Spandidos Publications Logo
  • About
    • About Spandidos
    • Aims and Scopes
    • Abstracting and Indexing
    • Editorial Policies
    • Reprints and Permissions
    • Job Opportunities
    • Terms and Conditions
    • Contact
  • Journals
    • All Journals
    • Oncology Letters
      • Oncology Letters
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Oncology
      • International Journal of Oncology
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Molecular and Clinical Oncology
      • Molecular and Clinical Oncology
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Experimental and Therapeutic Medicine
      • Experimental and Therapeutic Medicine
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Molecular Medicine
      • International Journal of Molecular Medicine
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Biomedical Reports
      • Biomedical Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Oncology Reports
      • Oncology Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Molecular Medicine Reports
      • Molecular Medicine Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • World Academy of Sciences Journal
      • World Academy of Sciences Journal
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Functional Nutrition
      • International Journal of Functional Nutrition
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Epigenetics
      • International Journal of Epigenetics
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Medicine International
      • Medicine International
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
  • Articles
  • Information
    • Information for Authors
    • Information for Reviewers
    • Information for Librarians
    • Information for Advertisers
    • Conferences
  • Language Editing
Spandidos Publications Logo
  • About
    • About Spandidos
    • Aims and Scopes
    • Abstracting and Indexing
    • Editorial Policies
    • Reprints and Permissions
    • Job Opportunities
    • Terms and Conditions
    • Contact
  • Journals
    • All Journals
    • Biomedical Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Experimental and Therapeutic Medicine
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Epigenetics
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Functional Nutrition
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Molecular Medicine
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Oncology
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Medicine International
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Molecular and Clinical Oncology
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Molecular Medicine Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Oncology Letters
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Oncology Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • World Academy of Sciences Journal
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
  • Articles
  • Information
    • For Authors
    • For Reviewers
    • For Librarians
    • For Advertisers
    • Conferences
  • Language Editing
Login Register Submit
  • This site uses cookies
  • You can change your cookie settings at any time by following the instructions in our Cookie Policy. To find out more, you may read our Privacy Policy.

    I agree
Search articles by DOI, keyword, author or affiliation
Search
Advanced Search
presentation
International Journal of Oncology
Join Editorial Board Propose a Special Issue
Print ISSN: 1019-6439 Online ISSN: 1791-2423
Journal Cover
October-2025 Volume 67 Issue 4

Full Size Image

Cover Legend PDF

Sign up for eToc alerts
Recommend to Library

Journals

International Journal of Molecular Medicine

International Journal of Molecular Medicine

International Journal of Molecular Medicine is an international journal devoted to molecular mechanisms of human disease.

International Journal of Oncology

International Journal of Oncology

International Journal of Oncology is an international journal devoted to oncology research and cancer treatment.

Molecular Medicine Reports

Molecular Medicine Reports

Covers molecular medicine topics such as pharmacology, pathology, genetics, neuroscience, infectious diseases, molecular cardiology, and molecular surgery.

Oncology Reports

Oncology Reports

Oncology Reports is an international journal devoted to fundamental and applied research in Oncology.

Experimental and Therapeutic Medicine

Experimental and Therapeutic Medicine

Experimental and Therapeutic Medicine is an international journal devoted to laboratory and clinical medicine.

Oncology Letters

Oncology Letters

Oncology Letters is an international journal devoted to Experimental and Clinical Oncology.

Biomedical Reports

Biomedical Reports

Explores a wide range of biological and medical fields, including pharmacology, genetics, microbiology, neuroscience, and molecular cardiology.

Molecular and Clinical Oncology

Molecular and Clinical Oncology

International journal addressing all aspects of oncology research, from tumorigenesis and oncogenes to chemotherapy and metastasis.

World Academy of Sciences Journal

World Academy of Sciences Journal

Multidisciplinary open-access journal spanning biochemistry, genetics, neuroscience, environmental health, and synthetic biology.

International Journal of Functional Nutrition

International Journal of Functional Nutrition

Open-access journal combining biochemistry, pharmacology, immunology, and genetics to advance health through functional nutrition.

International Journal of Epigenetics

International Journal of Epigenetics

Publishes open-access research on using epigenetics to advance understanding and treatment of human disease.

Medicine International

Medicine International

An International Open Access Journal Devoted to General Medicine.

Journal Cover
October-2025 Volume 67 Issue 4

Full Size Image

Cover Legend PDF

Sign up for eToc alerts
Recommend to Library

  • Article
  • Citations
    • Cite This Article
    • Download Citation
    • Create Citation Alert
    • Remove Citation Alert
    • Cited By
  • Similar Articles
    • Related Articles (in Spandidos Publications)
    • Similar Articles (Google Scholar)
    • Similar Articles (PubMed)
  • Download PDF
  • Download XML
  • View XML

  • Supplementary Files
    • Supplementary_Data.xlsx
Review Open Access

Unraveling tumor cell‑tumor microenvironment crosstalk through antibody array technologies (Review)

  • Authors:
    • Yanlin Wang
    • Shuhong Luo
    • Hua Dong
    • Ruo-Pan Huang
  • View Affiliations / Copyright

    Affiliations: Raybiotech Co., Ltd., Guangzhou, Guangdong 510600, P.R. China, Department of Biomedical Engineering, School of Materials Science and Engineering, South China University of Technology, Guangzhou, Guangdong 510641, P.R. China
    Copyright: © Wang et al. This is an open access article distributed under the terms of Creative Commons Attribution License.
  • Article Number: 81
    |
    Published online on: August 18, 2025
       https://doi.org/10.3892/ijo.2025.5787
  • Expand metrics +
Metrics: Total Views: 0 (Spandidos Publications: | PMC Statistics: )
Metrics: Total PDF Downloads: 0 (Spandidos Publications: | PMC Statistics: )
Cited By (CrossRef): 0 citations Loading Articles...

