|
1
|
Yuan J and Ofengeim D: A guide to cell
death pathways. Nat Rev Mol Cell Biol. 25:379–395. 2024. View Article : Google Scholar
|
|
2
|
Koren E and Fuchs Y: Modes of regulated
cell death in cancer. Cancer Discov. 11:245–265. 2021. View Article : Google Scholar : PubMed/NCBI
|
|
3
|
Kolb JP, Oguin TH III, Oberst A and
Martinez J: Programmed Cell Death and Inflammation: Winter Is
Coming. Trends Immunol. 38:705–718. 2017. View Article : Google Scholar : PubMed/NCBI
|
|
4
|
Tong X, Tang R, Xiao M, Xu J, Wang W,
Zhang B, Liu J, Yu X and Shi S: Targeting cell death pathways for
cancer therapy: Recent developments in necroptosis, pyroptosis,
ferroptosis, and cuproptosis research. J Hematol Oncol. 15:1742022.
View Article : Google Scholar : PubMed/NCBI
|
|
5
|
Dixon SJ, Lemberg KM, Lamprecht MR, Skouta
R, Zaitsev EM, Gleason CE, Patel DN, Bauer AJ, Cantley AM, Yang WS,
et al: Ferroptosis: An iron-dependent form of nonapoptotic cell
death. Cell. 149:1060–1072. 2012. View Article : Google Scholar : PubMed/NCBI
|
|
6
|
Escuder-Rodríguez JJ, Liang D, Jiang X and
Sinicrope FA: Ferroptosis: Biology and Role in Gastrointestinal
Disease. Gastroenterology. 167:231–249. 2024. View Article : Google Scholar : PubMed/NCBI
|
|
7
|
Bray F, Laversanne M, Sung H, Ferlay J,
Siegel RL, Soerjomataram I and Jemal A: Global cancer statistics
2022: GLOBOCAN estimates of incidence and mortality worldwide for
36 cancers in 185 countries. CA Cancer J Clin. 74:229–263.
2024.PubMed/NCBI
|
|
8
|
Moss SF, Shah SC, Tan MC and El-Serag HB:
Evolving Concepts in Helicobacter pylori Management.
Gastroenterology. 166:267–283. 2024. View Article : Google Scholar
|
|
9
|
Lei CQ, Wu X, Zhong X, Jiang L, Zhong B
and Shu HB: USP19 Inhibits TNF-α- and IL-1β-Triggered NF-κB
Activation by Deubiquitinating TAK1. J Immunol. 203:259–268. 2019.
View Article : Google Scholar : PubMed/NCBI
|
|
10
|
Bartchewsky W Jr, Martini MR, Masiero M,
Squassoni AC, Alvarez MC, Ladeira MS, Salvatore D, Trevisan M,
Pedrazzoli J Jr and Ribeiro ML: Effect of Helicobacter pylori
infection on IL-8, IL-1beta and COX-2 expression in patients with
chronic gastritis and gastric cancer. Scand J Gastroenterol.
44:153–161. 2009. View Article : Google Scholar
|
|
11
|
El Filaly H, Desterke C, Outlioua A, Badre
W, Rabhi M, Karkouri M, Riyad M, Khalil A, Arnoult D and Akarid K:
CXCL-8 as a signature of severe Helicobacter pylori infection and a
stimulator of stomach region-dependent immune response. Clin
Immunol. 252:1096482023. View Article : Google Scholar : PubMed/NCBI
|
|
12
|
Correa P, Haenszel W, Cuello C, Tannenbaum
S and Archer M: A model for gastric cancer epidemiology. Lancet.
2:58–60. 1975. View Article : Google Scholar : PubMed/NCBI
|
|
13
|
Tahara S, Tahara T, Horiguchi N, Kato T,
Shinkai Y, Yamashita H, Yamada H, Kawamura T, Terada T, Okubo M, et
al: DNA methylation accumulation in gastric mucosa adjacent to
cancer after Helicobacter pylori eradication. Int J Cancer.
144:80–88. 2019. View Article : Google Scholar
|
|
14
|
Qu X and Shi Y: Bile reflux and bile acids
in the progression of gastric intestinal metaplasia. Chin Med J
(Engl). 135:1664–1672. 2022. View Article : Google Scholar : PubMed/NCBI
|
|
15
|
Matsuoka T and Yashiro M: Novel biomarkers
for early detection of gastric cancer. World J Gastroenterol.
29:2515–2533. 2023. View Article : Google Scholar : PubMed/NCBI
|
|
16
|
Bae S, Lee H, Her EY, Lee K, Kim JS, Ahn
J, Choi IJ, Jun JK, Choi KS and Suh M: Cost Utility analysis of
National cancer screening program for gastric cancer in Korea: A
markov model analysis. J Korean Med Sci. 40:e432025. View Article : Google Scholar : PubMed/NCBI
|
|
17
|
Sugimoto N, Kawada J, Oka Y, Ueda S,
Murakami K, Nishikawa K, Kurokawa Y, Fujitani K, Kawakami H, Endo
S, et al: Salvage-line of capecitabine plus oxaliplatin therapy
(XELOX) for patients with inoperable/advanced gastric cancer
resistant/intolerant to cisplatin (OGSG1403). Anticancer Res.
45:307–313. 2025. View Article : Google Scholar : PubMed/NCBI
|
|
18
|
Nakamura Y, Kawazoe A, Lordick F,
Janjigian YY and Shitara K: Biomarker-targeted therapies for
advanced-stage gastric and gastro-oesophageal junction cancers: An
emerging paradigm. Nat Rev Clin Oncol. 18:473–487. 2021. View Article : Google Scholar : PubMed/NCBI
|
|
19
|
Shitara K, Özgüroğlu M, Bang YJ, Di
Bartolomeo M, Mandalà M, Ryu MH, Fornaro L, Olesiński T, Caglevic
C, Chung HC, et al: Pembrolizumab versus paclitaxel for previously
treated, advanced gastric or gastro-oesophageal junction cancer
(KEYNOTE-061): A randomised, open-label, controlled, phase 3 trial.
Lancet. 392:123–133. 2018. View Article : Google Scholar : PubMed/NCBI
|
|
20
|
Janjigian YY, Shitara K, Moehler M,
Garrido M, Salman P, Shen L, Wyrwicz L, Yamaguchi K, Skoczylas T,
Campos Bragagnoli A, et al: First-line nivolumab plus chemotherapy
versus chemotherapy alone for advanced gastric, gastro-oesophageal
junction, and oesophageal adenocarcinoma (CheckMate 649): A
randomised, open-label, phase 3 trial. Lancet. 398:27–40. 2021.
