|
1.
|
Mok TS, Wu YL, Thongprasert S, Yang CH,
Chu DT, Saijo N, Sunpaweravong P, Han B, Margono B, Ichinose Y, et
al: Gefitinib or carboplatin-paclitaxel in pulmonary
adenocarcinoma. N Engl J Med. 361:947–957. 2009. View Article : Google Scholar : PubMed/NCBI
|
|
2.
|
Rosell R, Carcereny E, Gervais R,
Vergnenegre A, Massuti B, Felip E, Palmero R, Garcia-Gomez R,
Pallares C, Sanchez JM, et al: Erlotinib versus standard
chemotherapy as first-line treatment for European patients with
advanced EGFR mutation-positive non-small-cell lung cancer
(EURTAC): a multicentre, open-label, randomised phase 3 trial.
Lancet Oncol. 13:239–246. 2012. View Article : Google Scholar : PubMed/NCBI
|
|
3.
|
Kwak EL, Bang YJ, Camidge DR, Shaw AT,
Solomon B, Maki RG, Ou SH, Dezube BJ, Jänne PA, Costa DB, et al:
Anaplastic lymphoma kinase inhibition in non-small-cell lung
cancer. N Engl J Med. 363:1693–1703. 2010. View Article : Google Scholar : PubMed/NCBI
|
|
4.
|
Bergethon K, Shaw AT, Ou SH, Katayama R,
Lovly CM, McDonald NT, Massion PP, Siwak-Tapp C, Gonzalez A, Fang
R, et al: ROS1 rearrangements define a unique molecular
class of lung cancers. J Clin Oncol. 30:863–870. 2012. View Article : Google Scholar
|
|
5.
|
Ou SH, Kwak EL, Siwak-Tapp C, Dy J,
Bergethon K, Clark JW, Camidge DR, Solomon BJ, Maki RG, Bang YJ, et
al: Activity of crizotinib (PF02341066), a dual
mesenchymal-epithelial transition (MET) and anaplastic lymphoma
kinase (ALK) inhibitor, in a non-small cell lung cancer patient
with de novo MET amplification. J Thorac Oncol. 6:942–946. 2011.
View Article : Google Scholar : PubMed/NCBI
|
|
6.
|
Sequist LV, von Pawel J, Garmey EG,
Akerley WL, Brugger W, Ferrari D, Chen Y, Costa DB, Gerber DE,
Orlov S, et al: Randomized phase II study of erlotinib plus
tivantinib versus erlotinib plus placebo in previously treated
non-small-cell lung cancer. J Clin Oncol. 29:3307–3315. 2011.
View Article : Google Scholar : PubMed/NCBI
|
|
7.
|
Surati M, Patel P, Peterson A and Salgia
R: Role of MetMAb (OA-5D5) in c-MET active lung malignancies.
Expert Opin Biol Ther. 11:1655–1662. 2011. View Article : Google Scholar : PubMed/NCBI
|
|
8.
|
Scagliotti GV: Potential role of
multi-targeted tyrosine kinase inhibitors in non-small-cell lung
cancer. Ann Oncol. 18(Suppl 10): x32–x41. 2007. View Article : Google Scholar : PubMed/NCBI
|
|
9.
|
Gettinger S: Targeted therapy in advanced
non-small-cell lung cancer. Semin Respir Crit Care Med. 29:291–301.
2008. View Article : Google Scholar : PubMed/NCBI
|
|
10.
|
Rosell R, Viteri S, Molina MA, Benlloch S
and Taron M: Epidermal growth factor receptor tyrosine kinase
inhibitors as first-line treatment in advanced nonsmall-cell lung
cancer. Curr Opin Oncol. 22:112–120. 2010. View Article : Google Scholar : PubMed/NCBI
|
|
11.
|
Paez JG, Jänne PA, Lee JC, Tracy S,
Greulich H, Gabriel S, Herman P, Kaye FJ, Lindeman N, Boggon TJ, et
al: EGFR mutations in lung cancer: correlation with clinical
response to gefitinib therapy. Science. 304:1497–1500. 2004.
