|
1
|
Miller KD, Ostrom QT, Kruchko C, Patil N,
Tihan T, Cioffi G, Fuchs HE, Waite KA, Jemal A, Siegel RL and
Barnholtz-Sloan JS: Brain and other central nervous system tumor
statistics, 2021. CA Cancer J Clin. 71:381–406. 2021.PubMed/NCBI
|
|
2
|
Ostrom QT, Patil N, Cioffi G, Waite K,
Kruchko C and Barnholtz-Sloan JS: CBTRUS statistical report:
Primary brain and other central nervous system tumors diagnosed in
the united states in 2013-2017. Neuro Oncol. 22(12 Suppl 2):
iv1–iv96. 2020. View Article : Google Scholar : PubMed/NCBI
|
|
3
|
Sadad T, Rehman A, Munir A, Saba T, Tariq
U, Ayesha N and Abbasi R: Brain tumor detection and
multi-classification using advanced deep learning techniques.
Microsc Res Tech. 84:1296–1308. 2021. View Article : Google Scholar : PubMed/NCBI
|
|
4
|
Tan AC, Ashley DM, Lopez GY, Malinzak M,
Friedman HS and Khasraw M: Management of glioblastoma: State of the
art and future directions. CA Cancer J Clin. 70:299–312.
2020.PubMed/NCBI
|
|
5
|
Arvanitis CD, Ferraro GB and Jain RK: The
blood-brain barrier and blood-tumour barrier in brain tumours and
metastases. Nat Rev Cancer. 20:26–41. 2020. View Article : Google Scholar
|
|
6
|
Da Ros M, De Gregorio V, Iorio AL, Giunti
L, Guidi M, de Martino M, Genitori L and Sardi I: Glioblastoma
chemoresistance: The double play by microenvironment and
Blood-brain barrier. Int J Mol Sci. 19:28792018. View Article : Google Scholar : PubMed/NCBI
|
|
7
|
Gao H, Yang Z, Zhang S, Cao S, Pang Z,
Yang X and Jiang X: Glioma-homing peptide with a cell-penetrating
effect for targeting delivery with enhanced glioma localization,
penetration and suppression of glioma growth. J Control Release.
172:921–928. 2013. View Article : Google Scholar : PubMed/NCBI
|
|
8
|
Liu Y and Lu W: Recent advances in brain
tumor-targeted nano-drug delivery systems. Expert Opin Drug Deliv.
9:671–686. 2012. View Article : Google Scholar : PubMed/NCBI
|
|
9
|
Han L and Jiang C: Evolution of
blood-brain barrier in brain diseases and related systemic
nanoscale brain-targeting drug delivery strategies. Acta Pharm Sin
B. 11:2306–2325. 2021. View Article : Google Scholar : PubMed/NCBI
|
|
10
|
Jena L, McErlean E and McCarthy H:
Delivery across the blood-brain barrier: Nanomedicine for
glioblastoma multiforme. Drug Deliv Transl Res. 10:304–318. 2020.
View Article : Google Scholar :
|
|
11
|
Hersh AM, Alomari S and Tyler BM: Crossing
the blood-brain barrier: Advances in nanoparticle technology for
drug delivery in Neuro-oncology. Int J Mol Sci. 23:41532022.
View Article : Google Scholar : PubMed/NCBI
|
|
12
|
Chen J, Guo Z, Tian H and Chen X:
Production and clinical development of nanoparticles for gene
delivery. Mol Ther Methods Clin Dev. 3:160232016. View Article : Google Scholar : PubMed/NCBI
|
|
13
|
Huh MS, Lee EJ, Koo H, Yhee JY, Oh KS, Son
S, Lee S, Kim SH, Kwon IC and Kim K: Polysaccharide-based
nanoparticles for gene delivery. Top Curr Chem (Cham). 375:312017.
View Article : Google Scholar : PubMed/NCBI
|
|
14
|
Arami H, Patel CB, Madsen SJ, Dickinson
PJ, Davis RM, Zeng Y, Sturges BK, Woolard KD, Habte FG, Akin D, et
al: Nanomedicine for spontaneous brain tumors: A companion clinical
trial. ACS Nano. 13:2858–2869. 2019. View Article : Google Scholar : PubMed/NCBI
|
|
15
|
Hahn A, Bode J, Kruwel T, Solecki G,
Heiland S, Bendszus M, Tews B, Winkler F, Breckwoldt MO and Kurz
FT: Glioblastoma multiforme restructures the topological
connectivity of cerebrovascular networks. Sci Rep. 9:117572019.
View Article : Google Scholar : PubMed/NCBI
|
|
16
|
Moreno A, Pitoc GA, Ganson NJ, Layzer JM,
Hershfield MS, Tarantal AF and Sullenger BA: Anti-PEG Antibodies
inhibit the anticoagulant activity of PEgylated aptamers. Cell Chem
Biol. 26:634–644.e3. 2019. View Article : Google Scholar : PubMed/NCBI
|
|
17
|
Verry C, Dufort S, Villa J, Gavard M,
Iriart C, Grand S, Charles J, Chovelon B, Cracowski JL, Quesada JL,
et al: Theranostic AGuIX nanoparticles as radiosensitizer: A phase
I, dose-escalation study in patients with multiple brain metastases
(NANO-RAD trial). Radiother Oncol. 160:159–165. 2021. View Article : Google Scholar : PubMed/NCBI
|
|
18
|
Zhanataev AK, Anisina EA, Kulakova AV,
Shilovskiy IP, Lisitsyn AA, Koloskova OO, Khaitov MR and Durnev AD:
Genotoxicity of cationic lipopeptide nanoparticles. Toxicol Lett.
328:1–6. 2020. View Article : Google Scholar : PubMed/NCBI
|
|
19
|
Lalatsa A and Butt AM: Physiology of the
Blood-brain barrier and mechanisms of transport across the BBB.
Nanotechnology-based Targeted Drug Delivery Systems for Brain
Tumors. Elsevier Inc. 49–74. 2018.
|
|
20
|
Crone C and Olesen SP: Electrical
resistance of brain microvascular endothelium. Brain Res.