View Article : Google Scholar : PubMed/NCBI
|
|
21
|
Jiang X, Stockwell BR and Conrad M:
Ferroptosis: Mechanisms, biology and role in disease. Nat Rev Mol
Cell Biol. 22:266–282. 2021. View Article : Google Scholar : PubMed/NCBI
|
|
22
|
Bannai S and Kitamura E: Transport
interaction of L-cystine and L-glutamate in human diploid
fibroblasts in culture. J Biol Chem. 255:2372–2376. 1980.
View Article : Google Scholar : PubMed/NCBI
|
|
23
|
Sato H, Tamba M, Ishii T and Bannai S:
Cloning and expression of a plasma membrane cystine/glutamate
exchange transporter composed of two distinct proteins. J Biol
Chem. 274:11455–11458. 1999. View Article : Google Scholar : PubMed/NCBI
|
|
24
|
Sato H, Tamba M, Kuriyama-Matsumura K,
Okuno S and Bannai S: Molecular cloning and expression of human
xCT, the light chain of amino acid transport system xc. Antioxid
Redox Signal. 2:665–671. 2000. View Article : Google Scholar
|
|
25
|
Ursini F, Maiorino M, Valente M, Ferri L
and Gregolin C: Purification from pig liver of a protein which
protects liposomes and biomembranes from peroxidative degradation
and exhibits glutathione peroxidase activity on phosphatidylcholine
hydroperoxides. Biochim Biophys Acta. 710:197–211. 1982. View Article : Google Scholar : PubMed/NCBI
|
|
26
|
Conrad M and Pratt DA: The chemical basis
of ferroptosis. Nat Chem Biol. 15:1137–1147. 2019. View Article : Google Scholar : PubMed/NCBI
|
|
27
|
Yang WS and Stockwell BR: Synthetic lethal
screening identifies compounds activating iron-dependent,
nonapoptotic cell death in oncogenic-RAS-harboring cancer cells.
Chem Biol. 15:234–245. 2008. View Article : Google Scholar : PubMed/NCBI
|
|
28
|
Dolma S, Lessnick SL, Hahn WC and
Stockwell BR: Identification of genotype-selective antitumor agents
using synthetic lethal chemical screening in engineered human tumor
cells. Cancer Cell. 3:285–296. 2003. View Article : Google Scholar : PubMed/NCBI
|
|
29
|
Cao Z, Liu X, Zhang W, Zhang K, Pan L, Zhu
M, Qin H, Zou C, Wang W, Zhang C, et al: Biomimetic macrophage
membrane-camouflaged nanoparticles induce ferroptosis by promoting
mitochondrial damage in glioblastoma. ACS Nano. 17:23746–23760.
2023. View Article : Google Scholar : PubMed/NCBI
|
|
30
|
Zou Y, Li H, Graham ET, Deik AA, Eaton JK,
Wang W, Sandoval-Gomez G, Clish CB, Doench JG and Schreiber SL:
Cytochrome P450 oxidoreductase contributes to phospholipid
peroxidation in ferroptosis. Nat Chem Biol. 16:302–309. 2020.
View Article : Google Scholar : PubMed/NCBI
|
|
31
|
Liu Y, Wan Y, Jiang Y, Zhang L and Cheng
W: GPX4: The hub of lipid oxidation, ferroptosis, disease and
treatment. Biochim Biophys Acta Rev Cancer. 1878:1888902023.
View Article : Google Scholar : PubMed/NCBI
|
|
32
|
Bersuker K, Hendricks JM, Li Z, Magtanong
L, Ford B, Tang PH, Roberts MA, Tong B, Maimone TJ, Zoncu R, et al:
The CoQ oxidoreductase FSP1 acts parallel to GPX4 to inhibit
ferroptosis. Nature. 575:688–692. 2019. View Article : Google Scholar : PubMed/NCBI
|
|
33
|
Doll S, Freitas FP, Shah R, Aldrovandi M,
da Silva MC, Ingold I, Goya Grocin A, Xavier da Silva TN, Panzilius
E, Scheel CH, et al: FSP1 is a glutathione-independent ferroptosis
suppressor. Nature. 575:693–698. 2019. View Article : Google Scholar : PubMed/NCBI
|
|
34
|
Kraft VAN, Bezjian CT, Pfeiffer S,
Ringelstetter L, Müller C, Zandkarimi F, Merl-Pham J, Bao X,
Anastasov N, Kössl J, et al: GTP cyclohydrolase
1/tetrahydrobiopterin counteract ferroptosis through lipid
remodeling. ACS Cent Sci. 6:41–53. 2020. View Article : Google Scholar : PubMed/NCBI
|
|
35
|
Tang D, Chen X, Kang R and Kroemer G:
Ferroptosis: Molecular mechanisms and health implications. Cell
Res. 31:107–125. 2021. View Article : Google Scholar :
|
|
36
|
Lee H, Zandkarimi F, Zhang Y, Meena JK,
Kim J, Zhuang L, Tyagi S, Ma L, Westbrook TF, Steinberg GR, et al:
Energy-stress-mediated AMPK activation inhibits ferroptosis. Nat
Cell Biol. 22:225–234. 2020. View Article : Google Scholar : PubMed/NCBI
|
|
37
|
Zhao Y, Li M, Yao X, Fei Y, Lin Z, Li Z,
Cai K, Zhao Y and Luo Z: HCAR1/MCT1 regulates tumor ferroptosis
through the lactate-mediated AMPK-SCD1 activity and its therapeutic
implications. Cell Rep. 33:1084872020. View Article : Google Scholar : PubMed/NCBI
|
|
38
|
Yi J, Zhu J, Wu J, Thompson CB and Jiang
X: Oncogenic activation of PI3K-AKT-mTOR signaling suppresses
ferroptosis via SREBP-mediated lipogenesis. Proc Natl Acad Sci USA.
117:31189–31197. 2020. View Article : Google Scholar : PubMed/NCBI
|
|
39
|
Wu J, Minikes AM, Gao M, Bian H, Li Y,
Stockwell BR, Chen ZN and Jiang X: Intercellular interaction
dictates cancer cell ferroptosis via NF2-YAP signalling. Nature.
572:402–406. 2019. View Article : Google Scholar : PubMed/NCBI
|
|
40
|
van Roy F and Berx G: The cell-cell
adhesion molecule E-cadherin. Cell Mol Life Sci. 65:3756–3788.
