You can change your cookie settings at any time by following the instructions in our Cookie Policy. To find out more, you may read our Privacy Policy.
I agree
International Journal of Molecular Medicine is an international journal devoted to molecular mechanisms of human disease.
International Journal of Oncology is an international journal devoted to oncology research and cancer treatment.
Covers molecular medicine topics such as pharmacology, pathology, genetics, neuroscience, infectious diseases, molecular cardiology, and molecular surgery.
Oncology Reports is an international journal devoted to fundamental and applied research in Oncology.
Experimental and Therapeutic Medicine is an international journal devoted to laboratory and clinical medicine.
Oncology Letters is an international journal devoted to Experimental and Clinical Oncology.
Explores a wide range of biological and medical fields, including pharmacology, genetics, microbiology, neuroscience, and molecular cardiology.
International journal addressing all aspects of oncology research, from tumorigenesis and oncogenes to chemotherapy and metastasis.
Multidisciplinary open-access journal spanning biochemistry, genetics, neuroscience, environmental health, and synthetic biology.
Open-access journal combining biochemistry, pharmacology, immunology, and genetics to advance health through functional nutrition.
Publishes open-access research on using epigenetics to advance understanding and treatment of human disease.
An International Open Access Journal Devoted to General Medicine.
![]() |
![]() |
![]() |
|
Fidler IJ: The pathogenesis of cancer metastasis: The 'seed and soil' hypothesis revisited. Nat Rev Cancer. 3:453–458. 2003. View Article : Google Scholar : PubMed/NCBI | |
|
Zhao Y, Shen M, Wu L, Yang H, Yao Y, Yang Q, Du J, Liu L, Li Y and Bai Y: Stromal cells in the tumor microenvironment: accomplices of tumor progression? Cell Death Dis. 14:5872023. View Article : Google Scholar : PubMed/NCBI | |
|
Glabman RA, Choyke PL and Sato N: Cancer-associated fibroblasts: Tumorigenicity and targeting for cancer therapy. Cancers (Basel). 14:39062022. View Article : Google Scholar : PubMed/NCBI | |
|
Sun H, Wang X, Wang X, Xu M and Sheng W: The role of cancer-associated fibroblasts in tumorigenesis of gastric cancer. Cell Death Dis. 13:8742022. View Article : Google Scholar : PubMed/NCBI | |
|
Peng Z, Tong Z, Ren Z, Ye M and Hu K: Cancer-associated fibroblasts and its derived exosomes: A new perspective for reshaping the tumor microenvironment. Mol Med. 29:662023. View Article : Google Scholar : PubMed/NCBI | |
|
Li C, Teixeira AF, Zhu HJ and Ten Dijke P: Cancer associated-fibroblast-derived exosomes in cancer progression. Mol Cancer. 20:1542021. View Article : Google Scholar : | |
|
Mao X, Xu J, Wang W, Liang C, Hua J, Liu J, Zhang B, Meng Q, Yu X and Shi S: Crosstalk between cancer-associated fibroblasts and immune cells in the tumor microenvironment: New findings and future perspectives. Mol Cancer. 20:1312021. View Article : Google Scholar : PubMed/NCBI | |
|
Arima Y, Matsueda S and Saya H: Significance of cancer-associated fibroblasts in the interactions of cancer cells with the tumor microenvironment of heterogeneous tumor tissue. Cancers (Basel). 15:25362023. View Article : Google Scholar | |
|
Zhang S, Xiao X, Yi Y, Wang X, Zhu L, Shen Y, Lin D and Wu C: Tumor initiation and early tumorigenesis: Molecular mechanisms and interventional targets. Signal Transduct Target Ther. 9:1492024. View Article : Google Scholar : PubMed/NCBI | |
|
Martínez-Reyes I and Chandel NS: Mitochondrial TCA cycle metabolites control physiology and disease. Nat Commun. 11:1022020. View Article : Google Scholar : PubMed/NCBI | |
|
Akter R, Awais M, Boopathi V, Ahn JC, Yang DC, Kang SC, Yang DU and Jung SK: Inversion of the warburg effect: Unraveling the metabolic nexus between obesity and cancer. ACS Pharmacol Transl Sci. 7:560–569. 2024. View Article : Google Scholar : PubMed/NCBI | |
|
Yang K, Wang X, Song C, He Z, Wang R, Xu Y, Jiang G, Wan Y, Mei J and Mao W: The role of lipid metabolic reprogramming in tumor microenvironment. Theranostics. 13:1774–1808. 2023. View Article : Google Scholar : PubMed/NCBI | |
|
Chen J, Cui L, Lu S and Xu S: Amino acid metabolism in tumor biology and therapy. Cell Death Dis. 15:422024. View Article : Google Scholar : PubMed/NCBI | |
|
Medina M: Metabolic reprogramming is a Hallmark of metabolism itself. Bioessays. 42:e20000582020. View Article : Google Scholar : PubMed/NCBI | |
|
Wu D, Zhuo L and Wang X: Metabolic reprogramming of carcinoma-associated fibroblasts and its impact on metabolic heterogeneity of tumors. Semin Cell Dev Biol. 64:125–131. 2017. View Article : Google Scholar | |
|
Avagliano A, Granato G, Ruocco MR, Romano V, Belviso I, Carfora A, Montagnani S and Arcucci A: Metabolic reprogramming of cancer associated fibroblasts: The slavery of stromal fibroblasts. Biomed Res Int. 2018:60754032018. View Article : Google Scholar : PubMed/NCBI | |
|
Liang L, Li W, Li X, Jin X, Liao Q, Li Y and Zhou Y: 'Reverse Warburg effect' of cancer-associated fibroblasts (Review). Int J Oncol. 60:672022. View Article : Google Scholar | |
|
Hu D, Li Z, Zheng B, Lin X, Pan Y, Gong P, Zhuo W, Hu Y, Chen C, Chen L, et al: Cancer-associated fibroblasts in breast cancer: Challenges and opportunities. Cancer Commun (Lond). 42:401–434. 2022. View Article : Google Scholar : PubMed/NCBI | |
|
Yoon H, Tang CM, Banerjee S, Delgado AL, Yebra M, Davis J and Sicklick JK: TGF-β1-mediated transition of resident fibroblasts to cancer-associated fibroblasts promotes cancer metastasis in gastrointestinal stromal tumor. Oncogenesis. 10:132021. View Article : Google Scholar | |
|
