|
1
|
Huang H, Yao Y, Deng X, Huang Z, Chen Y,
Wang Z, Hong H, Huang H and Lin T: Immunotherapy for nasopharyngeal
carcinoma: Current status and prospects (Review). Int J Oncol.
63:972023. View Article : Google Scholar : PubMed/NCBI
|
|
2
|
Guan S, Wei J, Huang L and Wu L:
Chemotherapy and chemo-resistance in nasopharyngeal carcinoma. Eur
J Med Chem. 207:1127582020. View Article : Google Scholar : PubMed/NCBI
|
|
3
|
Chang ET, Ye W, Zeng YX and Adami HO: The
evolving epidemiology of nasopharyngeal carcinoma. Cancer Epidemiol
Biomarkers Prev. 30:1035–1047. 2021. View Article : Google Scholar : PubMed/NCBI
|
|
4
|
Li W, Duan X, Chen X, Zhan M, Peng H, Meng
Y, Li X, Li XY, Pang G and Dou X: Immunotherapeutic approaches in
EBV-associated nasopharyngeal carcinoma. Front Immunol.
13:10795152022. View Article : Google Scholar
|
|
5
|
Cantù G: Nasopharyngeal carcinoma. A
'different' head and neck tumour. Part B: Treatment, prognostic
factors, and outcomes. Acta Otorhinolaryngol Ital. 43:155–169.
2023. View Article : Google Scholar
|
|
6
|
Juarez-Vignon Whaley JJ, Afkhami M,
Onyshchenko M, Massarelli E, Sampath S, Amini A, Bell D and
Villaflor VM: Recurrent/metastatic nasopharyngeal carcinoma
treatment from present to future: Where are we and where are we
heading? Curr Treat Options Oncol. 24:1138–1166. 2023. View Article : Google Scholar : PubMed/NCBI
|
|
7
|
Li W, Xu R, Zhu B, Wang H, Zhang H, Hu L,
Li H, Sun X, Yu H and Wang D: Circular RNAs: Functions and
mechanisms in nasopharyngeal carcinoma. Head Neck. 44:494–504.
2022. View Article : Google Scholar
|
|
8
|
Chen RX, Liu HL, Yang LL, Kang FH, Xin LP,
Huang LR, Guo QF and Wang YL: Circular RNA circRNA_0000285 promotes
cervical cancer development by regulating FUS. Eur Rev Med
Pharmacol Sci. 23:8771–8778. 2019.PubMed/NCBI
|
|
9
|
Mo Y, Wang Y, Wang Y, Deng X, Yan Q, Fan
C, Zhang S, Zhang S, Gong Z, Shi L, et al: Circular RNA circPVT1
promotes nasopharyngeal carcinoma metastasis via the
β-TrCP/c-Myc/SRSF1 positive feedback loop. Mol Cancer. 21:1922022.
View Article : Google Scholar
|
|
10
|
Li Q, Zhao YH, Xu C, Liang YL, Zhao Y, He
QM, Li JY, Chen KL, Qiao H, Liu N, et al: Chemotherapy-induced
senescence reprogramming promotes nasopharyngeal carcinoma
metastasis by circRNA-Mediated PKR activation. Adv Sci (Weinh).
10:e22056682023. View Article : Google Scholar : PubMed/NCBI
|
|
11
|
Zhang D, Huang H, Sun Y, Cheng F, Zhao S,
Liu J and Sun P: CircHIPK2 promotes proliferation of nasopharyngeal
carcinoma by down-regulating HIPK2. Transl Cancer Res.
11:2348–2358. 2022. View Article : Google Scholar : PubMed/NCBI
|
|
12
|
Liu H, Fang D, Zhang C, Zhao Z, Liu Y,
Zhao S, Zhang N and Xu J: Circular MTHFD2L RNA-encoded CM-248aa
inhibits gastric cancer progression by targeting the SET-PP2A
interaction. Mol Ther. 31:1739–1755. 2023. View Article : Google Scholar : PubMed/NCBI
|
|
13
|
Geng X, Wang J, Zhang C, Zhou X, Jing J
and Pan W: Circular RNA circCOL6A3_030 is involved in the
metastasis of gastric cancer by encoding polypeptide.
Bioengineered. 12:8202–8216. 2021. View Article : Google Scholar : PubMed/NCBI
|
|
14
|
Li Y, Wang Z, Su P, Liang Y, Li Z, Zhang
H, Song X, Han D, Wang X, Liu Y, et al: circ-EIF6 encodes
EIF6-224aa to promote TNBC progression via stabilizing MYH9 and
activating the Wnt/beta-catenin pathway. Mol Ther. 30:415–430.
2022. View Article : Google Scholar :
|
|
15
|
Xiong L, Liu HS, Zhou C, Yang X, Huang L,
Jie HQ, Zeng ZW, Zheng XB, Li WX, Liu ZZ, et al: A novel protein
encoded by circINSIG1 reprograms cholesterol metabolism by
promoting the ubiquitin-dependent degradation of INSIG1 in
colorectal cancer. Mol Cancer. 22:722023. View Article : Google Scholar : PubMed/NCBI
|
|
16
|
Chen M, Yan C and Zhao X: Research
progress on circular RNA in glioma. Front Oncol. 11:7050592021.
View Article : Google Scholar : PubMed/NCBI
|
|
17
|
Yuan W, Zhang X and Cong H: Advances in
the protein-encoding functions of circular RNAs associated with
cancer (review). Oncol Rep. 50:1602023. View Article : Google Scholar
|
|
18
|
Fang N, Ding GW, Ding H, Li J, Liu C, Lv L
and Shi YJ: Research progress of circular RNA in gastrointestinal
tumors. Front Oncol. 11:6652462021. View Article : Google Scholar : PubMed/NCBI
|
|
19
|
Zhang X, Lu N, Wang L, Wang Y, Li M, Zhou
Y, Yan H, Cui M, Zhang M and Zhang L: Circular RNAs and esophageal
cancer. Cancer Cell Int. 20:3622020. View Article : Google Scholar : PubMed/NCBI
|
|
20
|
Zhu G, Chang X, Kang Y, Zhao X, Tang X, Ma
C and Fu S: CircRNA: A novel potential strategy to treat thyroid
cancer (review). Int J Mol Med. 48:2012021. View Article : Google Scholar : PubMed/NCBI
|
|
21
|
Tang Q and Hann SS: Biological roles and
mechanisms of circular RNA in human cancers. Onco Targets Ther.
