You can change your cookie settings at any time by following the instructions in our Cookie Policy. To find out more, you may read our Privacy Policy.
I agree
International Journal of Molecular Medicine is an international journal devoted to molecular mechanisms of human disease.
International Journal of Oncology is an international journal devoted to oncology research and cancer treatment.
Covers molecular medicine topics such as pharmacology, pathology, genetics, neuroscience, infectious diseases, molecular cardiology, and molecular surgery.
Oncology Reports is an international journal devoted to fundamental and applied research in Oncology.
Experimental and Therapeutic Medicine is an international journal devoted to laboratory and clinical medicine.
Oncology Letters is an international journal devoted to Experimental and Clinical Oncology.
Explores a wide range of biological and medical fields, including pharmacology, genetics, microbiology, neuroscience, and molecular cardiology.
International journal addressing all aspects of oncology research, from tumorigenesis and oncogenes to chemotherapy and metastasis.
Multidisciplinary open-access journal spanning biochemistry, genetics, neuroscience, environmental health, and synthetic biology.
Open-access journal combining biochemistry, pharmacology, immunology, and genetics to advance health through functional nutrition.
Publishes open-access research on using epigenetics to advance understanding and treatment of human disease.
An International Open Access Journal Devoted to General Medicine.
![]() |
![]() |
![]() |
![]() |
![]() |
|
Bray F, Laversanne M, Sung H, Ferlay J, Siegel RL, Soerjomataram I and Jemal A: Global cancer statistics 2022: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J Clin. 74:229–263. 2024. View Article : Google Scholar : PubMed/NCBI | |
|
Wang X, Zhang H and Chen X: Drug resistance and combating drug resistance in cancer. Cancer Drug Resist. 2:141–160. 2019.PubMed/NCBI | |
|
Dong D, Yu X, Xu J, Yu N, Liu Z and Sun Y: Cellular and molecular mechanisms of gastrointestinal cancer liver metastases and drug resistance. Drug Resist Updat. 77:1011252024. View Article : Google Scholar : PubMed/NCBI | |
|
Hussain S, Singh A, Nazir SU, Tulsyan S, Khan A, Kumar R, Bashir N, Tanwar P and Mehrotra R: Cancer drug resistance: A fleet to conquer. J Cell Biochem. 120:14213–14225. 2019. View Article : Google Scholar : PubMed/NCBI | |
|
Carneiro BA and El-Deiry WS: Targeting apoptosis in cancer therapy. Nat Rev Clin Oncol. 17:395–417. 2020. View Article : Google Scholar : PubMed/NCBI | |
|
Rezayatmand H, Razmkhah M and Razeghian-Jahromi I: Drug resistance in cancer therapy: The Pandora's Box of cancer stem cells. Stem Cell Res Ther. 13:1812022. View Article : Google Scholar : PubMed/NCBI | |
|
Wang Z, Wang Y, Li Z, Xue W, Hu S and Kong X: Lipid metabolism as a target for cancer drug resistance: Progress and prospects. Front Pharmacol. 14:12743352023. View Article : Google Scholar : PubMed/NCBI | |
|
Tong X, Tang R, Xiao M, Xu J, Wang W, Zhang B, Liu J, Yu X and Shi S: Targeting cell death pathways for cancer therapy: Recent developments in necroptosis, pyroptosis, ferroptosis, and cuproptosis research. J Hematol Oncol. 15:1742022. View Article : Google Scholar : PubMed/NCBI | |
|
Gao L, Wu ZX, Assaraf YG, Chen ZS and Wang L: Overcoming anti-cancer drug resistance via restoration of tumor suppressor gene function. Drug Resist Updat. 57:1007702021. View Article : Google Scholar : PubMed/NCBI | |
|
Nussinov R, Tsai CJ and Jang H: Anticancer drug resistance: An update and perspective. Drug Resist Updat. 59:1007962021. View Article : Google Scholar : PubMed/NCBI | |
|
Pitt JM, Marabelle A, Eggermont A, Soria JC, Kroemer G and Zitvogel L: Targeting the tumor microenvironment: Removing obstruction to anticancer immune responses and immunotherapy. Ann Oncol. 27:1482–1492. 2016. View Article : Google Scholar : PubMed/NCBI | |
|
Kundu M, Butti R, Panda VK, Malhotra D, Das S, Mitra T, Kapse P, Gosavi SW and Kundu GC: Modulation of the tumor microenvironment and mechanism of immunotherapy-based drug resistance in breast cancer. Mol Cancer. 23:922024. View Article : Google Scholar : PubMed/NCBI | |
|
Giraldo NA, Sanchez-Salas R, Peske JD, Vano Y, Becht E, Petitprez F, Validire P, Ingels A, Cathelineau X, Fridman WH and Sautès-Fridman C: The clinical role of the TME in solid cancer. Br J Cancer. 120:45–53. 2019. View Article : Google Scholar : | |
|
Peng Z, Tong Z, Ren Z, Ye M and Hu K: Cancer-associated fibroblasts and its derived exosomes: A new perspective for reshaping the tumor microenvironment. Mol Med. 29:662023. View Article : Google Scholar : PubMed/NCBI | |
|
Loh JJ and Ma S: The role of cancer-associated fibroblast as a dynamic player in mediating cancer stemness in the tumor microenvironment. Front Cell Dev Biol. 9:7276402021. View Article : Google Scholar : PubMed/NCBI | |
|
Wu F, Yang J, Liu J, Wang Y, Mu J, Zeng Q, Deng S and Zhou H: Signaling pathways in cancer-associated fibroblasts and targeted therapy for cancer. Signal Transduct Target Ther. 6:2182021. View Article : Google Scholar : PubMed/NCBI | |
|
Rimal R, Desai P, Daware R, Hosseinnejad A, Prakash J, Lammers T and Singh S: Cancer-associated fibroblasts: Origin, function, imaging, and therapeutic targeting. Adv Drug Deliv Rev. 189:1145042022. View Article : Google Scholar : PubMed/NCBI | |
|
Mao X, Xu J, Wang W, Liang C, Hua J, Liu J, Zhang B, Meng Q, Yu X and Shi S: Crosstalk between cancer-associated fibroblasts and immune cells in the tumor microenvironment: New findings and future perspectives. Mol Cancer. 20:1312021. View Article : Google Scholar : PubMed/NCBI | |
|
Fiori ME, Di Franco S, Villanova L, Bianca P, Stassi G and De Maria R: Cancer-associated fibroblasts as abettors of tumor progression at the crossroads of EMT and therapy resistance. Mol Cancer. 18:702019. View Article : Google Scholar : PubMed/NCBI | |
|
Zhang L and Yu D: Exosomes in cancer development, metastasis, and immunity. Biochim Biophys Acta Rev Cancer. 1871:455–468. 2019. View Article : Google Scholar : PubMed/NCBI | |
|
Li C, Ni YQ, Xu H, Xiang QY, Zhao Y, Zhan JK, He JY, Li S and Liu YS: Roles and mechanisms of exosomal non-coding RNAs in human health and diseases. Signal Transduct Target Ther. 6:3832021. View Article : Google Scholar : PubMed/NCBI | |
|
Nemeth K, Bayraktar R, Ferracin M and Calin GA: Non-coding RNAs in disease: From mechanisms to therapeutics. Nat Rev Genet. 25:211–232. 2024. View Article : Google Scholar | |
|
Hill M and Tran N: miRNA interplay: Mechanisms and consequences in cancer. Dis Model Mech. 14:dmm0476622021. View Article : Google Scholar : PubMed/NCBI | |
|
Bhan A, Soleimani M and Mandal SS: Long noncoding RNA and cancer: A new paradigm. Cancer Res. 77:3965–3981. 2017. View Article : Google Scholar : PubMed/NCBI | |
|
Liu X, Zhang Y, Zhou S, Dain L, Mei L and Zhu G: Circular RNA: An emerging frontier in RNA therapeutic targets, RNA therapeutics, and mRNA vaccines. J Control Release. 348:84–94. 2022. View Article : Google Scholar : PubMed/NCBI | |
|
Ibrahim FM, Saleh RO, Uinarni H, Bokov DO, Menon SV, Zarifovich KB, Misra N, Al-Hamdani MM, Husseen B and Jawad MA: Exosomal noncoding RNA (ncRNA) in breast cancer pathogenesis and therapy; two sides of the same coin. Exp Cell Res. 444:1143592025. View Article : Google Scholar | |
|
Saadh MJ, Allela OQB, Kareem RA, Ballal S, Chahar M, Saini S, Prasad GVS, Sameer HN, Hamad AK, Athab ZH and Adil M: The role of exosomal non-coding RNAs in the breast cancer tumor microenvironment. Funct Integr Genomics. 25:322025. View Article : Google Scholar : PubMed/NCBI | |
|
Alipoor SD and Chang H: Exosomal miRNAs in the tumor microenvironment of multiple myeloma. Cells. 12:10302023. View Article : Google Scholar : PubMed/NCBI | |
|
Huang Q, Zhong X, Li J, Hu R, Yi J, Sun J, Xu Y and Zhou X: Exosomal ncRNAs: Multifunctional contributors to the immunosuppressive tumor microenvironment of hepatocellular carcinoma. Biomed Pharmacother. 173:1164092024. View Article : Google Scholar : PubMed/NCBI | |
|
Hussen BM, Abdullah ST, Abdullah SR, Younis YM, Hidayat HJ, Rasul MF and Mohamadtahr S: Exosomal non-coding RNAs: Blueprint in colorectal cancer metastasis and therapeutic targets. Noncoding RNA Res. 8:615–632. 2023. View Article : Google Scholar : PubMed/NCBI | |
|
Li W, Wang X, Li C, Chen T and Yang Q: Exosomal non-coding RNAs: Emerging roles in bilateral communication between cancer cells and macrophages. Mol Ther. 30:1036–1053. 2022. View Article : Google Scholar : | |
|
Entezari M, Sadrkhanloo M, Rashidi M, Asnaf SE, Taheriazam A, Hashemi M, Ashrafizadeh M, Zarrabi A, Rabiee N, Hushmandi K, et al: Non-coding RNAs and macrophage interaction in tumor progression. Crit Rev Oncol Hematol. 173:1036802022. View Article : Google Scholar : PubMed/NCBI | |
|
Zhang J, Yu D, Ji C, Wang M, Fu M, Qian Y and Zhang X, Ji R, Li C, Gu J and Zhang X: Exosomal miR-4745-5p/3911 from N2-polarized tumor-associated neutrophils promotes gastric cancer metastasis by regulating SLIT2. Mol Cancer. 23:1982024. View Article : Google Scholar : PubMed/NCBI | |
|
Zhao Y, Jia Y, Wang J, Chen X, Han J, Zhen S, Yin S, Lv W, Yu F, Wang J, et al: circNOX4 activates an inflammatory fibroblast niche to promote tumor growth and metastasis in NSCLC via FAP/IL-6 axis. Mol Cancer. 23:472024. View Article : Google Scholar : PubMed/NCBI | |