This article is mentioned in:



Abstract

The tumor microenvironment (TME) consists of tumor cells, stromal cells, infiltrating immune cells and non‑cellular components such as extracellular matrix, blood vessels and a wide variety of secreted proteins. Evidence shows that beyond supporting tumor growth, the TME also promotes tumor cell proliferation and invasion and contributes to treatment resistance, ultimately affecting patient prognosis. Cell‑to‑cell communication within the TME is driven by secreted proteins such as cytokines, chemokines, growth factors and interferons, which are produced not only by tumor cells but also by various stromal cells and immune cells. These proteins form a complex signaling network that promotes tumor cell proliferation and invasion and enables tumors to evade innate and adaptive immune responses. Antibody arrays are a technology that can simultaneously screen hundreds of secreted proteins in complex biological samples, aiding in the exploration of this complex signaling network. By combining high‑throughput multiplex immunoassays such as antibody arrays with cellular and molecular biology techniques, researchers have uncovered complex regulatory mechanisms of cytokine networks within the TME. The present review summarized recent findings on the communication between tumor cells and the TME, as well as key secreted proteins essential for tumor progression and the development of therapeutic resistance. In addition, it discusses how high‑throughput antibody arrays contribute to our understanding of regulatory networks of secreted proteins in the TME.
View Figures

Figure 1

Overview of the (TME) structure. The
complex TME is composed of various cellular and non-cellular
components. Tumor cells, stromal cells, and immune cells interact
through direct contact or secreted factors, collectively
influencing tumor progression. TME, tumor microenvironment; CAF,
cancer-associated fibroblast; DC, dendritic cell; ECM,
extracellular matrix; NK cell, natural killer cell; Treg,
regulatory T cell.

Figure 2

Overview of main protein array
platforms. Key features of two types of antibody arrays (left:
sandwich-based; middle: label-based) alongside a reverse-phase
protein array (right).
View References

1 

Quail DF and Joyce JA: Microenvironmental regulation of tumor progression and metastasis. Nat Med. 19:1423–1437. 2013. View Article : Google Scholar : PubMed/NCBI

2 

Goenka A, Khan F, Verma B, Sinha P, Dmello CC, Jogalekar MP, Gangadaran P and Ahn BC: Tumor microenvironment signaling and therapeutics in cancer progression. Cancer Commun (Lond). 43:525–561. 2023. View Article : Google Scholar : PubMed/NCBI

3 

Zhang X, Ma H, Gao Y, Liang Y, Du Y, Hao S and Ni T: The tumor microenvironment: Signal transduction. Biomolecules. 14:4382024. View Article : Google Scholar : PubMed/NCBI

4 

Khosravi G, Mostafavi S, Bastan S, Ebrahimi N, Gharibvand RS and Eskandari N: Immunologic tumor microenvironment modulators for turning cold tumors hot. Cancer Commun (Lond). 44:521–553. 2024. View Article : Google Scholar : PubMed/NCBI

5 

Xiao Y and Yu D: Tumor microenvironment as a therapeutic target in cancer. Pharmacol Ther. 221:1077532021. View Article : Google Scholar :

6 

Wilson JJ, Burgess R, Mao Y, Luo S, Tang H, Jones VS, Weisheng B, Huang RY, Chen X and Huang RP: Antibody arrays in biomarker discovery. Adv Clin Chem. 69:255–324. 2015. View Article : Google Scholar : PubMed/NCBI

7 

Goetz JG, Minguet S, Navarro-Lerida I, Lacoste J, Ang LH and Fiering S; Reproducibility Project: Cancer Biology: Biomechanical remodeling of the microenvironment by stromal caveolin-1 favors tumor invasion and metastasis. Cell. 146:148–163. 2011. View Article : Google Scholar : PubMed/NCBI

8 

Chen W, Ho C, Chang Y, Chen HY, Lin CA, Ling TY, Yu SL, Yuan SS, Chen YJ, Lin CY, et al: Cancer-associated fibroblasts regulate the plasticity of lung cancer stemness via paracrine signalling. Nat Commun. 5:34722014. View Article : Google Scholar : PubMed/NCBI

9 

Bellei B, Caputo S, Migliano E, Lopez G, Marcaccini V, Cota C and Picardo M: Simultaneous targeting tumor cells and cancer-associated fibroblasts with a paclitaxel-hyaluronan bioconjugate: In vitro evaluation in non-melanoma skin cancer. Biomedicines. 9:5972021. View Article : Google Scholar : PubMed/NCBI

10 

Costa A, Kieffer Y, Scholer-Dahirel A, Pelon F, Bourachot B, Cardon M, Sirven P, Magagna I, Fuhrmann L, Bernard C, et al: Fibroblast Heterogeneity and immunosuppressive environment in human breast cancer. Cancer Cell. 33:463–479. 2018. View Article : Google Scholar : PubMed/NCBI

11 

Hu H, Piotrowska Z, Hare PJ, Chen H, Mulvey HE, Mayfield A, Noeen S, Kattermann K, Greenberg M, Williams A, et al: Three subtypes of lung cancer fibroblasts define distinct therapeutic paradigms. Cancer Cell. 39:1531–1547. 2021. View Article : Google Scholar : PubMed/NCBI