13:2067–2092. 2020. View Article : Google Scholar : PubMed/NCBI
|
|
22
|
Zhang Y, Luo J, Yang W and Ye WC: CircRNAs
in colorectal cancer: Potential biomarkers and therapeutic targets.
Cell Death Dis. 14:3532023. View Article : Google Scholar : PubMed/NCBI
|
|
23
|
Galardi A, Colletti M, Palma A and Di
Giannatale A: An update on circular RNA in pediatric cancers.
Biomedicines. 11:362022. View Article : Google Scholar
|
|
24
|
Zhu Y, Huang G, Li S, Xiong H, Chen R, Zuo
L and Liu H: CircSMARCA5: A key circular RNA in various human
diseases. Front Genet. 13:9213062022. View Article : Google Scholar : PubMed/NCBI
|
|
25
|
Hwang HJ and Kim YK: Molecular mechanisms
of circular RNA translation. Exp Mol Med. 56:1272–1280. 2024.
View Article : Google Scholar : PubMed/NCBI
|
|
26
|
Prats AC, David F, Diallo LH, Roussel E,
Tatin F, Garmy-Susini B and Lacazette E: Circular RNA, the key for
translation. Int J Mol Sci. 21:85912020. View Article : Google Scholar : PubMed/NCBI
|
|
27
|
Wang Y, Wu C, Du Y, Li Z, Li M, Hou P,
Shen Z, Chu S, Zheng J and Bai J: Expanding uncapped translation
and emerging function of circular RNA in carcinomas and
noncarcinomas. Mol Cancer. 21:132022. View Article : Google Scholar : PubMed/NCBI
|
|
28
|
Wen SY, Qadir J and Yang BB: Circular RNA
translation: Novel protein isoforms and clinical significance.
Trends Mol Med. 28:405–420. 2022. View Article : Google Scholar : PubMed/NCBI
|
|
29
|
Zhang L, Gao H, Li X, Yu F and Li P: The
important regulatory roles of circRNA-encoded proteins or peptides
in cancer pathogenesis (review). Int J Oncol. 64:192024. View Article : Google Scholar :
|
|
30
|
Lin H, Wang Y, Wang P, Long F and Wang T:
Mutual regulation between N6-methyladenosine (m6A) modification and
circular RNAs in cancer: Impacts on therapeutic resistance. Mol
Cancer. 21:1482022. View Article : Google Scholar : PubMed/NCBI
|
|
31
|
Chen YG, Chen R, Ahmad S, Verma R, Kasturi
SP, Amaya L, Broughton JP, Kim J, Cadena C, Pulendran B, et al:
N6-Methyladenosine modification controls circular RNA immunity. Mol
Cell. 76:96–109.e9. 2019. View Article : Google Scholar : PubMed/NCBI
|
|
32
|
Lei M, Zheng G, Ning Q, Zheng J and Dong
D: Translation and functional roles of circular RNAs in human
cancer. Mol Cancer. 19:302020. View Article : Google Scholar : PubMed/NCBI
|
|
33
|
Sinha T, Panigrahi C, Das D and Chandra
Panda A: Circular RNA translation, a path to hidden proteome. Wiley
Interdiscip Rev RNA. 13:e16852022. View Article : Google Scholar :
|
|
34
|
Liu Y, Li Z, Zhang M, Zhou H, Wu X, Zhong
J, Xiao F, Huang N, Yang X, Zeng R, et al: Rolling-translated EGFR
variants sustain EGFR signaling and promote glioblastoma
tumorigenicity. Neuro Oncol. 23:743–756. 2021. View Article : Google Scholar :
|
|
35
|
Misir S, Wu N and Yang BB: Specific
expression and functions of circular RNAs. Cell Death Differ.
29:481–491. 2022. View Article : Google Scholar : PubMed/NCBI
|
|
36
|
Chen X, Zhou M, Yant L and Huang C:
Circular RNA in disease: Basic properties and biomedical relevance.
Wiley Interdiscip Rev RNA. 13:e17232022. View Article : Google Scholar : PubMed/NCBI
|
|
37
|
Wang Z, Sun A, Yan A, Yao J, Huang H, Gao
Z, Han T, Gu J, Li N, Wu H and Li K: Circular RNA MTCL1 promotes
advanced laryngeal squamous cell carcinoma progression by
inhibiting C1QBP ubiquitin degradation and mediating beta-catenin
activation. Mol Cancer. 21:922022. View Article : Google Scholar : PubMed/NCBI
|
|
38
|
Chen L and Shan G: CircRNA in cancer:
Fundamental mechanism and clinical potential. Cancer Lett.
505:49–57. 2021. View Article : Google Scholar : PubMed/NCBI
|
|
39
|
Zhou WY, Cai ZR, Liu J, Wang DS, Ju HQ and
Xu RH: Circular RNA: Metabolism, functions and interactions with
proteins. Mol Cancer. 19:1722020. View Article : Google Scholar : PubMed/NCBI
|
|
40
|
Huang A, Zheng H, Wu Z, Chen M and Huang
Y: Circular RNA-protein interactions: Functions, mechanisms, and
identification. Theranostics. 10:3503–3517. 2020. View Article : Google Scholar : PubMed/NCBI
|
|
41
|
Yang J, Gong Y, Jiang Q, Liu L, Li S, Zhou
Q, Huang F and Liu Z: Circular RNA expression profiles in
nasopharyngeal carcinoma by sequence analysis. Front Oncol.