241:49–55. 1982. View Article : Google Scholar : PubMed/NCBI
|
|
21
|
Kadry H, Noorani B and Cucullo L: A
blood-brain barrier overview on structure, function, impairment,
and biomarkers of integrity. Fluids Barriers CNS. 17:692020.
View Article : Google Scholar : PubMed/NCBI
|
|
22
|
Andreone BJ, Chow BW, Tata A, Lacoste B,
Ben-Zvi A, Bullock K, Deik AA, Ginty DD, Clish CB and Gu C:
Blood-brain barrier permeability is regulated by lipid
transport-dependent suppression of caveolae-mediated transcytosis.
Neuron. 94:581–594.e5. 2017. View Article : Google Scholar : PubMed/NCBI
|
|
23
|
Eng ME, Imperio GE, Bloise E and Matthews
SG: ATP-binding cassette (ABC) drug transporters in the developing
blood-brain barrier: Role in fetal brain protection. Cell Mol Life
Sci. 79:4152022. View Article : Google Scholar : PubMed/NCBI
|
|
24
|
Lochhead JJ, Yang J, Ronaldson PT and
Davis TP: Structure, function, and regulation of the blood-brain
barrier tight junction in central nervous system disorders. Front
Physiol. 11:9142020. View Article : Google Scholar : PubMed/NCBI
|
|
25
|
Salama NN, Eddington ND and Fasano A:
Tight junction modulation and its relationship to drug delivery.
Adv Drug Deliv Rev. 58:15–28. 2006. View Article : Google Scholar : PubMed/NCBI
|
|
26
|
Lemmer HJ and Hamman JH: Paracellular drug
absorption enhancement through tight junction modulation. Expert
Opin Drug Deliv. 10:103–114. 2013. View Article : Google Scholar
|
|
27
|
Lin Y, Gan L, Ren L, Ma C, Dai M, Qian K,
Ye Q and Lin X: Acupuncture with specific mode electro-stimulation
effectively and transiently opens the BBB through Shh signaling
pathway. Neuroreport. 34:873–886. 2023. View Article : Google Scholar : PubMed/NCBI
|
|
28
|
Yang J, Betterton RD, Williams EI, Stanton
JA, Reddell ES, Ogbonnaya CE, Dorn E, Davis TP, Lochhead JJ and
Ronaldson PT: High-dose acetaminophen alters the integrity of the
blood-brain barrier and leads to increased CNS uptake of codeine in
rats. Pharmaceutics. 14:9492022. View Article : Google Scholar : PubMed/NCBI
|
|
29
|
Han S, Mei L, Quach T, Porter C and
Trevaskis N: Lipophilic conjugates of drugs: A tool to improve drug
pharmacokinetic and therapeutic profiles. Pharm Res. 38:1497–1518.
2021. View Article : Google Scholar : PubMed/NCBI
|
|
30
|
Muller J, Martins A, Csabi J, Fenyvesi F,
Konczol A, Hunyadi A and Balogh GT: BBB penetration-targeting
physicochemical lead selection: Ecdysteroids as chemo-sensitizers
against CNS tumors. Eur J Pharm Sci. 96:571–577. 2017. View Article : Google Scholar
|
|
31
|
Rankovic Z: CNS drug design: Balancing
physicochemical properties for optimal brain exposure. J Med Chem.
58:2584–2608. 2015. View Article : Google Scholar
|
|
32
|
van Tellingen O, Yetkin-Arik B, de Gooijer
MC, Wesseling P, Wurdinger T and de Vries HE: Overcoming the
blood-brain tumor barrier for effective glioblastoma treatment.
Drug Resist Updat. 19:1–12. 2015. View Article : Google Scholar : PubMed/NCBI
|
|
33
|
Zhang Y, Liu Z, Gao C, Bian H, Ma Y, Jing
F and Zhao X: Role of rituximab in treatment of patients with
primary central nervous system lymphoma (PCNSL): A systematic
review and Meta-analysis. Clin Lymphoma Myeloma Leuk. 23:733–741.
2023. View Article : Google Scholar : PubMed/NCBI
|
|
34
|
Paul PR, Mishra MK, Bora S, Kukal S, Singh
A, Kukreti S and Kukreti R: The Impact of P-Glycoprotein on CNS
drug efflux and variability in response. J Biochem Mol Toxicol.
39:e701902025. View Article : Google Scholar : PubMed/NCBI
|
|
35
|
Zensi A, Begley D, Pontikis C, Legros C,
Mihoreanu L, Wagner S, Buchel C, von Briesen H and Kreuter J:
Albumin nanoparticles targeted with Apo E enter the CNS by
transcytosis and are delivered to neurones. J Control Release.
137:78–86. 2009. View Article : Google Scholar : PubMed/NCBI
|
|
36
|
Demeule M, Regina A, Che C, Poirier J,
Nguyen T, Gabathuler R, Castaigne JP and Beliveau R: Identification
and design of peptides as a new drug delivery system for the brain.
J Pharmacol Exp Ther. 324:1064–1072. 2008. View Article : Google Scholar
|
|
37
|
Johnsen KB, Burkhart A, Thomsen LB,
Andresen TL and Moos T: Targeting the transferrin receptor for
brain drug delivery. Prog Neurobiol. 181:1016652019. View Article : Google Scholar : PubMed/NCBI
|
|
38
|
Xin H, Jiang X, Gu J, Sha X, Chen L, Law
K, Chen Y, Wang X, Jiang Y and Fang X: Angiopep-conjugated
poly(ethylene glycol)-co-poly(epsilon-caprolactone) nanoparticles
as dual-targeting drug delivery system for brain glioma.
Biomaterials. 32:4293–4305. 2011. View Article : Google Scholar : PubMed/NCBI
|
|
39
|
Gonatas NK, Stieber A, Hickey WF, Herbert
SH and Gonatas JO: Endosomes and Golgi vesicles in adsorptive and
fluid phase endocytosis. J Cell Biol. 99:1379–1390. 1984.