Hartupee J and Mann DL: Role of inflammatory cells in fibroblast activation. J Mol Cell Cardiol. 93:143–148. 2016. View Article : Google Scholar : | |
|
Erez N, Truitt M, Olson P, Arron ST and Hanahan D: Cancer-associated fibroblasts are activated in incipient neoplasia to orchestrate tumor-promoting inflammation in an NF-kappaB-dependent manner. Cancer Cell. 17:135–147. 2010. View Article : Google Scholar : PubMed/NCBI | |
|
Sanz-Moreno V, Gaggioli C, Yeo M, Albrengues J, Wallberg F, Viros A, Hooper S, Mitter R, Féral CC, Cook M, et al: ROCK and JAK1 signaling cooperate to control actomyosin contractility in tumor cells and stroma. Cancer Cell. 20:229–245. 2011. View Article : Google Scholar : PubMed/NCBI | |
|
Shen H, Yu X, Yang F, Zhang Z, Shen J, Sun J, Choksi S, Jitkaew S and Shu Y: Reprogramming of normal fibroblasts into cancer-associated fibroblasts by miRNAs-Mediated CCL2/VEGFA signaling. PLoS Genet. 12:e10062442016. View Article : Google Scholar : PubMed/NCBI | |
|
Calvo F, Ege N, Grande-Garcia A, Hooper S, Jenkins RP, Chaudhry SI, Harrington K, Williamson P, Moeendarbary E, Charras G and Sahai E: Mechanotransduction and YAP-dependent matrix remodelling is required for the generation and maintenance of cancer-associated fibroblasts. Nat Cell Biol. 15:637–646. 2013. View Article : Google Scholar : PubMed/NCBI | |
|
Sahai E, Astsaturov I, Cukierman E, DeNardo DG, Egeblad M, Evans RM, Fearon D, Greten FR, Hingorani SR, Hunter T, et al: A framework for advancing our understanding of cancer-associated fibroblasts. Nat Rev Cancer. 20:174–186. 2020. View Article : Google Scholar : PubMed/NCBI | |
|
Yin C, Evason KJ, Asahina K and Stainier DY: Hepatic stellate cells in liver development, regeneration, and cancer. J Clin Invest. 123:1902–1910. 2013. View Article : Google Scholar : PubMed/NCBI | |
|
Omary MB, Lugea A, Lowe AW and Pandol SJ: The pancreatic stellate cell: A star on the rise in pancreatic diseases. J Clin Invest. 117:50–59. 2007. View Article : Google Scholar : | |
|
Wang F, Li L, Piontek K, Sakaguchi M and Selaru FM: Exosome miR-335 as a novel therapeutic strategy in hepatocellular carcinoma. Hepatology. 67:940–954. 2018. View Article : Google Scholar | |
|
Peng Y and Li Z and Li Z: GRP78 secreted by tumor cells stimulates differentiation of bone marrow mesenchymal stem cells to cancer-associated fibroblasts. Biochem Biophys Res Commun. 440:558–563. 2013. View Article : Google Scholar : PubMed/NCBI | |
|
Shangguan L, Ti X, Krause U, Hai B, Zhao Y, Yang Z and Liu F: Inhibition of TGF-β/Smad signaling by BAMBI blocks differentiation of human mesenchymal stem cells to carcinoma-associated fibroblasts and abolishes their protumor effects. Stem Cells. 30:2810–2819. 2012. View Article : Google Scholar : PubMed/NCBI | |
|
Weber CE, Kothari AN, Wai PY, Li NY, Driver J, Zapf MA, Franzen CA, Gupta GN, Osipo C, Zlobin A, et al: Osteopontin mediates an MZF1-TGF-β1-dependent transformation of mesenchymal stem cells into cancer-associated fibroblasts in breast cancer. Oncogene. 34:4821–4833. 2015. View Article : Google Scholar | |
|
Iwano M, Plieth D, Danoff TM, Xue C, Okada H and Neilson EG: Evidence that fibroblasts derive from epithelium during tissue fibrosis. J Clin Invest. 110:341–350. 2002. View Article : Google Scholar : PubMed/NCBI | |
|
Zeisberg EM, Potenta S, Xie L, Zeisberg M and Kalluri R: Discovery of endothelial to mesenchymal transition as a source for carcinoma-associated fibroblasts. Cancer Res. 67:10123–10128. 2007. View Article : Google Scholar : PubMed/NCBI | |
|
Tang PC, Chung JY, Xue VW, Xiao J, Meng XM, Huang XR, Zhou S, Chan AS, Tsang AC, Cheng AS, et al: Smad3 promotes cancer-associated fibroblasts generation via macrophage-myofibroblast transition. Adv Sci (Weinh). 9:e21012352022. View Article : Google Scholar | |
|
Tang PM, Zhang YY, Xiao J, Tang PC, Chung JY, Li J, Xue VW, Huang XR, Chong CC, Ng CF, et al: Neural transcription factor Pou4f1 promotes renal fibrosis via macrophage-myofibroblast transition. Proc Natl Acad Sci USA. 117:20741–20752. 2020. View Article : Google Scholar | |
|
Dulauroy S, Di Carlo SE, Langa F, Eberl G and Peduto L: Lineage tracing and genetic ablation of ADAM12(+) perivascular cells identify a major source of profibrotic cells during acute tissue injury. Nat Med. 18:1262–1270. 2012. View Article : Google Scholar : PubMed/NCBI | |
|
Jotzu C, Alt E, Welte G, Li J, Hennessy BT, Devarajan E, Krishnappa S, Pinilla S, Droll L and Song YH: Adipose tissue derived stem cells differentiate into carcinoma-associated fibroblast-like cells under the influence of tumor derived factors. Cell Oncol (Dordr). 34:55–67. 2011. View Article : Google Scholar : PubMed/NCBI | |
|
Wikström P, Marusic J, Stattin P and Bergh A: Low stroma androgen receptor level in normal and tumor prostate tissue is related to poor outcome in prostate cancer patients. Prostate. 69:799–809. 2009. View Article : Google Scholar : PubMed/NCBI | |
|
Gieniec KA, Butler LM, Worthley DL and Woods SL: Cancer-associated fibroblasts-heroes or villains? Br J Cancer. 121:293–302. 2019. View Article : Google Scholar : PubMed/NCBI | |
|
Kanzaki R and Pietras K: Heterogeneity of cancer-associated fibroblasts: Opportunities for precision medicine. Cancer Sci. 111:2708–2717. 2020. View Article : Google Scholar : PubMed/NCBI | |
|
Nurmik M, Ullmann P, Rodriguez F, Haan S and Letellier E: In search of definitions: Cancer-associated fibroblasts and their markers. Int J Cancer. 146:895–905. 2020. View Article : Google Scholar | |
|
Hu H, Piotrowska Z, Hare PJ, Chen H, Mulvey HE, Mayfield A, Noeen S, Kattermann K, Greenberg M, Williams A, et al: Three subtypes of lung cancer fibroblasts define distinct therapeutic paradigms. Cancer Cell. 39:1531–1547.e10. 2021. View Article : Google Scholar : PubMed/NCBI | |
|