10:6012020. View Article : Google Scholar : PubMed/NCBI
|
|
42
|
Huang J, Cai Y, Guo L, Huang W, Yan J, Lai
J, Wang Y, Jiang D and Peng L: hsa_circ_0136839 regulates the
malignant phenotypes of nasopharyngeal carcinoma via the
Wnt/β-catenin signaling pathway. Pathol Res Pract. 245:1544332023.
View Article : Google Scholar
|
|
43
|
Kamali MJ, Salehi M, Mostafavi M,
Morovatshoar R, Akbari M, Latifi N, Barzegari O, Ghadimi F and
Daraei A: Hijacking and rewiring of host CircRNA/miRNA/mRNA
competitive endogenous RNA (ceRNA) regulatory networks by
oncoviruses during development of viral cancers. Rev Med Virol.
34:e25302024. View Article : Google Scholar : PubMed/NCBI
|
|
44
|
Wu H, Liu Y, Duan H, Fan X, Wang Y, Song
J, Han J, Yang M, Lu L and Nie G: Identification of differentially
expressed circular RNAs in human nasopharyngeal carcinoma. Cancer
Biomark. 29:483–492. 2020. View Article : Google Scholar : PubMed/NCBI
|
|
45
|
Zhou Z, Xu F and Zhang T: Circular RNA
COL1A1 promotes Warburg effect and tumor growth in nasopharyngeal
carcinoma. Discov Oncol. 15:1202024. View Article : Google Scholar : PubMed/NCBI
|
|
46
|
Yu KH, Shi CH, Wang B, Chow SH, Chung GT,
Lung RW, Tan KE, Lim YY, Tsang AC, Lo KW and Yip KY: Quantifying
full-length circular RNAs in cancer. Genome Res. 31:2340–2353.
2021. View Article : Google Scholar : PubMed/NCBI
|
|
47
|
Zhang S, Li Y, Xin S, Yang L, Jiang M, Xin
Y, Wang Y, Yang J and Lu J: Insight into LncRNA- and
CircRNA-mediated CeRNAs: Regulatory network and implications in
nasopharyngeal Carcinoma-A narrative literature review. Cancers
(Basel). 14:45642022. View Article : Google Scholar : PubMed/NCBI
|
|
48
|
Zhou X, Yuan G, Wu Y, Yan S, Jiang Q and
Tang S: EIF4A3-induced circFIP1L1 represses miR-1253 and promotes
radiosensitivity of nasopharyngeal carcinoma. Cell Mol Life Sci.
79:3572022. View Article : Google Scholar : PubMed/NCBI
|
|
49
|
Li H, You J, Xue H, Tan X and Chao C:
CircCTDP1 promotes nasopharyngeal carcinoma progression via a
microRNA-320b/HOXA10/TGFβ2 pathway. Int J Mol Med. 45:836–846.
2020.PubMed/NCBI
|
|
50
|
Lin J, Qin H, Han Y, Li X, Zhao Y and Zhai
G: CircNRIP1 modulates the miR-515-5p/IL-25 Axis to control 5-Fu
and cisplatin resistance in nasopharyngeal carcinoma. Drug Des
Devel Ther. 15:323–330. 2021. View Article : Google Scholar : PubMed/NCBI
|
|
51
|
Yin L, Chen J, Ma C, Pei S, Du M, Zhang Y,
Feng Y, Yin R, Bian X, He X, et al: Hsa_circ_0046263 functions as a
ceRNA to promote nasopharyngeal carcinoma progression by
upregulating IGFBP3. Cell Death Dis. 11:5622020. View Article : Google Scholar : PubMed/NCBI
|
|
52
|
Duan ZN, Dong CG and Liu JH: Circ-ABCB10
promotes growth and metastasis of nasopharyngeal carcinoma by
upregulating ROCK1. Eur Rev Med Pharmacol Sci. 24:12208–12215.
2020.PubMed/NCBI
|
|
53
|
Chen H, Shi X, Ren L, Wan Y, Zhuo H, Zeng
L, Sangdan W and Wang F: Screening of core genes and prediction of
ceRNA regulation mechanism of circRNAs in nasopharyngeal carcinoma
by bioinformatics analysis. Pathol Oncol Res. 29:16109602023.
View Article : Google Scholar : PubMed/NCBI
|
|
54
|
Li S and Wang Q: Hsa_circ_0081534
increases the proliferation and invasion of nasopharyngeal
carcinoma cells through regulating the miR-508-5p/FN1 axis. Aging
(Albany NY). 12:20645–20657. 2020. View Article : Google Scholar : PubMed/NCBI
|
|
55
|
Ge J, Wang J, Xiong F, Jiang X, Zhu K,
Wang Y, Mo Y, Gong Z, Zhang S, He Y, et al: Epstein-Barr
Virus-encoded circular RNA CircBART2.2 promotes immune escape of
nasopharyngeal carcinoma by regulating PD-L1. Cancer Res.
81:5074–5088. 2021. View Article : Google Scholar : PubMed/NCBI
|
|
56
|
Ka-Yue Chow L, Lai-Shun Chung D, Tao L,
Chan KF, Tung SY, Cheong Ngan RK, Ng WT, Wing-Mui Lee A, Yau CC,
Lai-Wan Kwong D, et al: Epigenomic landscape study reveals
molecular subtypes and EBV-associated regulatory epigenome
reprogramming in nasopharyngeal carcinoma. EBioMedicine.
86:1043572022. View Article : Google Scholar : PubMed/NCBI
|
|
57
|
Zeng C, Qiao M, Chen Y and Xie H:
EBV-positive glycoproteins associated with nasopharyngeal
carcinoma. Pathol Res Pract. 260:1554272024. View Article : Google Scholar : PubMed/NCBI
|
|
58
|
Chen H, Duan X, Deng X, Huang Y, Zhou X,
Zhang S, Zhang X, Liu P, Yang C, Liu G, et al: EBV-Upregulated
B7-H3 inhibits NK cell-mediated antitumor function and contributes
to nasopharyngeal carcinoma progression. Cancer Immunol Res.