View Article : Google Scholar : PubMed/NCBI
|
|
12.
|
Lynch TJ, Bell DW, Sordella R,
Gurubhagavatula S, Okimoto RA, Brannigan BW, Harris PL, Haserlat
SM, Supko JG, Haluska FG, Louis DN, Christiani DC, et al:
Activating mutations in the epidermal growth factor receptor
underlying responsiveness of non-small-cell lung cancer to
gefitinib. N Engl J Med. 350:2129–2139. 2004. View Article : Google Scholar : PubMed/NCBI
|
|
13.
|
Pao W, Miller V, Zakowski M, Doherty J,
Politi K, Sarkaria I, Singh B, Heelan R, Rusch V, Fulton L, et al:
EGF receptor gene mutations are common in lung cancers from ‘never
smokers’ and are associated with sensitivity of tumors to gefitinib
and erlotinib. Proc Natl Acad Sci USA. 101:13306–13311. 2004.
|
|
14.
|
Pao W and Miller VA: Epidermal growth
factor receptor mutations, small-molecule kinase inhibitors, and
non-small-cell lung cancer: current knowledge and future
directions. J Clin Oncol. 23:2556–2568. 2005. View Article : Google Scholar : PubMed/NCBI
|
|
15.
|
Riely GJ, Politi KA, Miller VA and Pao W:
Update on epidermal growth factor receptor mutations in non-small
cell lung cancer. Clin Cancer Res. 12:7232–7241. 2006. View Article : Google Scholar : PubMed/NCBI
|
|
16.
|
Shigematsu H, Lin L, Takahashi T, Nomura
M, Suzuki M, Wistuba II, Fong KM, Lee H, Toyooka S, Shimizu N, et
al: Clinical and biological features associated with epidermal
growth factor receptor gene mutations in lung cancers. J Natl
Cancer Inst. 97:339–346. 2005. View Article : Google Scholar : PubMed/NCBI
|
|
17.
|
Marchetti A, Martella C, Felicioni L,
Barassi F, Salvatore S, Chella A, Camplese PP, Iarussi T, Mucilli
F, Mezzetti A, et al: EGFR mutations in non-small-cell lung cancer:
analysis of a large series of cases and development of a rapid and
sensitive method for diagnostic screening with potential
implications on pharmacologic treatment. J Clin Oncol. 23:857–865.
2005. View Article : Google Scholar
|
|
18.
|
Sharma SV, Bell DW, Settleman J and Haber
DA: Epidermal growth factor receptor mutations in lung cancer. Nat
Rev Cancer. 7:169–181. 2007. View
Article : Google Scholar : PubMed/NCBI
|
|
19.
|
Dahabreh IJ, Linardou H, Siannis F,
Kosmidis P, Bafaloukos D and Murray S: Somatic EGFR mutation
and gene copy gain as predictive biomarkers for response to
tyrosine kinase inhibitors in non-small cell lung cancer. Clin
Cancer Res. 16:291–303. 2010.PubMed/NCBI
|
|
20.
|
Sordella R, Bell DW, Haber DA and
Settleman J: Gefitinibsensitizing EGFR mutations in lung cancer
activate anti-apoptotic pathways. Science. 305:1163–1167. 2004.
View Article : Google Scholar : PubMed/NCBI
|
|
21.
|
Tracy S, Mukohara T, Hansen M, Meyerson M,
Johnson BE and Jänne PA: Gefitinib induces apoptosis in the
EGFRL858R non-small-cell lung cancer cell line H3255. Cancer Res.
64:7241–7244. 2004. View Article : Google Scholar : PubMed/NCBI
|
|
22.
|
Mulloy R, Ferrand A, Kim Y, Sordella R,
Bell DW, Haber DA, Anderson KS and Settleman J: Epidermal growth
factor receptor mutants from human lung cancers exhibit enhanced
catalytic activity and increased sensitivity to gefitinib. Cancer
Res. 67:2325–2330. 2007. View Article : Google Scholar : PubMed/NCBI
|
|
23.
|
Greulich H, Chen TH, Feng W, Jänne PA,
Alvarez JV, Zappaterra M, Bulmer SE, Frank DA, Hahn WC, Sellers WR
and Meyerson M: Oncogenic transformation by inhibitor-sensitive and
-resistant EGFR mutants. PLoS Med. 2:e3132005. View Article : Google Scholar : PubMed/NCBI
|
|
24.
|
Jiang J, Greulich H, Janne PA, Sellers WR,
Meyerson M and Griffin JD: Epidermal growth factor-independent
transformation of Ba/F3 cells with cancer-derived epidermal growth
factor receptor mutants induces gefitinib-sensitive cell cycle
progression. Cancer Res. 65:8968–8974. 2005. View Article : Google Scholar
|
|
25.
|
Sequist LV, Bell DW, Lynch TJ and Haber
DA: Molecular predictors of response to epidermal growth factor
receptor antagonists in non-small-cell lung cancer. J Clin Oncol.
25:587–595. 2007. View Article : Google Scholar : PubMed/NCBI
|
|
26.
|
Gupta R, Dastane AM, McKenna R Jr and
Marchevsky AM: The predictive value of epidermal growth factor
receptor tests in patients with pulmonary adenocarcinoma: review of
current ‘best evidence’ with meta-analysis. Hum Pathol. 40:356–365.