View Article : Google Scholar : PubMed/NCBI
|
|
40
|
Szecsko A, Meszaros M, Simoes B, Cavaco M,
Chaparro C, Porkolab G, Castanho M, Deli MA, Neves V and Veszelka
S: PepH3-modified nanocarriers for delivery of therapeutics across
the blood-brain barrier. Fluids Barriers CNS. 22:312025. View Article : Google Scholar : PubMed/NCBI
|
|
41
|
Li Y, Zheng X, Gong M and Zhang J:
Delivery of a peptide-drug conjugate targeting the blood brain
barrier improved the efficacy of paclitaxel against glioma.
Oncotarget. 7:79401–79407. 2016. View Article : Google Scholar : PubMed/NCBI
|
|
42
|
Wang ZH, Wang ZY, Sun CS, Wang CY, Jiang
TY and Wang SL: Trimethylated chitosan-conjugated PLGA
nanoparticles for the delivery of drugs to the brain. Biomaterials.
31:908–915. 2010. View Article : Google Scholar
|
|
43
|
Dowaidar M: Cell-penetrating peptides with
nanoparticles hybrid delivery vectors and their uptake pathways.
Mitochondrion. 78:1019062024. View Article : Google Scholar : PubMed/NCBI
|
|
44
|
Liu Y, Huang R, Han L, Ke W, Shao K, Ye L,
Lou J and Jiang C: Brain-targeting gene delivery and cellular
internalization mechanisms for modified rabies virus glycoprotein
RVG29 nanoparticles. Biomaterials. 30:4195–4202. 2009. View Article : Google Scholar : PubMed/NCBI
|
|
45
|
Wu MC, Wang EY and Lai TW: TAT peptide at
treatment-level concentrations crossed brain endothelial cell
monolayer independent of receptor-mediated endocytosis or
peptide-inflicted barrier disruption. PLoS One. 18:e02926812023.
View Article : Google Scholar : PubMed/NCBI
|
|
46
|
Hu C, Tao L, Cao X and Chen L: The solute
carrier transporters and the brain: Physiological and
pharmacological implications. Asian J Pharm Sci. 15:131–144. 2020.
View Article : Google Scholar : PubMed/NCBI
|
|
47
|
Al-Ahmad AJ: Comparative study of
expression and activity of glucose transporters between stem
cell-derived brain microvascular endothelial cells and hCMEC/D3
cells. Am J Physiol Cell Physiol. 313:C421–C429. 2017. View Article : Google Scholar : PubMed/NCBI
|
|
48
|
Singh N and Ecker GF: Insights into the
structure, function, and ligand discovery of the large neutral
amino acid transporter 1, LAT1. Int J Mol Sci. 19:12782018.
View Article : Google Scholar : PubMed/NCBI
|
|
49
|
Vijay N and Morris ME: Role of
monocarboxylate transporters in drug delivery to the brain. Curr
Pharm Des. 20:1487–1498. 2014. View Article : Google Scholar :
|
|
50
|
Jiang X, Xin H, Ren Q, Gu J, Zhu L, Du F,
Feng C, Xie Y, Sha X and Fang X: Nanoparticles of 2-deoxy-D-glucose
functionalized poly(ethylene glycol)-co-poly(trimethylene
carbonate) for dual-targeted drug delivery in glioma treatment.
Biomaterials. 35:518–529. 2014. View Article : Google Scholar
|
|
51
|
Campani V, Zappavigna S, Scotti L, Abate
M, Porru M, Leonetti C, Caraglia M and De Rosa G: Hybrid lipid
self-assembling nanoparticles for brain delivery of microRNA. Int J
Pharm. 588:1196932020. View Article : Google Scholar : PubMed/NCBI
|
|
52
|
Estella-Hermoso de Mendoza A, Preat V,
Mollinedo F and Blanco-Prieto MJ: In vitro and in vivo efficacy of
edelfosine-loaded lipid nanoparticles against glioma. J Control
Release. 156:421–426. 2011. View Article : Google Scholar : PubMed/NCBI
|
|
53
|
Grafals-Ruiz N, Rios-Vicil CI,
Lozada-Delgado EL, Quinones-Diaz BI, Noriega-Rivera RA,
Martinez-Zayas G, Santana-Rivera Y, Santiago-Sanchez GS, Valiyeva F
and Vivas-Mejia PE: Brain targeted gold liposomes improve RNAi
delivery for glioblastoma. Int J Nanomedicine. 15:2809–2828. 2020.
View Article : Google Scholar : PubMed/NCBI
|
|
54
|
Pandian SRK, Pavadai P, Vellaisamy S,
Ravishankar V, Palanisamy P, Sundar LM, Chandramohan V,
Sankaranarayanan M, Panneerselvam T and Kunjiappan S: Formulation
and evaluation of Rutin-loaded solid lipid nanoparticles for the
treatment of brain tumor. Naunyn Schmiedebergs Arch Pharmacol.
394:735–749. 2021. View Article : Google Scholar
|
|
55
|
Norouzi M, Yathindranath V, Thliveris JA,
Kopec BM, Siahaan TJ and Miller DW: Doxorubicin-loaded iron oxide
nanoparticles for glioblastoma therapy: A combinational approach
for enhanced delivery of nanoparticles. Sci Rep. 10:112922020.
View Article : Google Scholar : PubMed/NCBI
|
|
56
|
Wohlfart S, Khalansky AS, Gelperina S,
Maksimenko O, Bernreuther C, Glatzel M and Kreuter J: Efficient
chemotherapy of rat glioblastoma using doxorubicin-loaded PLGA
nanoparticles with different stabilizers. PLoS One. 6:e191212011.
View Article : Google Scholar : PubMed/NCBI
|
|
57
|
Zhao Y, Yin H and Zhang X: Modification of
graphene oxide by angiopep-2 enhances anti-glioma efficiency of the
nanoscaled delivery system for doxorubicin. Aging (Albany NY).
