities. Nat Prod Commun. 10:143–148. 2015.PubMed/NCBI | |
|
Chan WK, Tan LT, Chan KG, Lee LH and Goh BH: Nerolidol: A sesquiterpene alcohol with Multi-faceted pharmacological and biological activities. Molecules. 21:5292016. View Article : Google Scholar : PubMed/NCBI | |
|
Biazi BI, Zanetti TA, Baranoski A, Corveloni AC and Mantovani MS: Cis-Nerolidol induces endoplasmic reticulum stress and cell death in human hepatocellular carcinoma cells through extensive CYP2C19 and CYP1A2 oxidation. Basic Clin Pharmacol Toxicol. 121:334–341. 2017. View Article : Google Scholar : PubMed/NCBI | |
|
Sharifi-Rad M, Nazaruk J, Polito L, Morais-Braga MFB, Rocha JE, Coutinho HDM, Salehi B, Tabanelli G, Montanari C, Del Mar Contreras M, et al: Matricaria genus as a source of antimicrobial agents: From farm to pharmacy and food applications. Microbiol Res. 215:76–79. 2018. View Article : Google Scholar : PubMed/NCBI | |
|
Eddin LB, Jha NK, Goyal SN, Agrawal YO, Subramanya SB, Bastaki SMA and Ojha S: Health benefits, pharmacological effects, molecular mechanisms, and therapeutic potential of α-bisabolol. Nutrients. 14:13702022. View Article : Google Scholar | |
|
Kreuger MRO, Grootjans S, Biavatti MW, Vandenabeele P and D'Herde K: Sesquiterpene lactones as drugs with multiple targets in cancer treatment: Focus on parthenolide. Anticancer Drugs. 23:883–896. 2012. View Article : Google Scholar : PubMed/NCBI | |
|
Liu Y, Wang W, Fang B, Ma F, Zheng Q, Deng P, Zhao S, Chen M, Yang G and He G: Anti-tumor effect of germacrone on human hepatoma cell lines through inducing G2/M cell cycle arrest and promoting apoptosis. Eur J Pharmacol. 698:95–102. 2013. View Article : Google Scholar | |
|
Liu YY, Zheng Q, Fang B, Wang W, Ma FY, Roshan S, Banafa A, Chen MJ, Chang JL, Deng XM, et al: Germacrone induces apoptosis in human hepatoma HepG2 cells through inhibition of the JAK2/STAT3 signalling pathway. Med Sci. 33:339–345. 2013. | |
|
Na-Bangchang K, Plengsuriyakam T and Karbwang J: Research and development of atractylodes lancea (Thunb) DC. As a promising candidate for cholangiocarcinoma chemotherapeutics. Evid Based Complement Alternat Med. 2017:59292342017. View Article : Google Scholar | |
|
Cheng Y, Mai JY, Hou TL, Ping J and Chen JJ: Antiviral activities of atractylon from Atractylodis Rhizoma. Mol Med Rep. 14:3704–3710. 2016. View Article : Google Scholar : PubMed/NCBI | |
|
Meng H, Li GY, Dai RH, Ma Y, Zhang K, Zhang C, Li X and Wang J: Chemical constituents of Atractylodes chinensis (DC.) koidz. Biochem Syst Ecol. 38:1220–1223. 2010. View Article : Google Scholar | |
|
Cheng Y, Chen T, Yang X, Xue J and Chen J: Atractylon induces apoptosis and suppresses metastasis in hepatic cancer cells and inhibits growth in vivo. Cancer Manag Rese. 11:5883–5894. 2019. View Article : Google Scholar | |
|
Cheng Y, Ping J, Chen J, Fu Y, Zhao H and Xue J: Molecular mechanism of atractylon in the invasion and migration of hepatic cancer cells based on high-throughput sequencing. Mol Med Rep. 25:1122022. View Article : Google Scholar : | |
|
Cheng SB, Wu LC, Hsieh YC, Wu CH, Chan YJ, Chang LH, Chang CM, Hsu SL, Teng CL and Wu CC: Supercritical carbon dioxide extraction of aromatic turmerone from Curcuma longa Linn. Induces apoptosis through reactive oxygen species-triggered intrinsic and extrinsic pathways in human hepatocellular carcinoma HepG2 cells. J Agric Food Chem. 60:9620–9630. 2012. View Article : Google Scholar : PubMed/NCBI | |
|