2008. View Article : Google Scholar : PubMed/NCBI
|
|
41
|
Kim NG, Koh E, Chen X and Gumbiner BM:
E-cadherin mediates contact inhibition of proliferation through
Hippo signaling-pathway components. Proc Natl Acad Sci USA.
108:11930–11935. 2011. View Article : Google Scholar : PubMed/NCBI
|
|
42
|
Jiang L, Kon N, Li T, Wang SJ, Su T,
Hibshoosh H, Baer R and Gu W: Ferroptosis as a p53-mediated
activity during tumour suppression. Nature. 520:57–62. 2015.
View Article : Google Scholar : PubMed/NCBI
|
|
43
|
Tarangelo A, Magtanong L, Bieging-Rolett
KT, Li Y, Ye J, Attardi LD and Dixon SJ: p53 suppresses metabolic
stress-induced ferroptosis in cancer cells. Cell Rep. 22:569–575.
2018. View Article : Google Scholar : PubMed/NCBI
|
|
44
|
Xie Y, Zhu S, Song X, Sun X, Fan Y, Liu J,
Zhong M, Yuan H, Zhang L, Billiar TR, et al: The tumor suppressor
p53 limits ferroptosis by blocking DPP4 activity. Cell Rep.
20:1692–1704. 2017. View Article : Google Scholar : PubMed/NCBI
|
|
45
|
Guo J, Xu B, Han Q, Zhou H, Xia Y, Gong C,
Dai X, Li Z and Wu G: Ferroptosis: A novel anti-tumor action for
cisplatin. Cancer Res Treat. 50:445–460. 2018. View Article : Google Scholar :
|
|
46
|
Lachaier E, Louandre C, Godin C, Saidak Z,
Baert M, Diouf M, Chauffert B and Galmiche A: Sorafenib induces
ferroptosis in human cancer cell lines originating from different
solid tumors. Anticancer Res. 34:6417–6422. 2014.PubMed/NCBI
|
|
47
|
Zhang X, Hong B, Li H, Sun Z, Zhao J, Li
M, Wei D, Wang Y and Zhang N: Disulfidptosis and ferroptosis
related genes define the immune microenvironment and NUBPL serves
as a potential biomarker for predicting prognosis and immunotherapy
response in bladder cancer. Heliyon. 10:e376382024. View Article : Google Scholar : PubMed/NCBI
|
|
48
|
Kuang Y, Yang K, Meng L, Mao Y, Xu F and
Liu H: Identification and validation of ferroptosis-related
biomarkers and the related pathogenesis in precancerous lesions of
gastric cancer. Sci Rep. 13:160742023. View Article : Google Scholar : PubMed/NCBI
|
|
49
|
Chen X, Kang R, Kroemer G and Tang D:
Broadening horizons: The role of ferroptosis in cancer. Nat Rev
Clin Oncol. 18:280–296. 2021. View Article : Google Scholar : PubMed/NCBI
|
|
50
|
Zhu W, Liu D, Lu Y, Sun J, Zhu J, Xing Y,
Ma X, Wang Y, Ji M and Jia Y: PHKG2 regulates RSL3-induced
ferroptosis in Helicobacter pylori related gastric cancer. Arch
Biochem Biophys. 740:1095602023. View Article : Google Scholar : PubMed/NCBI
|
|
51
|
Dierge E, Debock E, Guilbaud C, Corbet C,
Mignolet E, Mignard L, Bastien E, Dessy C, Larondelle Y and Feron
O: Peroxidation of n-3 and n-6 polyunsaturated fatty acids in the
acidic tumor environment leads to ferroptosis-mediated anticancer
effects. Cell Metab. 33:1701–1715.e5. 2021. View Article : Google Scholar : PubMed/NCBI
|
|
52
|
Greenfield LK and Jones NL: Modulation of
autophagy by Helicobacter pylori and its role in gastric
carcinogenesis. Trends Microbiol. 21:602–612. 2013. View Article : Google Scholar : PubMed/NCBI
|
|
53
|
Genta RM: Helicobacter pylori,
inflammation, mucosal damage, and apoptosis: Pathogenesis and
definition of gastric atrophy. Gastroenterology. 113(6 Suppl):
S51–S55. 1997. View Article : Google Scholar : PubMed/NCBI
|
|
54
|
Zhu P, Xue J, Zhang ZJ, Jia YP, Tong YN,
Han D, Li Q, Xiang Y, Mao XH and Tang B: Helicobacter pylori VacA
induces autophagic cell death in gastric epithelial cells via the
endoplasmic reticulum stress pathway. Cell Death Dis. 8:32072017.
View Article : Google Scholar : PubMed/NCBI
|
|
55
|
Teng Y, Liu X, Han B, Ma Q, Liu Y, Kong H,
Lv Y, Mao F, Cheng P, Hao C, et al: Helicobacter
pylori-downregulated tumor necrosis factor receptor-associated
protein 1 mediates apoptosis of human gastric epithelial cells. J
Cell Physiol. 234:15698–15707. 2019. View Article : Google Scholar : PubMed/NCBI
|
|
56
|
Chaturvedi R, Asim M, Romero-Gallo J,
Barry DP, Hoge S, de Sablet T, Delgado AG, Wroblewski LE, Piazuelo
MB, Yan F, et al: Spermine oxidase mediates the gastric cancer risk
associated with Helicobacter pylori CagA. Gastroenterology.
141:1696-1708.e1–e2. 2011. View Article : Google Scholar
|
|
57
|
Wu S, Chen Y, Chen Z, Wei F, Zhou Q, Li P
and Gu Q: Reactive oxygen species and gastric carcinogenesis: The
complex interaction between Helicobacter pylori and host.
Helicobacter. 28:e130242023. View Article : Google Scholar : PubMed/NCBI
|
|
58
|
Salvatori S, Marafini I, Laudisi F,
Monteleone G and Stolfi C: Helicobacter pylori and gastric cancer:
Pathogenetic mechanisms. Int J Mol Sci. 24:28952023. View Article : Google Scholar : PubMed/NCBI
|
|
59
|
Srinivas US, Tan BWQ, Vellayappan BA and
Jeyasekharan AD: ROS and the DNA damage response in cancer. Redox
Biol. 25:1010842019. View Article : Google Scholar : PubMed/NCBI
|
|
60
|
Teymournejad O, Mobarez AM, Hassan ZM and
Talebi Bezmin Abadi A: Binding of the Helicobacter pylori OipA
causes apoptosis of host cells via modulation of Bax/Bcl-2 levels.