12 

Affo S, Nair A, Brundu F, Ravichandra A, Bhattacharjee S, Matsuda M, Chin L, Filliol A, Wen W, Song X, et al: Promotion of cholangiocarcinoma growth by diverse cancer-associated fibroblast subpopulations. Cancer Cell. 39:866–882. 2021. View Article : Google Scholar : PubMed/NCBI

13 

LeBleu VS, Taduri G, O'Connell J, Teng Y, Cooke VG, Woda C, Sugimoto H and Kalluri R: Origin and function of myofibroblasts in kidney fibrosis. Nat Med. 19:1047–1053. 2013. View Article : Google Scholar : PubMed/NCBI

14 

Jotzu C, Alt E, Welte G, Li J, Hennessy BT, Devarajan E, Krishnappa S, Pinilla S, Droll L and Song YH: Adipose tissue derived stem cells differentiate into carcinoma-associated fibroblast-like cells under the influence of tumor derived factors. Cell Oncol (Dordr). 34:55–67. 2011. View Article : Google Scholar : PubMed/NCBI

15 

Elenbaas B and Weinberg RA: Heterotypic signaling between epithelial tumor cells and fibroblasts in carcinoma formation. Exp Cell Res. 264:169–184. 2001. View Article : Google Scholar : PubMed/NCBI

16 

Fang T, Lv H, Lv G, Li T, Wang C, Han Q, Yu L, Su B, Guo L, Huang S, et al: Tumor-derived exosomal miR-1247-3p induces cancer-associated fibroblast activation to foster lung metastasis of liver cancer. Nat Commun. 9:1912018. View Article : Google Scholar : PubMed/NCBI

17 

Comito G, Giannoni E, Segura CP, Barcellos-de-Souza P, Raspollini MR, Baroni G, Lanciotti M, Serni S and Chiarugi P: Cancer-associated fibroblasts and M2-polarized macrophages synergize during prostate carcinoma progression. Oncogene. 33:2423–2431. 2014. View Article : Google Scholar

18 

Rhim AD, Oberstein PE, Thomas DH, Mirek ET, Palermo CF, Sastra SA, Dekleva EN, Saunders T, Becerra CP, Tattersall IW, et al: Stromal elements act to restrain, rather than support, pancreatic ductal adenocarcinoma. Cancer Cell. 25:735–747. 2014. View Article : Google Scholar : PubMed/NCBI

19 

Ozdemir BC, Pentcheva-Hoang T, Carstens JL, Zheng X, Wu CC, Simpson TR, Laklai H, Sugimoto H, Kahlert C, Novitskiy SV, et al: Depletion of carcinoma-associated fibroblasts and fibrosis induces immunosuppression and accelerates pancreas cancer with reduced survival. Cancer Cell. 25:719–734. 2014. View Article : Google Scholar : PubMed/NCBI

20 

Vinogradov S, Warren G and Wei X: Macrophages associated with tumors as potential targets and therapeutic intermediates. Nanomedicine(Lond). 9:695–707. 2014. View Article : Google Scholar : PubMed/NCBI

21 

Larionova I, Cherdyntseva N, Liu T, Patysheva M, Rakina M and Kzhyshkowska J: Interaction of tumor-associated macrophages and cancer chemotherapy. Oncoimmunology. 8:15960042019. View Article : Google Scholar : PubMed/NCBI

22 

Rodriguez-Garcia A, Lynn RC, Poussin M, Eiva MA, Shaw LC, O'Connor RS, Minutolo NG, Casado-Medrano V, Lopez G, Matsuyama T and Powell DJ Jr: CAR-T cell-mediated depletion of immunosuppressive tumor-associated macrophages promotes endogenous antitumor immunity and augments adoptive immunotherapy. Nat Commun. 12:8772021. View Article : Google Scholar : PubMed/NCBI

23 

Takeya M and Komohara Y: Role of tumor-associated macrophages in human malignancies: Friend or foe? Pathol Int. 66:491–505. 2016. View Article : Google Scholar : PubMed/NCBI

24 

Biswas SK and Mantovani A: Macrophage plasticity and interaction with lymphocyte subsets: Cancer as a paradigm. Nat Immunol. 11:889–896. 2010. View Article : Google Scholar : PubMed/NCBI

25 

van Dalen FJ, van Stevendaal MHME, Fennemann FL, Verdoes M and Ilina O: Molecular repolarisation of tumour-associated macrophages. Molecules. 24:92018. View Article : Google Scholar : PubMed/NCBI

26 

Cheng H, Wang Z, Fu L and Xu T: Macrophage polarization in the development and progression of ovarian cancers: An overview. Front Oncol. 9:4212019. View Article : Google Scholar : PubMed/NCBI

27 

Li S, Yu J, Huber A, Kryczek I, Wang Z, Jiang L, Li X, Du W, Li G, Wei S, et al: Metabolism drives macrophage heterogeneity in the tumor microenvironment. Cell Rep. 39:1106092022. View Article : Google Scholar : PubMed/NCBI

28 

Wang Y, Tiruthani K, Li S, Hu M, Zhong G, Tang Y, Roy S, Zhang L, Tan J, Liao C and Liu R: mRNA delivery of a bispecific single-domain antibody to polarize tumor-associated macrophages and synergize immunotherapy against liver malignancies. Adv Mater. 33:e20076032021. View Article : Google Scholar : PubMed/NCBI