Abu-Izneid T, Rauf A, Shariati MA, Khalil AA, Imran M, Rebezov M, Uddin MS, Mahomoodally MF and Rengasamy KRR: Sesquiterpenes and their derivatives-natural anticancer compounds: An update. Pharmacol Res. 161:1051652020. View Article : Google Scholar : PubMed/NCBI | |
|
Fraga BM: Natural sesquiterpenoids. Nat Prod Rep. 30:1226–1264. 2013. View Article : Google Scholar : PubMed/NCBI | |
|
Wu L, Huang X, Kuang Y, Xing Z, Deng X and Luo Z: Thapsigargin induces apoptosis in adrenocortical carcinoma by activating endoplasmic reticulum stress and the JNK signaling pathway: An in vitro and in vivo study. Drug Des Devel Ther. 13:2787–2798. 2019. View Article : Google Scholar : PubMed/NCBI | |
|
Andersen TB, López CQ, Manczak T, Martinez K and Simonsen HT: Thapsigargin-from Thapsia L. to mipsagargin. Molecules. 20:6113–6127. 2015. View Article : Google Scholar : PubMed/NCBI | |
|
Brennen WN, Rosen DM, Wang H, Isaacs JT and Denmeade SR: Targeting carcinoma-associated fibroblasts within the tumor stroma with a fibroblast activation protein-activated prodrug. J Natl Cancer Inst. 104:1320–1334. 2012. View Article : Google Scholar : PubMed/NCBI | |
|
Denmeade SR, Mhaka AM, Rosen DM, Brennen WN, Dalrymple S, Dach I, Olesen C, Gurel B, Demarzo AM, Wilding G, et al: Engineering a prostate-specific membrane antigen-activated tumor endothelial cell prodrug for cancer therapy. Sci Transl Med. 4:140ra862012. View Article : Google Scholar : PubMed/NCBI | |
|
Qu Z, Liu H, Zhang Z, Zheng P, Zhao S and Hou W: Phytochemistry and pharmacology of sesquiterpenoids from Atractylodes DC. Genus Rhizomes. Molecules. 29:13792024. View Article : Google Scholar : PubMed/NCBI | |
|
Tian XH, Hong LL, Jiao WH and Lin HW: Natural sesquiterpene quinone/quinols: Chemistry, biological activity, and synthesis. Nat Prod Reps. 40:718–749. 2023. View Article : Google Scholar | |
|
Shulha O and Zidorn C: Sesquiterpene lactones and their precursors as chemosystematic markers in the tribe Cichorieae of the Asteraceae revisited: An update (2008-2017). Phytochemistry. 163:149–177. 2019. View Article : Google Scholar : PubMed/NCBI | |
|
Xu K, Feng ZM, Yang YN, Jiang JS and Zhang PC: Eight new eudesmane-and eremophilane-type sesquiterpenoids from Atractylodes lancea. Fitoterapia. 114:115–121. 2016. View Article : Google Scholar : PubMed/NCBI | |
|
Ding HY, Wu YC and Linc HC: Phytochemical and pharmacological studies on Chinese changzhu. J Chin Chem Soc. 47:561–566. 2000. View Article : Google Scholar | |
|
Nakai Y, Kido T, Hashimoto K, Kase Y, Sakakibara I, Higuchi M and Sasaki H: Effect of the rhizomes of Atractylodes lancea and its constituents on the delay of gastric emptying. J Ethnopharmacol. 84:51–55. 2003. View Article : Google Scholar | |
|
Guo W, XU B, Meng Q, Zheng B, Li X, Liu M and Du XD: Anti-tumor effect of Hinesol on liver cancer via downregulating MEK/ERK and NF-κB pathway in SMMC-7721 and LM3cells. Chin J Pharmacol Toxicol. 32:282. 2018. | |
|
Lobo R, Prabhu KS and Shirwaikar A: Curcuma zedoaria Rosc. (White turmeric): A review of its chemical, pharmacological and ethnomedicinal properties. J Pharm Pharmacol. 61:13–21. 2009. View Article : Google Scholar : PubMed/NCBI | |
|
Mao Z, Zhong L, Zhuang X, Liu H and Peng Y: Curcumenol targeting YWHAG inhibits the pentose phosphate pathway and enhances antitumor effects of cisplatin. Evid Based Complement Alternat Med. 2022:39889162022. View Article : Google Scholar : PubMed/NCBI | |
|
Wen Y, Han J, Chen J, Dong J, Xia Y, Liu J, Jiang Y, Dai J, Lu J, Jin G, et al: Plasma mi RNA s as early biomarkers for detecting hepatocellular carcinoma. Int J Cancer. 137:1679–1690. 2015. View Article : Google Scholar : PubMed/NCBI | |