Zhang H, Yue X, Chen Z, Liu C, Wu W, Zhang N, Liu Z, Yang L, Jiang Q, Cheng Q, et al: Define cancer-associated fibroblasts (CAFs) in the tumor microenvironment: new opportunities in cancer immunotherapy and advances in clinical trials. Mol Cancer. 22:1592023. View Article : Google Scholar : PubMed/NCBI | |
|
Luo H, Xia X, Huang LB, An H, Cao M, Kim GD, Chen HN, Zhang WH, Shu Y, Kong X, et al: Pan-cancer single-cell analysis reveals the heterogeneity and plasticity of cancer-associated fibroblasts in the tumor microenvironment. 13:66192022.PubMed/NCBI | |
|
Öhlund D, Handly-Santana A, Biffi G, Elyada E, Almeida AS, Ponz-Sarvise M, Corbo V, Oni TE, Hearn SA, Lee EJ, et al: Distinct populations of inflammatory fibroblasts and myofibroblasts in pancreatic cancer. J Exp Med. 214:579–596. 2017. View Article : Google Scholar : PubMed/NCBI | |
|
Elyada E, Bolisetty M, Laise P, Flynn WF, Courtois ET, Burkhart RA, Teinor JA, Belleau P, Biffi G, Lucito MS, et al: Cross-species single-cell analysis of pancreatic ductal adenocarcinoma reveals antigen-presenting cancer-associated fibroblasts. Cancer Discov. 9:1102–1123. 2019. View Article : Google Scholar : PubMed/NCBI | |
|
Cords L, Engler S, Haberecker M, Rüschoff JH, Moch H, de Souza N and Bodenmiller B: Cancer-associated fibroblast phenotypes are associated with patient outcome in non-small cell lung cancer. Cancer Cell. 42:396–412.e5. 2024. View Article : Google Scholar : PubMed/NCBI | |
|
Li X, Sun Z, Peng G, Xiao Y, Guo J, Wu B, Li X, Zhou W, Li J, Li Z, et al: Single-cell RNA sequencing reveals a pro-invasive cancer-associated fibroblast subgroup associated with poor clinical outcomes in patients with gastric cancer. Theranostics. 12:620–638. 2022. View Article : Google Scholar : | |
|
Roulis M, Kaklamanos A, Schernthanner M, Bielecki P, Zhao J, Kaffe E, Frommelt LS, Qu R, Knapp MS, Henriques A, et al: Paracrine orchestration of intestinal tumorigenesis by a mesenchymal niche. Nature. 580:524–529. 2020. View Article : Google Scholar : | |
|
Bartoschek M, Oskolkov N, Bocci M, Lövrot J, Larsson C, Sommarin M, Madsen CD, Lindgren D, Pekar G, Karlsson G, et al: Spatially and functionally distinct subclasses of breast cancer-associated fibroblasts revealed by single cell RNA sequencing. Nat Commun. 9:51502018. View Article : Google Scholar : | |
|
Kazakova AN, Lukina MM, Anufrieva KS, Bekbaeva IV, Ivanova OM, Shnaider PV, Slonov A, Arapidi GP and Shender VO: Exploring the diversity of cancer-associated fibroblasts: Insights into mechanisms of drug resistance. Front Cell Dev Biol. 12:14031222024. View Article : Google Scholar : PubMed/NCBI | |
|
Huang H, Wang Z, Zhang Y, Pradhan RN, Ganguly D, Chandra R, Murimwa G, Wright S, Gu X, Maddipati R, et al: Mesothelial cell-derived antigen-presenting cancer-associated fibroblasts induce expansion of regulatory T cells in pancreatic cancer. Cancer Cell. 40:656–673.e7. 2022. View Article : Google Scholar | |
|
Biffi G, Oni TE, Spielman B, Hao Y, Elyada E, Park Y, Preall J and Tuveson DA: IL1-Induced JAK/STAT signaling is antagonized by TGFβ to shape CAF heterogeneity in pancreatic ductal adenocarcinoma. Cancer Discov. 9:282–301. 2019. View Article : Google Scholar | |
|
Wang Y, Liang Y, Xu H, Zhang X, Mao T, Cui J, Yao J, Wang Y, Jiao F, Xiao X, et al: Single-cell analysis of pancreatic ductal adenocarcinoma identifies a novel fibroblast subtype associated with poor prognosis but better immunotherapy response. Cell Discov. 7:362021. View Article : Google Scholar : PubMed/NCBI | |
|
Niu N, Shen X, Wang Z, Chen Y, Weng Y, Yu F, Tang Y, Lu P, Liu M, Wang L, et al: Tumor cell-intrinsic epigenetic dysregulation shapes cancer-associated fibroblasts heterogeneity to metabolically support pancreatic cancer. Cancer Cell. 42:869–884.e9. 2024. View Article : Google Scholar | |
|
Lambrechts D, Wauters E, Boeckx B, Aibar S, Nittner D, Burton O, Bassez A, Decaluwé H, Pircher A, Van den Eynde K, et al: Phenotype molding of stromal cells in the lung tumor microenvironment. Nat Med. 24:1277–1289. 2018. View Article : Google Scholar : PubMed/NCBI | |
|
Foster DS, Januszyk M, Delitto D, Yost KE, Griffin M, Guo J, Guardino N, Delitto AE, Chinta M, Burcham AR, et al: Multiomic analysis reveals conservation of cancer-associated fibroblast phenotypes across species and tissue of origin. Cancer Cell. 40:1392–1406.e7. 2022. View Article : Google Scholar : PubMed/NCBI | |
|
Ma C, Yang C, Peng A, Sun T, Ji X, Mi J, Wei L, Shen S and Feng Q: Pan-cancer spatially resolved single-cell analysis reveals the crosstalk between cancer-associated fibroblasts and tumor microenvironment. Mol Cancer. 22:1702023. View Article : Google Scholar : PubMed/NCBI | |
|
Nong S, Han X, Xiang Y, Qian Y, Wei Y, Zhang T, Tian K, Shen K, Yang J and Ma X: Metabolic reprogramming in cancer: Mechanisms and therapeutics. MedComm (2020). 4:e2182023. View Article : Google Scholar | |
|
Li Z, Sun C and Qin Z: Metabolic reprogramming of cancer-associated fibroblasts and its effect on cancer cell reprogramming. Theranostics. 11:8322–8336. 2021. View Article : Google Scholar : PubMed/NCBI | |
|
Mamun AA, Hayashi H, Yamamura A, Nayeem MJ and Sato M: Hypoxia induces the translocation of glucose transporter 1 to the plasma membrane in vascular endothelial cells. J Physiol Sci. 70:442020. View Article : Google Scholar : PubMed/NCBI | |
|
Snell CE, Turley H, McIntyre A, Li D, Masiero M, Schofield CJ, Gatter KC, Harris AL and Pezzella F: Proline-hydroxylated hypoxia-inducible factor 1α (HIF-1α) upregulation in human tumours. PLoS One. 9:e889552014. View Article : Google Scholar | |
|
Xu G, Li M, Wu J, Qin C, Tao Y and He H: Circular RNA circ-NRIP1 sponges microRNA-138-5p to maintain hypoxia-induced resistance to 5-fluorouracil through HIF-1α-dependent glucose metabolism in gastric carcinoma. Cancer Manag Res. 12:2789–2802. 2020. View Article : Google Scholar | |