11:830–846. 2023. View Article : Google Scholar : PubMed/NCBI
|
|
59
|
Yuan L, Li S, Chen Q, Xia T, Luo D, Li L,
Liu S, Guo S, Liu L, Du C, et al: EBV infection-induced GPX4
promotes chemoresistance and tumor progression in nasopharyngeal
carcinoma. Cell Death Differ. 29:1513–1527. 2022. View Article : Google Scholar : PubMed/NCBI
|
|
60
|
Shi F, Shang L, Zhou M, Lv C, Li Y, Luo C,
Liu N, Lu J, Tang M, Luo X, et al: Epstein-Barr Virus-driven
metabolic alterations contribute to the viral lytic reactivation
and tumor progression in nasopharyngeal carcinoma. J Med Virol.
96:e296342024. View Article : Google Scholar : PubMed/NCBI
|
|
61
|
Wan X, Liu Y, Peng Y, Wang J, Yan SM,
Zhang L, Wu W, Zhao L, Chen X, Ren K, et al: Primary and orthotopic
murine models of nasopharyngeal carcinoma reveal molecular
mechanisms underlying its Malignant Progression. Adv Sci (Weinh).
11:e24031612024. View Article : Google Scholar : PubMed/NCBI
|
|
62
|
Peng X, Zhou Y, Tao Y and Liu S:
Nasopharyngeal carcinoma: The role of the EGFR in Epstein-Barr
virus infection. Pathogens. 10:11132021. View Article : Google Scholar : PubMed/NCBI
|
|
63
|
Su ZY, Siak PY, Lwin YY and Cheah SC:
Epidemiology of nasopharyngeal carcinoma: Current insights and
future outlook. Cancer Metastasis Rev. 43:919–939. 2024. View Article : Google Scholar : PubMed/NCBI
|
|
64
|
Campion NJ, Ally M, Jank BJ, Ahmed J and
Alusi G: The molecular march of primary and recurrent
nasopharyngeal carcinoma. Oncogene. 40:1757–1774. 2021. View Article : Google Scholar : PubMed/NCBI
|
|
65
|
Xu M, Feng R, Liu Z, Zhou X, Chen Y, Cao
Y, Valeri L, Li Z, Liu Z, Cao SM, et al: Host genetic variants,
Epstein-Barr virus subtypes, and the risk of nasopharyngeal
carcinoma: Assessment of interaction and mediation. Cell Genom.
4:1004742024. View Article : Google Scholar : PubMed/NCBI
|
|
66
|
Ren L, Jiang Q, Mo L, Tan L, Dong Q, Meng
L, Yang N and Li G: Mechanisms of circular RNA degradation. Commun
Biol. 5:13552022. View Article : Google Scholar : PubMed/NCBI
|
|
67
|
Wang J, Zhu S, Meng N, He Y, Lu R and Yan
GR: ncRNA-encoded peptides or proteins and cancer. Mol Ther.
27:1718–1725. 2019. View Article : Google Scholar : PubMed/NCBI
|
|
68
|
Peng Y, Xu Y, Zhang X, Deng S, Yuan Y, Luo
X, Hossain MT, Zhu X, Du K, Hu F, et al: A novel protein
AXIN1-295aa encoded by circAXIN1 activates the Wnt/β-catenin
signaling pathway to promote gastric cancer progression. Mol
Cancer. 20:1582021. View Article : Google Scholar
|
|
69
|
Huang B, Ren J, Ma Q, Yang F, Pan X, Zhang
Y, Liu Y, Wang C, Zhang D, Wei L, et al: A novel peptide
PDHK1-241aa encoded by circPDHK1 promotes ccRCC progression via
interacting with PPP1CA to inhibit AKT dephosphorylation and
activate the AKT-mTOR signaling pathway. Mol Cancer. 23:342024.
View Article : Google Scholar : PubMed/NCBI
|
|
70
|
Li Y, Wang Z, Yang J, Sun Y, He Y, Wang Y,
Chen X, Liang Y, Zhang N, Wang X, et al: CircTRIM1 encodes
TRIM1-269aa to promote chemoresistance and metastasis of TNBC via
enhancing CaM-dependent MARCKS translocation and PI3K/AKT/mTOR
activation. Mol Cancer. 23:1022024. View Article : Google Scholar : PubMed/NCBI
|
|
71
|
Jiang T, Xia Y, Lv J, Li B, Li Y, Wang S,
Xuan Z, Xie L, Qiu S, He Z, et al: A novel protein encoded by
circMAPK1 inhibits progression of gastric cancer by suppressing
activation of MAPK signaling. Mol Cancer. 20:662021. View Article : Google Scholar : PubMed/NCBI
|
|
72
|
Wang X, Jian W, Luo Q and Fang L:
CircSEMA4B inhibits the progression of breast cancer by encoding a
novel protein SEMA4B-211aa and regulating AKT phosphorylation. Cell
Death Dis. 13:7942022. View Article : Google Scholar : PubMed/NCBI
|
|
73
|
Wu X, Xiao S, Zhang M, Yang L, Zhong J, Li
B, Li F, Xia X, Li X, Zhou H, et al: A novel protein encoded by
circular SMO RNA is essential for Hedgehog signaling activation and
glioblastoma tumorigenicity. Genome Biol. 22:332021. View Article : Google Scholar : PubMed/NCBI
|
|
74
|
Song R, Guo P, Ren X, Zhou L, Li P, Rahman
NA, Wołczyński S, Li X, Zhang Y, Liu M, et al: A novel polypeptide
CAPG-171aa encoded by circCAPG plays a critical role in
triple-negative breast cancer. Mol Cancer. 22:1042023. View Article : Google Scholar : PubMed/NCBI
|
|
75
|
Wang L, Zheng W, Lv X, Song Y and Xu T:
circMORC3-encoded novel protein negatively regulates antiviral
immunity through synergizing with host gene MORC3. PLoS Pathog.