|
Yerukala Sathipati S and Ho SY: Novel miRNA signature for predicting the stage of hepatocellular carcinoma. Scie Rep. 10:144522020. View Article : Google Scholar | |
|
Sartorius K, Sartorius B, Winkler C, Chuturgoon A and Makarova J: The biological and diagnostic role of miRNA's in hepatocellular carcinoma. Front Biosci (Landmark Ed). 23:1701–1720. 2018. View Article : Google Scholar : PubMed/NCBI | |
|
Qadir MI and Rizvi SZ: miRNA in hepatocellular carcinoma: Pathogenesis and therapeutic approaches. Crit Rev Eukaryot Gene Expr. 27:355–361. 2017. View Article : Google Scholar : PubMed/NCBI | |
|
Elhefnawi M, Salah Z and Soliman B: The promise of miRNA replacement therapy for hepatocellular carcinoma. Curr Gene Ther. 19:290–304. 2019. View Article : Google Scholar : PubMed/NCBI | |
|
Wang X, Gao J, Zhou B, Xie J, Zhou G and Chen Y: Identification of prognostic markers for hepatocellular carcinoma based on miRNA expression profiles. Life Sci. 232:1165962019. View Article : Google Scholar : PubMed/NCBI | |
|
Li D, Zhang J and Li J: Role of miRNA sponges in hepatocellular carcinoma. Clin Chim Acta. 500:10–19. 2020. View Article : Google Scholar | |
|
Nagy Á, Lánczky A, Menyhárt O and Győrffy B: Validation of miRNA prognostic power in hepatocellular carcinoma using expression data of independent datasets. Sci Rep. 8:92272018. View Article : Google Scholar : PubMed/NCBI | |
|
Zhang R, Zhong L, Sun K, Liu J, Wang Q, Mao D, Fang G and Long F: A study on curcumol influencing proliferation and apoptosis of hepatocellular carcinoma cells through DJ-1/PTEN/PI3K/AKT Pathway. Biomed Res Int. 2022:99127762022. View Article : Google Scholar : PubMed/NCBI | |
|
Kirana C, McIntosh GH, Record IR and Jones GP: Antitumor activity of extract of Zingiber aromaticum and its bioactive sesquiterpenoid zerumbone. Nutr Cancer. 45:218–225. 2003. View Article : Google Scholar : PubMed/NCBI | |
|
Wani NA, Zhang B, Teng K, Barajas JM, Motiwala T, Hu P, Yu L, Brüschweiler R, Ghoshal K and Jacob ST: Reprogramming of glucose metabolism by zerumbone suppresses hepatocarcinogenesis. Mol Cancer Res. 16:256–268. 2018. View Article : Google Scholar | |
|
Samad NA, Abdul AB, Rahman HS, Rasedee A, Tengku Ibrahim TA and Keon YS: Zerumbone suppresses angiogenesis in HepG2 cells through inhibition of matrix metalloproteinase-9, vascular endothelial growth factor, and vascular endothelial growth factor receptor expressions. Pharmacogn Mag. 13(Suppl 4): S731–S736. 2017. | |
|
Abdul ABH, Al-Zubairi AS, Tallan ND, Wahab SIA, Zain ZNM, Ruslay S and Syam MM: Anticancer activity of natural compound (zerumbone) extracted from Zingiber zerumbet in human HeLa cervical cancer cells. Int J Pharmacol. 4:1602008. View Article : Google Scholar | |
|
Sakinah SA, Handayani ST and Hawariah LP: Zerumbone induced apoptosis in liver cancer cells via modulation of Bax/Bcl-2 ratio. Cancer Cell Int. 7:42007. View Article : Google Scholar : PubMed/NCBI | |
|
Taha MME, Abdul AB, Abdullah R, Ibrahim TA, Abdelwahab SI and Mohan S: Potential chemoprevention of diethylnitrosamine-initiated and 2-acetylaminofluorene-promoted hepatocarcinogenesis by zerumbone from the rhizomes of the subtropical ginger (Zingiber zerumbet). Chem Biol Interact. 186:295–305. 2010. View Article : Google Scholar : PubMed/NCBI | |
|
Bora KS and Sharma A: Phytochemical and pharmacological potential of Medicago sativa: A review. Pharm Biol. 49:211–220. 2011. View Article : Google Scholar | |
|