Sci Rep. 7:80362017. View Article : Google Scholar : PubMed/NCBI
|
|
61
|
Jain P, Luo ZQ and Blanke SR: Helicobacter
pylori vacuolating cytotoxin A (VacA) engages the mitochondrial
fission machinery to induce host cell death. Proc Natl Acad Sci
USA. 108:16032–16037. 2011. View Article : Google Scholar : PubMed/NCBI
|
|
62
|
Posselt G, Wiesauer M, Chichirau BE,
Engler D, Krisch LM, Gadermaier G, Briza P, Schneider S, Boccellato
F, Meyer TF, et al: Helicobacter pylori-controlled c-Abl
localization promotes cell migration and limits apoptosis. Cell
Commun Signal. 17:102019. View Article : Google Scholar : PubMed/NCBI
|
|
63
|
Lin Y, Liu K, Lu F, Zhai C and Cheng F:
Programmed cell death in Helicobacter pylori infection and related
gastric cancer. Front Cell Infect Microbiol. 14:14168192024.
View Article : Google Scholar : PubMed/NCBI
|
|
64
|
Kumar S and Dhiman M: Inflammasome
activation and regulation during Helicobacter pylori pathogenesis.
Microb Pathog. 125:468–474. 2018. View Article : Google Scholar : PubMed/NCBI
|
|
65
|
Cui G, Yuan A and Li Z: Occurrences and
phenotypes of RIPK3-positive gastric cells in Helicobacter pylori
infected gastritis and atrophic lesions. Dig Liver Dis.
54:1342–1349. 2022. View Article : Google Scholar : PubMed/NCBI
|
|
66
|
Qiang L, Zhang Y, Lei Z, Lu Z, Tan S, Ge
P, Chai Q, Zhao M, Zhang X, Li B, et al: A mycobacterial effector
promotes ferroptosis-dependent pathogenicity and dissemination. Nat
Commun. 14:14302023. View Article : Google Scholar : PubMed/NCBI
|
|
67
|
Dar HH, Tyurina YY, Mikulska-Ruminska K,
Shrivastava I, Ting HC, Tyurin VA, Krieger J, St Croix CM, Watkins
S, Bayir E, et al: Pseudomonas aeruginosa utilizes host
polyunsaturated phosphatidylethanolamines to trigger
theft-ferroptosis in bronchial epithelium. J Clin Invest.
128:4639–4653. 2018. View Article : Google Scholar : PubMed/NCBI
|
|
68
|
Drake IM, Mapstone NP, Schorah CJ, White
KL, Chalmers DM, Dixon MF and Axon AT: Reactive oxygen species
activity and lipid peroxidation in Helicobacter pylori associated
gastritis: Relation to gastric mucosal ascorbic acid concentrations
and effect of H pylori eradication. Gut. 42:768–771. 1998.
View Article : Google Scholar : PubMed/NCBI
|
|
69
|
Peng Y, Lei X, Yang Q, Zhang G, He S, Wang
M, Ling R, Zheng B, He J, Chen X, et al: Helicobacter pylori
CagA-mediated ether lipid biosynthesis promotes ferroptosis
susceptibility in gastric cancer. Exp Mol Med. 56:441–452. 2024.
View Article : Google Scholar : PubMed/NCBI
|
|
70
|
Liu D, Peng J, Xie J and Xie Y:
Comprehensive analysis of the function of helicobacter-associated
ferroptosis gene YWHAE in gastric cancer through multi-omics
integration, molecular docking, and machine learning. Apoptosis.
29:439–456. 2024. View Article : Google Scholar
|
|
71
|
Melo J, Cavadas B, Pereira L, Figueiredo C
and Leite M: Transcriptomic remodeling of gastric cells by
Helicobacter pylori outer membrane vesicles. Helicobacter.
29:e130312024. View Article : Google Scholar
|
|
72
|
Shen C, Liu H, Chen Y, Liu M, Wang Q and
Liu J and Liu J: Helicobacter pylori induces GBA1 demethylation to
inhibit ferroptosis in gastric cancer. Mol Cell Biochem.
480:1845–1863. 2025. View Article : Google Scholar
|
|
73
|
Li J, Cao F, Yin HL, Huang ZJ, Lin ZT, Mao
N, Sun B and Wang G: Ferroptosis: Past, present and future. Cell
Death Dis. 11:882020. View Article : Google Scholar : PubMed/NCBI
|
|
74
|
Gryzik M, Asperti M, Denardo A, Arosio P
and Poli M: NCOA4-mediated ferritinophagy promotes ferroptosis
induced by erastin, but not by RSL3 in HeLa cells. Biochim Biophys
Acta Mol Cell Res. 1868:1189132021. View Article : Google Scholar
|
|
75
|
Chen X, Yu C, Kang R, Kroemer G and Tang
D: Cellular degradation systems in ferroptosis. Cell Death Differ.
28:1135–1148. 2021. View Article : Google Scholar : PubMed/NCBI
|
|
76
|
Huang Y, Xu W and Zhou R: NLRP3
inflammasome activation and cell death. Cell Mol Immunol.
18:2114–2127. 2021. View Article : Google Scholar : PubMed/NCBI
|
|
77
|
Liu Y, Miao R, Xia J, Zhou Y, Yao J and
Shao S: Infection of Helicobacter pylori contributes to the
progression of gastric cancer through ferroptosis. Cell Death
Discov. 10:4852024. View Article : Google Scholar : PubMed/NCBI
|
|
78
|
Piscione M, Mazzone M, Di Marcantonio MC,
Muraro R and Mincione G: Eradication of helicobacter pylori and
gastric cancer: A controversial relationship. Front Microbiol.
12:6308522021. View Article : Google Scholar : PubMed/NCBI
|
|
79
|
White JR, Winter JA and Robinson K:
Differential inflammatory response to Helicobacter pylori
infection: Etiology and clinical outcomes. J Inflamm Res.
8:137–147. 2015.PubMed/NCBI
|
|
80
|
Shah SC, Piazuelo MB, Kuipers EJ and Li D:
AGA clinical practice update on the diagnosis and management of
atrophic gastritis: Expert review. Gastroenterology.