19:e10118942023. View Article : Google Scholar : PubMed/NCBI
|
|
76
|
Huang W, Zhang L, Yang M, Wu X, Wang X,
Huang W, Yuan L, Pan H, Wang Y, Wang Z, et al: Cancer-associated
fibroblasts promote the survival of irradiated nasopharyngeal
carcinoma cells via the NF-κB pathway. J Exp Clin Cancer Res.
40:872021. View Article : Google Scholar
|
|
77
|
Zhang H, Deng S, Zhang J, Zhu G, Zhou J,
Ye W, Wang Q, Wang Y, Zou B, Zhang P, et al: Single nucleotide
polymorphisms within NFKBIA are associated with nasopharyngeal
carcinoma susceptibility in Chinese Han population. Cytokine.
138:1553562021. View Article : Google Scholar
|
|
78
|
Li XD, Zhong QL, Luo DJ, Liang QF, Qiu JQ,
Du QH, Xiao L, Zhou YH, Long YB, Liu WQ, et al: RNF219 promotes
nasopharyngeal carcinoma progression by activating the NF-κB
pathway. Mol Biotechnol. 65:1318–1326. 2023. View Article : Google Scholar
|
|
79
|
Chen X, Weng Y, Li Y, Fu W, Huang Z, Pan
Y, Hong W, Lin W, Lin X and Qiu S: Upregulation of PNCK Promotes
Metastasis and Angiogenesis via Activating NF-κB/VEGF pathway in
nasopharyngeal carcinoma. J Oncol. 2022:85415822022.
|
|
80
|
Ling J, Zhang L, Chang A, Huang Y, Ren J,
Zhao H and Zhuo X: Overexpression of KITLG predicts unfavorable
clinical outcomes and promotes lymph node metastasis via the
JAK/STAT pathway in nasopharyngeal carcinoma. Lab Invest.
102:1257–1267. 2022. View Article : Google Scholar : PubMed/NCBI
|
|
81
|
Kaisai T, Mantang Z, Tailei Y, Liying Z,
Xiaoping C, Mingming J and Yi Z: Hsa_circ_0013561 promotes
progression of nasopharyngeal carcinoma by activating JAK2/STAT3
signaling pathway. Braz J Otorhinolaryngol. 90:1013622024.
View Article : Google Scholar
|
|
82
|
Bruce JP, To KF, Lui VWY, Chung GTY, Chan
YY, Tsang CM, Yip KY, Ma BBY, Woo JKS, Hui EP, et al: Whole-genome
profiling of nasopharyngeal carcinoma reveals viral-host
co-operation in inflammatory NF-κB activation and immune escape.
Nat Commun. 12:41932021. View Article : Google Scholar
|
|
83
|
Wang L, Lin Y, Zhou X, Chen Y, Li X, Luo
W, Zhou Y and Cai L: CYLD deficiency enhances metabolic
reprogramming and tumor progression in nasopharyngeal carcinoma via
PFKFB3. Cancer Lett. 532:2155862022. View Article : Google Scholar : PubMed/NCBI
|
|
84
|
Deng M, Dai W, Yu VZ, Tao L and Lung ML:
Cylindromatosis lysine 63 deubiquitinase (CYLD) regulates NF-kB
signaling pathway and modulates fibroblast and endothelial cells
recruitment in nasopharyngeal carcinoma. Cancers (Basel).
12:19242020. View Article : Google Scholar : PubMed/NCBI
|
|
85
|
Li Y, Shi F, Hu J, Xie L, Zhao L, Tang M,
Luo X, Ye M, Zheng H, Zhou M, et al: Stabilization of p18 by
deubiquitylase CYLD is pivotal for cell cycle progression and viral
replication. NPJ Precis Oncol. 5:142021. View Article : Google Scholar : PubMed/NCBI
|
|
86
|
Lin Y, Wang L, Luo W, Zhou X, Chen Y, Yang
K, Liao J, Wu D and Cai L: CYLD Promotes apoptosis of
nasopharyngeal carcinoma cells by regulating NDRG1. Cancer Manag
Res. 12:10639–10649. 2020. View Article : Google Scholar : PubMed/NCBI
|
|
87
|
Mizokami H, Okabe A, Choudhary R, Mima M,
Saeda K, Fukuyo M, Rahmutulla B, Seki M, Goh BC, Kondo S, et al:
Enhancer infestation drives tumorigenic activation of inactive B
compartment in Epstein-Barr virus-positive nasopharyngeal
carcinoma. EBioMedicine. 102:1050572024. View Article : Google Scholar : PubMed/NCBI
|
|
88
|
Reffai A, Hori M, Adusumilli R, Bermudez
A, Bouzoubaa A, Pitteri S, Bennani Mechita M and Mallick P: A
proteomic analysis of nasopharyngeal carcinoma in a moroccan
subpopulation. Cancers (Basel). 16:32822024. View Article : Google Scholar : PubMed/NCBI
|
|
89
|
Xie T, Fu DJ, Li ZM, Lv DJ, Song XL, Yu
YZ, Wang C, Li KJ, Zhai B, Wu J, et al: CircSMARCC1 facilitates
tumor progression by disrupting the crosstalk between prostate
cancer cells and tumor-associated macrophages via
miR-1322/CCL20/CCR6 signaling. Mol Cancer. 21:1732022. View Article : Google Scholar : PubMed/NCBI
|
|
90
|
Song J, Liu Q, Han L, Song T, Huang S,
Zhang X, He Q, Liang C, Zhu S and Xiong B:
Hsa_circ_0009092/miR-665/NLK signaling axis suppresses colorectal
cancer progression via recruiting TAMs in the tumor
microenvironment. J Exp Clin Cancer Res. 42:3192023. View Article : Google Scholar : PubMed/NCBI
|
|
91
|
Miao Z, Li J, Wang Y, Shi M, Gu X, Zhang
X, Wei F, Tang X, Zheng L and Xing Y: Hsa_circ_0136666 stimulates
gastric cancer progression and tumor immune escape by regulating
the miR-375/PRKDC Axis and PD-L1 phosphorylation. Mol Cancer.