|
Golestannejad P, Monkaresi M, Zhian Zargaran F, Khosravani M, Asgari P, Mobaraki H, Gorjizad M, Hasany S, Senobari Ghezeljehmeidan A, Hemmati S, et al: Role of cancer associated fibroblast (CAF) derived miRNAs on head and neck malignancies microenvironment: A systematic review. BMC Cancer. 25:5822025. View Article : Google Scholar : PubMed/NCBI | |
|
Ye F, Liang Y, Wang Y, Le Yang R, Luo D, Li Y, Jin Y, Han D, Chen B, Zhao W, et al: Cancer-associated fibroblasts facilitate breast cancer progression through exosomal circTBPL1-mediated intercellular communication. Cell Death Dis. 14:4712023. View Article : Google Scholar : PubMed/NCBI | |
|
Shelton M, Anene CA, Nsengimana J, Roberts W, Newton-Bishop J and Boyne JR: The role of CAF derived exosomal microRNAs in the tumour microenvironment of melanoma. Biochim Biophys Acta Rev Cancer. 1875:1884562021. View Article : Google Scholar | |
|
Sun S, Zhang Y, Li Y and Wei L: Crosstalk between colorectal cancer cells and cancer-associated fibroblasts in the tumor microenvironment mediated by exosomal noncoding RNAs. Front Immunol. 14:11616282023. View Article : Google Scholar : PubMed/NCBI | |
|
Zhao J, Shen J, Mao L, Yang T, Liu J and Hongbin S: Cancer associated fibroblast secreted miR-432-5p targets CHAC1 to inhibit ferroptosis and promote acquired chemoresistance in prostate cancer. Oncogene. 43:2104–2114. 2024. View Article : Google Scholar : PubMed/NCBI | |
|
Qi R, Bai Y, Li K, Liu N, Xu Y, Dal E, Wang Y, Lin R, Wang H, Liu Z, et al: Cancer-associated fibroblasts suppress ferroptosis and induce gemcitabine resistance in pancreatic cancer cells by secreting exosome-derived ACSL4-targeting miRNAs. Drug Resist Updat. 68:1009602023. View Article : Google Scholar : PubMed/NCBI | |
|
Zhuang J, Shen L, Li M, Sun J, Hao J, Li J, Zhu Z, Ge S, Zhang D, Guo H, et al: Cancer-associated fibroblast-derived miR-146a-5p generates a niche that promotes bladder cancer stemness and chemoresistance. Cancer Res. 83:1611–1627. 2023. View Article : Google Scholar : PubMed/NCBI | |
|
Sahai E, Astsaturov I, Cukierman E, DeNardo DG, Egeblad M, Evans RM, Fearon D, Greten FR, Hingorani SR, Hunter T, et al: A framework for advancing our understanding of cancer-associated fibroblasts. Nat Rev Cancer. 20:174–186. 2020. View Article : Google Scholar : PubMed/NCBI | |
|
Farhood B, Najafi M and Mortezaee K: Cancer-associated fibroblasts: Secretions, interactions, and therapy. J Cell Biochem. 120:2791–2800. 2019. View Article : Google Scholar | |
|
Joshi RS, Kanugula SS, Sudhir S, Pereira MP, Jain S and Aghi MK: The role of cancer-associated fibroblasts in tumor progression. Cancers. 13:13992021. View Article : Google Scholar : PubMed/NCBI | |
|
Arina A, Idel C, Hyjek EM, Alegre ML, Wang Y, Bindokas VP, Weichselbaum RR and Schreiber H: Tumor-associated fibroblasts predominantly come from local and not circulating precursors. Proc Natl Acad Sci USA. 113:7551–7556. 2016. View Article : Google Scholar : PubMed/NCBI | |
|
Raz Y, Cohen N, Shani O, Bell RE, Novitskiy SV, Abramovitz L, Levy C, Milyavsky M, Leider-Trejo L, Moses HL, et al: Bone marrow-derived fibroblasts are a functionally distinct stromal cell population in breast cancer. J Exp Med. 215:3075–3093. 2018. View Article : Google Scholar : PubMed/NCBI | |
|
Peng Y and Li Z and Li Z: GRP78 secreted by tumor cells stimulates differentiation of bone marrow mesenchymal stem cells to cancer-associated fibroblasts. Biochem Biophys Res Commun. 440:558–563. 2013. View Article : Google Scholar : PubMed/NCBI | |
|
Potenta S, Zeisberg E and Kalluri R: The role of endothelial-to-mesenchymal transition in cancer progression. Br J Cancer. 99:1375–1379. 2008. View Article : Google Scholar : PubMed/NCBI | |
|
Fischer KR, Durrans A, Lee S, Sheng J, Li F, Wong ST, Choi H, El Rayes T, Ryu S, Troeger J, et al: Epithelial-to-mesenchymal transition is not required for lung metastasis but contributes to chemoresistance. Nature. 527:472–476. 2015. View Article : Google Scholar : PubMed/NCBI | |
|
Jotzu C, Alt E, Welte G, Li J, Hennessy BT, Devarajan E, Krishnappa S, Pinilla S, Droll L and Song YH: Adipose tissue derived stem cells differentiate into carcinoma-associated fibroblast-like cells under the influence of tumor derived factors. Cell Oncol (Dordr). 34:55–67. 2011. View Article : Google Scholar : PubMed/NCBI | |
|
Rinkevich Y, Mori T, Sahoo D, Xu PX, Bermingham JR Jr and Weissman IL: Identification and prospective isolation of a mesothelial precursor lineage giving rise to smooth muscle cells and fibroblasts for mammalian internal organs, and their vasculature. Nat Cell Biol. 14:1251–1260. 2012. View Article : Google Scholar : PubMed/NCBI | |
|
Bartoschek M, Oskolkov N, Bocci M, Lövrot J, Larsson C, Sommarin M, Madsen CD, Lindgren D, Pekar G, Karlsson G, et al: Spatially and functionally distinct subclasses of breast cancer-associated fibroblasts revealed by single cell RNA sequencing. Nat Commun. 9:51502018. View Article : Google Scholar : PubMed/NCBI | |
|
Pan C, Liu P, Ma D, Zhang S, Ni M, Fang Q and Wang J: Bone marrow mesenchymal stem cells in microenvironment transform into cancer-associated fibroblasts to promote the progression of B-cell acute lymphoblastic leukemia. Biomed Pharmacother. 130:1106102020. View Article : Google Scholar | |
|
Sun X, Cai W, Li H, Gao C, Ma X, Guo Y, Fu D, Xiao D, Zhang Z, Wang Y, et al: Endothelial-like cancer-associated fibroblasts facilitate pancreatic cancer metastasis via vasculogenic mimicry and paracrine signalling. Gut. Mar 23–2025.Epub ahead of print. View Article : Google Scholar | |
|
Hamabe-Horiike T, Harada SI, Yoshida K, Kinoshita J, Yamaguchi T and Fushida S: Adipocytes contribute to tumor progression and invasion of peritoneal metastasis by interacting with gastric cancer cells as cancer associated fibroblasts. Cancer Rep (Hoboken). 6:e16472023. | |
|
Huang H, Wang Z, Zhang Y, Pradhan RN, Ganguly D, Chandra R, Murimwa G, Wright S, Gu X, Maddipati R, et al: Mesothelial cell-derived antigen-presenting cancer-associated fibroblasts induce expansion of regulatory T cells in pancreatic cancer. Cancer Cell. 40:656–673.e7. 2022. View Article : Google Scholar : | |
|
Bu L, Baba H, Yoshida N, Miyake K, Yasuda T, Uchihara T, Tan P and Ishimoto T: Biological heterogeneity and versatility of cancer-associated fibroblasts in the tumor microenvironment. Oncogene. 38:4887–4901. 2019. View Article : Google Scholar : PubMed/NCBI | |
|
Biffi G and Tuveson DA: Diversity and biology of cancer-associated fibroblasts. Physiol Rev. 101:147–176. 2021. View Article : Google Scholar : | |
|
Chhabra Y and Weeraratna AT: Fibroblasts in cancer: Unity in heterogeneity. Cell. 186:1580–1609. 2023. View Article : Google Scholar : PubMed/NCBI | |
|
Sugimoto H, Mundel TM, Kieran MW and Kalluri R: Identification of fibroblast heterogeneity in the tumor microenvironment. Cancer Biol Ther. 5:1640–1646. 2006. View Article : Google Scholar : PubMed/NCBI | |
|
Cortez E, Roswall P and Pietras K: Functional subsets of mesenchymal cell types in the tumor microenvironment. Semin Cancer Biol. 25:3–9. 2014. View Article : Google Scholar : PubMed/NCBI | |
|
Kim SJ, Kim SA, Choi YA, Park DY and Lee J: Alpha-smooth muscle actin-positive perivascular cells in diabetic retina and choroid. Int J Mol Sci. 21:21582020. View Article : Google Scholar : PubMed/NCBI | |
|
Wu Y, Wu C, Shi T, Cai Q, Wang T, Xiong Y, Zhang Y, Jiang W, Lu M, Chen Z, et al: FAP expression in adipose tissue macrophages promotes obesity and metabolic inflammation. Proc Natl Acad Sci USA. 120:e23030751202023. View Article : Google Scholar : PubMed/NCBI | |
|
Kang SH, Oh SY, Lee HJ, Kwon TG, Kim JW, Lee ST, Choi SY and Hong SH: Cancer-associated fibroblast subgroups showing differential promoting effect on HNSCC progression. Cancers (Basel). 13:6542021. View Article : Google Scholar : PubMed/NCBI | |
|
Kennel KB, Bozlar M, De Valk AF and Greten FR: Cancer-associated fibroblasts in inflammation and antitumor immunity. Clin Cancer Res. 29:1009–1016. 2023. View Article : Google Scholar : | |
|
Caligiuri G and Tuveson DA: Activated fibroblasts in cancer: Perspectives and challenges. Cancer Cell. 41:434–449. 2023. View Article : Google Scholar : PubMed/NCBI | |
|
Öhlund D, Handly-Santana A, Biffi G, Elyada E, Almeida AS, Ponz-Sarvise M, Corbo V, Oni TE, Hearn SA, Lee EJ, et al: Distinct populations of inflammatory fibroblasts and myofibroblasts in pancreatic cancer. J Exp Med. 214:579–596. 2017. View Article : Google Scholar : PubMed/NCBI | |
|
Elyada E, Bolisetty M, Laise P, Flynn WF, Courtois ET, Burkhart RA, Teinor JA, Belleau P, Biffi G, Lucito MS, et al: Cross-species single-cell analysis of pancreatic ductal adenocarcinoma reveals antigen-presenting cancer-associated fibroblasts. Cancer Discov. 9:1102–1123. 2019. View Article : Google Scholar : PubMed/NCBI | |
|
Costa A, Kieffer Y, Scholer-Dahirel A, Pelon F, Bourachot B, Cardon M, Sirven P, Magagna I, Fuhrmann L, Bernard C, et al: Fibroblast heterogeneity and immunosuppressive environment in human breast cancer. Cancer Cell. 33:463–479.e10. 2018. View Article : Google Scholar : PubMed/NCBI | |
|
Shi T, Yao L, Han Y, Hao P and Lu P: Quantitative phosphoproteomics reveals system-wide phosphorylation network altered by spry in mouse mammary stromal fibroblasts. Int J Mol Sci. 20:54002019. View Article : Google Scholar : PubMed/NCBI | |
|