2009.
|
|
27.
|
Takano T, Ohe Y, Sakamoto H, Tsuta K,
Matsuno Y, Tateishi U, Yamamoto S, Nokihara H, Yamamoto N, Sekine
I, et al: Epidermal growth factor receptor gene mutations and
increased copy numbers predict gefitinib sensitivity in patients
with recurrent non-small-cell lung cancer. J Clin Oncol.
23:6829–6837. 2005. View Article : Google Scholar : PubMed/NCBI
|
|
28.
|
Bell DW, Lynch TJ, Haserlat SM, Harris PL,
Okimoto RA, Brannigan BW, Sgroi DC, Muir B, Riemenschneider MJ,
Iacona RB, et al: Epidermal growth factor receptor mutations and
gene amplification in non-small-cell lung cancer: molecular
analysis of the IDEAL/INTACT gefitinib trials. J Clin Oncol.
23:8081–8092. 2005. View Article : Google Scholar : PubMed/NCBI
|
|
29.
|
Sone T, Kasahara K, Kimura H, Nishio K,
Mizuguchi M, Nakatsumi Y, Shibata K, Waseda Y, Fujimura M and Nakao
S: Comparative analysis of epidermal growth factor receptor
mutations and gene amplification as predictors of gefitinib
efficacy in Japanese patients with nonsmall cell lung cancer.
Cancer. 109:1836–1844. 2007. View Article : Google Scholar : PubMed/NCBI
|
|
30.
|
Cappuzzo F, Ligorio C, Jänne PA, Toschi L,
Rossi E, Trisolini R, Paioli D, Holmes AJ, Magrini E, Finocchiaro
G, et al: Prospective study of gefitinib in epidermal growth factor
receptor fluorescence in situ
hybridization-positive/phospho-Akt-positive or never smoker
patients with advanced non-small-cell lung cancer: the ONCOBELL
trial. J Clin Oncol. 25:2248–2255. 2007. View Article : Google Scholar
|
|
31.
|
Hirsch FR, Varella-Garcia M, Cappuzzo F,
McCoy J, Bemis L, Xavier AC, Dziadziuszko R, Gumerlock P, Chansky
K, West H, et al: Combination of EGFR gene copy number and protein
expression predicts outcome for advanced non-small-cell lung cancer
patients treated with gefitinib. Ann Oncol. 18:752–760. 2007.
View Article : Google Scholar : PubMed/NCBI
|
|
32.
|
Ahn MJ, Park BB, Ahn JS, Kim SW, Kim HT,
Lee JS, Kang JH, Cho JY, Song HS, Park SH, et al: Are there any
ethnic differences in molecular predictors of erlotinib efficacy in
advanced non-small cell lung cancer? Clin Cancer Res. 14:3860–3866.
2008. View Article : Google Scholar : PubMed/NCBI
|
|
33.
|
Dongiovanni D, Daniele L, Barone C,
Dongiovanni V, Fissore C, Sapino A, Macrì L, Bussolati G, Buffoni
L, Gaspari F, et al: Gefitinib (ZD1839): therapy in selected
patients with non-small cell lung cancer (NSCLC)? Lung Cancer.
61:73–81. 2008. View Article : Google Scholar : PubMed/NCBI
|
|
34.
|
Schneider CP, Heigener D, Schott-von-Römer
K, Gütz S, Laack E, Digel W, Guschall WR, Franke A, Bodenstein H,
Schmidtgen C and Reck M: Epidermal growth factor receptor-related
tumor markers and clinical outcomes with erlotinib in non-small
cell lung cancer: an analysis of patients from German centers in
the TRUST study. J Thorac Oncol. 3:1446–1453. 2008. View Article : Google Scholar
|
|
35.
|
Taron M, Ichinose Y, Rosell R, Mok T,
Massuti B, Zamora L, Mate JL, Manegold C, Ono M, Queralt C, et al:
Activating mutations in the tyrosine kinase domain of the epidermal
growth factor receptor are associated with improved survival in
gefitinib-treated chemorefractory lung adenocarcinomas. Clin Cancer
Res. 11:5878–5885. 2005. View Article : Google Scholar
|
|
36.
|
Yang JC, Shih JY, Su WC, Hsia TC, Tsai CM,
Ou SH, Yu CJ, Chang GC, Ho CL, Sequist LV, et al: Afatinib for
patients with lung adenocarcinoma and epidermal growth factor
receptor mutations (LUX-Lung 2): a phase 2 trial. Lancet Oncol.