Rustaiyan A and Masoudi S: Chemical constituents and biological activities of Iranian Artemisia species. Phytochemistry Lett. 4:440–447. 2011. View Article : Google Scholar | |
|
He ZZ, Yan JF, Song ZJ, Ye F, Liao X, Peng SL and Ding LS: Chemical constituents from the aerial parts of Artemisia minor. J Nat Prod. 72:1198–1201. 2009. View Article : Google Scholar : PubMed/NCBI | |
|
Martínez MJA, Del Olmo LMB, Ticona LA and Benito PB: The Artemisia L. genus: A review of bioactive sesquiterpene lactones. Stud Natu Products Chem. 37:43–65. 2012. View Article : Google Scholar | |
|
Suresh J, Mahesh NM, Ahuja J and Santilna KS: Review on Artemisia nilagirica (Clarke) pamp. J Biol Active Products Nat. 1:97–104. 2011. | |
|
He X, Ma W, Hu J, Li T, Geng C, Ma Y, Wang M, Yang K, Zhang X and Chen JJ: Diverse structures and antihepatoma effect of sesquiterpenoid dimers from Artemisia eriopoda by AKT/STAT signaling pathway. Signal Transduct Target Ther. 8:642023. View Article : Google Scholar : PubMed/NCBI | |
|
Li X, Chen Q, Liu J, Lai S, Zhang M, Zhen T, Hu H, Gao X, Wong AST and Zeng JZ: Orphan nuclear receptor Nur77 mediates the lethal endoplasmic reticulum stress and therapeutic efficacy of cryptomeridiol in hepatocellular carcinoma. Cells. 11:38702022. View Article : Google Scholar : PubMed/NCBI | |
|
Yu X, Yang FQ, Li SP, Gao JL, Hu G, Lao SC, Conceição EL, Fung KP, Wangl YT and Lee SM: Furanodiene induces G2/M cell cycle arrest and apoptosis through MAPK signaling and mitochondria-caspase pathway in human hepatocellular carcinoma cells. Cancer Biol Ther. 6:1044–1050. 2014. | |
|
Yang F, Chen WD, Deng R, Li DD, Wu KW, Feng GK, Li HJ and Zhu XF: Hirsutanol A induces apoptosis and autophagy via reactive oxygen species accumulation in breast cancer MCF-7 cells. J Pharmacol Sci. 119:214–220. 2012. View Article : Google Scholar : PubMed/NCBI | |
|
Yang F, Chen WD, Deng R, Zhang H, Tang J, Wu KW, Li DD, Feng GK, Lan WJ, Li HJ and Zhu XF: Hirsutanol A, a novel sesquiterpene compound from fungus Chondrostereum sp., induces apoptosis and inhibits tumor growth through mitochondrial-independent ROS production: Hirsutanol A inhibits tumor growth through ROS production. J Transl Med. 11:322013. View Article : Google Scholar : PubMed/NCBI | |
|
Zhang J, Mao Y, Hou L and Cui X: The effect of beta-elemene on alpha-tubulin polymerization in human hepatoma HepG2 cells. Chin J Cancer Res. 25:770–776. 2013. | |
|
Peng X, Zhao Y, Liang X, Wu L, Cui S, Guo A and Wang W: Assessing the quality of RCTs on the effect of beta-elemene, one ingredient of a Chinese herb, against malignant tumors. Contemp Clin Trials. 27:70–82. 2006. View Article : Google Scholar | |
|
Sun Y, Liu G, Zhang Y, Zhu H, Ren Y and Shen YM: Synthesis and in vitro anti-proliferative activity of β-elemene monosubstituted derivatives in HeLa cells mediated through arrest of cell cycle at the G1 phase. Bioorg Med Chem. 17:1118–1124. 2009. View Article : Google Scholar : PubMed/NCBI | |
|
Wu B, Jiang Y, Zhu F, Sun D and Huang H: Demethylation effects of elemene on the GSTP1 gene in HCC cell line QGY7703. Oncol Lett. 11:2545–2551. 2016. View Article : Google Scholar : PubMed/NCBI | |
|
Qin Y, Guo Y, Wei W, Wang B, Jin H, Sun J, Qi J, Ren S and Zuo Y: Anti-tumor effect of β-elemene in murine hepatocellular carcinoma cell line H22 depends on the level of c-Met downregulation. Biomedicine Preventive Nutr. 2:91–98. 2012. View Article : Google Scholar | |
|