Cords L, Tietscher S, Anzeneder T, Langwieder C, Rees M, de Souza N and Bodenmiller B: Cancer-associated fibroblast classification in single-cell and spatial proteomics data. Nat Commun. 14:42942023. View Article : Google Scholar : PubMed/NCBI | |
|
Schwörer S, Cimino FV, Ros M, Tsanov KM, Ng C, Lowe SW, Carmona-Fontaine C and Thompson CB: Hypoxia potentiates the inflammatory fibroblast phenotype promoted by pancreatic cancer cell-derived cytokines. Cancer Res. 83:1596–1610. 2023. View Article : Google Scholar : PubMed/NCBI | |
|
Biffi G, Oni TE, Spielman B, Hao Y, Elyada E, Park Y, Preall J and Tuveson DA: IL1-induced JAK/STAT signaling is antagonized by TGFβ to shape CAF heterogeneity in pancreatic ductal adenocarcinoma. Cancer Discov. 9:282–301. 2019. View Article : Google Scholar | |
|
Huang J, Zhang L, Wan D, Zhou L, Zheng S, Lin S and Qiao Y: Extracellular matrix and its therapeutic potential for cancer treatment. Signal Transduct Target Ther. 6:1532021. View Article : Google Scholar : PubMed/NCBI | |
|
Piersma B, Hayward MK and Weaver VM: Fibrosis and cancer: A strained relationship. Biochim Biophys Acta Rev Cancer. 1873:1883562020. View Article : Google Scholar : PubMed/NCBI | |
|
Naba A, Clauser KR, Ding H, Whittaker CA, Carr SA and Hynes RO: The extracellular matrix: Tools and insights for the 'omics' era. Matrix Biol. 49:10–24. 2016. View Article : Google Scholar | |
|
Zeltz C, Primac I, Erusappan P, Alam J, Noel A and Gullberg D: Cancer-associated fibroblasts in desmoplastic tumors: Emerging role of integrins. Semin Cancer Biol. 62:166–181. 2020. View Article : Google Scholar | |
|
Santi A, Kugeratski FG and Zanivan S: Cancer associated fibroblasts: The architects of stroma remodeling. Proteomics. 18:e17001672018. View Article : Google Scholar | |
|
Najafi M, Farhood B and Mortezaee K: Extracellular matrix (ECM) stiffness and degradation as cancer drivers. J Cell Biochem. 120:2782–2790. 2019. View Article : Google Scholar | |
|
Peng D, Fu M, Wang M, Wei Y and Wei X: Targeting TGF-β signal transduction for fibrosis and cancer therapy. Mol Cancer. 21:1042022. View Article : Google Scholar | |
|
Patwardhan S, Mahadik P, Shetty O and Sen S: ECM stiffness-tuned exosomes drive breast cancer motility through thrombospondin-1. Biomaterials. 279:1211852021. View Article : Google Scholar : PubMed/NCBI | |
|
Wei SC, Fattet L, Tsai JH, Guo Y, Pai VH, Majeski HE, Chen AC, Sah RL, Taylor SS, Engler AJ and Yang J: Matrix stiffness drives epithelial-mesenchymal transition and tumour metastasis through a TWIST1-G3BP2 mechanotransduction pathway. Nat Cell Biol. 17:678–688. 2015. View Article : Google Scholar : PubMed/NCBI | |
|
Jiang Y, Zhang H, Wang J, Liu Y, Luo T and Hua H: Targeting extracellular matrix stiffness and mechanotransducers to improve cancer therapy. J Hematol Oncol. 15:342022. View Article : Google Scholar : PubMed/NCBI | |
|
Li ZL, Wang ZJ, Wei GH, Yang Y and Wang XW: Changes in extracellular matrix in different stages of colorectal cancer and their effects on proliferation of cancer cells. World J Gastrointest Oncol. 12:267–275. 2020. View Article : Google Scholar : PubMed/NCBI | |
|
Erdogan B and Webb DJ: Cancer-associated fibroblasts modulate growth factor signaling and extracellular matrix remodeling to regulate tumor metastasis. Biochem Soc Trans. 45:229–236. 2017. View Article : Google Scholar : PubMed/NCBI | |
|
Jabłońska-Trypuć A, Matejczyk M and Rosochacki S: Matrix metalloproteinases (MMPs), the main extracellular matrix (ECM) enzymes in collagen degradation, as a target for anticancer drugs. J Enzyme Inhib Med Chem. 31:177–183. 2016. View Article : Google Scholar | |
|
Cazet AS, Hui MN, Elsworth BL, Wu SZ, Roden D, Chan CL, Skhinas JN, Collot R, Yang J, Harvey K, et al: Targeting stromal remodeling and cancer stem cell plasticity overcomes chemoresistance in triple negative breast cancer. Nat Commun. 9:28972018. View Article : Google Scholar : PubMed/NCBI | |
|
Shi Y, Gao W, Lytle NK, Huang P, Yuan X, Dann AM, Ridinger-Saison M, DelGiorno KE, Antal CE, Liang G, et al: Targeting LIF-mediated paracrine interaction for pancreatic cancer therapy and monitoring. Nature. 569:131–135. 2019. View Article : Google Scholar : PubMed/NCBI | |
|
Kaur A, Ecker BL, Douglass SM, Kugel CH III, Webster MR, Almeida FV, Somasundaram R, Hayden J, Ban E, Ahmadzadeh H, et al: Remodeling of the collagen matrix in aging skin promotes melanoma metastasis and affects immune cell motility. Cancer Discov. 9:64–81. 2019. View Article : Google Scholar : | |
|
Zhang X, Dong Y, Zhao M, Ding L, Yang X, Jing Y, Song Y, Chen S, Hu Q and Ni Y: ITGB2-mediated metabolic switch in CAFs promotes OSCC proliferation by oxidation of NADH in mitochondrial oxidative phosphorylation system. Theranostics. 10:12044–12059. 2020. View Article : Google Scholar : PubMed/NCBI | |
|
Fang Z, Xu J, Zhang B, Wang W, Liu J, Liang C, Hua J, Meng Q, Yu X and Shi S: The promising role of noncoding RNAs in cancer-associated fibroblasts: An overview of current status and future perspectives. J Hematol Oncol. 13:1542020. View Article : Google Scholar : PubMed/NCBI | |
|
Zeng Y, Li B, Liang Y, Reeves PM, Qu X, Ran C, Liu Q, Callahan MV, Sluder AE, Gelfand JA, et al: Dual blockade of CXCL12-CXCR4 and PD-1-PD-L1 pathways prolongs survival of ovarian tumor-bearing mice by prevention of immunosuppression in the tumor microenvironment. FASEB J. 33:6596–6608. 2019. View Article : Google Scholar : PubMed/NCBI | |
|
Wei R, Li J, Lin W, Pang X, Yang H, Lai S, Wei X, Jiang X, Yuan Y and Yang R: Nanoparticle-mediated blockade of CXCL12/CXCR4 signaling enhances glioblastoma immunotherapy: Monitoring early responses with MRI radiomics. Acta Biomater. 177:414–430. 2024. View Article : Google Scholar : PubMed/NCBI | |
|
Feig C, Jones JO, Kraman M, Wells RJ, Deonarine A, Chan DS, Connell CM, Roberts EW, Zhao Q, Caballero OL, et al: Targeting CXCL12 from FAP-expressing carcinoma-associated fibroblasts synergizes with anti-PD-L1 immunotherapy in pancreatic cancer. Proc Natl Acad Sci USA. 110:20212–20217. 2013. View Article : Google Scholar : PubMed/NCBI | |
|
Wang H, Liang Y, Liu Z, Zhang R, Chao J, Wang M, Liu M, Qiao L, Xuan Z, Zhao H and Lu L: POSTN+ cancer-associated fibroblasts determine the efficacy of immunotherapy in hepatocellular carcinoma. J Immunother Cancer. 12:e0087212024. View Article : Google Scholar : | |
|
Chen C, Guo Q, Liu Y, Hou Q, Liao M, Guo Y, Zang Y, Wang F, Liu H, Luan X, et al: Single-cell and spatial transcriptomics reveal POSTN+ cancer-associated fibroblasts correlated with immune suppression and tumour progression in non-small cell lung cancer. Clin Transl Med. 13:e15152023. View Article : Google Scholar | |
|
Li Z, Sun C and Qin Z: Metabolic reprogramming of cancer-associated fibroblasts and its effect on cancer cell reprogramming. Theranostics. 11:8322–8336. 2021. View Article : Google Scholar : PubMed/NCBI | |
|
Zhang S, Wang J, Chen Y, Liang W, Liu H, Du R, Sun Y, Hu C and Shang Z: CAFs-derived lactate enhances the cancer stemness through inhibiting the MST1 ubiquitination degradation in OSCC. Cell Biosci. 14:1442024. View Article : Google Scholar : PubMed/NCBI | |
|
Bertero T, Oldham WM, Grasset EM, Bourget I, Boulter E, Pisano S, Hofman P, Bellvert F, Meneguzzi G, Bulavin DV, et al: Tumor-stroma mechanics coordinate amino acid availability to sustain tumor growth and malignancy. Cell Metab. 29:124–140.e10. 2019. View Article : Google Scholar : | |
|
Kim I, Choi S, Yoo S, Lee M and Kim IS: Cancer-associated fibroblasts in the hypoxic tumor microenvironment. Cancers (Basel). 14:33212022. View Article : Google Scholar : PubMed/NCBI | |
|
Wei X, Chen Y, Jiang X, Peng M, Liu Y, Mo Y, Ren D, Hua Y, Yu B, Zhou Y, et al: Mechanisms of vasculogenic mimicry in hypoxic tumor microenvironments. Mol Cancer. 20:72021. View Article : Google Scholar : PubMed/NCBI | |
|
Cadamuro M, Brivio S, Mertens J, Vismara M, Moncsek A, Milani C, Fingas C, Cristina Malerba M, Nardo G, Dall'Olmo L, et al: Platelet-derived growth factor-D enables liver myofibroblasts to promote tumor lymphangiogenesis in cholangiocarcinoma. J Hepatol. 70:700–709. 2019. View Article : Google Scholar | |
|
Li P, Zhang H, Chen T, Zhou Y, Yang J and Zhou J: Cancer-associated fibroblasts promote proliferation, angiogenesis, metastasis and immunosuppression in gastric cancer. Matrix Biol. 132:59–71. 2024. View Article : Google Scholar : PubMed/NCBI | |
|
Dai S, Liu Y, Liu Z, Li R, Luo F, Li Y, Dai L and Peng X: Cancer-associated fibroblasts mediate resistance to anti-EGFR therapies in cancer. Pharmacol Res. 206:1073042024. View Article : Google Scholar : PubMed/NCBI | |
|
Kobayashi H, Enomoto A, Woods SL, Burt AD, Takahashi M and Worthley DL: Cancer-associated fibroblasts in gastrointestinal cancer. NaNat Rev Gastroenterol Hepatol. 16:282–295. 2019. View Article : Google Scholar | |
|
Mucciolo G, Araos Henríquez J, Jihad M, Pinto Teles S, Manansala JS, Li W, Ashworth S, Lloyd EG, Cheng PSW, Luo W, et al: EGFR-activated myofibroblasts promote metastasis of pancreatic cancer. Cancer Cell. 42:101–118.e11. 2024. View Article : Google Scholar : PubMed/NCBI | |
|
Bordignon P, Bottoni G, Xu X, Popescu AS, Truan Z, Guenova E, Kofler L, Jafari P, Ostano P, Röcken M, et al: Dualism of FGF and TGF-β signaling in heterogeneous cancer-associated fibroblast activation with ETV1 as a critical determinant. Cell Rep. 28:2358–2372.e6. 2019. View Article : Google Scholar | |