|
Zhang D, Wang Y, Shi Z, Liu J, Sun P, Hou X, Zhang J, Zhao S, Zhou BP and Mi J: Metabolic reprogramming of cancer-associated fibroblasts by IDH3α downregulation. Cell Rep. 10:1335–1348. 2015. View Article : Google Scholar : PubMed/NCBI | |
|
Rodríguez-García A, Samsó P, Fontova P, Simon-Molas H, Manzano A, Castaño E, Rosa JL, Martinez-Outshoorn U, Ventura F, Navarro-Sabaté À and Bartrons R: TGF-β1 targets Smad, p38 MAPK, and PI3K/Akt signaling pathways to induce PFKFB3 gene expression and glycolysis in glioblastoma cells. FEBS J. 284:3437–3454. 2017. View Article : Google Scholar | |
|
Wei X, Hou Y, Long M, Jiang L and Du Y: Molecular mechanisms underlying the role of hypoxia-inducible factor-1 α in metabolic reprogramming in renal fibrosis. Front Endocrinol (Lausanne). 13:9273292022. View Article : Google Scholar | |
|
Shi X, Yang J, Deng S, Xu H, Wu D, Zeng Q, Wang S, Hu T, Wu F and Zhou H: TGF-β signaling in the tumor metabolic microenvironment and targeted therapies. J Hematol Oncol. 15:1352022. View Article : Google Scholar | |
|
Wang SF, Tseng LM and Lee HC: Role of mitochondrial alterations in human cancer progression and cancer immunity. J Biomed Sci. 30:612023. View Article : Google Scholar : | |
|
Shimura T, Sasatani M, Kawai H, Kamiya K, Kobayashi J, Komatsu K and Kunugita N: Radiation-Induced myofibroblasts promote tumor growth via mitochondrial ROS-Activated TGFβ Signaling. Mol Cancer Res. 16:1676–1686. 2018. View Article : Google Scholar | |
|
Chakraborty PK, Mustafi SB, Xiong X, Dwivedi SKD, Nesin V, Saha S, Zhang M, Dhanasekaran D, Jayaraman M, Mannel R, et al: MICU1 drives glycolysis and chemoresistance in ovarian cancer. Nat Commun. 8:146342017. View Article : Google Scholar : PubMed/NCBI | |
|
Sung JS, Kang CW, Kang S, Jang Y, Chae YC, Kim BG and Cho NH: ITGB4-mediated metabolic reprogramming of cancer-associated fibroblasts. Oncogene. 39:664–676. 2020. View Article : Google Scholar | |
|
Li X, Yang Y, Zhang B, Lin X, Fu X, An Y, Zou Y, Wang JX, Wang Z and Yu T: Lactate metabolism in human health and disease. Signal Transduct Target Ther. 7:3052022. View Article : Google Scholar : PubMed/NCBI | |
|
Qiao Y, Liu Y, Ran R, Zhou Y, Gong J, Liu L, Zhang Y, Wang H, Fan Y, Fan Y, et al: Lactate metabolism and lactylation in breast cancer: mechanisms and implications. Cancer Metastasis Rev. 44:482025. View Article : Google Scholar : | |
|
Kozlov AM, Lone A, Betts DH and Cumming RC: Lactate preconditioning promotes a HIF-1α-mediated metabolic shift from OXPHOS to glycolysis in normal human diploid fibroblasts. Sci Rep. 10:83882020. View Article : Google Scholar | |
|
Ishihara S, Hata K, Hirose K, Okui T, Toyosawa S, Uzawa N, Nishimura R and Yoneda T: The lactate sensor GPR81 regulates glycolysis and tumor growth of breast cancer. Sci Rep. 12:62612022. View Article : Google Scholar : PubMed/NCBI | |
|
Luo M, Zhu J, Ren J, Tong Y, Wang L, Ma S and Wang J: Lactate increases tumor malignancy by promoting tumor small extracellular vesicles production via the GPR81-cAMP-PKA-HIF-1α axis. Front Oncol. 12:10365432022. View Article : Google Scholar | |
|
Yang L, Gilbertsen A, Xia H, Benyumov A, Smith K, Herrera J, Racila E, Bitterman PB and Henke CA: Hypoxia enhances IPF mesenchymal progenitor cell fibrogenicity via the lactate/GPR81/HIF1α pathway. JCI insight. 8:e1638202023. View Article : Google Scholar | |
|
Fontana F, Giannitti G, Marchesi S and Limonta P: The PI3K/Akt pathway and glucose metabolism: A dangerous liaison in cancer. Int J Biol Sci. 20:3113–3125. 2024. View Article : Google Scholar : PubMed/NCBI | |
|
Payen VL, Porporato PE, Baselet B and Sonveaux P: Metabolic changes associated with tumor metastasis, part 1: Tumor pH, glycolysis and the pentose phosphate pathway. Cell Mol Life Sci. 73:1333–1348. 2016. View Article : Google Scholar | |
|
Mestre-Farrera A, Bruch-Oms M, Peña R, Rodríguez-Morató J, Alba-Castellón L, Comerma L, Quintela-Fandino M, Duñach M, Baulida J, Pozo ÓJ and García de Herreros A: Glutamine-directed migration of cancer-activated fibroblasts facilitates epithelial tumor invasion. Cancer Res. 81:438–451. 2021. View Article : Google Scholar | |
|
He C, Peng M, Zeng X, Dong H, Sun Z, Xu J, Liu M, Liu L, Huang Y, Peng Z, et al: Microenvironmental G protein-coupled estrogen receptor-mediated glutamine metabolic coupling between cancer-associated fibroblasts and triple-negative breast cancer cells governs tumour progression. Clin Transl Med. 14:e701312024. View Article : Google Scholar : PubMed/NCBI | |
|
Sousa CM, Biancur DE, Wang X, Halbrook CJ, Sherman MH, Zhang L, Kremer D, Hwang RF, Witkiewicz AK, Ying H, et al: Pancreatic stellate cells support tumour metabolism through autophagic alanine secretion. Nature. 536:479–483. 2016. View Article : Google Scholar : PubMed/NCBI | |
|
Kay EJ, Paterson K, Riera-Domingo C, Sumpton D, Däbritz JHM, Tardito S, Boldrini C, Hernandez-Fernaud JR, Athineos D, Dhayade S, et al: Cancer-associated fibroblasts require proline synthesis by PYCR1 for the deposition of pro-tumorigenic extracellular matrix. Nat Metab. 4:693–710. 2022. View Article : Google Scholar : PubMed/NCBI | |
|
Kay EJ, Zanivan S and Rufini A: Proline metabolism shapes the tumor microenvironment: From collagen deposition to immune evasion. Curr Opin Biotechnol. 84:1030112023. View Article : Google Scholar : PubMed/NCBI | |
|
Huynh TYL, Zareba I, Baszanowska W, Lewoniewska S and Palka J: Understanding the role of key amino acids in regulation of proline dehydrogenase/proline oxidase (prodh/pox)-dependent apoptosis/autophagy as an approach to targeted cancer therapy. Mol Cell Biochem. 466:35–44. 2020. View Article : Google Scholar | |
|