12:10506–10516. 2020. View Article : Google Scholar : PubMed/NCBI
|
|
58
|
Cen J, Dai X, Zhao H, Li X, Hu X, Wu J and
Duan S: Doxorubicin-loaded liposome with the function of 'Killing
two birds with one stone' against Glioma. ACS Appl Mater
Interfaces. 15:46697–46709. 2023. View Article : Google Scholar : PubMed/NCBI
|
|
59
|
He H, Li Y, Jia XR, Du J, Ying X, Lu WL,
Lou JN and Wei Y: PEGylated Poly(amidoamine) dendrimer-based
dual-targeting carrier for treating brain tumors. Biomaterials.
32:478–487. 2011. View Article : Google Scholar
|
|
60
|
Khoury ES, Sharma A, Ramireddy RR, Thomas
AG, Alt J, Fowler A, Rais R, Tsukamoto T, Blue ME, Slusher B, et
al: Dendrimer-conjugated glutaminase inhibitor selectively targets
microglial glutaminase in a mouse model of Rett syndrome.
Theranostics. 10:5736–5748. 2020. View Article : Google Scholar : PubMed/NCBI
|
|
61
|
Liu C, Zhao Z, Gao H, Rostami I, You Q,
Jia X, Wang C, Zhu L and Yang Y: Enhanced blood-brain-barrier
penetrability and tumor-targeting efficiency by
peptide-functionalized poly(amidoamine) dendrimer for the therapy
of gliomas. Nanotheranostics. 3:311–330. 2019. View Article : Google Scholar : PubMed/NCBI
|
|
62
|
Saw PE, Zhang A, Nie Y, Zhang L, Xu Y and
Xu X: Tumor-associated fibronectin targeted liposomal nanoplatform
for cyclophilin a siRNA delivery and targeted malignant
glioblastoma therapy. Front Pharmacol. 9:11942018. View Article : Google Scholar : PubMed/NCBI
|
|
63
|
Zong T, Mei L, Gao H, Shi K, Chen J, Wang
Y, Zhang Q, Yang Y and He Q: Enhanced glioma targeting and
penetration by dual-targeting liposome co-modified with T7 and TAT.
J Pharm Sci. 103:3891–3901. 2014. View Article : Google Scholar : PubMed/NCBI
|
|
64
|
Feng Q, Shen Y, Fu Y, Muroski ME, Zhang P,
Wang Q, Xu C, Lesniak MS, Li G and Cheng Y: Self-assembly of gold
nanoparticles shows microenvironment-mediated dynamic switching and
enhanced brain tumor targeting. Theranostics. 7:1875–1889. 2017.
View Article : Google Scholar : PubMed/NCBI
|
|
65
|
Liaw K, Sharma R, Sharma A, Salazar S,
Appiani La Rosa S and Kannan RM: Systemic dendrimer delivery of
triptolide to tumor-associated macrophages improves Anti-tumor
efficacy and reduces systemic toxicity in glioblastoma. J Control
Release. 329:434–444. 2021. View Article : Google Scholar :
|
|
66
|
Lu W, Sun Q, Wan J, She Z and Jiang XG:
Cationic albumin-conjugated pegylated nanoparticles allow gene
delivery into brain tumors via intravenous administration. Cancer
Res. 66:11878–11887. 2006. View Article : Google Scholar : PubMed/NCBI
|
|
67
|
Negron K, Khalasawi N, Lu B, Ho CY, Lee J,
Shenoy S, Mao HQ, Wang TH, Hanes J and Suk JS: Widespread gene
transfer to malignant gliomas with In vitro-to-In vivo correlation.
J Control Release. 303:1–11. 2019. View Article : Google Scholar : PubMed/NCBI
|
|
68
|
Wang Y, Wang K, Zhao J, Liu X, Bu J, Yan X
and Huang R: Multifunctional mesoporous Silica-coated graphene
nanosheet used for chemo-photothermal synergistic targeted therapy
of glioma. J Am Chem Soc. 135:4799–4804. 2013. View Article : Google Scholar : PubMed/NCBI
|
|
69
|
Zhang Y, Yu J, Zhang L, Cai J, Cai D and
Lv C: Enhanced anti-tumor effects of doxorubicin on glioma by
entrapping in polybutylcyanoacrylate nanoparticles. Tumour Biol.
37:2703–2708. 2016. View Article : Google Scholar
|
|
70
|
Dal Magro R, Ornaghi F, Cambianica I,
Beretta S, Re F, Musicanti C, Rigolio R, Donzelli E, Canta A,
Ballarini E, et al: ApoE-modified solid lipid nanoparticles: A
feasible strategy to cross the blood-brain barrier. J Control
Release. 249:103–110. 2017. View Article : Google Scholar : PubMed/NCBI
|
|
71
|
Demeule M, Currie JC, Bertrand Y, Che C,
Nguyen T, Regina A, Gabathuler R, Castaigne JP and Beliveau R:
Involvement of the low-density lipoprotein receptor-related protein
in the transcytosis of the brain delivery vector angiopep-2. J
Neurochem. 106:1534–1544. 2008. View Article : Google Scholar : PubMed/NCBI
|
|
72
|
Hultqvist G, Syvanen S, Fang XT, Lannfelt
L and Sehlin D: Bivalent brain shuttle increases antibody uptake by
monovalent binding to the transferrin receptor. Theranostics.
7:308–318. 2017. View Article : Google Scholar : PubMed/NCBI
|
|
73
|
Molino Y, David M, Varini K, Jabes F,
Gaudin N, Fortoul A, Bakloul K, Masse M, Bernard A, Drobecq L, et
al: Use of LDL receptor-targeting peptide vectors for in vitro and
in vivo cargo transport across the blood-brain barrier. FASEB J.