161:1325–1332.e7. 2021. View Article : Google Scholar : PubMed/NCBI
|
|
81
|
Guo Y, Jia X, Du P, Wang J, Du Y, Li B,
Xue Y, Jiang J, Cai Y and Yang Q: Mechanistic insights into the
ameliorative effects of Xianglianhuazhuo formula on chronic
atrophic gastritis through ferroptosis mediated by
YY1/miR-320a/TFRC signal pathway. J Ethnopharmacol. 323:1176082024.
View Article : Google Scholar : PubMed/NCBI
|
|
82
|
Yang T, Lu M, Jiang W, Jin D, Sun M, Mao H
and Han H: Galangin alleviates gastric mucosal injury in rats with
chronic atrophic gastritis by reducing ferroptosis. Histol
Histopathol. January 24–2025.Epub ahead of print.
|
|
83
|
Pan W, Liu C, Ren T, Chen X, Liang C, Wang
J and Yang J: Exploration of lncRNA/circRNA-miRNA-mRNA network in
patients with chronic atrophic gastritis in Tibetan plateau areas
based on DNBSEQ-G99 RNA sequencing. Sci Rep. 14:92122024.
View Article : Google Scholar : PubMed/NCBI
|
|
84
|
Zhao Y, Zhao J, Ma H, Han Y, Xu W, Wang J,
Cai Y, Jia X, Jia Q and Yang Q: High hepcidin levels promote
abnormal iron metabolism and ferroptosis in chronic atrophic
gastritis. Biomedicines. 11:23382023. View Article : Google Scholar : PubMed/NCBI
|
|
85
|
Lanser L, Fuchs D, Kurz K and Weiss G:
Physiology and inflammation driven pathophysiology of iron
homeostasis-mechanistic insights into anemia of inflammation and
its treatment. Nutrients. 13:37322021. View Article : Google Scholar : PubMed/NCBI
|
|
86
|
Schwarz P, Kübler JA, Strnad P, Müller K,
Barth TF, Gerloff A, Feick P, Peyssonnaux C, Vaulont S, Adler G and
Kulaksiz H: Hepcidin is localised in gastric parietal cells,
regulates acid secretion and is induced by Helicobacter pylori
infection. Gut. 61:193–201. 2012. View Article : Google Scholar
|
|
87
|
Ganz T and Nemeth E: Hepcidin and
disorders of iron metabolism. Annu Rev Med. 62:347–360. 2011.
View Article : Google Scholar
|
|
88
|
Santos MP, Pereira JN, Delabio RW, Smith
MAC, Payão SLM, Carneiro LC, Barbosa MS and Rasmussen LT: Increased
expression of interleukin-6 gene in gastritis and gastric cancer.
Braz J Med Biol Res. 54:e106872021. View Article : Google Scholar : PubMed/NCBI
|
|
89
|
Jia J, Zhao H, Li F, Zheng Q, Wang G, Li D
and Liu Y: Research on drug treatment and the novel signaling
pathway of chronic atrophic gastritis. Biomed Pharmacother.
176:1169122024. View Article : Google Scholar : PubMed/NCBI
|
|
90
|
Zhu F, Zhang X, Li P and Zhu Y: Effect of
Helicobacter pylori eradication on gastric precancerous lesions: A
systematic review and meta-analysis. Helicobacter. 28:e130132023.
View Article : Google Scholar : PubMed/NCBI
|
|
91
|
Liang Y, Yang Y, Nong R, Huang H, Chen X,
Deng Y, Huang Z, Huang J, Cheng C, Ji M, et al: Do atrophic
gastritis and intestinal metaplasia reverse after Helicobacter
pylori eradication? Helicobacter. 29:e130422024. View Article : Google Scholar
|
|
92
|
Bir F, Calli-Demirkan N, Tufan AC, Akbulut
M and Satiroglu-Tufan NL: Apoptotic cell death and its relationship
to gastric carcinogenesis. World J Gastroenterol. 13:3183–3188.
2007. View Article : Google Scholar : PubMed/NCBI
|
|
93
|
Li T, Yang Q, Liu Y, Jin Y, Song B, Sun Q,
Wei S, Wu J and Li X: Machine learning identify ferroptosis-related
genes as potential diagnostic biomarkers for gastric intestinal
metaplasia. Technol Cancer Res Treat. 23:153303382412720362024.
View Article : Google Scholar : PubMed/NCBI
|
|
94
|
Song B, Li T, Zhang Y, Yang Q, Pei B, Liu
Y, Wang J, Dong G, Sun Q, Fan S and Li X: Identification and
verification of ferroptosis-related genes in gastric intestinal
metaplasia. Front Genet. 14:11524142023. View Article : Google Scholar : PubMed/NCBI
|
|
95
|
Hamedi Asl D, Naserpour Farivar T, Rahmani
B, Hajmanoochehri F, Emami Razavi AN, Jahanbin B, Soleimani Dodaran
M and Peymani A: The role of transferrin receptor in the
Helicobacter pylori pathogenesis; L-ferritin as a novel marker for
intestinal metaplasia. Microb Pathog. 126:157–164. 2019. View Article : Google Scholar
|
|
96
|
Xie J, Liang X, Xie F, Huang C, Lin Z, Xie
S, Yang F, Zheng F, Geng L, Xu W, et al: Rabeprazole suppressed
gastric intestinal metaplasia through activation of GPX4-mediated
ferroptosis. Front Pharmacol. 15:14090012024. View Article : Google Scholar : PubMed/NCBI
|
|
97
|
Ebrahimi N, Adelian S, Shakerian S,
Afshinpour M, Chaleshtori SR, Rostami N, Rezaei-Tazangi F,
Beiranvand S, Hamblin MR and Aref AR: Crosstalk between ferroptosis
and the epithelial-mesenchymal transition: Implications for
inflammation and cancer therapy. Cytokine Growth Factor Rev.
64:33–45. 2022. View Article : Google Scholar : PubMed/NCBI
|
|
98
|
Zhang M, Zhong J, Song Z, Xu Q, Chen Y and
Zhang Z: Regulatory mechanisms and potential therapeutic targets in
precancerous lesions of gastric cancer: A comprehensive review.
Biomed Pharmacother. 177:1170682024. View Article : Google Scholar : PubMed/NCBI
|
|
99
|
Gu L, Chen H, Geng R, Sun M, Shi Q, Chen
Y, Chang J, Wei J, Ma W, Xiao J, et al: Single-cell and Spatial
transcriptomics reveals ferroptosis as the most enriched programmed
cell death process in hemorrhage stroke-induced
oligodendrocyte-mediated white matter injury. Int J Biol Sci.