Ino Y, Yamazaki-Itoh R, Oguro S, Shimada K, Kosuge T, Zavada J, Kanai Y and Hiraoka N: Arginase II expressed in cancer-associated fibroblasts indicates tissue hypoxia and predicts poor outcome in patients with pancreatic cancer. PLoS One. 8:e551462013. View Article : Google Scholar : PubMed/NCBI | |
|
Jin HR, Wang J, Wang ZJ, Xi MJ, Xia BH, Deng K and Yang JL: Lipid metabolic reprogramming in tumor microenvironment: From mechanisms to therapeutics. J Hematol Oncol. 16:1032023. View Article : Google Scholar : PubMed/NCBI | |
|
Jabbari K, Cheng Q, Winkelmaier G, Furuta S and Parvin B: CD36(+) fibroblasts secrete protein ligands that growth-suppress triple-negative breast cancer cells while elevating adipogenic markers for a model of cancer-associated fibroblast. Int J Mol Sci. 23:127442022. View Article : Google Scholar : PubMed/NCBI | |
|
Zhu GQ, Tang Z, Huang R, Qu WF, Fang Y, Yang R, Tao CY, Gao J, Wu XL, Sun HX, et al: CD36(+) cancer-associated fibroblasts provide immunosuppressive microenvironment for hepatocellular carcinoma via secretion of macrophage migration inhibitory factor. Cell Discov. 9:252023. View Article : Google Scholar | |
|
Lopes-Coelho F, André S, Félix A and Serpa J: Breast cancer metabolic cross-talk: Fibroblasts are hubs and breast cancer cells are gatherers of lipids. Mol Cell Endocrinol. 462(Pt B): 93–106. 2018. View Article : Google Scholar | |
|
Wu F, Yang J, Liu J, Wang Y, Mu J, Zeng Q, Deng S and Zhou H: Signaling pathways in cancer-associated fibroblasts and targeted therapy for cancer. Signal Transduct Target Ther. 6:2182021. View Article : Google Scholar : PubMed/NCBI | |
|
Zhang Y, Gu Z, Wan J, Lou X, Liu S, Wang Y, Bian Y, Wang F, Li Z and Qin Z: Stearoyl-CoA Desaturase-1 dependent lipid droplets accumulation in cancer-associated fibroblasts facilitates the progression of lung cancer. Int J Biol Sci. 18:6114–6128. 2022. View Article : Google Scholar : | |
|
Santi A, Caselli A, Ranaldi F, Paoli P, Mugnaioni C, Michelucci E and Cirri P: Cancer associated fibroblasts transfer lipids and proteins to cancer cells through cargo vesicles supporting tumor growth. Biochim Biophys Acta. 1853:3211–3223. 2015. View Article : Google Scholar | |
|
Beach JA, Aspuria PJ, Cheon DJ, Lawrenson K, Agadjanian H, Walsh CS, Karlan BY and Orsulic S: Sphingosine kinase 1 is required for TGF-β mediated fibroblastto-myofibroblast differentiation in ovarian cancer. Oncotarget. 7:4167–4182. 2016. View Article : Google Scholar | |
|
Auciello FR, Bulusu V, Oon C, Tait-Mulder J, Berry M, Bhattacharyya S, Tumanov S, Allen-Petersen BL, Link J, Kendsersky ND, et al: A stromal lysolipid-autotaxin signaling axis promotes pancreatic tumor progression. Cancer Discov. 9:617–627. 2019. View Article : Google Scholar : | |
|
Charo C, Holla V, Arumugam T, Hwang R, Yang P, Dubois RN, Menter DG, Logsdon CD and Ramachandran V: Prostaglandin E2 regulates pancreatic stellate cell activity via the EP4 receptor. Pancreas. 42:467–474. 2013. View Article : Google Scholar : | |
|
Martinez-Outschoorn UE, Lin Z, Whitaker-Menezes D, Howell A, Lisanti MP and Sotgia F: Ketone bodies and two-compartment tumor metabolism: Stromal ketone production fuels mitochondrial biogenesis in epithelial cancer cells. Cell Cycle. 11:3956–3963. 2012. View Article : Google Scholar : | |
|
Chirieac LR: Tumor cell proliferation, proliferative index and mitotic count in lung cancer. Transl Lung Cancer Res. 5:554–556. 2016. View Article : Google Scholar : PubMed/NCBI | |
|
Feitelson MA, Arzumanyan A, Kulathinal RJ, Blain SW, Holcombe RF, Mahajna J, Marino M, Martinez-Chantar ML, Nawroth R, Sanchez-Garcia I, et al: Sustained proliferation in cancer: Mechanisms and novel therapeutic targets. Semin Cancer Biol. 35(Suppl): S25–S54. 2015. View Article : Google Scholar | |
|
Prieto-Fernández L, Montoro-Jiménez I, de Luxan-Delgado B, Otero-Rosales M, Rodrigo JP, Calvo F, García-Pedrero JM and Álvarez-Teijeiro S: Dissecting the functions of cancer-associated fibroblasts to therapeutically target head and neck cancer microenvironment. Biomed Pharmacother. 161:1145022023. View Article : Google Scholar : PubMed/NCBI | |
|
Martinez-Outschoorn UE, Lisanti MP and Sotgia F: Catabolic cancer-associated fibroblasts transfer energy and biomass to anabolic cancer cells, fueling tumor growth. Semin Cancer Biol. 25:47–60. 2014. View Article : Google Scholar : PubMed/NCBI | |
|
Fiaschi T, Marini A, Giannoni E, Taddei ML, Gandellini P, De Donatis A, Lanciotti M, Serni S, Cirri P and Chiarugi P: Reciprocal metabolic reprogramming through lactate shuttle coordinately influences tumor-stroma interplay. Cancer Res. 72:5130–5140. 2012. View Article : Google Scholar : PubMed/NCBI | |
|
Becker LM, O'Connell JT, Vo AP, Cain MP, Tampe D, Bizarro L, Sugimoto H, McGow AK, Asara JM, Lovisa S, et al: Epigenetic reprogramming of cancer-associated fibroblasts deregulates glucose metabolism and facilitates progression of breast cancer. Cell Rep. 31:1077012020. View Article : Google Scholar : PubMed/NCBI | |
|
Li Y, Zhao Z, Liu W and Li X: SNHG3 Functions as miRNA sponge to promote breast cancer cells growth through the metabolic reprogramming. Appl Biochem Biotechnol. 191:1084–1099. 2020. View Article : Google Scholar : PubMed/NCBI | |
|
Zhang X, Dong Y, Zhao M, Ding L, Yang X, Jing Y, Song Y, Chen S, Hu Q and Ni Y: ITGB2-mediated metabolic switch in CAFs promotes OSCC proliferation by oxidation of NADH in mitochondrial oxidative phosphorylation system. Theranostics. 10:12044–12059. 2020. View Article : Google Scholar : PubMed/NCBI | |
|
Bertero T, Oldham WM, Grasset EM, Bourget I, Boulter E, Pisano S, Hofman P, Bellvert F, Meneguzzi G, Bulavin DV, et al: Tumor-Stroma mechanics coordinate amino acid availability to sustain tumor growth and malignancy. Cell Metab. 29:124–140.e10. 2019. View Article : Google Scholar | |