31:1807–1827. 2017. View Article : Google Scholar : PubMed/NCBI
|
|
74
|
Pardridge WM, Kang YS, Buciak JL and Yang
J: Human insulin receptor monoclonal antibody undergoes high
affinity binding to human brain capillaries in vitro and rapid
transcytosis through the blood-brain barrier in vivo in the
primate. Pharm Res. 12:807–816. 1995. View Article : Google Scholar : PubMed/NCBI
|
|
75
|
Ribecco-Lutkiewicz M, Sodja C, Haukenfrers
J, Haqqani AS, Ly D, Zachar P, Baumann E, Ball M, Huang J, Rukhlova
M, et al: A novel human induced pluripotent stem cell blood-brain
barrier model: Applicability to study antibody-triggered
receptor-mediated transcytosis. Sci Rep. 8:18732018. View Article : Google Scholar : PubMed/NCBI
|
|
76
|
Wu LP, Ahmadvand D, Su J, Hall A, Tan X,
Farhangrazi ZS and Moghimi SM: Crossing the blood-brain-barrier
with nanoligand drug carriers self-assembled from a phage display
peptide. Nat Commun. 10:46352019. View Article : Google Scholar : PubMed/NCBI
|
|
77
|
Zhan C, Li B, Hu L, Wei X, Feng L, Fu W
and Lu W: Micelle-based Brain-targeted drug delivery enabled by a
nicotine acetylcholine receptor ligand. Angew Chem Int Ed Engl.
50:5482–5485. 2011. View Article : Google Scholar : PubMed/NCBI
|
|
78
|
Bera S, Kar RK, Mondal S, Pahan K and
Bhunia A: Structural elucidation of the Cell-penetrating penetratin
peptide in model membranes at the atomic level: Probing hydrophobic
interactions in the Blood-brain barrier. Biochemistry.
55:4982–4996. 2016. View Article : Google Scholar : PubMed/NCBI
|
|
79
|
Bertrand Y, Currie JC, Poirier J, Demeule
M, Abulrob A, Fatehi D, Stanimirovic D, Sartelet H, Castaigne JP
and Beliveau R: Influence of glioma tumour microenvironment on the
transport of ANG1005 via low-density lipoprotein receptor-related
protein 1. Br J Cancer. 105:1697–1707. 2011. View Article : Google Scholar : PubMed/NCBI
|
|
80
|
Du D, Chang N, Sun S, Li M, Yu H, Liu M,
Liu X, Wang G, Li H, Liu X, et al: The role of glucose transporters
in the distribution of p-aminophenyl-α-d-mannopyranoside modified
liposomes within mice brain. J Control Release. 182:99–110. 2014.
View Article : Google Scholar : PubMed/NCBI
|
|
81
|
Joshi S, Cooke JRN, Ellis JA, Emala CW and
Bruce JN: Targeting brain tumors by intra-arterial delivery of
cell-penetrating peptides: A novel approach for primary and
metastatic brain malignancy. J Neurooncol. 135:497–506. 2017.
View Article : Google Scholar : PubMed/NCBI
|
|
82
|
Liu Y, Li J, Shao K, Huang R, Ye L, Lou J
and Jiang C: A leptin derived 30-amino-acid peptide modified
pegylated poly-L-lysine dendrigraft for brain targeted gene
delivery. Biomaterials. 31:5246–5257. 2010. View Article : Google Scholar : PubMed/NCBI
|
|
83
|
Molina-Arcas M, Casado FJ and
Pastor-Anglada M: Nucleoside transporter proteins. Curr Vasc
Pharmacol. 7:426–434. 2009. View Article : Google Scholar : PubMed/NCBI
|
|
84
|
Romano A, Koczwara JB, Gallelli CA,
Vergara D, Micioni Di Bonaventura MV, Gaetani S and Giudett AM:
Fats for thoughts: An update on brain fatty acid metabolism. Int J
Biochem Cell Biol. 84:40–45. 2017. View Article : Google Scholar : PubMed/NCBI
|
|
85
|
Strickland M and Stoll EA: Metabolic
reprogramming in glioma. Front Cell Dev Biol. 5:432017. View Article : Google Scholar : PubMed/NCBI
|
|
86
|
Yang Y, Yang Y, Xie X, Cai X, Zhang H,
Gong W, Wang Z and Mei X: PEGylated liposomes with NGR ligand and
heat-activable cell-penetrating peptide-doxorubicin conjugate for
tumor-specific therapy. Biomaterials. 35:4368–4381. 2014.
View Article : Google Scholar : PubMed/NCBI
|
|
87
|
Minty A, Chalon P, Derocq JM, Dumont X,
Guillemot JC, Kaghad M, Labit C, Leplatois P, Liauzun P, Miloux B,
et al: Interleukin-13 is a new human lymphokine regulating
inflammatory and immune responses. Nature. 362:248–250. 1993.
View Article : Google Scholar : PubMed/NCBI
|
|
88
|
Debinski W and Gibo DM: Molecular
expression analysis of restrictive receptor for interleukin 13, a
brain tumor-associated cancer/testis antigen. Mol Med. 6:440–449.
2000. View Article : Google Scholar : PubMed/NCBI
|
|
89
|
Kawakami M, Kawakami K, Takahashi S, Abe M
and Puri RK: Analysis of interleukin-13 receptor alpha2 expression
in human pediatric brain tumors. Cancer. 101:1036–1042. 2004.
View Article : Google Scholar : PubMed/NCBI
|
|
90
|
Madhankumar AB, Slagle-Webb B, Mintz A,
Sheehan JM and Connor JR: Interleukin-13 receptor-targeted
nanovesicles are a potential therapy for glioblastoma multiforme.
Mol Cancer Ther. 5:3162–3169. 2006. View Article : Google Scholar : PubMed/NCBI
|
|
91
|
Wei L, Guo XY, Yang T, Yu MZ, Chen DW and
Wang JC: Brain tumor-targeted therapy by systemic delivery of siRNA
with Transferrin receptor-mediated core-shell nanoparticles. Int J
Pharm. 510:394–405. 2016. View Article : Google Scholar : PubMed/NCBI
|
|
92
|
Gong Z, Chi C, Huang X, Chu H, Wang J, Du
F, Jiang L and Chen J: Cyclophilin a is overexpressed in
hepatocellular carcinoma and is associated with the cell cycle.