22:2052023. View Article : Google Scholar : PubMed/NCBI
|
|
92
|
Pan Z, Zhao R, Li B, Qi Y, Qiu W, Guo Q,
Zhang S, Zhao S, Xu H, Li M, et al: EWSR1-induced circNEIL3
promotes glioma progression and exosome-mediated macrophage
immunosuppressive polarization via stabilizing IGF2BP3. Mol Cancer.
21:162022. View Article : Google Scholar : PubMed/NCBI
|
|
93
|
Zhang F, Jiang J, Qian H, Yan Y and Xu W:
Exosomal circRNA: Emerging insights into cancer progression and
clinical application potential. J Hematol Oncol. 16:672023.
View Article : Google Scholar : PubMed/NCBI
|
|
94
|
Zhou B, Mo Z, Lai G, Chen X, Li R, Wu R,
Zhu J and Zheng F: Targeting tumor exosomal circular RNA cSERPINE2
suppresses breast cancer progression by modulating MALT1-NF-κB-IL-6
axis of tumor-associated macrophages. J Exp Clin Cancer Res.
42:482023. View Article : Google Scholar
|
|
95
|
Li J, Song Y, Cai H, Zhou B and Ma J:
Roles of circRNA dysregulation in esophageal squamous cell
carcinoma tumor microenvironment. Front Oncol. 13:11532072023.
View Article : Google Scholar : PubMed/NCBI
|
|
96
|
Wang J, Lin Y, Jiang DH, Yang X and He XG:
CircRNA ZNF609 promotes angiogenesis in nasopharyngeal carcinoma by
regulating miR-145/STMN1 axis. Kaohsiung J Med Sci. 37:686–698.
2021. View Article : Google Scholar : PubMed/NCBI
|
|
97
|
Zhu L, Liu Y, Yang Y, Mao XM and Yin ZD:
CircRNA ZNF609 promotes growth and metastasis of nasopharyngeal
carcinoma by competing with microRNA-150-5p. Eur Rev Med Pharmacol
Sci. 23:2817–2826. 2019.PubMed/NCBI
|
|
98
|
Saunders JT, Kumar S, Benavides-Serrato A,
Holmes B, Benavides KE, Bashir MT, Nishimura RN and Gera J:
Translation of circHGF RNA encodes an HGF protein variant promoting
glioblastoma growth through stimulation of c-MET. J Neurooncol.
163:207–218. 2023. View Article : Google Scholar : PubMed/NCBI
|
|
99
|
Wang L, Zhou J, Zhang C, Chen R, Sun Q,
Yang P, Peng C, Tan Y, Jin C, Wang T, et al: A novel tumour
suppressor protein encoded by circMAPK14 inhibits progression and
metastasis of colorectal cancer by competitively binding to MKK6.
Clin Transl Med. 11:e6132021. View Article : Google Scholar : PubMed/NCBI
|
|
100
|
Zhang C, Zhou X, Geng X, Zhang Y, Wang J,
Wang Y, Jing J, Zhou X and Pan W: Circular RNA hsa_circ_0006401
promotes proliferation and metastasis in colorectal carcinoma. Cell
Death Dis. 12:4432021. View Article : Google Scholar : PubMed/NCBI
|
|
101
|
Zheng X, Chen L, Zhou Y, Wang Q, Zheng Z,
Xu B, Wu C, Zhou Q, Hu W, Wu C, et al: A novel protein encoded by a
circular RNA circPPP1R12A promotes tumor pathogenesis and
metastasis of colon cancer via Hippo-YAP signaling. Mol Cancer.
18:472019. View Article : Google Scholar : PubMed/NCBI
|
|
102
|
Xie T, Yang Z, Xian S, Lin Q, Huang L and
Ding Y: Hsa_circ_0008833 promotes COPD progression via inducing
pyroptosis in bronchial epithelial cells. Exp Lung Res. 50:1–14.
2024. View Article : Google Scholar : PubMed/NCBI
|
|
103
|
Li F, Cai Y, Deng S, Yang L, Liu N, Chang
X, Jing L, Zhou Y and Li H: A peptide CORO1C-47aa encoded by the
circular noncoding RNA circ-0000437 functions as a negative
regulator in endometrium tumor angiogenesis. J Biol Chem.
297:1011822021. View Article : Google Scholar : PubMed/NCBI
|
|
104
|
Wang S, Wang Y, Li Q, Li X, Feng X and
Zeng K: The novel β-TrCP protein isoform hidden in circular RNA
confers trastuzumab resistance in HER2-positive breast cancer.
Redox Biol. 67:1028962023. View Article : Google Scholar
|
|
105
|
Chadani Y, Sugata N, Niwa T, Ito Y,
Iwasaki S and Taguchi H: Nascent polypeptide within the exit tunnel
stabilizes the ribosome to counteract risky translation. EMBO J.
40:e1082992021. View Article : Google Scholar : PubMed/NCBI
|
|
106
|
Wang P, Li W, Yang Y, Cheng N, Zhang Y,
Zhang N, Yin Y, Tong L, Li Z and Luo J: A polypeptide inhibitor of
calcineurin blocks the calcineurin-NFAT signalling pathway in vivo
and in vitro. J Enzyme Inhib Med Chem. 37:202–210. 2022. View Article : Google Scholar
|
|
107
|
Huo J, Zhang R, Wu X, Fu C, Hu J, Hu X,
Sun W, Chen Z and Zhu X: Active polypeptide MDANP protect against
necrotizing enterocolitis (NEC) by regulating the PERK-eIF2α-QRICH1
axis. Sci Rep. 13:229122023. View Article : Google Scholar
|
|
108
|
Shubayev VI, Dolkas J, Catroli GF and
Chernov AV: A human coronavirus OC43-derived polypeptide causes
neuropathic pain. EMBO Rep. 23:e540692022. View Article : Google Scholar : PubMed/NCBI
|
|
109
|
Zhong C, Li J, Liu S, Li W, Zhang Q, Zhao
J, Xiong M, Bao Y and Yao Y: Nanoblock-mediated selective oncolytic
polypeptide therapy for triple-negative breast cancer.