|
Yang L, Achreja A, Yeung TL, Mangala LS, Jiang D, Han C, Baddour J, Marini JC, Ni J, Nakahara R, et al: Targeting stromal glutamine synthetase in tumors disrupts tumor microenvironment-regulated cancer cell growth. Cell Metab. 24:685–700. 2016. View Article : Google Scholar : PubMed/NCBI | |
|
Linares JF, Cordes T, Duran A, Reina-Campos M, Valencia T, Ahn CS, Castilla EA, Moscat J, Metallo CM and Diaz-Meco MT: ATF4-induced metabolic reprograming is a synthetic vulnerability of the p62-deficient tumor stroma. Cell Metab. 26:817–829.e6. 2017. View Article : Google Scholar : PubMed/NCBI | |
|
Mishra R, Haldar S, Placencio V, Madhav A, Rohena-Rivera K, Agarwal P, Duong F, Angara B, Tripathi M, Liu Z, et al: Stromal epigenetic alterations drive metabolic and neuroendocrine prostate cancer reprogramming. J Clin Invest. 128:4472–4484. 2018. View Article : Google Scholar : | |
|
Gerashchenko TS, Novikov NM, Krakhmal NV, Zolotaryova SY, Zavyalova MV, Cherdyntseva NV, Denisov EV and Perelmuter VM: Markers of cancer cell invasion: Are they good enough? J Clin Med. 8:10922019. View Article : Google Scholar : PubMed/NCBI | |
|
Bànkfalvi A and Piffkò J: Prognostic and predictive factors in oral cancer: The role of the invasive tumour front. J Oral Pathol Med. 29:291–298. 2000. View Article : Google Scholar | |
|
Sahai E: Mechanisms of cancer cell invasion. Curr Opin Genet Dev. 15:87–96. 2005. View Article : Google Scholar : PubMed/NCBI | |
|
Wirtz D, Konstantopoulos K and Searson PC: The physics of cancer: The role of physical interactions and mechanical forces in metastasis. Nat Rev Cancer. 11:512–522. 2011. View Article : Google Scholar : PubMed/NCBI | |
|
Nagelkerke A, Bussink J, Rowan AE and Span PN: The mechanical microenvironment in cancer: How physics affects tumours. Semin Cancer Biol. 35:62–70. 2015. View Article : Google Scholar : PubMed/NCBI | |
|
Liu QP, Luo Q, Deng B, Ju Y and Song GB: Stiffer matrix accelerates migration of hepatocellular carcinoma cells through enhanced aerobic glycolysis via the MAPK-YAP signaling. Cancers (Basel). 12:4902020. View Article : Google Scholar : PubMed/NCBI | |
|
Wu X, Zhou Z, Xu S, Liao C, Chen X, Li B, Peng J, Li D and Yang L: Extracellular vesicle packaged LMP1-activated fibroblasts promote tumor progression via autophagy and stroma-tumor metabolism coupling. Cancer Lett. 478:93–106. 2020. View Article : Google Scholar : PubMed/NCBI | |
|
Gong J, Lin Y, Zhang H, Liu C, Cheng Z, Yang X, Zhang J, Xiao Y, Sang N, Qian X, et al: Reprogramming of lipid metabolism in cancer-associated fibroblasts potentiates migration of colorectal cancer cells. Cell Death Dis. 11:2672020. View Article : Google Scholar : PubMed/NCBI | |
|
Wang H, Liu F, Wu X, Zhu G, Tang Z, Qu W, Zhao Q, Huang R, Tian M, Fang Y, et al: Cancer-associated fibroblasts contributed to hepatocellular carcinoma recurrence and metastasis via CD36-mediated fatty-acid metabolic reprogramming. Exp Cell Res. 435:1139472024. View Article : Google Scholar : PubMed/NCBI | |
|
Sun K, Tang S, Hou Y, Xi L, Chen Y, Yin J, Peng M, Zhao M, Cui X and Liu M: Oxidized ATM-mediated glycolysis enhancement in breast cancer-associated fibroblasts contributes to tumor invasion through lactate as metabolic coupling. EBioMedicine. 41:370–383. 2019. View Article : Google Scholar : PubMed/NCBI | |
|
Shan T, Chen S, Chen X, Lin WR, Li W, Ma J, Wu T, Cui X, Ji H, Li Y and Kang Y: Cancer-associated fibroblasts enhance pancreatic cancer cell invasion by remodeling the metabolic conversion mechanism. Oncol Rep. 37:1971–1979. 2017. View Article : Google Scholar : PubMed/NCBI | |
|
Siemann DW and Horsman MR: Modulation of the tumor vasculature and oxygenation to improve therapy. Pharmacol Ther. 153:107–124. 2015. View Article : Google Scholar : PubMed/NCBI | |
|
Ribatti D and Pezzella F: Overview on the different patterns of tumor vascularization. Cells. 10:6392021. View Article : Google Scholar : PubMed/NCBI | |
|
Katayama Y, Uchino J, Chihara Y, Tamiya N, Kaneko Y, Yamada T and Takayama K: Tumor neovascularization and developments in therapeutics. Cancers (Basel). 11:3162019. View Article : Google Scholar : PubMed/NCBI | |
|
Dudley AC and Griffioen AW: Pathological angiogenesis: Mechanisms and therapeutic strategies. Angiogenesis. 26:313–347. 2023. View Article : Google Scholar : PubMed/NCBI | |
|
Zhu Y, Li X, Wang L, Hong X and Yang J: Metabolic reprogramming and crosstalk of cancer-related fibroblasts and immune cells in the tumor microenvironment. Front Endocrinol (Lausanne). 13:9882952022. View Article : Google Scholar : PubMed/NCBI | |
|
Bonuccelli G, Whitaker-Menezes D, Castello-Cros R, Pavlides S, Pestell RG, Fatatis A, Witkiewicz AK, Vander Heiden MG, Migneco G, Chiavarina B, et al: The reverse Warburg effect: glycolysis inhibitors prevent the tumor promoting effects of caveolin-1 deficient cancer associated fibroblasts. Cell Cycle. 9:1960–1971. 2010. View Article : Google Scholar : PubMed/NCBI | |
|
Yang J, Shi X, Yang M, Luo J, Gao Q, Wang X, Wu Y, Tian Y, Wu F and Zhou H: Glycolysis reprogramming in cancer-associated fibroblasts promotes the growth of oral cancer through the lncRNA H19/miR-675-5p/PFKFB3 signaling pathway. Int J Oral Sci. 13:122021. View Article : Google Scholar : PubMed/NCBI | |
|
Li X, Jiang E, Zhao H, Chen Y, Xu Y, Feng C, Li J and Shang Z: Glycometabolic reprogramming-mediated proangiogenic phenotype enhancement of cancer-associated fibroblasts in oral squamous cell carcinoma: role of PGC-1α/PFKFB3 axis. Br J Cancer. 127:449–461. 2022. View Article : Google Scholar : PubMed/NCBI | |
|
Zhou Y, Ren H, Dai B, Li J, Shang L, Huang J and Shi X: Hepatocellular carcinoma-derived exosomal miRNA-21 contributes to tumor progression by converting hepatocyte stellate cells to cancer-associated fibroblasts. J Exp Clin Cancer Res. 37:3242018. View Article : Google Scholar : PubMed/NCBI | |