|
Likonen D, Pinchasi M, Beery E, Sarsor Z, Signorini LF, Gervits A, Sharan R, Lahav M, Raanani P and Uziel O: Exosomal telomerase transcripts reprogram the microRNA transcriptome profile of fibroblasts and partially contribute to CAF formation. Sci Rep. 12:164152022. View Article : Google Scholar : PubMed/NCBI | |
|
Tang XH, Guo T, Gao XY, Wu XL, Xing XF, Ji JF and Li ZY: Exosome-derived noncoding RNAs in gastric cancer: Functions and clinical applications. Mol Cancer. 20:992021. View Article : Google Scholar : PubMed/NCBI | |
|
Cosentino G, Romero-Cordoba S, Plantamura I, Cataldo A and Iorio MV: miR-9-mediated inhibition of EFEMP1 contributes to the acquisition of pro-tumoral properties in normal fibroblasts. Cells. 9:21432020. View Article : Google Scholar : PubMed/NCBI | |
|
Li J, Guan J, Long X, Wang Y and Xiang X: mir-1-mediated paracrine effect of cancer-associated fibroblasts on lung cancer cell proliferation and chemoresistance. Oncol Rep. 35:3523–3531. 2016. View Article : Google Scholar : PubMed/NCBI | |
|
Zhang L, Yao J, Li W and Zhang C: Micro-RNA-21 regulates cancer-associated fibroblast-mediated drug resistance in pancreatic cancer. Oncol Res. 26:827–835. 2018. View Article : Google Scholar | |
|
Xia B, Gu X, Xu T, Yan M, Huang L, Jiang C, Li M, Zhai G, Zhang G, Wu J, et al: Exosomes-mediated transfer of LINC00691 regulates the formation of CAFs and promotes the progression of gastric cancer. BMC Cancer. 23:9282023. View Article : Google Scholar | |
|
Pang W, Su J, Wang Y, Feng H, Dai X, Yuan Y, Chen X and Yao W: Pancreatic cancer-secreted miR-155 implicates in the conversion from normal fibroblasts to cancer-associated fibroblasts. Cancer Sci. 106:1362–1369. 2015. View Article : Google Scholar : PubMed/NCBI | |
|
Li F, Zhang F, Wang T, Xie Z, Luo H, Dong W, Zhang J, Ren C and Peng W: A self-amplifying loop of TP53INP1 and P53 drives oxidative stress-induced apoptosis of bone marrow mesenchymal stem cells. Apoptosis. 29:882–897. 2024. View Article : Google Scholar : PubMed/NCBI | |
|
Vennin C, Mélénec P, Rouet R, Nobis M, Cazet AS, Murphy KJ, Herrmann D, Reed DA, Lucas MC, Warren SC, et al: CAF hierarchy driven by pancreatic cancer cell p53-status creates a pro-metastatic and chemoresistant environment via perlecan. Nat Commun. 10:36372019. View Article : Google Scholar : PubMed/NCBI | |
|
Fang T, Lv H, Lv G, Li T, Wang C, Han Q, Yu L, Su B, Guo L, Huang S, et al: Tumor-derived exosomal miR-1247-3p induces cancer-associated fibroblast activation to foster lung metastasis of liver cancer. Nat Commun. 9:1912018. View Article : Google Scholar : PubMed/NCBI | |
|
Zhou Y, Ren H, Dai B, Li J, Shang L, Huang J and Shi X: Hepatocellular carcinoma-derived exosomal miRNA-21 contributes to tumor progression by converting hepatocyte stellate cells to cancer-associated fibroblasts. J Exp Clin Cancer Res. 37:3242018. View Article : Google Scholar : PubMed/NCBI | |
|
Ye B, Duan Y, Zhou M, Wang Y, Lai Q, Yue K, Cao J, Wu Y, Wang X and Jing C: Hypoxic tumor-derived exosomal miR-21 induces cancer-associated fibroblast activation to promote head and neck squamous cell carcinoma metastasis. Cell Signal. 108:1107252023. View Article : Google Scholar : PubMed/NCBI | |
|
Hu T and Hu J: Melanoma-derived exosomes induce reprogramming fibroblasts into cancer-associated fibroblasts via Gm26809 delivery. Cell Cycle. 18:3085–3094. 2019. View Article : Google Scholar : PubMed/NCBI | |
|
Dror S, Sander L, Schwartz H, Sheinboim D, Barzilai A, Dishon Y, Apcher S, Golan T, Greenberger S, Barshack I, et al: Melanoma miRNA trafficking controls tumour primary niche formation. Nat Cell Biol. 18:1006–1017. 2016. View Article : Google Scholar : PubMed/NCBI | |
|
Vu LT, Peng B, Zhang DX, Ma V, Mathey-Andrews CA, Lam CK, Kiomourtzis T, Jin J, McReynolds L, Huang L, et al: Tumor-secreted extracellular vesicles promote the activation of cancer-associated fibroblasts via the transfer of microRNA-125b. J Extracell Vesicles. 8:15996802019. View Article : Google Scholar : PubMed/NCBI | |
|
Yang SS, Ma S, Dou H, Liu F, Zhang SY, Jiang C, Xiao M and Huang YX: Breast cancer-derived exosomes regulate cell invasion and metastasis in breast cancer via miR-146a to activate cancer associated fibroblasts in tumor microenvironment. Exp Cell Res. 391:1119832020. View Article : Google Scholar : PubMed/NCBI | |
|
Baroni S, Romero-Cordoba S, Plantamura I, Dugo M, D'Ippolito E, Cataldo A, Cosentino G, Angeloni V, Rossini A, Daidone MG and Iorio MV: Exosome-mediated delivery of miR-9 induces cancer-associated fibroblast-like properties in human breast fibroblasts. Cell Death Dis. 7:e23122016. View Article : Google Scholar : PubMed/NCBI | |
|
Tong Y, Yang L, Yu C, Zhu W, Zhou X, Xiong Y, Wang W, Ji F, He D and Cao X: Tumor-secreted exosomal lncRNA POU3F3 promotes cisplatin resistance in ESCC by inducing fibroblast differentiation into CAFs. Mol Ther Oncolytics. 18:1–13. 2020. View Article : Google Scholar : PubMed/NCBI | |
|
Wang D, Wang X, Song Y, Si M, Sun Y, Liu X, Cui S, Qu X and Yu X: Exosomal miR-146a-5p and miR-155-5p promote CXCL12/CXCR7-induced metastasis of colorectal cancer by crosstalk with cancer-associated fibroblasts. Cell Death Dis. 13:3802022. View Article : Google Scholar : PubMed/NCBI | |
|
Becker LM, O'Connell JT, Vo AP, Cain MP, Tampe D, Bizarro L, Sugimoto H, McGow AK, Asara JM, Lovisa S, et al: Epigenetic reprogramming of cancer-associated fibroblasts deregulates glucose metabolism and facilitates progression of breast cancer. Cell Rep. 31:1077012020. View Article : Google Scholar : PubMed/NCBI | |
|
Pavlides S, Whitaker-Menezes D, Castello-Cros R, Flomenberg N, Witkiewicz AK, Frank PG, Casimiro MC, Wang C, Fortina P, Addya S, et al: The reverse Warburg effect: Aerobic glycolysis in cancer associated fibroblasts and the tumor stroma. Cell Cycle. 8:3984–4001. 2009. View Article : Google Scholar : PubMed/NCBI | |
|
Kitamura F, Semba T, Yasuda-Yoshihara N, Yamada K, Nishimura A, Yamasaki J, Nagano O, Yasuda T, Yonemura A, Tong Y, et al: Cancer-associated fibroblasts reuse cancer-derived lactate to maintain a fibrotic and immunosuppressive microenvironment in pancreatic cancer. JCI Insight. 8:e1630222023. View Article : Google Scholar : PubMed/NCBI | |
|
Zhang C, Zhou W, Xu H, Xu J, Li J, Liu X, Lu X, Dai J, Jiang Y, Wang W, et al: Cancer-associated fibroblasts promote EGFR-TKI resistance via the CTHRC1/glycolysis/H3K18la positive feedback loop. Oncogene. 44:1400–1414. 2025. View Article : Google Scholar : PubMed/NCBI | |
|
Yan W, Wu X, Zhou W, Fong MY, Cao M, Liu J, Liu X, Chen CH, Fadare O, Pizzo DP, et al: Cancer-cell-secreted exosomal miR-105 promotes tumour growth through the MYC-dependent metabolic reprogramming of stromal cells. Nat Cell Biol. 20:597–609. 2018. View Article : Google Scholar : PubMed/NCBI | |
|
He R, Hu C, Yuan Y, Li T, Tian Q, Huang T, Lin Q, Zheng S, Chen C, Fu Z and Chen R: Glycolysis reprogramming in CAFs promotes oxaliplatin resistance in pancreatic cancer through circABCC4 mediated PKM2 nuclear translocation. Cell Death Dis. 16:1262025. View Article : Google Scholar : PubMed/NCBI | |
|
Kazakova AN, Lukina MM, Anufrieva KS, Bekbaeva IV, Ivanova OM, Shnaider PV, Slonov A, Arapidi GP and Shender VO: Exploring the diversity of cancer-associated fibroblasts: Insights into mechanisms of drug resistance. Front Cell Dev Biol. 12:14031222024. View Article : Google Scholar : PubMed/NCBI | |
|
Long X, Xiong W, Zeng X, Qi L, Cai Y, Mo M, Jiang H, Zhu B, Chen Z and Li Y: Cancer-associated fibroblasts promote cisplatin resistance in bladder cancer cells by increasing IGF-1/ERβ/Bcl-2 signalling. Cell Death Dis. 10:3752019. View Article : Google Scholar | |
|
Zhang T, Zhang P and Li HX: CAFs-derived exosomal miRNA-130a confers cisplatin resistance of NSCLC cells through PUM2-dependent packaging. Int J Nanomedicine. 16:561–577. 2021. View Article : Google Scholar : PubMed/NCBI | |
|
Yip HYK and Papa A: Signaling pathways in cancer: Therapeutic targets, combinatorial treatments, and new developments. Cells. 10:6592021. View Article : Google Scholar : PubMed/NCBI | |
|
Zhang YE: Non-smad signaling pathways of the TGF-β family. Cold Spring Harb Perspect Biol. 9:a0221292017. View Article : Google Scholar | |
|
Moon JY, Manh Hung LV, Unno T and Cho SK: Nobiletin enhances chemosensitivity to adriamycin through modulation of the Akt/GSK3β/β-catenin/MYCN/MRP1 signaling pathway in A549 human non-small-cell lung cancer cells. Nutrients. 10:18292018. View Article : Google Scholar | |
|
Tomar VS, Patil V and Somasundaram K: Temozolomide induces activation of Wnt/β-catenin signaling in glioma cells via PI3K/Akt pathway: Implications in glioma therapy. Cell Biol Toxicol. 36:273–278. 2020. View Article : Google Scholar | |
|
Sun Z, Jiang Q, Gao B, Zhang X, Bu L, Wang L, Lin Y, Xie W, Li J and Guo J: AKT blocks SIK1-mediated repression of STAT3 to promote breast tumorigenesis. Cancer Res. 83:1264–1279. 2023. View Article : Google Scholar : PubMed/NCBI | |
|
Belarif L, Mary C, Jacquemont L, Mai HL, Danger R, Hervouet J, Minault D, Thepenier V, Nerrière-Daguin V, Nguyen E, et al: IL-7 receptor blockade blunts antigen-specific memory T cell responses and chronic inflammation in primates. Nat Commun. 9:44832018. View Article : Google Scholar : PubMed/NCBI | |
|