Anticancer Res. 37:4443–4447. 2017.PubMed/NCBI
|
|
93
|
Jain R, Atak A, Yeola A and Srivastava S:
Proteomic level changes associated with S3I201 treated U87 glioma
cells. J Proteomics. 150:341–350. 2017. View Article : Google Scholar
|
|
94
|
Yang H, Chen J, Yang J, Qiao S, Zhao S and
Yu L: Cyclophilin A is upregulated in small cell lung cancer and
activates ERK1/2 signal. Biochem Biophys Res Commun. 361:763–767.
2007. View Article : Google Scholar : PubMed/NCBI
|
|
95
|
Campani V, De Rosa G, Misso G, Zarone MR
and Grimaldi A: Lipid nanoparticles to deliver miRNA in cancer.
Curr Pharm Biotechnol. 17:741–749. 2016. View Article : Google Scholar : PubMed/NCBI
|
|
96
|
Singh A, Trivedi P and Jain NK: Advances
in siRNA delivery in cancer therapy. Artif Cells Nanomed
Biotechnol. 46:274–283. 2018. View Article : Google Scholar
|
|
97
|
Pink DL, Loruthai O, Ziolek RM,
Wasutrasawat P, Terry AE, Lawrence MJ and Lorenz CD: On the
structure of solid lipid nanoparticles. Small. 15:e19031562019.
View Article : Google Scholar : PubMed/NCBI
|
|
98
|
Negahdari R, Bohlouli S, Sharifi S, Maleki
Dizaj S, Rahbar Saadat Y, Khezri K, Jafari S, Ahmadian E, Gorbani
Jahandizi N and Raeesi S: Therapeutic benefits of rutin and its
nanoformulations. Phytother Res. 35:1719–1738. 2021. View Article : Google Scholar
|
|
99
|
Ishak RAH, Mostafa NM and Kamel AO:
Stealth lipid polymer hybrid nanoparticles loaded with rutin for
effective brain delivery-comparative study with the gold standard
(Tween 80): Optimization, characterization and biodistribution.
Drug Deliv. 24:1874–1890. 2017. View Article : Google Scholar : PubMed/NCBI
|
|
100
|
Neves AR, Queiroz JF, Lima SAC and Reis S:
Apo E-Functionalization of solid lipid nanoparticles enhances brain
drug delivery: Uptake mechanism and transport pathways. Bioconjug
Chem. 28:995–1004. 2017. View Article : Google Scholar : PubMed/NCBI
|
|
101
|
Banerjee I, De K, Mukherjee D, Dey G,
Chattopadhyay S, Mukherjee M, Mandal M, Bandyopadhyay AK, Gupta A,
Ganguly S and Misra M: Paclitaxel-loaded solid lipid nanoparticles
modified with Tyr-3-octreotide for enhanced anti-angiogenic and
anti-glioma therapy. Acta Biomater. 38:69–81. 2016. View Article : Google Scholar : PubMed/NCBI
|
|
102
|
Mukherjee A, Waters AK, Kalyan P, Achrol
AS, Kesari S and Yenugonda VM: Lipid-polymer hybrid nanoparticles
as a next-generation drug delivery platform: State of the art,
emerging technologies, and perspectives. Int J Nanomedicine.
14:1937–1952. 2019. View Article : Google Scholar : PubMed/NCBI
|
|
103
|
Salzano G, Zappavigna S, Luce A, D'Onofrio
N, Balestrieri ML, Grimaldi A, Lusa S, Ingrosso D, Artuso S, Porru
M, et al: Transferrin-targeted nanoparticles containing zoledronic
acid as a potential tool to inhibit glioblastoma growth. J Biomed
Nanotechnol. 12:811–830. 2016. View Article : Google Scholar : PubMed/NCBI
|
|
104
|
Aili T, Zong JB, Zhou YF, Liu YX, Yang XL,
Hu B and Wu JH: Recent advances of self-assembled nanoparticles in
the diagnosis and treatment of atherosclerosis. Theranostics.
14:7505–7533. 2024. View Article : Google Scholar : PubMed/NCBI
|
|
105
|
Chen C, Shen M, Liao H, Guo Q, Fu H, Yu J
and Duan Y: A paclitaxel and microRNA-124 coloaded stepped
cleavable nanosystem against triple negative breast cancer. J
Nanobiotechnology. 19:552021. View Article : Google Scholar : PubMed/NCBI
|
|
106
|
Srinageshwar B, Peruzzaro S, Andrews M,
Johnson K, Hietpas A, Clark B, McGuire C, Petersen E, Kippe J,
Stewart A, et al: PAMAM dendrimers cross the Blood-brain barrier
when administered through the carotid artery in C57BL/6J mice. Int
J Mol Sci. 18:6282017. View Article : Google Scholar : PubMed/NCBI
|
|
107
|
Li J, Liang H, Liu J and Wang Z: Poly
(amidoamine) (PAMAM) dendrimer mediated delivery of drug and
pDNA/siRNA for cancer therapy. Int J Pharm. 546:215–225. 2018.
View Article : Google Scholar : PubMed/NCBI
|
|
108
|
Fana M, Gallien J, Srinageshwar B, Dunbar
GL and Rossignol J: PAMAM dendrimer nanomolecules utilized as drug
delivery systems for potential treatment of glioblastoma: A
systematic review. Int J Nanomedicine. 15:2789–2808. 2020.
View Article : Google Scholar : PubMed/NCBI
|
|
109
|
Saraswathy M, Knight GT, Pilla S, Ashton
RS and Gong S: Multifunctional drug nanocarriers formed by
cRGD-conjugated betaCD-PAMAM-PEG for targeted cancer therapy.
Colloids Surf B Biointerfaces. 126:590–597. 2015. View Article : Google Scholar : PubMed/NCBI
|
|
110
|
Tambe V, Thakkar S, Raval N, Sharma D,
Kalia K and Tekade RK: Surface engineered dendrimers in siRNA
delivery and gene silencing. Curr Pharm Des. 23:2952–2975. 2017.