13:539–548. 2012. View Article : Google Scholar : PubMed/NCBI
|
|
37.
|
Chih-Hsin Yang J, Schuler MH, Yamamoto N,
O’Byrne KJ, Vera H, Mok T, Geater SL, Orlov SV, Tsai CM, Boyer MJ,
et al: LUX-Lung 3: A randomized, open-label, phase III study of
afatinib versus pemetrexed and cisplatin as first-line treatment
for patients with advanced adenocarcinoma of the lung harboring
EGFR-activating mutations. In: Presented at 2012 American Society
of Clincal Oncology (ASCO) Annual Meeting; (abs. LBA7500). 2012,
http://www.asco.org/ASCOv2/Meetings/Abstracts.
|
|
38.
|
Sequist LV, Waltman BA, Dias-Santagata D,
Digumarthy S, Turke AB, Fidias P, Bergethon K, Shaw AT, Gettinger
S, Cosper AK, et al: Genotypic and histological evolution of lung
cancers acquiring resistance to EGFR inhibitors. Sci Transl Med.
3:75ra262011. View Article : Google Scholar : PubMed/NCBI
|
|
39.
|
Kobayashi S, Boggon TJ, Dayaram T, Jänne
PA, Kocher O, Meyerson M, Johnson BE, Eck MJ, Tenen DG and Halmos
B: EGFR mutation and resistance of non-small-cell lung cancer to
gefitinib. N Engl J Med. 352:786–792. 2005. View Article : Google Scholar : PubMed/NCBI
|
|
40.
|
Pao W, Miller VA, Politi KA, Riely GJ,
Somwar R, Zakowski MF, Kris MG and Varmus H: Acquired resistance of
lung adenocarcinomas to gefitinib or erlotinib is associated with a
second mutation in the EGFR kinase domain. PLoS Med. 2:e732005.
View Article : Google Scholar : PubMed/NCBI
|
|
41.
|
Kosaka T, Yatabe Y, Endoh H, Yoshida K,
Hida T, Tsuboi M, Tada H, Kuwano H and Mitsudomi T: Analysis of
epidermal growth factor receptor gene mutation in patients with
non-small cell lung cancer and acquired resistance to gefitinib.
Clin Cancer Res. 12:5764–5769. 2006. View Article : Google Scholar : PubMed/NCBI
|
|
42.
|
Oxnard GR, Arcila ME, Chmielecki J,
Ladanyi M, Miller VA and Pao W: New strategies in overcoming
acquired resistance to epidermal growth factor receptor tyrosine
kinase inhibitors in lung cancer. Clin Cancer Res. 17:5530–5537.
2011. View Article : Google Scholar : PubMed/NCBI
|
|
43.
|
Oxnard GR, Arcila ME, Sima CS, Riely GJ,
Chmielecki J, Kris MG, Pao W, Ladanyi M and Miller VA: Acquired
resistance to EGFR tyrosine kinase inhibitors in EGFR-mutant lung
cancer: distinct natural history of patients with tumors harboring
the T790M mutation. Clin Cancer Res. 17:1616–1622. 2011. View Article : Google Scholar : PubMed/NCBI
|
|
44.
|
Sasaki H, Endo K, Takada M, Kawahara M,
Kitahara N, Tanaka H, Okumura M, Matsumura A, Iuchi K, Kawaguchi T,
et al: EGFR exon 20 insertion mutation in Japanese lung cancer.
Lung Cancer. 58:324–328. 2007. View Article : Google Scholar : PubMed/NCBI
|
|
45.
|
Balak MN, Gong Y, Riely GJ, Somwar R, Li
AR, Zakowski MF, Chiang A, Yang G, Ouerfelli O, Kris MG, et al:
Novel D761Y and common secondary T790M mutations in epidermal
growth factor receptor-mutant lung adenocarcinomas with acquired
resistance to kinase inhibitors. Clin Cancer Res. 12:6494–6501.
2006. View Article : Google Scholar : PubMed/NCBI
|
|
46.
|
Arcila ME, Oxnard GR, Nafa K, Riely GJ,
Solomon SB, Zakowski MF, Kris MG, Pao W, Miller VA and Ladanyi M:
Rebiopsy of lung cancer patients with acquired resistance to EGFR
inhibitors and enhanced detection of the T790M mutation using a
locked nucleic acid-based assay. Clin Cancer Res. 17:1169–1180.