Wang X, Jiang W, Du Y, Zhu D, Zhang J, Fang C, Yan F and Chen ZS: Targeting feedback activation of signaling transduction pathways to overcome drug resistance in cancer. Drug Resist Updat. 65:1008842022. View Article : Google Scholar : PubMed/NCBI | |
|
Fang Z, Meng Q, Xu J, Wang W, Zhang B, Liu J, Liang C, Hua J, Zhao Y, Yu X and Shi S: Signaling pathways in cancer-associated fibroblasts: Recent advances and future perspectives. Cancer Commun (Lond). 43:3–41. 2023. View Article : Google Scholar | |
|
Butti R, Khaladkar A, Bhardwaj P and Prakasam G: Heterotypic signaling of cancer-associated fibroblasts in shaping the cancer cell drug resistance. Cancer Drug Resist. 6:182–204. 2023. View Article : Google Scholar : PubMed/NCBI | |
|
Keresztes D, Kerestély M, Szarka L, Kovács BM, Schulc K, Veres DV and Csermely P: Cancer drug resistance as learning of signaling networks. Biomed Pharmacother. 183:1178802025. View Article : Google Scholar : PubMed/NCBI | |
|
Xue W, Yang L, Chen C, Ashrafizadeh M, Tian Y and Sun R: Wnt/β-catenin-driven EMT regulation in human cancers. Cell Mol Life Sci. 81:792024. View Article : Google Scholar | |
|
Zhao H, Ming T, Tang S, Ren S, Yang H, Liu M, Tao Q and Xu H: Wnt signaling in colorectal cancer: Pathogenic role and therapeutic target. Mol Cancer. 21:1442022. View Article : Google Scholar : PubMed/NCBI | |
|
Wang Y, Zheng L, Shang W, Yang Z, Li T, Liu F, Shao W, Lv L, Chai L, Qu L, et al: Wnt/beta-catenin signaling confers ferroptosis resistance by targeting GPX4 in gastric cancer. Cell Death Differ. 29:2190–2202. 2022. View Article : Google Scholar : PubMed/NCBI | |
|
Essex A, Pineda J, Acharya G, Xin H and Evans J; Reproducibility Project: Cancer Biology: Replication study: Wnt activity defines colon cancer stem cells and is regulated by the microenvironment. ELife. 8:e454262019. View Article : Google Scholar | |
|
Ren J, Ding L, Zhang D, Shi G, Xu Q, Shen S, Wang Y, Wang T and Hou Y: Carcinoma-associated fibroblasts promote the stemness and chemoresistance of colorectal cancer by transferring exosomal lncRNA H19. Theranostics. 8:3932–3948. 2018. View Article : Google Scholar : PubMed/NCBI | |
|
Deng X, Ruan H, Zhang X, Xu X, Zhu Y, Peng H, Zhang X, Kong F and Guan M: Long noncoding RNA CCAL transferred from fibroblasts by exosomes promotes chemoresistance of colorectal cancer cells. Int J Cancer. 146:1700–1716. 2020. View Article : Google Scholar | |
|
Shan G, Zhou X, Gu J, Zhou D, Cheng W, Wu H, Wang Y, Tang T and Wang X: Downregulated exosomal microRNA-148b-3p in cancer associated fibroblasts enhance chemosensitivity of bladder cancer cells by downregulating the Wnt/β-catenin pathway and upregulating PTEN. Cell Oncol (Dordr). 44:45–59. 2021. View Article : Google Scholar : PubMed/NCBI | |
|
Cao L, Weng K, Li L, Lin G, Zhao Y, Gao Y, Huang X, Chen Q, Wang J, Zheng C, et al: BATF2 inhibits the stem cell-like properties and chemoresistance of gastric cancer cells through PTEN/AKT/β-catenin pathway. Theranostics. 14:7007–7022. 2024. View Article : Google Scholar : | |
|
Fang F, Guo C, Zheng W, Wang Q and Zhou L: Exosome-mediated transfer of miR-1323 from cancer-associated fibroblasts confers radioresistance of C33A cells by targeting PABPN1 and activating Wnt/β-catenin signaling pathway in cervical cancer. Reprod Sci. 29:1809–1821. 2022. View Article : Google Scholar : PubMed/NCBI | |
|
Zou S, Tong Q, Liu B, Huang W, Tian Y and Fu X: Targeting STAT3 in cancer immunotherapy. Mol Cancer. 19:1452020. View Article : Google Scholar : PubMed/NCBI | |
|
Hu Y, Dong Z and Liu K: Unraveling the complexity of STAT3 in cancer: Molecular understanding and drug discovery. J Exp Clin Cancer Res. 43:232024. View Article : Google Scholar : PubMed/NCBI | |
|
Pan MS, Wang H, Ansari KH, Li XP, Sun W and Fan YZ: Gallbladder cancer-associated fibroblasts promote vasculogenic mimicry formation and tumor growth in gallbladder cancer via upregulating the expression of NOX4, a poor prognosis factor, through IL-6-JAK-STAT3 signal pathway. J Exp Clin Cancer Res. 39:2342020. View Article : Google Scholar : PubMed/NCBI | |
|
Yu Z, Zhang Q, Wei S, Zhang Y, Zhou T, Zhang Q, Shi R, Zinovkin D, Pranjol ZI, Zhang J and Wang H: CD146+CAFs promote progression of endometrial cancer by inducing angiogenesis and vasculogenic mimicry via IL-10/JAK1/STAT3 pathway. Cell Commun Signal. 22:1702024. View Article : Google Scholar | |
|
Tao L, Huang G, Wang R, Pan Y, He Z, Chu X, Song H and Chen L: Cancer-associated fibroblasts treated with cisplatin facilitates chemoresistance of lung adenocarcinoma through IL-11/IL-11R/STAT3 signaling pathway. Sci Rep. 6:384082016. View Article : Google Scholar : PubMed/NCBI | |
|
Li J, Wang Y, Wang Z, Wei Y, Diao P, Wu Y, Wang D, Jiang H, Wang Y and Cheng J: Super-enhancer driven LIF/LIFR-STAT3-SOX2 regulatory feedback loop promotes cancer stemness in head and neck squamous cell carcinoma. Adv Sci (Weinh). 11:e24044762024. View Article : Google Scholar : PubMed/NCBI | |
|
Hu C, Xia R, Zhang X, Li T, Ye Y, Li G, He R, Li Z, Lin Q, Zheng S and Chen R: circFARP1 enables cancer-associated fibroblasts to promote gemcitabine resistance in pancreatic cancer via the LIF/STAT3 axis. Mol Cancer. 21:242022. View Article : Google Scholar : PubMed/NCBI | |
|
Sun L, Ke M, Yin M, Zeng Y, Ji Y, Hu Y, Fu S and Zhang C: Extracellular vesicle-encapsulated microRNA-296-3p from cancer-associated fibroblasts promotes ovarian cancer development through regulation of the PTEN/AKT and SOCS6/STAT3 pathways. Cancer Sci. 115:155–169. 2024. View Article : Google Scholar | |
|
Zhao Q, Huang L, Qin G, Qiao Y, Ren F, Shen C, Wang S, Liu S, Lian J, Wang D, et al: Cancer-associated fibroblasts induce monocytic myeloid-derived suppressor cell generation via IL-6/exosomal miR-21-activated STAT3 signaling to promote cisplatin resistance in esophageal squamous cell carcinoma. Cancer Lett. 518:35–48. 2021. View Article : Google Scholar : PubMed/NCBI | |
|
Cao LQ, Yang XW, Chen YB, Zhang DW, Jiang XF and Xue P: Exosomal miR-21 regulates the TETs/PTENp1/PTEN pathway to promote hepatocellular carcinoma growth. Mol Cancer. 18:1482019. View Article : Google Scholar : PubMed/NCBI | |
|
Gupta S, Silveira DA, Lorenzoni PR, Mombach JCM and Hashimoto RF: LncRNA PTENP1/miR-21/PTEN axis modulates EMT and drug resistance in cancer: Dynamic boolean modeling for cell fates in DNA damage response. Int J Mol Sci. 25:82642024. View Article : Google Scholar : PubMed/NCBI | |
|
He Y, Sun MM, Zhang GG, Yang J, Chen KS, Xu WW and Li B: Targeting PI3K/Akt signal transduction for cancer therapy. Signal Transduct Target Ther. 6:4252021. View Article : Google Scholar : PubMed/NCBI | |
|
Murugan AK: mTOR: Role in cancer, metastasis and drug resistance. Semin Cancer Biol. 59:92–111. 2019. View Article : Google Scholar : PubMed/NCBI | |
|
Haddadi N, Lin Y, Travis G, Simpson AM, Nassif NT and McGowan EM: PTEN/PTENP1: 'Regulating the regulator of RTK-dependent PI3K/Akt signalling', new targets for cancer therapy. Mol Cancer. 17:372018. View Article : Google Scholar : PubMed/NCBI | |
|
Shi L, Zhu W, Huang Y, Zhuo L, Wang S, Chen S, Zhang B and Ke B: Cancer-associated fibroblast-derived exosomal microRNA-20a suppresses the PTEN/PI3K-AKT pathway to promote the progression and chemoresistance of non-small cell lung cancer. Clin Transl Med. 12:e9892022. View Article : Google Scholar : PubMed/NCBI | |
|
Qu Z, Yang KD, Luo BH and Zhang F: CAFs-secreted exosomal cricN4BP2L2 promoted colorectal cancer stemness and chemoresistance by interacting with EIF4A3. Exp Cell Res. 418:1132662022. View Article : Google Scholar : PubMed/NCBI | |
|
Li L, Liu D, Chen T, Wei C, Qiao Y, Liu W, Liang Y, Liang Z, Chen C, Li D, et al: Hypoxia-enhanced YAP1-EIF4A3 interaction drives circ_0007386 circularization by competing with CRIM1 pre-mRNA linear splicing and promotes non-small cell lung cancer progression. J Exp Clin Cancer Res. 43:2002024. View Article : Google Scholar : PubMed/NCBI | |
|
Ju C, Zhou M, Du D, Wang C, Yao J, Li H, Luo Y, He F and He J: EIF4A3-mediated circ_0042881 activates the RAS pathway via miR-217/SOS1 axis to facilitate breast cancer progression. Cell Death Dis. 14:5592023. View Article : Google Scholar : PubMed/NCBI | |
|
Zhang Y, Pan Q and Shao Z: Extracellular vesicles derived from cancer-associated fibroblasts carry tumor-promotive microRNA-1228-3p to enhance the resistance of hepatocellular carcinoma cells to sorafenib. Hum Cell. 36:296–311. 2023. View Article : Google Scholar | |
|
Deng K, Zou F, Xu J, Xu D and Luo Z: Cancer-associated fibroblasts promote stemness maintenance and gemcitabine resistance via HIF-1α/miR-21 axis under hypoxic conditions in pancreatic cancer. Mol Carcinog. 63:524–537. 2024. View Article : Google Scholar : PubMed/NCBI | |
|
Xin X, Cheng X, Zeng F, Xu Q and Hou L: The role of TGF-β/SMAD signaling in hepatocellular carcinoma: From mechanism to therapy and prognosis. Int J Biol Sci. 20:1436–1451. 2024. View Article : Google Scholar : | |
|
Huang X, Jie S, Li W, Li H, Ni J and Liu C: miR-122-5p targets GREM2 to protect against glucocorticoid-induced endothelial damage through the BMP signaling pathway. Mol Cell Endocrinol. 544:1115412022. View Article : Google Scholar : PubMed/NCBI | |
|
Shan G, Gu J, Zhou D, Li L, Cheng W, Wang Y, Tang T and Wang X: Cancer-associated fibroblast-secreted exosomal miR-423-5p promotes chemotherapy resistance in prostate cancer by targeting GREM2 through the TGF-β signaling pathway. Exp Mol Med. 52:1809–1822. 2020. View Article : Google Scholar : PubMed/NCBI | |