View Article : Google Scholar : PubMed/NCBI
|
|
111
|
Liaw K, Zhang F, Mangraviti A, Kannan S,
Tyler B and Kannan RM: Dendrimer size effects on the selective
brain tumor targeting in orthotopic tumor models upon systemic
administration. Bioeng Transl Med. 5:e101602020. View Article : Google Scholar : PubMed/NCBI
|
|
112
|
Sharma A, Liaw K, Sharma R, Zhang Z,
Kannan S and Kannan RM: Targeting mitochondrial dysfunction and
oxidative stress in activated microglia using Dendrimer-based
therapeutics. Theranostics. 8:5529–5547. 2018. View Article : Google Scholar : PubMed/NCBI
|
|
113
|
Sharma R, Kim SY, Sharma A, Zhang Z,
Kambhampati SP, Kannan S and Kannan RM: Activated microglia
targeting Dendrimer-minocycline conjugate as therapeutics for
neuroinflammation. Bioconjug Chem. 28:2874–2886. 2017. View Article : Google Scholar : PubMed/NCBI
|
|
114
|
Hu Q, Yao J, Wang X, Wang Y, Fu X, Ma J,
Lin H, Xu J, Shen L and Yu X: Combinational chemoimmunotherapy for
breast cancer by codelivery of doxorubicin and PD-L1 siRNA using a
PAMAM-incorporated liposomal nanoplatform. ACS Appl Mater
Interfaces. 14:8782–8792. 2022. View Article : Google Scholar : PubMed/NCBI
|
|
115
|
Caraway CA, Gaitsch H, Wicks EE, Kalluri
A, Kunadi N and Tyler BM: Polymeric nanoparticles in brain cancer
therapy: A review of current approaches. Polymers (Basel).
14:29632022. View Article : Google Scholar : PubMed/NCBI
|
|
116
|
Qian L, Zheng J, Wang K, Tang Y, Zhang X,
Zhang H, Huang F, Pei Y and Jiang Y: Cationic core-shell
nanoparticles with carmustine contained within O6-benzylguanine
shell for glioma therapy. Biomaterials. 34:8968–8978. 2013.
View Article : Google Scholar : PubMed/NCBI
|
|
117
|
Zhang P, Hu L, Yin Q, Feng L and Li Y:
Transferrin-modified c[RGDfK]-paclitaxel loaded hybrid micelle for
sequential blood-brain barrier penetration and glioma targeting
therapy. Mol Pharm. 9:1590–1598. 2012. View Article : Google Scholar : PubMed/NCBI
|
|
118
|
Xin H, Chen L, Gu J, Ren X, Wei Z, Luo J,
Chen Y, Jiang X, Sha X and Fang X: Enhanced anti-glioblastoma
efficacy by PTX-loaded PEGylated poly(varepsilon-caprolactone)
nanoparticles: In vitro and in vivo evaluation. Int J Pharm.
402:238–247. 2010. View Article : Google Scholar : PubMed/NCBI
|
|
119
|
Izquierdo M: Short interfering RNAs as a
tool for cancer gene therapy. Cancer Gene Ther. 12:217–227. 2005.
View Article : Google Scholar
|
|
120
|
Razavi ZS, Razavi FS and Alizadeh SS:
Inorganic nanoparticles and blood-brain barrier modulation:
Advancing targeted neurological therapies. Eur J Med Chem.
287:1173572025. View Article : Google Scholar : PubMed/NCBI
|
|
121
|
Liu Y, Bhattarai P, Dai Z and Chen X:
Photothermal therapy and photoacoustic imaging via nanotheranostics
in fighting cancer. Chem Soc Rev. 48:2053–2108. 2019. View Article : Google Scholar :
|
|
122
|
Bernardi RJ, Lowery AR, Thompson PA,
Blaney SM and West JL: Immunonanoshells for targeted photothermal
ablation in medulloblastoma and glioma: An in vitro evaluation
using human cell lines. J Neurooncol. 86:165–172. 2008. View Article : Google Scholar
|
|
123
|
Ruan S, Xie R, Qin L, Yu M, Xiao W, Hu C,
Yu W, Qian Z, Ouyang L, He Q and Gao H: Aggregable
Nanoparticles-enabled chemotherapy and autophagy inhibition
combined with Anti-PD-L1 antibody for improved glioma treatment.
Nano Lett. 19:8318–8332. 2019. View Article : Google Scholar : PubMed/NCBI
|
|
124
|
Qiu J, Kong L, Cao X, Li A, Wei P, Wang L,
Mignani S, Caminade AM, Majoral JP and Shi X: Enhanced delivery of
therapeutic siRNA into glioblastoma cells using Dendrimer-entrapped
gold nanoparticles conjugated with β-cyclodextrin. Nanomaterials
(Basel). 8:1312018. View Article : Google Scholar
|
|
125
|
Maleki P, Dinari A, Jahangiri B and Raheb
J: In vitro assessments of nanoplexes of polyethylenimine-coated
graphene oxide-plasmid through various cancer cell lines and
primary mesenchymal stem cells. PLoS One. 18:e02958222023.
View Article : Google Scholar : PubMed/NCBI
|
|
126
|
Chuang CC, Lan YH, Lu YJ, Weng YL and Chen
JP: Targeted delivery of irinotecan and SLP2 shRNA with
GRP-conjugated magnetic graphene oxide for glioblastoma treatment.
Biomater Sci. 10:3201–3222. 2022. View Article : Google Scholar : PubMed/NCBI
|
|
127
|
Norouzi M, Yathindranath V, Thliveris JA
and Miller DW: Salinomycin-loaded iron oxide nanoparticles for
glioblastoma therapy. Nanomaterials (Basel). 10:4772020. View Article : Google Scholar : PubMed/NCBI
|
|
128
|
Saalik P, Lingasamy P, Toome K, Mastandrea
I, Rousso-Noori L, Tobi A, Simon-Gracia L, Hunt H, Paiste P,
Kotamraju VR, et al: Peptide-guided nanoparticles for glioblastoma
targeting. J Control Release. 308:109–118. 2019. View Article : Google Scholar : PubMed/NCBI
|
|
129
|
Manago A, Leanza L, Carraretto L, Sassi N,
Grancara S, Quintana-Cabrera R, Trimarco V, Toninello A, Scorrano
L, Trentin L, et al: Early effects of the antineoplastic agent
salinomycin on mitochondrial function. Cell Death Dis. 6:e19302015.