2011. View Article : Google Scholar : PubMed/NCBI
|
|
47.
|
Janjigian YY, Groen HJ, Horn L, Smit EF,
Fu Y, Wang F, Shahidi M, Denis LJ, Pao W and Miller VA: Activity
and tolerability of afatinib (BIBW 2992) and cetuximab in NSCLC
patients with acquired resistance to erlotinib or gefitinib. In:
Presented at 2011 American Society of Clincal Oncology (ASCO)
Annual Meeting; (abs. 7525). 2011, http://www.asco.org/ASCOv2/Meetings/Abstracts.
|
|
48.
|
Engelman JA, Zejnullahu K, Mitsudomi T,
Song Y, Hyland C, Park JO, Lindeman N, Gale CM, Zhao X, Christensen
J, et al: MET amplification leads to gefitinib resistance in lung
cancer by activating ERBB3 signaling. Science. 316:1039–1043. 2007.
View Article : Google Scholar : PubMed/NCBI
|
|
49.
|
Birchmeier C, Birchmeier W, Gherardi E and
Vande Woude GF: Met, metastasis, motility and more. Nat Rev Mol
Cell Biol. 4:915–925. 2003. View Article : Google Scholar : PubMed/NCBI
|
|
50.
|
Soda M, Choi YL, Enomoto M, Takada S,
Yamashita Y, Ishikawa S, Fujiwara S, Watanabe H, Kurashina K,
Hatanaka H, et al: Identification of the transforming EML4-ALK
fusion gene in non-small-cell lung cancer. Nature. 448:561–566.
2007. View Article : Google Scholar : PubMed/NCBI
|
|
51.
|
Rikova K, Guo A, Zeng Q, Possemato A, Yu
J, Haack H, Nardone J, Lee K, Reeves C, Li Y, et al: Global survey
of phosphotyrosine signaling identifies oncogenic kinases in lung
cancer. Cell. 131:1190–1203. 2007. View Article : Google Scholar : PubMed/NCBI
|
|
52.
|
Shaw AT, Yeap BY, Mino-Kenudson M,
Digumarthy SR, Costa DB, Heist RS, Solomon B, Stubbs H, Admane S,
McDermott U, et al: Clinical features and outcome of patients with
non-small-cell lung cancer who harbor EML4-ALK. J Clin Oncol.
27:4247–4253. 2009. View Article : Google Scholar : PubMed/NCBI
|
|
53.
|
Takeuchi K, Choi YL, Soda M, Inamura K,
Togashi Y, Hatano S, Enomoto M, Takada S, Yamashita Y, Satoh Y, et
al: Multiplex reverse transcription-PCR screening for EML4-ALK
fusion transcripts. Clin Cancer Res. 14:6618–6624. 2008. View Article : Google Scholar : PubMed/NCBI
|
|
54.
|
Koivunen JP, Mermel C, Zejnullahu K,
Murphy C, Lifshits E, Holmes AJ, Choi HG, Kim J, Chiang D, Thomas
R, et al: EML4-ALK fusion gene and efficacy of an ALK kinase
inhibitor in lung cancer. Clin Cancer Res. 14:4275–4283. 2008.
View Article : Google Scholar : PubMed/NCBI
|
|
55.
|
McDermott U, Iafrate AJ, Gray NS, Shioda
T, Classon M, Maheswaran S, Zhou W, Choi HG, Smith SL, Dowell L, et
al: Genomic alterations of anaplastic lymphoma kinase may sensitize
tumors to anaplastic lymphoma kinase inhibitors. Cancer Res.
68:3389–3395. 2008. View Article : Google Scholar : PubMed/NCBI
|
|
56.
|
Sasaki T, Okuda K, Zheng W, Butrynski J,
Capelletti M, Wang L, Gray NS, Wilner K, Christensen JG, Demetri G,
et al: The neuroblastoma-associated F1174L ALK mutation causes
resistance to an ALK kinase inhibitor in ALK-translocated cancers.
Cancer Res. 70:10038–10043. 2010. View Article : Google Scholar : PubMed/NCBI
|
|
57.
|
Choi YL, Soda M, Yamashita Y, Ueno T,
Takashima J, Nakajima T, Yatabe Y, Takeuchi K, Hamada T, Haruta H,
et al: EML4-ALK mutations in lung cancer that confer resistance to
ALK inhibitors. N Engl J Med. 363:1734–1739. 2010. View Article : Google Scholar : PubMed/NCBI
|
|
58.
|
Tanizaki J, Okamoto I, Okabe T, Sakai K,
Tanaka K, Hayashi H, Kaneda H, Takezawa K, Kuwata K, Yamaguchi H,
et al: Activation of HER family signaling as a mechanism of
acquired resistance to ALK inhibitors in EML4-ALK-positive
non-small cell lung cancer. Clin Cancer Res. Jul 27–2012.(E-pub
ahead of print).
|
|
59.
|
Yasuda H, de Figueiredo-Pontes LL,
Kobayashi S and Costa DB: Preclinical rationale for use of the
clinically available multi-targeted tyrosine kinase inhibitor
crizotinib in ROS1-translocated lung cancer. J Thorac Oncol.