Ni G, Shi GR, Zhang D, Fu NJ, Yang HZ, Chen XG and Yu DQ: Cytotoxic Lignans and Sesquiterpenoids from the Rhizomes of Acorus tatarinowii. Planta Medica. 82:632–638. 2016. View Article : Google Scholar : PubMed/NCBI | |
|
Chen JJ, Wei HB, Xu YZ, Hu SC and Gao K: Senedensiscins A-F: Six new eudesmane sesquiterpenoid glucosides from Senecio densiserratus. Tetrahedron. 69:10598–10603. 2013. View Article : Google Scholar | |
|
Yang ML, Chen JJ, Wei HB and Gao K: Cytotoxic sesquiterpenoids from Senecio densiserratus. Phytochemistry Lett. 16:236–240. 2016. View Article : Google Scholar | |
|
Tsevegsuren N, Edrada RA, Lin W, Ebel R, Torre C, Ortlepp S, Wray V and Proksch P: Biologically active natural products from Mongolian medicinal plants Scorzonera divaricata and Scorzonera pseudodivaricata. J Nat Prod. 70:962–967. 2007. View Article : Google Scholar : PubMed/NCBI | |
|
Wu Q, He XF, Jiang CX, Zhang W, Shi ZN, Li HF and Zhu Y: Two novel bioactive sulfated guaiane sesquiterpenoid salt alkaloids from the aerial parts of Scorzonera divaricata. Fitoterapia. 124:113–119. 2018. View Article : Google Scholar | |
|
Shang C, Ma YB, Wang Y, He XF, Li TZ and Chen JJ: Artemongolins A-K, undescribed germacrane-guaiane sesquiterpenoid dimers from Artemisia mongolica and their antihepatoma activities. Arch Pharm Res. 46:782–794. 2023. View Article : Google Scholar : PubMed/NCBI | |
|
Wang MF, Li TZ, Ma YB, Ma WJ, Wang YC, Li FJ and Chen JJ: Artemyriantholides A-K, guaiane-type sesquiterpenoid dimers from Artemisia myriantha var. pleiocephala and their antihepatoma activity. Phytochemistry. 222:1141002024. View Article : Google Scholar : PubMed/NCBI | |
|
He XF, Ma YB, Li TZ and Chen JJ: Highly oxygenated guaiane-type sesquiterpene lactones from Artemisia sacrorum and their antihepatoma activity. Phytochemistry. 217:1139302024. View Article : Google Scholar | |
|
Wang X, Li TZ, Ma YB, Ma WJ, Xue D and Chen JJ: Synthesis and antihepatoma activity of guaianolide dimers derived from lavandiolide I. Bioorg Med Chem Lett. 104:1297082024. View Article : Google Scholar : PubMed/NCBI | |
|
Fang JY and Richardson BC: The MAPK signalling pathways and colorectal cancer. Lancet Oncol. 6:322–327. 2005. View Article : Google Scholar : PubMed/NCBI | |
|
Meloche S and Pouysségur J: The ERK1/2 mitogen-activated protein kinase pathway as a master regulator of the G1-to S-phase transition. Oncogene. 26:3227–3239. 2007. View Article : Google Scholar : PubMed/NCBI | |
|
Yang F, Li J, Zhu J, Wang D, Chen S and Bai X: Hydroxysafflor yellow A inhibits angiogenesis of hepatocellular carcinoma via blocking ERK/MAPK and NF-κB signaling pathway in H22 tumor-bearing mice. Eur J Pharmacol. 754:105–114. 2015. View Article : Google Scholar : PubMed/NCBI | |
|
Cusimano A, Foderà D, D'Alessandro N, Lampiasi N, Azzolina A, Montalto G and Cervello M: Potentiation of the antitumor effects of both selective cyclooxygenase-1 and cyclooxygenase-2 inhibitors in human hepatic cancer cells by inhibition of the MEK/ERK pathway. Cancer Biol Ther. 6:1457–1464. 2007. View Article : Google Scholar | |
|
Wang XD, Meng FC and Mao JX: Progress of natural sesquiterpenoids in the treatment of hepatocellular carcinoma. Front Oncol. 14:14452222024. View Article : Google Scholar : PubMed/NCBI | |
|
Li Y, Wang T, Sun Y, Huang T and Li C, Fu Y, Li Y and Li C: p53-mediated PI3K/AKT/mTOR pathway played a role in PtoxDpt-induced EMT inhibition in liver cancer cell lines. Oxid Med Cell Longev. 2019:25314932019. | |
|
Kahraman DC, Kahraman T and Cetin-Atalay R: Targeting PI3K/Akt/mTOR pathway identifies differential expression and functional role of IL8 in liver cancer stem cell enrichment. Mol Cancer Ther. 18:2146–2157. 2019. View Article : Google Scholar : PubMed/NCBI | |