29 

Su S, Liu Q, Chen J, Chen J, Chen F, He C, Huang D, Wu W, Lin L, Huang W, et al: A positive feedback loop between mesenchymal-like cancer cells and macrophages is essential to breast cancer metastasis. Cancer Cell. 25:605–620. 2014. View Article : Google Scholar : PubMed/NCBI

30 

Vickman RE, Broman MM, Lanman NA, Franco OE, Sudyanti PAG, Ni Y, Ji Y, Helfand BT, Petkewicz J, Paterakos MC, et al: Heterogeneity of human prostate carcinoma-associated fibroblasts implicates a role for subpopulations in myeloid cell recruitment. Prostate. 80:173–185. 2020. View Article : Google Scholar

31 

Augsten M, Hagglof C, Olsson E, Stolz C, Tsagozis P, Levchenko T, Frederick MJ, Borg A, Micke P, Egevad L and Ostman A: CXCL14 is an autocrine growth factor for fibroblasts and acts as a multi-modal stimulator of prostate tumor growth. Proc Natl Acad Sci USA. 106:3414–3419. 2009. View Article : Google Scholar : PubMed/NCBI

32 

Seckinger A, Delgado JA, Moser S, Moreno L, Neuber B, Grab A, Lipp S, Merino J, Prosper F, Emde M, et al: Target expression, generation, preclinical activity, and pharmacokinetics of the BCMA-T cell bispecific antibody EM801 for multiple myeloma treatment. Cancer Cell. 31:396–410. 2017. View Article : Google Scholar : PubMed/NCBI

33 

Zhang X, Xu J, Zhu H, Wang Y, Wang L, Fan L, Wu YJ, Li JY and Xu W: Negative prognostic impact of low absolute CD4(+) T cell counts in peripheral blood in mantle cell lymphoma. Cancer Sci. 107:1471–1476. 2016. View Article : Google Scholar : PubMed/NCBI

34 

Arpaia N, Campbell C, Fan X, Dikiy S, van der Veeken J, deRoos P, Liu H, Cross JR, Pfeffer K, Coffer PJ and Rudensky AY: Metabolites produced by commensal bacteria promote peripheral regulatory T-cell generation. Nature. 504:451–455. 2013. View Article : Google Scholar : PubMed/NCBI

35 

Chen X, Du Y, Hu Q and Huang Z: Tumor-derived CD4+CD25+regulatory T cells inhibit dendritic cells function by CTLA-4. Pathol Res Pract. 213:245–249. 2017. View Article : Google Scholar : PubMed/NCBI

36 

Burkholder B, Huang R, Burgess R, Luo S, Jones VS, Zhang W, Lv ZQ, Gao CY, Wang BL, Zhang YM and Huang RP: Tumor-induced perturbations of cytokines and immune cell networks. Biochim Biophys Acta. 1845:182–201. 2014.PubMed/NCBI

37 

Talmadge JE and Gabrilovich DI: History of myeloid-derived suppressor cells. Nat Rev Cancer. 13:739–752. 2013. View Article : Google Scholar : PubMed/NCBI

38 

Hegde S, Leader AM and Merad M: MDSC: Markers, development, states, and unaddressed complexity. Immunity. 54:875–884. 2021. View Article : Google Scholar : PubMed/NCBI

39 

Wang L, Si W, Yu X, Piffko A, Dou X, Ding X, Bugno J, Yang K, Wen C, Zhang L, et al: Epitranscriptional regulation of TGF-beta pseudoreceptor BAMBI by m6A/YTHDF2 drives extrinsic radioresistance. J Clin Invest. 133:e1729192023. View Article : Google Scholar

40 

Zhou J, Xu H, Li X, Liu H, Sun Z, Li J, Tang Y, Gao H, Zhao K, Ding C and Gao X: Targeting tumorous Circ-E-Cadherinencoded C-E-Cad inhibits the recruitment and function of breast cancer-associated myeloid-derived suppressor cells. Pharmacol Res. 204:1072042024. View Article : Google Scholar : PubMed/NCBI

41 

Gregory AD and Houghton AM: Tumor-associated neutrophils: New targets for cancer therapy. Cancer Res. 71:2411–2416. 2011. View Article : Google Scholar : PubMed/NCBI

42 

Coffelt SB, Wellenstein MD and de Visser KE: Neutrophils in cancer: Neutral no more. Nat Rev Cancer. 16:431–446. 2016. View Article : Google Scholar : PubMed/NCBI

43 

Shaul ME and Fridlender ZG: Tumour-associated neutrophils in patients with cancer. Nat Rev Clin Oncol. 16:601–620. 2019. View Article : Google Scholar : PubMed/NCBI

44 

Melstrom LG, Salazar MD and Diamond DJ: The pancreatic cancer microenvironment: A true double agent. J Surg Oncol. 116:7–15. 2017. View Article : Google Scholar : PubMed/NCBI

45 

Kalafati L, Kourtzelis I, Schulte-Schrepping J, Li X, Hatzioannou A, Grinenko T, Hagag E, Sinha A, Has C, Dietz S, et al: Innate immune training of granulopoiesis promotes anti-tumor activity. Cell. 183:771–785. 2020. View Article : Google Scholar : PubMed/NCBI

46 

Cui C, Chakraborty K, Tang XA, Zhou G, Schoenfelt KQ, Becker KM, Hoffman A, Chang YF, Blank A, Reardon CA, et al: Neutrophil elastase selectively kills cancer cells and attenuates tumorigenesis. Cell. 184:3163–3177. 2021. View Article : Google Scholar : PubMed/NCBI