7:1086–1090. 2012. View Article : Google Scholar : PubMed/NCBI
|
|
60.
|
Cappuzzo F, Jänne PA, Skokan M,
Finocchiaro G, Rossi E, Ligorio C, Zucali PA, Terracciano L, Toschi
L, Roncalli M, et al: MET increased gene copy number and primary
resistance to gefitinib therapy in non-small-cell lung cancer
patients. Ann Oncol. 20:298–304. 2009. View Article : Google Scholar : PubMed/NCBI
|
|
61.
|
Spigel DR, Ervin TJ, Ramlau R, Daniel DB,
Goldschmidt JH, Blumenschein GR, Krzakowski MJ, Robinet G,
Clement-Duchene C, Barlesi F, et al: Final efficacy results from
OAM4558g, a randomized phase II study evaluating MetMAb or placebo
in combination with erlotinib in advanced NSCLC. In: Presented at
2011 American Society of Clinical Oncology (ASCO) Annual Meeting;
(abs. 7505). 2011, http://www.asco.org/ASCOv2/Meetings/Abstracts.
|
|
62.
|
Gu P, Zhao YZ, Jiang LY, Zhang W, Xin Y
and Han BH: Endobronchial ultrasound-guided transbronchial needle
aspiration for staging of lung cancer: a systematic review and
meta-analysis. Eur J Cancer. 45:1389–1396. 2009. View Article : Google Scholar : PubMed/NCBI
|
|
63.
|
Annema JT, Versteegh MI, Veseliç M, Welker
L, Mauad T, Sont JK, Willems LN and Rabe KF: Endoscopic ultrasound
added to mediastinoscopy for preoperative staging of patients with
lung cancer. JAMA. 294:931–936. 2005. View Article : Google Scholar : PubMed/NCBI
|
|
64.
|
Tournoy KG, Rintoul RC, van Meerbeeck JP,
Carroll NR, Praet M, Buttery RC, van Kralingen KW, Rabe KF and
Annema JT: EBUS-TBNA for the diagnosis of central parenchymal lung
lesions not visible at routine bronchoscopy. Lung Cancer. 63:45–49.
2009. View Article : Google Scholar : PubMed/NCBI
|
|
65.
|
Chen JT, Lane MA and Clark DP: Inhibitors
of the polymerase chain reaction in Papanicolaou stain. Removal
with a simple destaining procedure. Acta Cytol. 40:873–877. 1996.
View Article : Google Scholar : PubMed/NCBI
|
|
66.
|
Smith GD, Chadwick BE, Willmore-Payne Ca
and Bentz JS: Detection of epidermal growth factor receptor gene
mutations in cytology specimens from patients with non-small cell
lung cancer utilising high-resolution melting amplicon analysis. J
Clin Pathol. 61:487–493. 2008. View Article : Google Scholar : PubMed/NCBI
|
|
67.
|
Smouse JH, Cibas ES, Jänne PA, Joshi VA,
Zou KH and Lindeman NI: EGFR mutations are detected comparably in
cytologic and surgical pathology specimens of nonsmall cell lung
cancer. Cancer. 117:67–72. 2009.PubMed/NCBI
|
|
68.
|
Savic S, Tapia C, Grilli B, Rufle A, Bihl
MP, de Vito Barascud A, Herzog M, Terracciano L, Baty F and
Bubendorf L: Comprehensive epidermal growth factor receptor gene
analysis from cytological specimens of non-small-cell lung cancers.
Br J Cancer. 98:154–160. 2008. View Article : Google Scholar : PubMed/NCBI
|
|
69.
|
Ulivi P, Romagnoli M, Chiadini E, Casoni
GL, Capelli L, Gurioli C, Zoli W, Saragoni L, Dubini A, Tesei A,
Amadori D and Poletti V: Assessment of EGFR and K-ras
mutations in fixed and fresh specimens from transesophageal
ultrasound-guided fine needle aspiration in non-small cell lung
cancer patients. Int J Oncol. 41:147–152. 2012.
|
|
70.
|
Ulivi P, Zoli W, Chiadini E, Capelli L,
Candoli P, Calistri D, Silvestrini R and Puccetti M: EGFR and K-ras
mutations in cytologic samples from fine-needle aspirates in NSCLC
patients. Eur Respir J. 40:267–269. 2012. View Article : Google Scholar : PubMed/NCBI
|
|
71.
|
Ulivi P, Puccetti M, Capelli L, Chiadini
E, Bravaccini S, Calistri D, Zoli W, Amadori D and Candoli P:
Molecular determinations of EGFR and EML4-ALK on a single slide of
NSCLC tissue. J Clin Pathol. (In press).
|
|
72.
|
Sozzi G, Conte D, Leon M, Ciricione R, Roz
L, Ratcliffe C, Roz E, Cirenei N, Bellomi M, Pelosi G, Pierotti MA
and Pastorino U: Quantification of free circulating DNA as a
diagnostic marker in lung cancer. J Clin Oncol. 21:3902–3908. 2003.