|
Leng Z, Li Y, Zhou G, Lv X, Ai W, Li J and Hou L: Krüppel-like factor 4 regulates stemness and mesenchymal properties of colorectal cancer stem cells through the TGF-β1/Smad/snail pathway. J Cell Mol Med. 24:1866–1877. 2020. View Article : Google Scholar | |
|
Liu T, Jiang L, Bai Q, Wu S, Yu X, Wu T, Wang J, Zhang X, Li H, Zhao K and Wang L: CLDN6 suppresses migration and invasion of MCF-7 and SKBR-3 breast cancer cells by blocking the SMAD/Snail/MMP-2/9 axis. Bull Exp Biol Med. 175:376–381. 2023. View Article : Google Scholar : PubMed/NCBI | |
|
Richards KE, Zeleniak AE, Fishel ML, Wu J, Littlepage LE and Hill R: Cancer-associated fibroblast exosomes regulate survival and proliferation of pancreatic cancer cells. Oncogene. 36:1770–1778. 2017. View Article : Google Scholar : | |
|
Sun J, Du R, Li X, Liu C, Wang D, He X, Li G, Zhang K, Wang S, Hao Q, et al: CD63+ cancer-associated fibroblasts confer CDK4/6 inhibitor resistance to breast cancer cells by exosomal miR-20. Cancer Lett. 588:2167472024. View Article : Google Scholar | |
|
Fang Y, Zhou W, Rong Y, Kuang T, Xu X, Wu W, Wang D and Lou W: Exosomal miRNA-106b from cancer-associated fibroblast promotes gemcitabine resistance in pancreatic cancer. Exp Cell Res. 383:1115432019. View Article : Google Scholar : PubMed/NCBI | |
|
Pan S, Deng Y, Fu J, Zhang Y, Zhang Z and Qin X: N6-methyladenosine upregulates miR-181d-5p in exosomes derived from cancer-associated fibroblasts to inhibit 5-FU sensitivity by targeting NCALD in colorectal cancer. Int J Oncol. 60:142022. View Article : Google Scholar : | |
|
Yang C, Zhang Y, Yan M, Wang J, Wang J, Wang M, Xuan Y, Cheng H, Ma J, Chai C, et al: Exosomes derived from cancer-associated fibroblasts promote tumorigenesis, metastasis and chemoresistance of colorectal cancer by upregulating circ_0067557 to target Lin28. BMC Cancer. 24:642024. View Article : Google Scholar : PubMed/NCBI | |
|
Luo D, Liang Y, Wang Y, Ye F, Jin Y, Li Y, Han D, Wang Z, Chen B, Zhao W, et al: Long non-coding RNA MIDEAS-AS1 inhibits growth and metastasis of triple-negative breast cancer via transcriptionally activating NCALD. Breast Cancer Res. 25:1092023. View Article : Google Scholar : PubMed/NCBI | |
|
Zhang J, Ratanasirintrawoot S, Chandrasekaran S, Wu Z, Ficarro SB, Yu C, Ross CA, Cacchiarelli D, Xia Q, Seligson M, et al: LIN28 regulates stem cell metabolism and conversion to primed pluripotency. Cell Stem Cell. 19:66–80. 2016. View Article : Google Scholar : PubMed/NCBI | |
|
Gong W, Guo Y, Yuan H, Chai R, Wan Z, Zheng B, Hu X, Chen B, Gao S, Dai Q, et al: Loss of exosomal miR-200b-3p from hypoxia cancer-associated fibroblasts promotes tumorigenesis and reduces sensitivity to 5-flourouracil in colorectal cancer via upregulation of ZEB1 and E2F3. Cancer Gene Ther. 30:905–916. 2023. View Article : Google Scholar : PubMed/NCBI | |
|
Obeng E: Apoptosis (programmed cell death) and its signals-a review. Braz J Biol. 81:1133–1143. 2021. View Article : Google Scholar | |
|
Xu X, Lai Y and Hua ZC: Apoptosis and apoptotic body: Disease message and therapeutic target potentials. Biosci Rep. 39:BSR201809922019. View Article : Google Scholar : | |
|
Moyer A, Tanaka K and Cheng EH: Apoptosis in cancer biology and therapy. Annu Rev Pathol. 20:303–328. 2025. View Article : Google Scholar : PubMed/NCBI | |
|
Sahoo G, Samal D, Khandayataray P and Murthy MK: A review on caspases: Key regulators of biological activities and apoptosis. Mol Neurobiol. 60:5805–5837. 2023. View Article : Google Scholar : PubMed/NCBI | |
|
Singh P and Lim B: Targeting apoptosis in cancer. Curr Oncol Rep. 24:273–284. 2022. View Article : Google Scholar : PubMed/NCBI | |
|
Au Yeung CL, Co NN, Tsuruga T, Yeung TL, Kwan SY, Leung CS, Li Y, Lu ES, Kwan K, Wong KK, et al: Exosomal transfer of stroma-derived miR21 confers paclitaxel resistance in ovarian cancer cells through targeting APAF1. Nat Commun. 7:111502016. View Article : Google Scholar : PubMed/NCBI | |
|
Zhou Z, Arroum T, Luo X, Kang R, Lee YJ, Tang D, Hüttemann M and Song X: Diverse functions of cytochrome c in cell death and disease. Cell Death Differ. 31:387–404. 2024. View Article : Google Scholar : PubMed/NCBI | |
|
Sun LH, Tian D, Yang ZC and Li JL: Exosomal miR-21 promotes proliferation, invasion and therapy resistance of colon adenocarcinoma cells through its target PDCD4. Sci Rep. 10:82712020. View Article : Google Scholar : PubMed/NCBI | |
|
Zhao MY, Wang LM, Liu J, Huang X, Liu J and Zhang YF: MiR-21 suppresses anoikis through targeting PDCD4 and PTEN in human esophageal adenocarcinoma. Curr Med Sci. 38:245–251. 2018. View Article : Google Scholar : PubMed/NCBI | |
|
Wei X, Wang W, Wang L, Zhang Y, Zhang X, Chen M, Wang F, Yu J, Ma Y and Sun G: MicroRNA-21 induces 5-fluorouracil resistance in human pancreatic cancer cells by regulating PTEN and PDCD4. Cancer Med. 5:693–702. 2016. View Article : Google Scholar : PubMed/NCBI | |
|
King LE, Hohorst L and García-Sáez AJ: Expanding roles of BCL-2 proteins in apoptosis execution and beyond. J Cell Sci. 136:jcs2607902023. View Article : Google Scholar : PubMed/NCBI | |
|
O'Neill KL, Huang K, Zhang J, Chen Y and Luo X: Inactivation of prosurvival Bcl-2 proteins activates Bax/Bak through the outer mitochondrial membrane. Genes Dev. 30:973–988. 2016. View Article : Google Scholar : PubMed/NCBI | |
|
Kang SH, Oh SY, Lee KY, Lee HJ, Kim MS, Kwon TG, Kim JW, Lee ST, Choi SY and Hong SH: Differential effect of cancer-associated fibroblast-derived extracellular vesicles on cisplatin resistance in oral squamous cell carcinoma via miR-876-3p. Theranostics. 14:460–479. 2024. View Article : Google Scholar : PubMed/NCBI | |
|
Price D, Muterspaugh R, Clegg B, Williams A, Stephens A, Guthrie J, Heyl D and Evans HG: IGFBP-3 blocks hyaluronan-CD44 signaling, leading to increased acetylcholinesterase levels in A549 cell media and apoptosis in a p53-dependent manner. Sci Rep. 10:50832020. View Article : Google Scholar : PubMed/NCBI | |
|
Wang H, Wang H, Li K, Li S and Sun B: IGFBP-3 Is the key target of sanguinarine in promoting apoptosis in hepatocellular carcinoma. Cancer Manag Res. 12:1007–1015. 2020. View Article : Google Scholar : PubMed/NCBI | |
|
Wang H, Huang H, Wang L, Liu Y, Wang M, Zhao S, Lu G and Kang X: Cancer-associated fibroblasts secreted miR-103a-3p suppresses apoptosis and promotes cisplatin resistance in non-small cell lung cancer. Aging (Albany NY). 13:14456–14468. 2021. View Article : Google Scholar : PubMed/NCBI | |
|
Zhang HW, Shi Y, Liu JB, Wang HM, Wang PY, Wu ZJ, Li L, Gu LP, Cao PS, Wang GR, et al: Cancer-associated fibroblast-derived exosomal microRNA-24-3p enhances colon cancer cell resistance to MTX by down-regulating CDX2/HEPH axis. J Cell Mol Med. 25:3699–3713. 2021. View Article : Google Scholar : PubMed/NCBI | |
|
Qin X, Guo H, Wang X, Zhu X, Yan M, Wang X, Xu Q, Shi J, Lu E, Chen W and Zhang J: Exosomal miR-196a derived from cancer-associated fibroblasts confers cisplatin resistance in head and neck cancer through targeting CDKN1B and ING5. Genome Biol. 20:122019. View Article : Google Scholar : PubMed/NCBI | |
|
Yang H, Villani RM, Wang H, Simpson MJ, Roberts MS, Tang M and Liang X: The role of cellular reactive oxygen species in cancer chemotherapy. J Exp Clin Cancer Res. 37:2662018. View Article : Google Scholar : PubMed/NCBI | |
|
Zhou X, Tong Y, Yu C, Pu J, Zhu W, Zhou Y, Wang Y, Xiong Y and Sun X: FAP positive cancer-associated fibroblasts promote tumor progression and radioresistance in esophageal squamous cell carcinoma by transferring exosomal lncRNA AFAP1-AS1. Mol Carcinog. 63:1922–1937. 2024. View Article : Google Scholar : PubMed/NCBI | |
|
Zhang X, Zheng S, Hu C, Li G, Lin H, Xia R, Ye Y, He R, Li Z, Lin Q, et al: Cancer-associated fibroblast-induced lncRNA UPK1A-AS1 confers platinum resistance in pancreatic cancer via efficient double-strand break repair. Oncogene. 41:2372–2389. 2022. View Article : Google Scholar : PubMed/NCBI | |
|
Zhang C, Liu X, Jin S, Chen Y and Guo R: Ferroptosis in cancer therapy: A novel approach to reversing drug resistance. Mol Cancer. 21:472022. View Article : Google Scholar : PubMed/NCBI | |
|
Dixon SJ, Lemberg KM, Lamprecht MR, Skouta R, Zaitsev EM, Gleason CE, Patel DN, Bauer AJ, Cantley AM, Yang WS, et al: Ferroptosis: An iron-dependent form of nonapoptotic cell death. Cell. 149:1060–1072. 2012. View Article : Google Scholar : PubMed/NCBI | |
|
Tang L, Zhang Y, Qian Z and Shen X: The mechanism of Fe(2+)-initiated lipid peroxidation in liposomes: The dual function of ferrous ions, the roles of the pre-existing lipid peroxides and the lipid peroxyl radical. Biochem J. 352:27–36. 2000. View Article : Google Scholar : PubMed/NCBI | |
|
Dixon SJ and Stockwell BR: The role of iron and reactive oxygen species in cell death. Nat Chem Biol. 10:9–17. 2014. View Article : Google Scholar | |
|
Maiorino M, Conrad M and Ursini F: GPx4, lipid peroxidation, and cell death: Discoveries, rediscoveries, and open issues. Antioxid Redox Signal. 29:61–74. 2018. View Article : Google Scholar | |
|
Yang WS, SriRamaratnam R, Welsch ME, Shimada K, Skouta R, Viswanathan VS, Cheah JH, Clemons PA, Shamji AF, Clish CB, et al: Regulation of ferroptotic cancer cell death by GPX4. Cell. 156:317–331. 2014. View Article : Google Scholar : PubMed/NCBI | |
|