Theranostics. 13:2800–2810. 2023. View Article : Google Scholar : PubMed/NCBI
|
|
110
|
Höpfler M and Hegde RS: Control of mRNA
fate by its encoded nascent polypeptide. Mol Cell. 83:2840–2855.
2023. View Article : Google Scholar : PubMed/NCBI
|
|
111
|
Wu P, Mo Y, Peng M, Tang T, Zhong Y, Deng
X, Xiong F, Guo C, Wu X, Li Y, et al: Emerging role of
tumor-related functional peptides encoded by lncRNA and circRNA.
Mol Cancer. 19:222020. View Article : Google Scholar : PubMed/NCBI
|
|
112
|
Meng E, Deng J, Jiang R and Wu H:
CircRNA-Encoded peptides or proteins as new players in digestive
system neoplasms. Front Oncol. 12:9441592022. View Article : Google Scholar : PubMed/NCBI
|
|
113
|
Ferreira HJ, Stevenson BJ, Pak H, Yu F,
Almeida Oliveira J, Huber F, Taillandier-Coindard M, Michaux J,
Ricart-Altimiras E, Kraemer AI, et al: Immunopeptidomics-based
identification of naturally presented non-canonical circRNA-derived
peptides. Nat Commun. 15:23572024. View Article : Google Scholar : PubMed/NCBI
|
|
114
|
Khan FA, Nsengimana B, Khan NH, Song Z,
Ngowi EE, Wang Y, Zhang W and Ji S: Chimeric Peptides/proteins
encoded by circRNA: An update on mechanisms and functions in human
cancers. Front Oncol. 12:7812702022. View Article : Google Scholar : PubMed/NCBI
|
|
115
|
Ke SA, Zhao S, Liu Y, Zhuo Q, Tong X and
Xu Y: Circular RNA-encoded peptides and proteins: Implications to
cancer. Sheng Wu Gong Cheng Xue Bao. 38:3131–3140. 2022.In Chinese.
PubMed/NCBI
|
|
116
|
Li W, Liu JQ, Chen M, Xu J and Zhu D:
Circular RNA in cancer development and immune regulation. J Cell
Mol Med. 26:1785–1798. 2022. View Article : Google Scholar :
|
|
117
|
Mo D, Li X, Raabe CA, Rozhdestvensky TS,
Skryabin BV and Brosius J: Circular RNA encoded amyloid beta
peptides-A novel putative player in Alzheimer's disease. Cells.
9:21962020. View Article : Google Scholar : PubMed/NCBI
|
|
118
|
Liu H, Hao W, Yang J, Zhang Y, Wang X and
Zhang C: Emerging roles and potential clinical applications of
translatable circular RNAs in cancer and other human diseases.
Genes Dis. 10:1994–2012. 2023. View Article : Google Scholar : PubMed/NCBI
|
|
119
|
Zheng W, Wang L, Geng S and Xu T:
CircYthdc2 generates polypeptides through two translation
strategies to facilitate virus escape. Cell Mol Life Sci.
81:912024. View Article : Google Scholar : PubMed/NCBI
|
|
120
|
Li P, Song R, Yin F, Liu M, Liu H, Ma S,
Jia X, Lu X, Zhong Y, Yu L, et al: circMRPS35 promotes malignant
progression and cisplatin resistance in hepatocellular carcinoma.
Mol Ther. 30:431–447. 2022. View Article : Google Scholar :
|
|
121
|
Gao J, Pan H, Li J, Jiang J and Wang W: A
peptide encoded by the circular form of the SHPRH gene induces
apoptosis in neuroblastoma cells. PeerJ. 12:e168062024. View Article : Google Scholar : PubMed/NCBI
|
|
122
|
Liu X, Zhang Y, Zhou S, Dain L, Mei L and
Zhu G: Circular RNA: An emerging frontier in RNA therapeutic
targets, RNA therapeutics, and mRNA vaccines. J Control Release.
348:84–94. 2022. View Article : Google Scholar : PubMed/NCBI
|
|
123
|
Li K, Peng ZY, Wang R, Li X, Du N, Liu DP,
Zhang J, Zhang YF, Ma L, Sun Y, et al: Enhancement of TKI
sensitivity in lung adenocarcinoma through m6A-dependent
translational repression of Wnt signaling by circ-FBXW7. Mol
Cancer. 22:1032023. View Article : Google Scholar : PubMed/NCBI
|
|
124
|
Zhao W, Zhang Y and Zhu Y: Circular RNA
circβ-catenin aggravates the malignant phenotype of non-small-cell
lung cancer via encoding a peptide. J Clin Lab Anal. 35:e239002021.
View Article : Google Scholar
|
|
125
|
Wang Y, Tian X, Wang Z, Liu D, Zhao X, Sun
X, Tu Z, Li Z, Zhao Y, Zheng S, et al: A novel peptide encoded by
circ-SLC9A6 promotes lipid dyshomeostasis through the regulation of
H4K16ac-mediated CD36 transcription in NAFLD. Clin Transl Med.
14:e18012024. View Article : Google Scholar : PubMed/NCBI
|
|
126
|
Torres K, Landeros N, Wichmann IA,
Polakovicova I, Aguayo F and Corvalan AH: EBV miR-BARTs and human
lncRNAs: Shifting the balance in competing endogenous RNA networks
in EBV-associated gastric cancer. Biochim Biophys Acta Mol Basis
Dis. 1867:1660492021. View Article : Google Scholar : PubMed/NCBI
|
|
127
|
Zhou Z, Li P, Zhang X, Xu J, Xu J, Yu S,
Wang D, Dong W, Cao X, Yan H, et al: Mutational landscape of
nasopharyngeal carcinoma based on targeted next-generation
sequencing: Implications for predicting clinical outcomes. Mol Med.