20:3842–3862. 2024. View Article : Google Scholar : PubMed/NCBI
|
|
100
|
Miao ZF, Sun JX, Adkins-Threats M, Pang
MJ, Zhao JH, Wang X, Tang KW, Wang ZN and Mills JC: DDIT4 licenses
only healthy cells to proliferate during injury-induced metaplasia.
Gastroenterology. 160:260–271.e10. 2021. View Article : Google Scholar
|
|
101
|
Pang MJ, Burclaff JR, Jin R,
Adkins-Threats M, Osaki LH, Han Y, Mills JC, Miao ZF and Wang ZN:
Gastric organoids: Progress and remaining challenges. Cell Mol
Gastroenterol Hepatol. 13:19–33. 2022. View Article : Google Scholar
|
|
102
|
Hu X, Ma Z, Xu B, Li S, Yao Z, Liang B,
Wang J, Liao W, Lin L, Wang C, et al: Glutamine metabolic
microenvironment drives M2 macrophage polarization to mediate
trastuzumab resistance in HER2-positive gastric cancer. Cancer
Commun (Lond). 43:909–937. 2023. View Article : Google Scholar : PubMed/NCBI
|
|
103
|
Yang F, Li A, Liu H and Zhang H: Gastric
cancer combination therapy: Synthesis of a hyaluronic acid and
cisplatin containing lipid prodrug coloaded with sorafenib in a
nanoparticulate system to exhibit enhanced anticancer efficacy and
reduced toxicity. Drug Des Devel Ther. 12:3321–3333. 2018.
View Article : Google Scholar : PubMed/NCBI
|
|
104
|
Qi C, Gong J, Li J, Liu D, Qin Y, Ge S,
Zhang M, Peng Z, Zhou J, Cao Y, et al: Claudin18.2-specific CAR T
cells in gastrointestinal cancers: Phase 1 trial interim results.
Nat Med. 28:1189–1198. 2022. View Article : Google Scholar : PubMed/NCBI
|
|
105
|
Yasuda T and Wang YA: Gastric cancer
immunosuppressive microenvironment heterogeneity: Implications for
therapy development. Trends Cancer. 10:627–642. 2024. View Article : Google Scholar : PubMed/NCBI
|
|
106
|
Gorrini C, Harris IS and Mak TW:
Modulation of oxidative stress as an anticancer strategy. Nat Rev
Drug Discov. 12:931–947. 2013. View Article : Google Scholar : PubMed/NCBI
|
|
107
|
Fonseca-Nunes A, Agudo A, Aranda N, Arija
V, Cross AJ, Molina E, Sanchez MJ, Bueno-de-Mesquita HB, Siersema
P, Weiderpass E, et al: Body iron status and gastric cancer risk in
the EURGAST study. Int J Cancer. 137:2904–2914. 2015. View Article : Google Scholar : PubMed/NCBI
|
|
108
|
Noto JM, Piazuelo MB, Shah SC,
Romero-Gallo J, Hart JL, Di C, Carmichael JD, Delgado AG, Halvorson
AE, Greevy RA, et al: Iron deficiency linked to altered bile acid
metabolism promotes Helicobacter pylori-induced inflammation-driven
gastric carcinogenesis. J Clin Invest. 132:e1478222022. View Article : Google Scholar : PubMed/NCBI
|
|
109
|
Dai ZT, Wu YL, Li XR and Liao XH: MKL-1
suppresses ferroptosis by activating system Xc- and increasing
glutathione synthesis. Int J Biol Sci. 19:4457–4475. 2023.
View Article : Google Scholar : PubMed/NCBI
|
|
110
|
Lu SC: Regulation of glutathione
synthesis. Mol Aspects Med. 30:42–59. 2009. View Article : Google Scholar :
|
|
111
|
Guan D and Li C, Li Y, Li Y, Wang G, Gao F
and Li C: The DpdtbA induced EMT inhibition in gastric cancer cell
lines was through ferritinophagy-mediated activation of p53 and
PHD2/hif-1α pathway. J Inorg Biochem. 218:1114132021. View Article : Google Scholar
|
|
112
|
Guan D, Zhou W, Wei H, Wang T, Zheng K,
Yang C, Feng R, Xu R, Fu Y, Li C, et al: Ferritinophagy-mediated
ferroptosis and activation of Keap1/Nrf2/HO-1 pathway were
conducive to EMT inhibition of gastric cancer cells in action of
2,2'-Di-pyridineketone hydrazone dithiocarbamate butyric acid
ester. Oxid Med Cell Longev. 2022:39206642022. View Article : Google Scholar : PubMed/NCBI
|
|
113
|
Xu Z, Feng J, Li Y, Guan D, Chen H, Zhai
X, Zhang L and Li C and Li C: The vicious cycle between
ferritinophagy and ROS production triggered EMT inhibition of
gastric cancer cells was through p53/AKT/mTor pathway. Chem Biol
Interact. 328:1091962020. View Article : Google Scholar : PubMed/NCBI
|
|
114
|
Li D, Wang Y, Dong C, Chen T, Dong A, Ren
J, Li W, Shu G, Yang J, Shen W, et al: CST1 inhibits ferroptosis
and promotes gastric cancer metastasis by regulating GPX4 protein
stability via OTUB1. Oncogene. 42:83–98. 2023. View Article : Google Scholar :
|
|
115
|
Lee JY, Nam M, Son HY, Hyun K, Jang SY,
Kim JW, Kim MW, Jung Y, Jang E, Yoon SJ, et al: Polyunsaturated
fatty acid biosynthesis pathway determines ferroptosis sensitivity
in gastric cancer. Proc Natl Acad Sci USA. 117:32433–32442. 2020.
View Article : Google Scholar : PubMed/NCBI
|
|
116
|
Lin Z, Song J, Gao Y, Huang S, Dou R,
Zhong P, Huang G, Han L, Zheng J, Zhang X, et al: Hypoxia-induced
HIF-1α/lncRNA-PMAN inhibits ferroptosis by promoting the
cytoplasmic translocation of ELAVL1 in peritoneal dissemination
from gastric cancer. Redox Biol. 52:1023122022. View Article : Google Scholar
|
|
117
|
Liu Y, Song Z, Liu Y, Ma X, Wang W, Ke Y,
Xu Y, Yu D and Liu H: Identification of ferroptosis as a novel
mechanism for antitumor activity of natural product derivative a2
in gastric cancer. Acta Pharm Sin B. 11:1513–1525. 2021. View Article : Google Scholar : PubMed/NCBI
|
|
118
|
Hu C, Zu D, Xu J, Xu H, Yuan L, Chen J,
Wei Q, Zhang Y, Han J, Lu T, et al: Polyphyllin B suppresses
gastric tumor growth by modulating iron metabolism and inducing
ferroptosis. Int J Biol Sci. 19:1063–1079. 2023. View Article : Google Scholar : PubMed/NCBI
|
|
119
|
Ding L, Dang S, Sun M, Zhou D, Sun Y, Li
E, Peng S, Li J and Li G: Quercetin induces ferroptosis in gastric
cancer cells by targeting SLC1A5 and regulating the p-Camk2/p-DRP1
and NRF2/GPX4 Axes. Free Radic Biol Med. 213:150–163. 2024.