Li J, Li Y, Wang D, Liao R and Wu Z: PLAG1 interacts with GPX4 to conquer vulnerability to sorafenib induced ferroptosis through a PVT1/miR-195-5p axis-dependent manner in hepatocellular carcinoma. J Exp Clin Cancer Res. 43:1432024. View Article : Google Scholar : PubMed/NCBI | |
|
Chen X, Li J, Kang R, Klionsky DJ and Tang D: Ferroptosis: Machinery and regulation. Autophagy. 17:2054–2081. 2021. View Article : Google Scholar : | |
|
Zhao J, Yang S, Lv C and Liu Y: Cancer-associated fibroblasts suppressed ferroptosis in glioblastoma via upregulating lncRNA DLEU1. Am J Physiol Cell Physiol. 324:C1039–C1052. 2023. View Article : Google Scholar : PubMed/NCBI | |
|
Wang L, Liu Y, Du T, Yang H, Lei L, Guo M, Ding HF, Zhang J, Wang H, Chen X and Yan C: ATF3 promotes erastin-induced ferroptosis by suppressing system Xc. Cell Death Differ. 27:662–675. 2020. View Article : Google Scholar | |
|
Qu X, Liu B, Wang L, Liu L, Zhao W, Liu C, Ding J, Zhao S, Xu B, Yu H, et al: Loss of cancer-associated fibroblast-derived exosomal DACT3-AS1 promotes malignant transformation and ferroptosis-mediated oxaliplatin resistance in gastric cancer. Drug Resist Updat. 68:1009362023. View Article : Google Scholar : PubMed/NCBI | |
|
Chen X, Wang Z, Li C, Zhang Z, Lu S, Wang X, Liang Q, Zhu X, Pan C, Wang Q, et al: SIRT1 activated by AROS sensitizes glioma cells to ferroptosis via induction of NAD+ depletion-dependent activation of ATF3. Redox Biol. 69:1030302024. View Article : Google Scholar : PubMed/NCBI | |
|
Zhang T, Yao C, Zhou X, Liu S, Qi L, Zhu S, Zhao C, Hu D and Shen W: Glutathione-degrading enzymes in the complex landscape of tumors (review). Int J Oncol. 65:722024. View Article : Google Scholar : | |
|
Ma XH, Liu JH, Liu CY, Sun WY, Duan WJ, Wang G, Kurihara H, He RR, Li YF, Chen Y and Shang H: ALOX15-launched PUFA-phospholipids peroxidation increases the susceptibility of ferroptosis in ischemia-induced myocardial damage. Signal Transduct Target Ther. 7:2882022. View Article : Google Scholar : PubMed/NCBI | |
|
Ding K, Liu C, Li L, Yang M, Jiang N, Luo S and Sun L: Acyl-CoA synthase ACSL4: An essential target in ferroptosis and fatty acid metabolism. Chin Med J (Engl). 136:2521–2537. 2023. View Article : Google Scholar : PubMed/NCBI | |
|
Zhang H, Deng T, Liu R, Ning T, Yang H, Liu D, Zhang Q, Lin D, Ge S, Bai M, et al: CAF secreted miR-522 suppresses ferroptosis and promotes acquired chemo-resistance in gastric cancer. Mol Cancer. 19:432020. View Article : Google Scholar : PubMed/NCBI | |
|
Pan G, Liu Y, Shang L, Zhou F and Yang S: EMT-associated microRNAs and their roles in cancer stemness and drug resistance. Cancer Commun (Lond). 41:199–217. 2021. View Article : Google Scholar : PubMed/NCBI | |
|
Du B and Shim JS: Targeting epithelial-mesenchymal transition (EMT) to overcome drug resistance in cancer. Molecules. 21:9652016. View Article : Google Scholar : PubMed/NCBI | |
|
Erin N, Grahovac J, Brozovic A and Efferth T: Tumor microenvironment and epithelial mesenchymal transition as targets to overcome tumor multidrug resistance. Drug Resist Updat. 53:1007152020. View Article : Google Scholar : PubMed/NCBI | |
|
Hu JL, Wang W, Lan XL, Zeng ZC, Liang YS, Yan YR, Song FY, Wang FF, Zhu XH, Liao WJ, et al: CAFs secreted exosomes promote metastasis and chemotherapy resistance by enhancing cell stemness and epithelial-mesenchymal transition in colorectal cancer. Mol Cancer. 18:912019. View Article : Google Scholar : PubMed/NCBI | |
|
Li N, Babaei-Jadidi R, Lorenzi F, Spencer-Dene B, Clarke P, Domingo E, Tulchinsky E, Vries RGJ, Kerr D, Pan Y, et al: An FBXW7-ZEB2 axis links EMT and tumour microenvironment to promote colorectal cancer stem cells and chemoresistance. Oncogenesis. 8:132019. View Article : Google Scholar : PubMed/NCBI | |
|
Han G, Wu D, Yang Y, Li Z, Zhang J and Li C: CrkL meditates CCL20/CCR6-induced EMT in gastric cancer. Cytokine. 76:163–169. 2015. View Article : Google Scholar : PubMed/NCBI | |
|
Hu JH, Tang HN and Wang YH: Cancer-associated fibroblast exosome LINC00355 promotes epithelial-mesenchymal transition and chemoresistance in colorectal cancer through the miR-34b-5p/CRKL axis. Cancer Gene Ther. 31:259–272. 2024. View Article : Google Scholar | |
|
Zhang Y, Yin C, Wei C, Xia S, Qiao Z, Zhang XW, Yu B, Zhou J and Wang R: Exosomal miR-625-3p secreted by cancer-associated fibroblasts in colorectal cancer promotes EMT and chemotherapeutic resistance by blocking the CELF2/WWOX pathway. Pharmacol Res. 186:1065342022. View Article : Google Scholar : PubMed/NCBI | |
|
Khawaled S, Nigita G, Distefano R, Oster S, Suh SS, Smith Y, Khalaileh A, Peng Y, Croce CM, Geiger T, et al: Pleiotropic tumor suppressor functions of WWOX antagonize metastasis. Signal Transduct Target Ther. 5:432020. View Article : Google Scholar : PubMed/NCBI | |
|
Kadioglu O, Saeed MEM, Munder M, Spuller A, Greten HJ and Efferth T: Effect of ABC transporter expression and mutational status on survival rates of cancer patients. Biomed Pharmacother. 131:1107182020. View Article : Google Scholar : PubMed/NCBI | |
|
To KKW, Huang Z, Zhang H, Ashby CR Jr and Fu L: Utilizing non-coding RNA-mediated regulation of ATP binding cassette (ABC) transporters to overcome multidrug resistance to cancer chemotherapy. Drug Resist Updat. 73:1010582024. View Article : Google Scholar : PubMed/NCBI | |
|
Luo G, Zhang Y, Wu Z, Zhang L, Liang C and Chen X: Exosomal LINC00355 derived from cancer-associated fibroblasts promotes bladder cancer cell resistance to cisplatin by regulating miR-34b-5p/ABCB1 axis. Acta Biochim Biophys Sin (Shanghai). 53:558–566. 2021. View Article : Google Scholar : PubMed/NCBI | |
|
Zhang D, Ding L, Li Y, Ren J, Shi G, Wang Y, Zhao S, Ni Y and Hou Y: Midkine derived from cancer-associated fibroblasts promotes cisplatin-resistance via up-regulation of the expression of lncRNA ANRIL in tumour cells. Sci Rep. 7:162312017. View Article : Google Scholar : PubMed/NCBI | |
|
Kunou S, Shimada K, Takai M, Sakamoto A, Aoki T, Hikita T, Kagaya Y, Iwamoto E, Sanada M, Shimada S, et al: Exosomes secreted from cancer-associated fibroblasts elicit anti-pyrimidine drug resistance through modulation of its transporter in malignant lymphoma. Oncogene. 40:3989–4003. 2021. View Article : Google Scholar : PubMed/NCBI | |
|
Cheng SH, Chiou HC, Wang JW and Lin MH: Reciprocal regulation of cancer-associated fibroblasts and tumor microenvironment in gastrointestinal cancer: Implications for cancer dormancy. Cancers (Basel). 15:25132023. View Article : Google Scholar : PubMed/NCBI | |
|
Hulpke S and Tampé R: The MHC I loading complex: A multitasking machinery in adaptive immunity. Trends Biochem Sci. 38:412–420. 2013. View Article : Google Scholar : PubMed/NCBI | |
|
Yao H, Huang C, Zou J, Liang W, Zhao Y, Yang K, Zhong Z, Zhou S, Li J, Li Y, et al: Extracellular vesicle-packaged lncRNA from cancer-associated fibroblasts promotes immune evasion by downregulating HLA-A in pancreatic cancer. J Extracell Vesicles. 13:e124842024. View Article : Google Scholar : PubMed/NCBI | |
|
Jiang Y, Wang K, Lu X, Wang Y and Chen J: Cancer-associated fibroblasts-derived exosomes promote lung cancer progression by OIP5-AS1/miR-142-5p/ PD-L1 axis. Mol Immunol. 140:47–58. 2021. View Article : Google Scholar : PubMed/NCBI | |
|
Boussiotis VA: Molecular and biochemical aspects of the PD-1 checkpoint pathway. N Engl J Med. 375:1767–1778. 2016. View Article : Google Scholar : PubMed/NCBI | |
|
Shintani Y, Fujiwara A, Kimura T, Kawamura T, Funaki S, Minami M and Okumura M: IL-6 Secreted from cancer-associated fibroblasts mediates chemoresistance in NSCLC by increasing epithelial-mesenchymal transition signaling. J Thorac Oncol. 11:1482–1492. 2016. View Article : Google Scholar : PubMed/NCBI | |
|
Cheteh EH, Sarne V, Ceder S, Bianchi J, Augsten M, Rundqvist H, Egevad L, Östman A and Wiman KG: Interleukin-6 derived from cancer-associated fibroblasts attenuates the p53 response to doxorubicin in prostate cancer cells. Cell Death Discov. 6:422020. View Article : Google Scholar : PubMed/NCBI | |
|
Lau EY, Lo J, Cheng BY, Ma MK, Lee JM, Ng JK, Chai S, Lin CH, Tsang SY, Ma S, et al: Cancer-associated fibroblasts regulate tumor-initiating cell plasticity in hepatocellular carcinoma through c-Met/FRA1/HEY1 signaling. Cell Rep. 15:1175–1189. 2016. View Article : Google Scholar : PubMed/NCBI | |
|
Deying W, Feng G, Shumei L, Hui Z, Ming L and Hongqing W: CAF-derived HGF promotes cell proliferation and drug resistance by up-regulating the c-Met/PI3K/Akt and GRP78 signalling in ovarian cancer cells. Biosci Rep. 37:BSR201604702017. View Article : Google Scholar : PubMed/NCBI | |
|
Wang B, Liu W, Liu C, Du K, Guo Z, Zhang G, Huang Z, Lin S, Cen B, Tian Y, et al: Cancer-associated fibroblasts promote radioresistance of breast cancer cells via the HGF/c-met signaling pathway. Int J Radiat Oncol Biol Phys. 116:640–654. 2023. View Article : Google Scholar : PubMed/NCBI | |
|
Wei L, Ye H, Li G, Lu Y, Zhou Q, Zheng S, Lin Q, Liu Y, Li Z and Chen R: Cancer-associated fibroblasts promote progression and gemcitabine resistance via the SDF-1/SATB-1 pathway in pancreatic cancer. Cell Death Dis. 9:10652018. View Article : Google Scholar : PubMed/NCBI | |
|
Zhang F, Cui JY, Gao HF, Yu H, Gao FF, Chen JL and Chen L: Cancer-associated fibroblasts induce epithelial-mesenchymal transition and cisplatin resistance in ovarian cancer via CXCL12/CXCR4 axis. Future Oncol. 16:2619–2633. 2020. View Article : Google Scholar : PubMed/NCBI | |
|