|
Hsu WH, LaBella KA, Lin Y, Xu P, Lee R, Hsieh CE, Yang L, Zhou A, Blecher JM, Wu CJ, et al: Oncogenic KRAS drives lipofibrogenesis to promote angiogenesis and colon cancer progression. Cancer Discov. 13:2652–2673. 2023. View Article : Google Scholar : PubMed/NCBI | |
|
Verginadis II, Avgousti H, Monslow J, Skoufos G, Chinga F, Kim K, Leli NM, Karagounis IV, Bell BI, Velalopoulou A, et al: A stromal integrated stress response activates perivascular cancer-associated fibroblasts to drive angiogenesis and tumour progression. Nat Cell Biol. 24:940–953. 2022. View Article : Google Scholar : PubMed/NCBI | |
|
Qian CN, Mei Y and Zhang J: Cancer metastasis: Issues and challenges. Chin J Cancer. 36:382017. View Article : Google Scholar : PubMed/NCBI | |
|
Fares J, Fares MY, Khachfe HH, Salhab HA and Fares Y: Molecular principles of metastasis: A hallmark of cancer revisited. Signal Transduct Target Ther. 5:282020. View Article : Google Scholar : PubMed/NCBI | |
|
Eble JA and Niland S: The extracellular matrix in tumor progression and metastasis. Clin Exp Metastasis. 36:171–198. 2019. View Article : Google Scholar : PubMed/NCBI | |
|
Curtis M, Kenny HA, Ashcroft B, Mukherjee A, Johnson A, Zhang Y, Helou Y, Batlle R, Liu X, Gutierrez N, et al: Fibroblasts mobilize tumor cell glycogen to promote proliferation and metastasis. Cell Metab. 29:141–155.e9. 2019. View Article : Google Scholar : | |
|
Wang Y, Wang X, Bai B, Shaha A, He X, He Y, Ye Z, Shah VH and Kang N: Targeting Src SH3 domain-mediated glycolysis of HSC suppresses transcriptome, myofibroblastic activation, and colorectal liver metastasis. Hepatology. 80:578–594. 2024. View Article : Google Scholar : PubMed/NCBI | |
|
Zhang C, Wang XY, Zhang P, He TC, Han JH, Zhang R, Lin J, Fan J, Lu L, Zhu WW, et al: Cancer-derived exosomal HSPC111 promotes colorectal cancer liver metastasis by reprogramming lipid metabolism in cancer-associated fibroblasts. Cell Death Dis. 13:572022. View Article : Google Scholar : PubMed/NCBI | |
|
Li Q, Zhu CC, Ni B, Zhang ZZ, Jiang SH, Hu LP, Wang X, Zhang XX, Huang PQ, Yang Q, et al: Lysyl oxidase promotes liver metastasis of gastric cancer via facilitating the reciprocal interactions between tumor cells and cancer associated fibroblasts. EBioMedicine. 49:157–171. 2019. View Article : Google Scholar : PubMed/NCBI | |
|
Tian Y, Wang X, Wu C, Qiao J, Jin H and Li H: A protracted war against cancer drug resistance. Cancer Cell Int. 24:3262024. View Article : Google Scholar : PubMed/NCBI | |
|
Lei ZN, Tian Q, Teng QX, Wurpel JND, Zeng L, Pan Y and Chen ZS: Understanding and targeting resistance mechanisms in cancer. MedComm (2020). 4:e2652023. View Article : Google Scholar : PubMed/NCBI | |
|
Dhanyamraju PK: Drug resistance mechanisms in cancers: Execution of pro-survival strategies. J Biomed Res. 38:95–121. 2024. View Article : Google Scholar : PubMed/NCBI | |
|
Zaal EA and Berkers CR: The influence of metabolism on drug response in cancer. Front Oncol. 8:5002018. View Article : Google Scholar : PubMed/NCBI | |
|
Broekgaarden M, Anbil S, Bulin AL, Obaid G, Mai Z, Baglo Y, Rizvi I and Hasan T: Modulation of redox metabolism negates cancer-associated fibroblasts-induced treatment resistance in a heterotypic 3D culture platform of pancreatic cancer. Biomaterials. 222:1194212019. View Article : Google Scholar : PubMed/NCBI | |
|
Ko YH, Lin Z, Flomenberg N, Pestell RG, Howell A, Sotgia F, Lisanti MP and Martinez-Outschoorn UE: Glutamine fuels a vicious cycle of autophagy in the tumor stroma and oxidative mitochondrial metabolism in epithelial cancer cells: Implications for preventing chemotherapy resistance. Cancer Biol Ther. 12:1085–1097. 2011. View Article : Google Scholar | |
|
Raez LE, Papadopoulos K, Ricart AD, Chiorean EG, Dipaola RS, Stein MN, Rocha Lima CM, Schlesselman JJ, Tolba K, Langmuir VK, et al: A phase I dose-escalation trial of 2-deoxy-D-glucose alone or combined with docetaxel in patients with advanced solid tumors. Cancer Chemother Pharmacol. 71:523–530. 2013. View Article : Google Scholar | |
|
Mohanti BK, Rath GK, Anantha N, Kannan V, Das BS, Chandramouli BA, Banerjee AK, Das S, Jena A, Ravichandran R, et al: Improving cancer radiotherapy with 2-deoxy-D-glucose: Phase I/II clinical trials on human cerebral gliomas. Int J Radiat Oncol Biol Phys. 35:103–111. 1996. View Article : Google Scholar : PubMed/NCBI | |
|
Di Cosimo S, Ferretti G, Papaldo P, Carlini P, Fabi A and Cognetti F: Lonidamine: Efficacy and safety in clinical trials for the treatment of solid tumors. Drugs Today (Barc). 39:157–174. 2003. View Article : Google Scholar : PubMed/NCBI | |
|
Kelly W, Diaz Duque AE, Michalek J, Konkel B, Caflisch L, Chen Y, Pathuri SC, Madhusudanannair-Kunnuparampil V, Floyd J and Brenner A: Phase II investigation of TVB-2640 (Denifanstat) with bevacizumab in patients with first relapse high-grade astrocytoma. Clin Cancer Res. 29:2419–2425. 2023. View Article : Google Scholar : PubMed/NCBI | |
|
Svensson RU, Parker SJ, Eichner LJ, Kolar MJ, Wallace M, Brun SN, Lombardo PS, Van Nostrand JL, Hutchins A, Vera L, et al: Inhibition of acetyl-CoA carboxylase suppresses fatty acid synthesis and tumor growth of non-small-cell lung cancer in preclinical models. Nat Med. 22:1108–1119. 2016. View Article : Google Scholar : PubMed/NCBI | |
|
Schlaepfer IR and Joshi M: CPT1A-mediated fat oxidation, mechanisms, and therapeutic potential. Endocrinology. 161:bqz0462020. View Article : Google Scholar : PubMed/NCBI | |
|
Yao CH, Liu GY, Wang R, Moon SH, Gross RW and Patti GJ: Identifying off-target effects of etomoxir reveals that carnitine palmitoyltransferase I is essential for cancer cell proliferation independent of β-oxidation. PLoS Biol. 16:e20037822018. View Article : Google Scholar | |