View Article : Google Scholar : PubMed/NCBI
|
|
120
|
Wang H, Lu C, Zhou H, Zhao X, Huang C,
Cheng Z, Liu G and You X: Synergistic effects of dihydroartemisinin
and cisplatin on inducing ferroptosis in gastric cancer through
GPX4 inhibition. Gastric Cancer. 28:187–210. 2025. View Article : Google Scholar
|
|
121
|
Ouyang S, Li H, Lou L, Huang Q, Zhang Z,
Mo J, Li M, Lu J, Zhu K, Chu Y, et al: Inhibition of
STAT3-ferroptosis negative regulatory axis suppresses tumor growth
and alleviates chemoresistance in gastric cancer. Redox Biol.
52:1023172022. View Article : Google Scholar : PubMed/NCBI
|
|
122
|
Ni Z, Nie X, Zhang H, Wang L, Geng Z, Du
X, Qian H, Liu W and Liu T: Atranorin driven by nano materials
SPION lead to ferroptosis of gastric cancer stem cells by weakening
the mRNA 5-hydroxymethylcytidine modification of the Xc-/GPX4 axis
and its expression. Int J Med Sci. 19:1680–1694. 2022. View Article : Google Scholar : PubMed/NCBI
|
|
123
|
Cui JX, Xu XH, He T, Liu JJ, Xie TY, Tian
W and Liu JY: L-kynurenine induces NK cell loss in gastric cancer
microenvironment via promoting ferroptosis. J Exp Clin Cancer Res.
42:522023. View Article : Google Scholar : PubMed/NCBI
|
|
124
|
Kumar V, Ramnarayanan K, Sundar R,
Padmanabhan N, Srivastava S, Koiwa M, Yasuda T, Koh V, Huang KK,
Tay ST, et al: Single-cell atlas of lineage states, tumor
microenvironment, and subtype-specific expression programs in
gastric cancer. Cancer Discov. 12:670–691. 2022. View Article : Google Scholar
|
|
125
|
Zhang Q, Kuang G, Li W, Wang J, Ren H and
Zhao Y: Stimuli-responsive gene delivery nanocarriers for cancer
therapy. Nanomicro Lett. 15:442023.PubMed/NCBI
|
|
126
|
Cheng X, Dai E, Wu J, Flores NM, Chu Y,
Wang R, Dang M, Xu Z, Han G, Liu Y, et al: Atlas of metastatic
gastric cancer links ferroptosis to disease progression and
immunotherapy response. Gastroenterology. 167:1345–1357. 2024.
View Article : Google Scholar : PubMed/NCBI
|
|
127
|
Tamura K, Tomita Y, Kanazawa T, Shinohara
H, Sakano M, Ishibashi S, Ikeda M, Kinoshita M, Minami J, Yamamoto
K, et al: Lipid peroxidation regulators GPX4 and FSP1 as prognostic
markers and therapeutic targets in advanced gastric cancer. Int J
Mol Sci. 25:92032024. View Article : Google Scholar : PubMed/NCBI
|
|
128
|
Lin L, Que R, Wang J, Zhu Y, Liu X and Xu
R: Prognostic value of the ferroptosis-related gene SLC2A3 in
gastric cancer and related immune mechanisms. Front Genet.
13:9193132022. View Article : Google Scholar : PubMed/NCBI
|
|
129
|
Liu Y, Liu Y, Ye S, Feng H and Ma L: A new
ferroptosis-related signature model including messenger RNAs and
long non-coding RNAs predicts the prognosis of gastric cancer
patients. J Transl Int Med. 11:145–155. 2023. View Article : Google Scholar : PubMed/NCBI
|
|
130
|
Cai Y, Wu S, Jia Y, Pan X and Li C:
Potential key markers for predicting the prognosis of gastric
adenocarcinoma based on the expression of ferroptosis-related
lncRNA. J Immunol Res. 2022:12492902022. View Article : Google Scholar : PubMed/NCBI
|
|
131
|
Ryu MH, Lee KH, Shen L, Yeh KH, Yoo C,
Hong YS, Park YI, Yang SH, Shin DB, Zang DY, et al: Randomized
phase II study of capecitabine plus cisplatin with or without
sorafenib in patients with metastatic gastric cancer (STARGATE).
Cancer Med. 12:7784–7794. 2023. View Article : Google Scholar :
|
|
132
|
Xu X and Li Y, Wu Y, Wang M, Lu Y, Fang Z,
Wang H and Li Y: Increased ATF2 expression predicts poor prognosis
and inhibits sorafenib-induced ferroptosis in gastric cancer. Redox
Biol. 59:1025642023. View Article : Google Scholar
|
|
133
|
Zhuang J, Liu X, Yang Y, Zhang Y and Guan
G: Sulfasalazine, a potent suppressor of gastric cancer
proliferation and metastasis by inhibition of xCT: Conventional
drug in new use. J Cell Mol Med. 25:5372–5380. 2021. View Article : Google Scholar : PubMed/NCBI
|
|
134
|
Shitara K, Doi T, Nagano O, Fukutani M,
Hasegawa H, Nomura S, Sato A, Kuwata T, Asai K, Einaga Y, et al:
Phase 1 study of sulfasalazine and cisplatin for patients with
CD44v-positive gastric cancer refractory to cisplatin (EPOC1407).
Gastric Cancer. 20:1004–1009. 2017. View Article : Google Scholar : PubMed/NCBI
|
|
135
|
Wang Y, Zheng L, Shang W, Yang Z, Li T,
Liu F, Shao W, Lv L, Chai L, Qu L, et al: Wnt/beta-catenin
signaling confers ferroptosis resistance by targeting GPX4 in
gastric cancer. Cell Death Differ. 29:2190–2202. 2022. View Article : Google Scholar : PubMed/NCBI
|
|
136
|
Wu C, Wang S, Huang T, Xi X, Xu L, Wang J,
Hou Y, Xia Y, Xu L, Wang L and Huang X: NPR1 promotes cisplatin
resistance by inhibiting PARL-mediated mitophagy-dependent
ferroptosis in gastric cancer. Cell Biol Toxicol. 40:932024.