47 

Xiao Y, Cong M, Li J, He D, Wu Q, Tian P, Wang Y, Yang S, Liang C, Liang Y, et al: Cathepsin C promotes breast cancer lung metastasis by modulating neutrophil infiltration and neutrophil extracellular trap formation. Cancer Cell. 39:423–437. 2021. View Article : Google Scholar : PubMed/NCBI

48 

Jaillon S, Ponzetta A, Di Mitri D, Santoni A, Bonecchi R and Mantovani A: Neutrophil diversity and plasticity in tumour progression and therapy. Nat Rev Cancer. 20:485–503. 2020. View Article : Google Scholar : PubMed/NCBI

49 

Xu X, Ye L, Zhang Q, Shen H, Li S, Zhang X, Ye M and Liang T: Group-2 innate lymphoid cells promote HCC progression through CXCL2-neutrophil-induced immunosuppression. Hepatology. 74:2526–2543. 2021. View Article : Google Scholar : PubMed/NCBI

50 

Kuang Z, Wilson JJ, Luo S, Zhu S and Huang R: Deciphering asthma biomarkers with protein profiling technology. Int J Inflamm. 2015:6306372015.

51 

Dicarlo M, Bianchi N, Ferretti C, Orciani M, Di Primio R and Mattioli-Belmonte M: Evidence supporting a paracrine effect of IGF-1/VEGF on human mesenchymal stromal cell commitment. Cells Tissues Organs. 201:333–341. 2016. View Article : Google Scholar : PubMed/NCBI

52 

Goel HL and Mercurio AM: VEGF targets the tumour cell. Nat Rev Cancer. 13:871–882. 2013. View Article : Google Scholar : PubMed/NCBI

53 

Iams WT and Lovly CM: Molecular pathways: Clinical applications and future direction of insulin-like growth factor-1 receptor pathway blockade. Clin Cancer Res. 21:4270–4277. 2015. View Article : Google Scholar : PubMed/NCBI

54 

Sanchez-Lopez E, Flashner-Abramson E, Shalapour S, Zhong Z, Taniguchi K, Levitzki A and Karin M: Targeting colorectal cancer via its microenvironment by inhibiting IGF-1 receptor-insulin receptor substrate and STAT3 signaling. Oncogene. 35:2634–2644. 2016. View Article : Google Scholar :

55 

Ikushima H and Miyazono K: TGFbeta signalling: A complex web in cancer progression. Nat Rev Cancer. 10:415–424. 2010. View Article : Google Scholar : PubMed/NCBI

56 

Etscheid M, Beer N, Kress JA, Seitz R and Dodt J: Inhibition of bFGF/EGF-dependent endothelial cell proliferation by the hyaluronan-binding protease from human plasma. Eur J Cell Biol. 82:597–604. 2004. View Article : Google Scholar : PubMed/NCBI

57 

Mueller MM and Fusenig NE: Friends or foes-bipolar effects of the tumour stroma in cancer. Nat Rev Cancer. 4:839–849. 2004. View Article : Google Scholar : PubMed/NCBI

58 

Sahai E, Astsaturov I, Cukierman E, DeNardo DG, Egeblad M, Evans RM, Fearon D, Greten FR, Hingorani SR, Hunter T, et al: A framework for advancing our understanding of cancer-associated fibroblasts. Nat Rev Cancer. 20:174–186. 2020. View Article : Google Scholar : PubMed/NCBI

59 

Shi Z, Yang W, Chen L, Yang DH, Zhou Q, Zhu J, Chen JJ, Huang RC, Chen ZS and Huang RP: Enhanced chemosensitization in multidrug-resistant human breast cancer cells by inhibition of IL-6 and IL-8 production. Breast Cancer Res Treat. 135:737–747. 2012. View Article : Google Scholar : PubMed/NCBI

60 

Mannino MH, Zhu Z, Xiao H, Bai Q, Wakefield MR and Fang Y: The paradoxical role of IL-10 in immunity and cancer. Cancer Lett. 367:103–107. 2015. View Article : Google Scholar : PubMed/NCBI

61 

Kasprzak A: The role of tumor microenvironment cells in colorectal cancer (CRC) cachexia. Int J Mol Sci. 22:15652021. View Article : Google Scholar : PubMed/NCBI

62 

Lan T, Chen L and Wei X: Inflammatory cytokines in cancer: Comprehensive understanding and clinical progress in gene therapy. Cells. 10:1002021. View Article : Google Scholar : PubMed/NCBI

63 

Villanueva J, Philip J, Entenberg D, Chaparro CA, Tanwar MK, Holland EC and Tempst P: Serum peptide profiling by magnetic particle-assisted, automated sample processing and MALDI-TOF mass spectrometry. Anal Chem. 76:1560–1570. 2004. View Article : Google Scholar : PubMed/NCBI

64 

Govorukhina NI, Keizer-Gunnink A, van der Zee AGJ, de Jong S, de Bruijn HWA and Bischoff R: Sample preparation of human serum for the analysis of tumor markers. Comparison of different approaches for albumin and gamma-globulin depletion. J Chromatogr A. 1009:171–178. 2003. View Article : Google Scholar : PubMed/NCBI

65 

Tirumalai RS, Chan KC, Prieto DA, Issaq HJ, Conrads TP and Veenstra TD: Characterization of the low molecular weight human serum proteome. Mol Cell Proteomics. 2:1096–1103. 2003. View Article : Google Scholar : PubMed/NCBI

66 

Beutgen VM, Shinkevich V, Porschke J, Meena C, Steitz AM, von Strandmann P, Graumann J and Gómez-Serrano M: Secretome analysis using affinity proteomics and immunoassays: A focus on tumor biology. Mol Cell Proteomics. 23:1008302024. View Article : Google Scholar : PubMed/NCBI

67 

Ding Z, Wang N, Ji N and Chen Z: Proteomics technologies for cancer liquid biopsies. Mol Cancer. 21:532022. View Article : Google Scholar : PubMed/NCBI

68 

Sutandy FXR, Qian J, Chen C and Zhu H: Overview of protein microarrays. Curr Protoc Protein Sci Chapter. 27:21–27. 2013.