Jin Y, Bian S, Wang H, Mo J, Fei H, Li L, Chen T and Jiang H: CRMP2 derived from cancer associated fibroblasts facilitates progression of ovarian cancer via HIF-1α-glycolysis signaling pathway. Cell Death Dis. 13:6752022. View Article : Google Scholar | |
|
Luo M, Luo Y, Mao N, Huang G, Teng C, Wang H, Wu J, Liao X and Yang J: Cancer-associated fibroblasts accelerate malignant progression of non-small cell lung cancer via connexin 43-formed unidirectional gap junctional intercellular communication. Cell Physiol Biochem. 51:315–336. 2018. View Article : Google Scholar : PubMed/NCBI | |
|
Chelakkot C, Chelakkot VS, Shin Y and Song K: Modulating glycolysis to improve cancer therapy. Int J Mol Sci. 24:26062023. View Article : Google Scholar : PubMed/NCBI | |
|
Ippolito L, Comito G, Parri M, Iozzo M, Duatti A, Virgilio F, Lorito N, Bacci M, Pardella E, Sandrini G, et al: Lactate rewires lipid metabolism and sustains a metabolic-epigenetic axis in prostate cancer. Cancer Res. 82:1267–1282. 2022. View Article : Google Scholar : PubMed/NCBI | |
|
Cao Y: Adipocyte and lipid metabolism in cancer drug resistance. J Clin Invest. 129:3006–3017. 2019. View Article : Google Scholar : PubMed/NCBI | |
|
Yang L, Achreja A, Yeung TL, Mangala LS, Jiang D, Han C, Baddour J, Marini JC, Ni J, Nakahara R, et al: Targeting stromal glutamine synthetase in tumors disrupts tumor microenvironment-regulated cancer cell growth. Cell Metab. 24:685–700. 2016. View Article : Google Scholar : PubMed/NCBI | |
|
Li J, Li Y, Fu L, Chen H, Du F, Wang Z, Zhang Y, Huang Y, Miao J and Xiao Y: Targeting ncRNAs to overcome metabolic reprogramming-mediated drug resistance in cancer (review). Int J Oncol. 66:352025. View Article : Google Scholar : | |
|
Yang J, Shi X, Yang M, Luo J, Gao Q, Wang X, Wu Y, Tian Y, Wu F and Zhou H: Glycolysis reprogramming in cancer-associated fibroblasts promotes the growth of oral cancer through the lncRNA H19/miR-675-5p/PFKFB3 signaling pathway. Int J Oral Sci. 13:122021. View Article : Google Scholar : PubMed/NCBI | |
|
Tao S, Gao Y, Wang X, Wu C, Zhang Y, Zhu H and Li J: CAF-derived exosomal LINC01711 promotes breast cancer progression by activating the miR-4510/NELFE axis and enhancing glycolysis. FASEB J. 39:e704712025. View Article : Google Scholar : PubMed/NCBI | |
|
Zhang C, Wang XY, Zhang P, He TC, Han JH, Zhang R, Lin J, Fan J, Lu L, Zhu WW, et al: Cancer-derived exosomal HSPC111 promotes colorectal cancer liver metastasis by reprogramming lipid metabolism in cancer-associated fibroblasts. Cell Death Dis. 13:572022. View Article : Google Scholar : PubMed/NCBI | |
|
Smith AG and Macleod KF: Autophagy, cancer stem cells and drug resistance. J Pathol. 247:708–718. 2019. View Article : Google Scholar : | |
|
Dikic I and Elazar Z: Mechanism and medical implications of mammalian autophagy. Nat Rev Mol Cell Biol. 19:349–364. 2018. View Article : Google Scholar : PubMed/NCBI | |
|
Zhu S, Mao J, Zhang X, Wang P, Zhou Y, Tong J, Peng H, Yang B and Fu Q: CAF-derived exosomal lncRNA FAL1 promotes chemoresistance to oxaliplatin by regulating autophagy in colorectal cancer. Dig Liver Dis. 56:330–342. 2024. View Article : Google Scholar | |
|
Towers CG, Wodetzki D and Thorburn A: Autophagy and cancer: Modulation of cell death pathways and cancer cell adaptations. J Cell Biol. 219:e2019090332020. | |
|
Liao JK, Zhou B, Zhuang XM, Zhuang PL, Zhang DM and Chen WL: Cancer-associated fibroblasts confer cisplatin resistance of tongue cancer via autophagy activation. Biomed Pharmacother. 97:1341–1348. 2018. View Article : Google Scholar | |
|
Gao Q, Fang X, Chen Y, Li Z and Wang M: Exosomal lncRNA UCA1 from cancer-associated fibroblasts enhances chemoresistance in vulvar squamous cell carcinoma cells. J Obstet Gynaecol Res. 47:73–87. 2021. View Article : Google Scholar | |
|
Chen X and Song E: Turning foes to friends: Targeting cancer-associated fibroblasts. Nat Rev Drug Discov. 18:99–115. 2019. View Article : Google Scholar | |
|
Chen B, Dragomir MP, Yang C, Li Q, Horst D and Calin GA: Targeting non-coding RNAs to overcome cancer therapy resistance. Signal Transduct Target Ther. 7:1212022. View Article : Google Scholar : PubMed/NCBI | |
|
Ran FA, Hsu PD, Lin CY, Gootenberg JS, Konermann S, Trevino AE, Scott DA, Inoue A, Matoba S, Zhang Y and Zhang F: Double nicking by RNA-guided CRISPR Cas9 for enhanced genome editing specificity. Cell. 154:1380–1389. 2013. View Article : Google Scholar : PubMed/NCBI | |
|
Shtam TA, Kovalev RA, Varfolomeeva EY, Makarov EM, Kil YV and Filatov MV: Exosomes are natural carriers of exogenous siRNA to human cells in vitro. Cell Commun Signal. 11:882013. View Article : Google Scholar : PubMed/NCBI | |
|
Kamali MJ, Salehi M, Fatemi S, Moradi F, Khoshghiafeh A and Ahmadifard M: Locked nucleic acid LNA): A modern approach to cancer diagnosis and treatment. Exp Cell Res. 423:1134422023. View Article : Google Scholar | |
|
Rupaimoole R and Slack FJ: MicroRNA therapeutics: Towards a new era for the management of cancer and other diseases. Nat Rev Drug Discov. 16:203–222. 2017. View Article : Google Scholar : PubMed/NCBI | |
|
Kwok A, Raulf N and Habib N: Developing small activating RNA as a therapeutic: Current challenges and promises. Ther Deliv. 10:151–164. 2019. View Article : Google Scholar : PubMed/NCBI | |
|
Zheng B, Mai Q, Jiang J and Zhou Q: The therapeutic potential of small activating RNAs for colorectal carcinoma. Curr Gene Ther. 19:140–146. 2019. View Article : Google Scholar : PubMed/NCBI | |
|
Fu J, Dong H, Wu J and Jin Y: Emerging progress of RNA-based antitumor therapeutics. Int J Biol Sci. 19:3159–3183. 2023. View Article : Google Scholar : PubMed/NCBI | |
|
Guo W, Wu Z, Chen J, Guo S, You W, Wang S, Ma J, Wang H, Wang X, Wang H, et al: Nanoparticle delivery of miR-21-3p sensitizes melanoma to anti-PD-1 immunotherapy by promoting ferroptosis. J Immunother Cancer. 10:e0043812022. View Article : Google Scholar : PubMed/NCBI | |
|
Xin X, Kumar V, Lin F, Kumar V, Bhattarai R, Bhatt VR, Tan C and Mahato RI: Redox-responsive nanoplatform for codelivery of miR-519c and gemcitabine for pancreatic cancer therapy. Sci Adv. 6:eabd67642020. View Article : Google Scholar : PubMed/NCBI | |
|
Li B, Shao H, Gao L, Li H, Sheng H and Zhu L: Nano-drug co-delivery system of natural active ingredients and chemotherapy drugs for cancer treatment: A review. Drug Deliv. 29:2130–2161. 2022. View Article : Google Scholar : PubMed/NCBI | |
|
Tassone P, Di Martino MT, Arbitrio M, Fiorillo L, Staropoli N, Ciliberto D, Cordua A, Scionti F, Bertucci B, Salvino A, et al: Safety and activity of the first-in-class locked nucleic acid (LNA) miR-221 selective inhibitor in refractory advanced cancer patients: A first-in-human, phase 1, open-label, dose-escalation study. J Hematol Oncol. 16:682023. View Article : Google Scholar : PubMed/NCBI | |
|
Beg MS, Brenner AJ, Sachdev J, Borad M, Kang YK, Stoudemire J, Smith S, Bader AG, Kim S and Hong DS: Phase I study of MRX34, a liposomal miR-34a mimic, administered twice weekly in patients with advanced solid tumors. Invest New Drugs. 35:180–188. 2017. View Article : Google Scholar | |
|
Rasmussen LJH, Schultz M, Gaardsting A, Ladelund S, Garred P, Iversen K, Eugen-Olsen J, Helms M, David KP, Kjaer A, et al: Inflammatory biomarkers and cancer: CRP and suPAR as markers of incident cancer in patients with serious nonspecific symptoms and signs of cancer. Int J Cancer. 141:191–199. 2017. View Article : Google Scholar : PubMed/NCBI | |
|
Zhu M, Gao Y, Zhu K, Yuan Y, Bai H and Meng L: Exosomal miRNA as biomarker in cancer diagnosis and prognosis: A review. Medicine (Baltimore). 103:e400822024. View Article : Google Scholar : PubMed/NCBI | |
|
Montani F and Bianchi F: Circulating cancer biomarkers: The macro-revolution of the Micro-RNA. EBioMedicine. 5:4–6. 2016. View Article : Google Scholar : PubMed/NCBI | |
|
Li C, Teixeira AF, Zhu HJ and Ten Dijke P: Cancer associated-fibroblast-derived exosomes in cancer progression. Mol Cancer. 20:1542021. View Article : Google Scholar : PubMed/NCBI | |
|
Xu W, Liu S, Ma L, Cheng L, Li Q, Qing L, Yang Y and Dong Z: Identification of miRNA signature in cancer-associated fibroblast to predict recurrent prostate cancer. Comput Biol Med. 180:1089892024. View Article : Google Scholar : PubMed/NCBI | |
|
Alzhrani R, Alsaab HO, Petrovici A, Bhise K, Vanamala K, Sau S, Krinock MJ and Iyer AK: Improving the therapeutic efficiency of noncoding RNAs in cancers using targeted drug delivery systems. Drug Discov Today. 25:718–730. 2020. View Article : Google Scholar : | |
|
Winkle M, El-Daly SM, Fabbri M and Calin GA: Noncoding RNA therapeutics-challenges and potential solutions. Nat Rev Drug Discov. 20:629–651. 2021. View Article : Google Scholar : PubMed/NCBI | |
|
Hong DS, Kang YK, Borad M, Sachdev J, Ejadi S, Lim HY, Brenner AJ, Park K, Lee JL, Kim TY, et al: Phase 1 study of MRX34, a liposomal miR-34a mimic, in patients with advanced solid tumours. Br J Cancer. 122:1630–1637. 2020. View Article : Google Scholar : PubMed/NCBI | |
|
Patil S, Gao YG, Lin X, Li Y, Dang K, Tian Y, Zhang WJ, Jiang SF, Qadir A and Qian AR: The development of functional non-viral vectors for gene delivery. Int J Mol Sci. 20:54912019. View Article : Google Scholar : PubMed/NCBI | |
|
Yahya EB and Alqadhi AM: Recent trends in cancer therapy: A review on the current state of gene delivery. Life Sci. 269:1190872021. View Article : Google Scholar : PubMed/NCBI |