View Article : Google Scholar : PubMed/NCBI
|
|
137
|
Fu D, Wang C, Yu L and Yu R: Induction of
ferroptosis by ATF3 elevation alleviates cisplatin resistance in
gastric cancer by restraining Nrf2/Keap1/xCT signaling. Cell Mol
Biol Lett. 26:262021. View Article : Google Scholar : PubMed/NCBI
|
|
138
|
Zhou Q, Liu T, Qian W, Ji J, Cai Q, Jin Y,
Jiang J and Zhang J: HNF4A-BAP31-VDAC1 axis synchronously regulates
cell proliferation and ferroptosis in gastric cancer. Cell Death
Dis. 14:3562023. View Article : Google Scholar : PubMed/NCBI
|
|
139
|
Qu X, Liu B, Wang L, Liu L, Zhao W, Liu C,
Ding J, Zhao S, Xu B, Yu H, et al: Loss of cancer-associated
fibroblast-derived exosomal DACT3-AS1 promotes malignant
transformation and ferroptosis-mediated oxaliplatin resistance in
gastric cancer. Drug Resist Updat. 68:1009362023. View Article : Google Scholar : PubMed/NCBI
|
|
140
|
Yao L, Hou J, Wu X, Lu Y, Jin Z, Yu Z, Yu
B, Li J, Yang Z, Li C, et al: Cancer-associated fibroblasts impair
the cytotoxic function of NK cells in gastric cancer by inducing
ferroptosis via iron regulation. Redox Biol. 67:1029232023.
View Article : Google Scholar : PubMed/NCBI
|
|
141
|
Sun J, Li J, Pantopoulos K, Liu Y, He Y,
Kang W and Ye X: The clustering status of detached gastric cancer
cells inhibits anoikis-induced ferroptosis to promote metastatic
colonization. Cancer Cell Int. 24:772024. View Article : Google Scholar : PubMed/NCBI
|
|
142
|
Yao X, He Z, Qin C, Deng X, Bai L, Li G
and Shi J: SLC2A3 promotes macrophage infiltration by glycolysis
reprogramming in gastric cancer. Cancer Cell Int. 20:5032020.
View Article : Google Scholar : PubMed/NCBI
|
|
143
|
Li Y, Xu X, Wang X, Zhang C, Hu A and Li
Y: MGST1 expression is associated with poor prognosis, enhancing
the Wnt/β-catenin pathway via regulating AKT and inhibiting
ferroptosis in gastric cancer. ACS Omega. 8:23683–23694. 2023.
View Article : Google Scholar : PubMed/NCBI
|
|
144
|
Wang C, Shi M, Ji J, Cai Q, Zhao Q, Jiang
J, Liu J, Zhang H, Zhu Z and Zhang J: Stearoyl-CoA desaturase 1
(SCD1) facilitates the growth and anti-ferroptosis of gastric
cancer cells and predicts poor prognosis of gastric cancer. Aging
(Albany NY). 12:15374–15391. 2020. View Article : Google Scholar : PubMed/NCBI
|
|
145
|
Sun X, Yang S, Feng X, Zheng Y, Zhou J,
Wang H, Zhang Y, Sun H and He C: The modification of ferroptosis
and abnormal lipometabolism through overexpression and knockdown of
potential prognostic biomarker perilipin2 in gastric carcinoma.
Gastric Cancer. 23:241–259. 2020. View Article : Google Scholar
|
|
146
|
Zang J, Cui M, Xiao L, Zhang J and Jing R:
Overexpression of ferroptosis-related genes FSP1 and CISD1 is
related to prognosis and tumor immune infiltration in gastric
cancer. Clin Transl Oncol. 25:2532–2544. 2023. View Article : Google Scholar : PubMed/NCBI
|
|
147
|
Li X, Qian J, Xu J, Bai H, Yang J and Chen
L: NRF2 inhibits RSL3 induced ferroptosis in gastric cancer through
regulation of AKR1B1. Exp Cell Res. 442:1142102024. View Article : Google Scholar : PubMed/NCBI
|
|
148
|
Tu RH, Wu SZ, Huang ZN, Zhong Q, Ye YH,
Zheng CH, Xie JW, Wang JB, Lin JX, Chen QY, et al: Neurotransmitter
receptor HTR2B regulates lipid metabolism to inhibit ferroptosis in
gastric cancer. Cancer Res. 83:3868–3885. 2023. View Article : Google Scholar : PubMed/NCBI
|
|
149
|
Qu H, Liang Y, Guo Q, Lu L, Yang Y, Xu W,
Zhang Y and Qin Y: Identifying CTH and MAP1LC3B as ferroptosis
biomarkers for prognostic indication in gastric cancer decoding.
Sci Rep. 14:43522024. View Article : Google Scholar : PubMed/NCBI
|
|
150
|
Wang S, Zhang S, Li X, Leng C, Li X, Lv J,
Zhao S, Qiu W and Guo J: Development of oxidative stress- and
ferroptosis-related prognostic signature in gastric cancer and
identification of CDH19 as a novel biomarker. Hum Genomics.
18:1212024. View Article : Google Scholar : PubMed/NCBI
|
|
151
|
Jiang Y, Li L, Li W, Liu K, Wu Y and Wang
Z: NFS1 inhibits ferroptosis in gastric cancer by regulating the
STAT3 pathway. J Bioenerg Biomembr. 56:573–587. 2024. View Article : Google Scholar : PubMed/NCBI
|
|
152
|
Jiang Y, Li W, Zhang J, Liu K, Wu Y and
Wang Z: NFS1 as a candidate prognostic biomarker for gastric cancer
correlated with immune infiltrates. Int J Gen Med. 17:3855–3868.
2024. View Article : Google Scholar : PubMed/NCBI
|
|
153
|
Liu W, Zhang F, Yang K and Yan Y:
Comprehensive analysis regarding the prognostic significance of
downregulated ferroptosis-related gene AKR1C2 in gastric cancer and
its underlying roles in immune response. PLoS One. 18:e02809892023.
View Article : Google Scholar : PubMed/NCBI
|