|
Luedde T and Schwabe RF: NF-κB in the liver-linking injury, fibrosis and hepatocellular carcinoma. Nat Rev Gastroenterol Hepatol. 8:108–118. 2011. View Article : Google Scholar : PubMed/NCBI | |
|
Wilson CL, Jurk D, Fullard N, Banks P, Page A, Luli S, Elsharkawy AM, Gieling RG, Chakraborty JB, Fox C, et al: NFκB1 is a suppressor of neutrophil-driven hepatocellular carcinoma. Nat Commun. 6:68182015. View Article : Google Scholar | |
|
Lee C and Cheung ST: STAT3: An emerging therapeutic target for hepatocellular carcinoma. Cancers. 11:16462019. View Article : Google Scholar : PubMed/NCBI | |
|
Boland ML, Chourasis AH and Macleod KF: Mitochondrial dysfunction in cancer. Front Oncol. 3:2922013. View Article : Google Scholar : PubMed/NCBI | |
|
Lee KH, Huang ES, Piantadosi C, Pagano JS and Geissman TA: Cytotoxicity of sesquiterpene lactones. Cancer Res. 31:1649–1654. 1971.PubMed/NCBI | |
|
Lopez-Anton N, Hermann C, Murillo R, Merfort I, Wanner G, Vollmar AM and Dirsch VM: Sesquiterpene lactones induce distinct forms of cell death that modulate human Monocyte-derived macrophage responses. Apoptosis. 12:141–153. 2007. View Article : Google Scholar | |
|
Bai Z, Yao C, Zhu J, Xie Y, Ye XY, Bai R and Xie T: Anti-tumor drug discovery based on natural product β-elemene: Anti-tumor mechanisms and structural modification. Molecules. 26:14992021. View Article : Google Scholar | |
|
Xie T, Li CL and Wang SL: Basic research progress of natural anticancer target drugs of elemene liposomes series. Zhongguo Zhong Xi Yi Jie He Za Zhi. 34:507–512. 2014.In Chinese. PubMed/NCBI | |
|
Zhai B, Zeng Y, Zeng Z, Zhang N, Li C, Zeng Y, You Y, Wang S, Chen X, Sui X and Xie T: Drug delivery systems for elemene, its main active ingredient β-elemene, and its derivatives in cancer therapy. Int J Nanomedicine. 13:6279–6296. 2018. View Article : Google Scholar : | |
|
Xie T, Cl L, Wang SL, Zeng ZW, Wang F and Zhao R: Advances in the research of Elemene Liposome series targeted anticancer natural drugs. Chin J Integr Trad West Med. 34:507–512. 2014. | |
|
Li H, Xu K, Pian G and Sun S: Artesunate and sorafenib: Combinatorial inhibition of liver cancer cell growth. Oncol Lett. 18:4735–4743. 2019.PubMed/NCBI | |
|
Yao X, Zhao CR, Yin H, Wang K and Gao JJ: Synergistic antitumor activity of sorafenib and artesunate in hepatocellular carinoma cells. Acta Pharmacol Sin. 41:1609–1620. 2020. View Article : Google Scholar : PubMed/NCBI | |
|
Alven S and Aderibigbe BA: Nanoparticles formulations of artemisinin and derivatives as potential therapeutics for the treatment of cancer, leishmaniasis and malaria. Pharmaceutics. 12:7482020. View Article : Google Scholar : PubMed/NCBI | |
|
Pan XW, Huang JS, Liu SR, Shao YD, Xi JJ, He RY, Shi TT, Zhuang RX and Bao JF: Evaluation of the liver targeting and anti-liver cancer activity of artesunate-loaded and glycyrrhetinic acid-coated nanoparticles. Exp Ther Med. 26:5162023. View Article : Google Scholar | |
|
Hermida MA, Kumar JD and Leslie NR: GSK3 and its interactions with the PI3K/AKT/mTOR signalling network. Adv Biol Regul. 65:5–15. 2017. View Article : Google Scholar : PubMed/NCBI | |
|
Tang W, Chen Z, Zhang W, Cheng Y, Zhang B, Wu F, Wang Q, Wang S, Rong D, Reiter FP, et al: The mechanisms of sorafenib resistance in hepatocellular carcinoma: Theoretical basis and therapeutic aspects. Signal Transduct Target Ther. 5:872020. View Article : Google Scholar : PubMed/NCBI |