69 

Sanchez-Carbayo M: Antibody arrays: Technical considerations and clinical applications in cancer. Clin Chem. 52:1651–1659. 2006. View Article : Google Scholar : PubMed/NCBI

70 

Huang R, Jiang W, Yang J, Mao YQ, Zhang Y, Yang W, Yang D, Burkholder B, Huang RF and Huang RP: A biotin label-based antibody array for high-content profiling of protein expression. Cancer Genom Proteom. 7:129–141. 2010.

71 

Wei W, Zhou H, Chen P, Huang XL, Huang L, Liang LJ, Guo CH, Zhou CF, Yu L, Fan LS and Wang W: Cancer-associated fibroblast-derived PAI-1 promotes lymphatic metastasis via the induction of EndoMT in lymphatic endothelial cells. J Exp Clin Canc Res. 42:1602023. View Article : Google Scholar

72 

Wei WF, Chen XJ, Liang LJ, Yu L, Wu XG, Zhou CF, Wang ZC, Fan LS, Hu Z, Liang L and Wang W: Periostin+ cancer-associated fibroblasts promote lymph node metastasis by impairing the lymphatic endothelial barriers in cervical squamous cell carcinoma. Mol Oncol. 15:210–227. 2021. View Article : Google Scholar

73 

Sun C, Li X, Guo E, Li N, Zhou B, Lu H, Huang J, Xia M, Shan W, Wang B, et al: MCP-1/CCR-2 axis in adipocytes and cancer cell respectively facilitates ovarian cancer peritoneal metastasis. Oncogene. 39:1681–1695. 2020. View Article : Google Scholar

74 

Ryan D, Koziol J and ElShamy WM: Targeting AXL and RAGE to prevent geminin overexpression-induced triple-negative breast cancer metastasis. Sci Rep. 9:191502019. View Article : Google Scholar : PubMed/NCBI

75 

Han K, Kim A and Kim D: Enhanced anti-cancer effects of conditioned medium from hypoxic human adult dermal fibroblasts on cervical cancer cells. Int J Mol Sci. 23:51342022. View Article : Google Scholar : PubMed/NCBI

76 

Huang S, He L, Zhao Y, Wei Y, Wang Q, Gao Y and Jiang X: TREM1+ tumor-associated macrophages secrete CCL7 to promote hepatocellular carcinoma metastasis. J Cancer Res Clin. 150:3202024. View Article : Google Scholar

77 

Zheng Y, Wang N, Wang S, Zhang J, Yang B and Wang Z: Chronic psychological stress promotes breast cancer pre-metastatic niche formation by mobilizing splenic MDSCs via TAM/CXCL1 signaling. J Exp Clin Canc Res. 42:1292023. View Article : Google Scholar

78 

Tatsuno R, Ichikawa J, Komohara Y, Pan C, Kawasaki T, Enomoto A, Aoki K, Hayakawa K, Iwata S, Jubashi T and Haro H: Pivotal role of IL-8 derived from the interaction between osteosarcoma and tumor-associated macrophages in osteosarcoma growth and metastasis via the FAK pathway. Cell Death Dis. 15:1082024. View Article : Google Scholar : PubMed/NCBI

79 

Kim SY, Park S, Kim S and Ko J: CD133-containing microvesicles promote cancer progression by inducing M2-like tumor-associated macrophage polarization in the tumor microenvironment of colorectal cancer. Carcinogenesis. 45:300–310. 2024. View Article : Google Scholar

80 

Licarete E, Rauca VF, Luput L, Patras L, Sesarman A and Banciu M: The prednisolone phosphate-induced suppression of the angiogenic function of tumor-associated macrophages enhances the antitumor effects of doxorubicin on B16.F10 murine melanoma cells in vitro. Oncol Rep. 42:2694–2705. 2019.PubMed/NCBI

81 

Wang Y, Chen J, Yang L, Li J, Wu W, Huang M, Lin L and Su S: Tumor-contacted neutrophils promote metastasis by a CD90-TIMP-1 juxtacrine-paracrine loop. Clin Cancer Res. 25:1957–1969. 2019. View Article : Google Scholar

82 

Lee T, Chen T, Kuo Y, Lan H, Yang M and Chu P: Tumor-associated tissue eosinophilia promotes angiogenesis and metastasis in head and neck squamous cell carcinoma. Neoplasia. 35:1008552023. View Article : Google Scholar

83 

Benzing C, Lam H, Tsang CM, Rimmer A, Arroyo-Berdugo Y, Calle Y and Wells CM: TIMP-2 secreted by monocyte-like cells is a potent suppressor of invadopodia formation in pancreatic cancer cells. BMC Cancer. 19:12142019. View Article : Google Scholar : PubMed/NCBI