28:552022. View Article : Google Scholar
|
|
128
|
Gong L, Luo J, Zhang Y, Yang Y, Li S, Fang
X, Zhang B, Huang J, Chow LK, Chung D, et al: Nasopharyngeal
carcinoma cells promote regulatory T cell development and
suppressive activity via CD70-CD27 interaction. Nat Commun.
14:19122023. View Article : Google Scholar : PubMed/NCBI
|
|
129
|
Du Y, Zhang JY, Gong LP, Feng ZY, Wang D,
Pan YH, Sun LP, Wen JY, Chen GF, Liang J, et al: Hypoxia-induced
ebv-circLMP2A promotes angiogenesis in EBV-associated gastric
carcinoma through the KHSRP/VHL/HIF1α/VEGFA pathway. Cancer Lett.
526:259–272. 2022. View Article : Google Scholar
|
|
130
|
Mo Y, Wang Y, Zhang S, Xiong F, Yan Q,
Jiang X, Deng X, Wang Y, Fan C, Tang L, et al: Circular RNA
circRNF13 inhibits proliferation and metastasis of nasopharyngeal
carcinoma via SUMO2. Mol Cancer. 20:1122021. View Article : Google Scholar : PubMed/NCBI
|
|
131
|
Hong X, Li Q, Li J, Chen K, He Q, Zhao Y,
Liang Y, Zhao Y, Qiao H, Liu N, et al: CircIPO7 promotes
nasopharyngeal carcinoma metastasis and cisplatin chemoresistance
by facilitating YBX1 nuclear localization. Clin Cancer Res.
28:4521–4535. 2022. View Article : Google Scholar : PubMed/NCBI
|
|
132
|
Duan JL, Chen W, Xie JJ, Zhang ML, Nie RC,
Liang H, Mei J, Han K, Xiang ZC, Wang FW, et al: A novel peptide
encoded by N6-methyladenosine modified circMAP3K4 prevents
apoptosis in hepatocellular carcinoma. Mol Cancer. 21:932022.
View Article : Google Scholar : PubMed/NCBI
|
|
133
|
Lu Y, Li Z, Lin C, Zhang J and Shen Z:
Translation role of circRNAs in cancers. J Clin Lab Anal.
35:e238662021. View Article : Google Scholar : PubMed/NCBI
|
|
134
|
Othoum G, Coonrod E, Zhao S, Dang HX and
Maher CA: Pan-cancer proteogenomic analysis reveals long and
circular noncoding RNAs encoding peptides. NAR Cancer.
2:zcaa0152020. View Article : Google Scholar : PubMed/NCBI
|
|
135
|
Chen Q, Shen H, Nie F and Sun M: A Whole
new comprehension about ncRNA-Encoded Peptides/proteins in cancers.
Cancers (Basel). 14:51962022. View Article : Google Scholar : PubMed/NCBI
|
|
136
|
Zheng W, Wang L, Geng S, Yang L, Lv X, Xin
S and Xu T: CircMIB2 therapy can effectively treat pathogenic
infection by encoding a novel protein. Cell Death Dis. 14:5782023.
View Article : Google Scholar : PubMed/NCBI
|
|
137
|
Shi X, Liao S, Bi Z, Liu J, Li H and Feng
C: Newly discovered circRNAs encoding proteins: Recent progress.
Front Genet. 14:12646062023. View Article : Google Scholar : PubMed/NCBI
|
|
138
|
Jiang J and Ying H: Revealing the
crosstalk between nasopharyngeal carcinoma and immune cells in the
tumor microenvironment. J Exp Clin Cancer Res. 41:2442022.
View Article : Google Scholar
|
|
139
|
Tang LL, Guo R, Zhang N, Deng B, Chen L,
Cheng ZB, Huang J, Hu WH, Huang SH, Luo WJ, et al: Effect of
radiotherapy alone vs radiotherapy with concurrent
chemoradiotherapy on survival without disease relapse in patients
with Low-risk nasopharyngeal carcinoma: A randomized clinical
trial. JAMA. 328:728–736. 2022. View Article : Google Scholar : PubMed/NCBI
|
|
140
|
You R, Liu YP, Huang PY, Zou X, Sun R, He
YX, Wu YS, Shen GP, Zhang HD, Duan CY, et al: Efficacy and safety
of locoregional radiotherapy with chemotherapy vs chemotherapy
alone in de novo metastatic nasopharyngeal carcinoma: A multicenter
phase 3 randomized clinical trial. JAMA Oncol. 6:1345–1352. 2020.
View Article : Google Scholar : PubMed/NCBI
|
|
141
|
Toumi N, Ennouri S, Charfeddine I, Daoud J
and Khanfir A: Prognostic factors in metastatic nasopharyngeal
carcinoma. Braz J Otorhinolaryngol. 88:212–219. 2022. View Article : Google Scholar :
|
|
142
|
Ye F, Gao G, Zou Y, Zheng S, Zhang L, Ou
X, Xie X and Tang H: circFBXW7 inhibits malignant progression by
sponging miR-197-3p and encoding a 185-aa protein in
Triple-negative breast cancer. Mol Ther Nucleic Acids. 18:88–98.
2019. View Article : Google Scholar : PubMed/NCBI
|
|
143
|
Hu F, Peng Y, Chang S, Luo X, Yuan Y, Zhu
X, Xu Y, Du K, Chen Y, Deng S, et al: Vimentin binds to a novel
tumor suppressor protein, GSPT1-238aa, encoded by circGSPT1 with a
selective encoding priority to halt autophagy in gastric carcinoma.
Cancer Lett. 545:2158262022. View Article : Google Scholar : PubMed/NCBI
|