View Article : Google Scholar : PubMed/NCBI
|
|
73.
|
Ulivi P, Mercatali L, Zoli W, Dell’amore
D, Poletti V, Casoni GL, Scarpi E, Flamini E, Amadori D and
Silvestrini R: Serum free DNA and COX-2 mRNA expression in
peripheral blood for lung cancer detection. Thorax. 63:843–844.
2008. View Article : Google Scholar : PubMed/NCBI
|
|
74.
|
Kimura H, Kasahara K, Kawaishi M, Kunitoh
H, Tamura T, Holloway B and Nishio K: Detection of epidermal growth
factor receptor mutations in serum as a predictor of the response
to gefitinib in patients with non-small-cell lung cancer. Clin
Cancer Res. 12:3915–3921. 2006. View Article : Google Scholar : PubMed/NCBI
|
|
75.
|
Kimura H, Suminoe M, Kasahara K, Sone T,
Araya T, Tamori S, Koizumi F, Nishio K, Miyamoto K, Fujimura M and
Nakao S: Evaluation of epidermal growth factor receptor mutation
status in serum DNA as a predictor of response to gefitinib
(IRESSA). Br J Cancer. 97:778–784. 2007. View Article : Google Scholar : PubMed/NCBI
|
|
76.
|
Maheswaran S, Sequist LV, Nagrath S, Ulkus
L, Brannigan B, Collura CV, Inserra E, Diederichs S, Iafrate AJ,
Bell DW, et al: Detection of mutations in EGFR in circulating
lung-cancer cells. N Engl J Med. 359:366–377. 2008. View Article : Google Scholar : PubMed/NCBI
|
|
77.
|
Yung TK, Chan KC, Mok TS, Tong J, To KF
and Lo YM: Single-molecule detection of epidermal growth factor
receptor mutations in plasma by microfluidics digital PCR in
non-small cell lung cancer patients. Clin Cancer Res. 15:2076–2084.
2009. View Article : Google Scholar : PubMed/NCBI
|
|
78.
|
Kuang Y, Rogers A, Yeap BY, Wang L,
Makrigiorgos M, Vetrand K, Thiede S, Distel RJ and Jänne PA:
Noninvasive detection of EGFR T790M in gefitinib or erlotinib
resistant non-small cell lung cancer. Clin Cancer Res.
15:2630–2636. 2009. View Article : Google Scholar : PubMed/NCBI
|
|
79.
|
He C, Liu M, Zhou C, Zhang J, Ouyang M,
Zhong N and Xu J: Detection of epidermal growth factor receptor
mutations in plasma by mutant-enriched PCR assay for prediction of
the response to gefitinib in patients with non-small-cell lung
cancer. Int J Cancer. 125:2393–2399. 2009. View Article : Google Scholar : PubMed/NCBI
|
|
80.
|
Bai H, Mao L, Wang HS, Zhao J, Yang L, An
TT, Wang X, Duan CJ, Wu NM, Guo ZQ, et al: Epidermal growth factor
receptor mutations in plasma DNA samples predict tumor response in
Chinese patients with stages IIIB to IV non-small-cell lung cancer.
J Clin Oncol. 27:2653–2659. 2009. View Article : Google Scholar : PubMed/NCBI
|
|
81.
|
Mack PC, Holland WS, Burich RA, Sangha R,
Solis LJ, Li Y, Beckett LA, Lara PN Jr, Davies AM and Gandara DR:
EGFR mutations detected in plasma are associated with patient
outcomes in erlotinib plus docetaxel-treated non-small cell lung
cancer. J Thorac Oncol. 4:1466–1472. 2009. View Article : Google Scholar : PubMed/NCBI
|
|
82.
|
Rosell R, Moran T, Queralt C, Porta R,
Cardenal F, Camps C, Majem M, Lopez-Vivanco G, Isla D, Provencio M,
et al: Screening for epidermal growth factor receptor mutations in
lung cancer. N Engl J Med. 361:958–967. 2009. View Article : Google Scholar : PubMed/NCBI
|
|
83.
|
Chung CH, Seeley EH, Roder H, Grigorieva
J, Tsypin M, Roder J, Burtness BA, Argiris A, Forastiere AA,
Gilbert J, et al: Detection of tumor epidermal growth factor
receptor pathway dependence by serum mass spectrometry in cancer
patients. Cancer Epidemiol Biomarkers Prev. 19:358–365. 2010.