84 

Li Y, Jiang M, Aye L, Luo L, Zhang Y, Xu F, Wei Y, Peng D, He X, Gu J, et al: UPP1 promotes lung adenocarcinoma progression through the induction of an immunosuppressive microenvironment. Nat Commun. 15:12002024. View Article : Google Scholar : PubMed/NCBI

85 

Zhu H, Liu Y, Liu D, Ma YD, Hu ZY, Wang XY, Gu CS, Zhong Y, Long T, Kan HP and Li ZG: Role of TGFβ3-Smads-Sp1 axis in DcR3-mediated immune escape of hepatocellular carcinoma. Oncogenesis. 8:432019. View Article : Google Scholar

86 

Xie G, Cheng T, Lin J, Zhang L, Zheng J, Liu Y, Xie G, Wang B and Yuan Y: Local angiotensin II contributes to tumor resistance to checkpoint immunotherapy. J Immunother Cancer. 6:882018. View Article : Google Scholar : PubMed/NCBI

87 

Jiang K, Zhang Q, Fan Y, Li J, Zhang J, Wang W, Fan J, Guo Y, Liu S, Hao D, et al: MYC inhibition reprograms tumor immune microenvironment by recruiting T lymphocytes and activating the CD40/CD40L system in osteosarcoma. Cell Death Discov. 8:1172022. View Article : Google Scholar : PubMed/NCBI

88 

Wang X, Wang F, Zhang Z, Yang X, Zhang R and Song J: STK3 suppresses ovarian cancer progression by activating NF-κB signaling to recruit CD8+ T-Cells. J Immunol Res. 2020:1–17. 2020. View Article : Google Scholar

89 

Zhang L, Cascio S, Mellors JW, Buckanovich RJ and Osmanbeyoglu HU: Single-cell analysis reveals the stromal dynamics and tumor-specific characteristics in the microenvironment of ovarian cancer. Commun Biol. 7:2023.06.07.544095. 2024.

90 

Sheng N, Shindo K, Ohuchida K, Shinkawa T, Zhang B, Feng H, Yamamoto T, Moriyama T, Ikenaga N, Nakata K, et al: TAK1 promotes an immunosuppressive tumor microenvironment through cancer-associated fibroblast phenotypic conversion in pancreatic ductal adenocarcinoma. Clin Cancer Res. 30:5138–5153. 2024. View Article : Google Scholar : PubMed/NCBI

91 

Nakamura K, Kiniwa Y and Okuyama R: CCL5 production by fibroblasts through a local renin-angiotensin system in malignant melanoma affects tumor immune responses. J Cancer Res Clin. 147:1993–2001. 2021. View Article : Google Scholar

92 

SenGupta S, Hein LE, Xu Y, Zhang J, Konwerski JR, Li Y, Johnson C, Cai D, Smith JL and Parent CA: Triple-negative breast cancer cells recruit neutrophils by secreting TGF-β and CXCR2 ligands. Front Immunol. 12:6599962021. View Article : Google Scholar

93 

Ogawa R, Yamamoto T, Hirai H, Hanada K, Kiyasu Y, Nishikawa G, Mizuno R, Inamoto S, Itatani Y, Sakai Y and Kawada K: Loss of SMAD4 promotes colorectal cancer progression by recruiting tumor-associated neutrophils via the CXCL1/8-CXCR2 axis. Clin Cancer Res. 25:2887–2899. 2019. View Article : Google Scholar : PubMed/NCBI

94 

Germann M, Zangger N, Sauvain M, Sempoux C, Bowler AD, Wirapati P, Kandalaft LE, Delorenzi M, Tejpar S, Coukos G and Radtke F: Neutrophils suppress tumor-infiltrating T cells in colon cancer via matrix metalloproteinase-mediated activation of TGFβ. Embo Mol Med. 12:e106812020. View Article : Google Scholar

95 

Chan Y, Tan H, Lu Y, Zhang C, Cheng CS, Wu J, Wang N and Feng Y: Pancreatic melatonin enhances anti-tumor immunity in pancreatic adenocarcinoma through regulating tumor-associated neutrophils infiltration and NETosis. Acta Pharm Sin B. 13:1554–1567. 2023. View Article : Google Scholar : PubMed/NCBI

96 

Su S, Chen J, Yao H, Liu J, Yu S, Lao L, Wang M, Luo M, Xing Y, Chen F, et al: CD10+GPR77+ cancer-associated fibroblasts promote cancer formation and chemoresistance by sustaining cancer stemness. Cell. 172:841–856. 2018. View Article : Google Scholar

97 

Zeng W, Xiong L, Wu W, Li S, Liu J, Yang L, Lao L, Huang P, Zhang M, Chen H, et al: CCL18 signaling from tumor-associated macrophages activates fibroblasts to adopt a chemoresistance-inducing phenotype. Oncogene. 42:224–237. 2023. View Article : Google Scholar :

98 

Papaccio F, Kovacs D, Bellei B, Caputo S, Migliano E, Cota C and Picardo M: Profiling cancer-associated fibroblasts in melanoma. Int J Mol Sci. 22:72552021. View Article : Google Scholar : PubMed/NCBI

99 

Zhou B, Sun C, Li N, Shan W, Lu H, Guo L, Guo E, Xia M, Weng D, Meng L, et al: Cisplatin-induced CCL5 secretion from CAFs promotes cisplatin-resistance in ovarian cancer via regulation of the STAT3 and PI3K/Akt signaling pathways. Int J Oncol. 48:2087–2097. 2016. View Article : Google Scholar : PubMed/NCBI