|
Gugiatti E, Tenca C, Ravera S, Fabbi M, Ghiotto F, Mazzarello AN, Bagnara D, Reverberi D, Zarcone D, Cutrona G, et al: A reversible carnitine palmitoyltransferase (CPT1) inhibitor offsets the proliferation of chronic lymphocytic leukemia cells. Haematologica. 103:e531–e536. 2018. View Article : Google Scholar : PubMed/NCBI | |
|
Harding JJ, Telli M, Munster P, Voss MH, Infante JR, DeMichele A, Dunphy M, Le MH, Molineaux C, Orford K, et al: A Phase I Dose-Escalation and Expansion Study of Telaglenastat in Patients with Advanced or Metastatic Solid Tumors. Clin Cancer Res. 27:4994–5003. 2021. View Article : Google Scholar : PubMed/NCBI | |
|
Yang WH, Qiu Y, Stamatatos O, Janowitz T and Lukey MJ: Enhancing the Efficacy of Glutamine Metabolism Inhibitors in Cancer Therapy. Trends Cancer. 7:790–804. 2021. View Article : Google Scholar : PubMed/NCBI | |
|
Wicker CA, Hunt BG, Krishnan S, Aziz K, Parajuli S, Palackdharry S, Elaban WR, Wise-Draper TM, Mills GB, Waltz SE and Takiar V: Glutaminase inhibition with telaglenastat (CB-839) improves treatment response in combination with ionizing radiation in head and neck squamous cell carcinoma models. Cancer Lett. 502:180–188. 2021. View Article : Google Scholar : PubMed/NCBI | |
|
Han J, Li Q, Chen Y and Yang Y: Recent metabolomics analysis in tumor metabolism reprogramming. Front Mol Biosci. 8:7639022021. View Article : Google Scholar : PubMed/NCBI | |
|
Ciavardelli D, Bellomo M, Consalvo A, Crescimanno C and Vella V: Metabolic alterations of thyroid cancer as potential therapeutic targets. Biomed Res Int. 2017:25450312017. View Article : Google Scholar : PubMed/NCBI | |
|
Wang YA, Li XL, Mo YZ, Fan CM, Tang L, Xiong F, Guo C, Xiang B, Zhou M, Ma J, et al: Effects of tumor metabolic microenvironment on regulatory T cells. Mol Cancer. 17:1682018. View Article : Google Scholar : PubMed/NCBI | |
|
Wright K, Ly T, Kriet M, Czirok A and Thomas SM: Cancer-Associated Fibroblasts: Master tumor microenvironment modifiers. Cancers (Basel). 15:18992023. View Article : Google Scholar : PubMed/NCBI | |
|
Sun L, Yang X, Yuan Z and Wang H: Metabolic reprogramming in immune response and tissue inflammation. Arterioscler Thromb Vasc Biol. 40:1990–2001. 2020. View Article : Google Scholar : PubMed/NCBI | |
|
Lindner T, Loktev A, Giesel F, Kratochwil C, Altmann A and Haberkorn U: Targeting of activated fibroblasts for imaging and therapy. EJNMMI Radiopharm Chem. 4:162019. View Article : Google Scholar : PubMed/NCBI | |
|
Yang D, Liu J, Qian H and Zhuang Q: Cancer-associated fibroblasts: From basic science to anticancer therapy. Exp Mol Med. 55:1322–1332. 2023. View Article : Google Scholar : PubMed/NCBI | |
|
Zhao Z, Li T, Sun L, Yuan Y and Zhu Y: Potential mechanisms of cancer-associated fibroblasts in therapeutic resistance. Biomed Pharmacother. 166:1154252023. View Article : Google Scholar : PubMed/NCBI | |
|
Wang M, Xue W, Yuan H, Wang Z and Yu L: Nano-Drug delivery systems targeting CAFs: A promising treatment for pancreatic cancer. Int J Nanomedicine. 19:2823–2849. 2024. View Article : Google Scholar : PubMed/NCBI | |
|
Giuliani S, Accetta C, di Martino S, De Vitis C, Messina E, Pescarmona E, Fanciulli M, Ciliberto G, Mancini R and Falcone I: Metabolic reprogramming in melanoma: An epigenetic point of view. Pharmaceuticals (Basel). 18:8532025. View Article : Google Scholar : PubMed/NCBI | |
|
Kumar D, New J, Vishwakarma V, Joshi R, Enders J, Lin F, Dasari S, Gutierrez WR, Leef G, Ponnurangam S, et al: Cancer-Associated fibroblasts drive glycolysis in a targetable signaling loop implicated in head and neck squamous cell carcinoma progression. Cancer Res. 78:3769–3782. 2018. View Article : Google Scholar : PubMed/NCBI | |
|
Francescone R, Barbosa Vendramini-Costa D, Franco-Barraza J, Wagner J, Muir A, Lau AN, Gabitova L, Pazina T, Gupta S, Luong T, et al: Netrin G1 promotes pancreatic tumorigenesis through cancer-associated fibroblast-driven nutritional support and immunosuppression. Cancer Discov. 11:446–479. 2021. View Article : Google Scholar | |
|
Balaban S, Nassar ZD, Zhang AY, Hosseini-Beheshti E, Centenera MM, Schreuder M, Lin HM, Aishah A, Varney B, Liu-Fu F, et al: Extracellular fatty acids are the major contributor to lipid synthesis in prostate cancer. Mol Cancer Res. 17:949–962. 2019. View Article : Google Scholar : PubMed/NCBI | |
|
Yu M, Guo G, Huang L, Deng L, Chang CS, Achyut BR, Canning M, Xu N, Arbab AS, Bollag RJ, et al: CD73 on cancer-associated fibroblasts enhanced by the A2B-mediated feedforward circuit enforces an immune checkpoint. Nat Commun. 11:5152020. View Article : Google Scholar | |
|
Broz MT, Ko EY, Ishaya K, Xiao J, De Simone M, Hoi XP, Piras R, Gala B, Tessaro FHG, Karlstaedt A, et al: Metabolic targeting of cancer associated fibroblasts overcomes T-cell exclusion and chemoresistance in soft-tissue sarcomas. Nat Commun. 15:24982024. View Article : Google Scholar : PubMed/NCBI | |
|
Emberley E, Pan A, Chen J, Dang R, Gross M, Huang T, Li W, MacKinnon A, Singh D, Sotirovska N, et al: The glutaminase inhibitor telaglenastat enhances the antitumor activity of signal transduction inhibitors everolimus and cabozantinib in models of renal cell carcinoma. PLoS One. 16:e02592412021. View Article : Google Scholar : PubMed/NCBI | |
|
Wang Z, Wang Y, Li Z, Xue W, Hu S and Kong X: Lipid metabolism as a target for cancer drug resistance: Progress and prospects. Front Pharmacol. 14:12743352023. View Article : Google Scholar : | |
|
Wang Z, Tang Y, Tan Y, Wei Q and Yu W: Cancer-associated fibroblasts in radiotherapy: Challenges and new opportunities. Cell Commun Signal. 17:472019. View Article : Google Scholar : PubMed/NCBI |