View Article : Google Scholar : PubMed/NCBI
|
|
84.
|
Jiang B, Liu F, Yang L, Zhang W, Yuan H,
Wang J and Huang G: Serum detection of epidermal growth factor
receptor gene mutations using mutant-enriched sequencing in Chinese
patients with advanced non-small cell lung cancer. J Int Med Res.
39:1392–1401. 2011. View Article : Google Scholar
|
|
85.
|
Brevet M, Johnson ML, Azzoli CG and
Ladanyi M: Detection of EGFR mutations in plasma DNA from lung
cancer patients by mass spectrometry genotyping is predictive of
tumor EGFR status and response to EGFR inhibitors. Lung Cancer.
73:96–102. 2011. View Article : Google Scholar : PubMed/NCBI
|
|
86.
|
Taniguchi K, Uchida J, Nishino K, Kumagai
T, Okuyama T, Okami J, Higashiyama M, Kodama K, Imamura F and Kato
K: Quantitative detection of EGFR mutations in circulating tumor
DNA derived from lung adenocarcinomas. Clin Cancer Res.
17:7808–7815. 2011. View Article : Google Scholar : PubMed/NCBI
|
|
87.
|
Chen YM, Fan WC, Tseng PC, Tsai CM, Chou
TY, Wu CH, Chou KT, Lee YC, Perng RP and Whang-Peng J: Plasma
epidermal growth factor receptor mutation analysis and possible
clinical applications in pulmonary adenocarcinoma patients treated
with erlotinib. Oncol Lett. 3:713–717. 2012.
|
|
88.
|
Nakamura T, Sueoka-Aragane N, Iwanaga K,
Sato A, Komiya K, Kobayashi N, Hayashi S, Hosomi T, Hirai M, Sueoka
E and Kimura S: Application of a highly sensitive detection system
for epidermal growth factor receptor mutations in plasma DNA. J
Thorac Oncol. 7:1369–1381. 2012. View Article : Google Scholar : PubMed/NCBI
|
|
89.
|
Goto K, Ichinose Y, Ohe Y, Yamamoto N,
Negoro S, Nishio K, Itoh Y, Jiang H, Duffield E, McCormack R, et
al: Epidermal growth factor receptor mutation status in circulating
free DNA in serum: from IPASS, a phase III study of gefitinib or
carboplatin/paclitaxel in non-small cell lung cancer. J Thorac
Oncol. 7:115–121. 2012. View Article : Google Scholar : PubMed/NCBI
|
|
90.
|
Chen ZY, Zhong WZ, Zhang XC, Su J, Yang
XN, Chen ZH, Yang JJ, Zhou Q, Yan HH, An SJ, et al: EGFR mutation
heterogeneity and the mixed response to EGFR tyrosine kinase
inhibitors of lung adenocarcinomas. Oncologist. 17:978–985. 2012.
View Article : Google Scholar : PubMed/NCBI
|
|
91.
|
Pantel K and Alix-Panabières C:
Circulating tumour cells in cancer patients: challenges and
perspectives. Trends Mol Med. 16:398–406. 2010. View Article : Google Scholar : PubMed/NCBI
|
|
92.
|
Alunni-Fabbroni M and Sandri MT:
Circulating tumour cells in clinical practice: methods of detection
and possible characterization. Methods. 50:289–297. 2010.
View Article : Google Scholar : PubMed/NCBI
|
|
93.
|
Punnoose EA, Atwal S, Liu W, Raja R, Fine
BM, Hughes BG, Hicks RJ, Hampton GM, Amler LC, Pirzkall A and
Lackner MR: Evaluation of circulating tumor cells and circulating
tumor DNA in non-small cell lung cancer: association with clinical
endpoints in a phase II clinical trial of pertuzumab and erlotinib.
Clin Cancer Res. 18:2391–2401. 2012. View Article : Google Scholar : PubMed/NCBI
|
|
94.
|
O’Flaherty JD, Gray S, Richard D, Fennell
D, O’Leary JJ, Blackhall FH and O’Byrne KJ: Circulating tumour
cells, their role in metastasis and their clinical utility in lung
cancer. Lung Cancer. 76:19–25. 2012.PubMed/NCBI
|