100 

Che Y, Wang J, Li Y, Lu Z, Huang J, Sun S, Mao S, Lei Y, Zang R, Sun N and He J: Cisplatin-activated PAI-1 secretion in the cancer-associated fibroblasts with paracrine effects promoting esophageal squamous cell carcinoma progression and causing chemoresistance. Cell Death Dis. 9:7592018. View Article : Google Scholar : PubMed/NCBI

101 

Chrisochoidou Y, Roy R, Farahmand P, Gonzalez G, Doig J, Krasny L, Rimmer EF, Willis AE, MacFarlane M and Huang PH: Crosstalk with lung fibroblasts shapes the growth and therapeutic response of mesothelioma cells. Cell Death Dis. 14:7252023. View Article : Google Scholar : PubMed/NCBI

102 

Wang C, Wang Y, Hong T, Ye J, Chu C, Zuo L, Zhang J and Cui X: Targeting a positive regulatory loop in the tumor-macrophage interaction impairs the progression of clear cell renal cell carcinoma. Cell Death Differ. 28:932–951. 2021. View Article : Google Scholar :

103 

Liu H, Liang Z, Zhou C, Zeng Z, Wang F, Hu T, He X, Wu X, Wu X and Lan P: Mutant KRAS triggers functional reprogramming of tumor-associated macrophages in colorectal cancer. Signal Transduct Target Ther. 6:1442021. View Article : Google Scholar : PubMed/NCBI

104 

Re OL, Mazza T, Giallongo S, Sanna P, Rappa F, Luong TV, Volti GL, Drovakova A, Roskams T, Van Haele M, et al: Loss of histone macroH2A1 in hepatocellular carcinoma cells promotes paracrine-mediated chemoresistance and CD4+ CD25+ FoxP3+ regulatory T cells activation. Theranostics. 10:910–924. 2020. View Article : Google Scholar :

105 

Guo Z, Zhang H, Fu Y, Kuang J, Zhao B, Zhang L, Lin J, Lin S, Wu D and Xie G: Cancer-associated fibroblasts induce growth and radioresistance of breast cancer cells through paracrine IL-6. Cell Death Discov. 9:62023. View Article : Google Scholar : PubMed/NCBI

106 

Chu T, Yang J, Huang T and Liu H: Crosstalk with cancer-associated fibroblasts increases the growth and radiation survival of cervical cancer cells. Radiat Res. 181:540–547. 2014. View Article : Google Scholar : PubMed/NCBI

107 

Cao Y, Yin Y, Wang X, Wu Z, Liu Y, Zhang F, Lin J, Huang Z and Zhou L: Sublethal irradiation promotes the metastatic potential of hepatocellular carcinoma cells. Cancer Sci. 112:265–274. 2021. View Article : Google Scholar :

108 

Arshad A, Deutsch E and Vozenin M: Simultaneous irradiation of fibroblasts and carcinoma cells repress the secretion of soluble factors able to stimulate carcinoma cell migration. PLoS One. 10:e1154472015. View Article : Google Scholar

Related Articles

  • Abstract
  • View
  • Download
  • Twitter
Copy and paste a formatted citation
Spandidos Publications style
Wang Y, Luo S, Dong H and Huang R: Unraveling tumor cell‑tumor microenvironment crosstalk through antibody array technologies (Review). Int J Oncol 67: 81, 2025.
APA
Wang, Y., Luo, S., Dong, H., & Huang, R. (2025). Unraveling tumor cell‑tumor microenvironment crosstalk through antibody array technologies (Review). International Journal of Oncology, 67, 81. https://doi.org/10.3892/ijo.2025.5787
MLA
Wang, Y., Luo, S., Dong, H., Huang, R."Unraveling tumor cell‑tumor microenvironment crosstalk through antibody array technologies (Review)". International Journal of Oncology 67.4 (2025): 81.
Chicago
Wang, Y., Luo, S., Dong, H., Huang, R."Unraveling tumor cell‑tumor microenvironment crosstalk through antibody array technologies (Review)". International Journal of Oncology 67, no. 4 (2025): 81. https://doi.org/10.3892/ijo.2025.5787
Copy and paste a formatted citation
x
Spandidos Publications style
Wang Y, Luo S, Dong H and Huang R: Unraveling tumor cell‑tumor microenvironment crosstalk through antibody array technologies (Review). Int J Oncol 67: 81, 2025.
APA
Wang, Y., Luo, S., Dong, H., & Huang, R. (2025). Unraveling tumor cell‑tumor microenvironment crosstalk through antibody array technologies (Review). International Journal of Oncology, 67, 81. https://doi.org/10.3892/ijo.2025.5787
MLA
Wang, Y., Luo, S., Dong, H., Huang, R."Unraveling tumor cell‑tumor microenvironment crosstalk through antibody array technologies (Review)". International Journal of Oncology 67.4 (2025): 81.
Chicago
Wang, Y., Luo, S., Dong, H., Huang, R."Unraveling tumor cell‑tumor microenvironment crosstalk through antibody array technologies (Review)". International Journal of Oncology 67, no. 4 (2025): 81. https://doi.org/10.3892/ijo.2025.5787
Follow us
  • Twitter
  • LinkedIn
  • Facebook
About
  • Spandidos Publications
  • Careers
  • Cookie Policy
  • Privacy Policy
How can we help?
  • Help
  • Live Chat
  • Contact
  • Email to our Support Team