View Article : Google Scholar : PubMed/NCBI
|
|
130
|
Zhang Y, Fu X, Jia J, Wikerholmen T, Xi K,
Kong Y, Wang J, Chen H, Ma Y, Li Z, et al: Glioblastoma therapy
using codelivery of cisplatin and glutathione peroxidase targeting
siRNA from iron oxide nanoparticles. ACS Appl Mater Interfaces.
12:43408–43421. 2020. View Article : Google Scholar : PubMed/NCBI
|
|
131
|
Wang X, Ruifang L, Zhu Y, Wang Z, Zhang H,
Cui L, Duan S and Guo Y: Active targeting co-delivery of
therapeutic Sur siRNA and an antineoplastic drug via epidermal
growth factor receptor-mediated magnetic nanoparticles for
synergistic programmed cell death in glioblastoma stem cells.
Materials Chemistry Front. 4:574–588. 2019. View Article : Google Scholar
|
|
132
|
Nichols JW and Bae YH: EPR: Evidence and
fallacy. J Control Release. 190:451–464. 2014. View Article : Google Scholar : PubMed/NCBI
|
|
133
|
Liu J, Yu M, Ning X, Zhou C, Yang S and
Zheng J: PEGylation and zwitterionization: Pros and cons in the
renal clearance and tumor targeting of near-IR-emitting gold
nanoparticles. Angew Chem Int Ed Engl. 52:12572–12576. 2013.
View Article : Google Scholar : PubMed/NCBI
|
|
134
|
Corbo C, Molinaro R, Parodi A, Toledano
Furman NE, Salvatore F and Tasciotti E: The impact of nanoparticle
protein corona on cytotoxicity, immunotoxicity and target drug
delivery. Nanomedicine (Lond). 11:81–100. 2016. View Article : Google Scholar
|
|
135
|
Zhang TX, Zhu GY, Lu BY, Zhang CL and Peng
Q: Concentration-dependent protein adsorption at the nano-bio
interfaces of polymeric nanoparticles and serum proteins.
Nanomedicine (Lond). 12:2757–2769. 2017. View Article : Google Scholar : PubMed/NCBI
|
|
136
|
Liu J, Dong J, Zhang T and Peng Q:
Graphene-based nanomaterials and their potentials in advanced drug
delivery and cancer therapy. J Control Release. 286:64–73. 2018.
View Article : Google Scholar : PubMed/NCBI
|
|
137
|
Xiao W, Wang Y, Zhang H, Liu Y, Xie R, He
X, Zhou Y, Liang L and Gao H: The protein corona hampers the
transcytosis of Transferrin-modified nanoparticles through
blood-brain barrier and attenuates their targeting ability to brain
tumor. Biomaterials. 274:1208882021. View Article : Google Scholar : PubMed/NCBI
|
|
138
|
Schottler S, Landfester K and Mailander V:
Controlling the stealth effect of nanocarriers through
understanding the protein corona. Angew Chem Int Ed Engl.
55:8806–8815. 2016. View Article : Google Scholar : PubMed/NCBI
|
|
139
|
Gao H and He Q: The interaction of
nanoparticles with plasma proteins and the consequent influence on
nanoparticles behavior. Expert Opin Drug Deliv. 11:409–420. 2014.
View Article : Google Scholar : PubMed/NCBI
|
|
140
|
Peng Q, Wei XQ, Yang Q, Zhang S, Zhang T,
Shao XR, Cai XX, Zhang ZR and Lin YF: Enhanced biostability of
nanoparticle-based drug delivery systems by albumin corona.
Nanomedicine (Lond). 10:205–214. 2015. View Article : Google Scholar : PubMed/NCBI
|
|
141
|
Zhang Z, Guan J, Jiang Z, Yang Y, Liu J,
Hua W, Mao Y, Li C, Lu W, Qian J and Zhan C: Brain-targeted drug
delivery by manipulating protein corona functions. Nat Commun.
10:35612019. View Article : Google Scholar : PubMed/NCBI
|
|
142
|
Zhang ZA, Xin X, Liu C, Liu YH, Duan HX,
Qi LL, Zhang YY, Zhao HM, Chen LQ, Jin MJ, et al: Novel
brain-targeted nanomicelles for anti-glioma therapy mediated by the
ApoE-enriched protein corona in vivo. J Nanobiotechnology.
19:4532021. View Article : Google Scholar : PubMed/NCBI
|
|
143
|
Cheng Z, Li M, Dey R and Chen Y:
Nanomaterials for cancer therapy: Current progress and
perspectives. J Hematol Oncol. 14:852021. View Article : Google Scholar : PubMed/NCBI
|
|
144
|
Xu HL, Yang JJ, ZhuGe DL, Lin MT, Zhu QY,
Jin BH, Tong MQ, Shen BX, Xiao J and Zhao YZ: Glioma-targeted
delivery of a theranostic liposome integrated with quantum dots,
superparamagnetic iron oxide, and cilengitide for Dual-imaging
guiding cancer surgery. Adv Healthc Mater. 7:e17011302018.
View Article : Google Scholar : PubMed/NCBI
|
|
145
|
Wu VM, Huynh E, Tang S and Uskokovic V:
Brain and bone cancer targeting by a ferrofluid composed of
superparamagnetic iron-oxide/silica/carbon nanoparticles
(earthicles). Acta Biomater. 88:422–447. 2019. View Article : Google Scholar : PubMed/NCBI
|
|
146
|
Arias-Ramos N, Ibarra LE, Serrano-Torres
M, Yague B, Caverzan MD, Chesta CA, Palacios RE and Lopez-Larrubia
P: Iron oxide incorporated conjugated polymer nanoparticles for
simultaneous use in magnetic resonance and fluorescent imaging of
brain tumors. Pharmaceutics. 13:12582021. View Article : Google Scholar : PubMed/NCBI
|