|
1.
|
Bhatt AN, Mathur R, Farooque A, Verma A
and Dwarakanath BS: Cancer biomarkers - current perspectives.
Indian J Med Res. 132:129–149. 2010.PubMed/NCBI
|
|
2.
|
Cho WC: Contribution of oncoproteomics to
cancer biomarker discovery. Mol Cancer. 6:252007. View Article : Google Scholar : PubMed/NCBI
|
|
3.
|
Louis DN, Ohgaki H, Wiestler OD, et al:
The 2007 WHO classification of tumours of the central nervous
system. Acta Neuropathol. 114:97–109. 2007. View Article : Google Scholar : PubMed/NCBI
|
|
4.
|
Wen PY and Kesari S: Malignant gliomas in
adults. N Engl J Med. 359:492–507. 2008. View Article : Google Scholar : PubMed/NCBI
|
|
5.
|
Bailey P and Cushing H: A Classification
of the Tumors of the Glioma Group on a Histogenetic Basis with a
Correlated Study of Prognosis. JB Lippincott & Co.;
Philadelphia, PA: 1926
|
|
6.
|
Galon J, Pages F, Marincola FM, et al:
Cancer classification using the Immunoscore: a worldwide task
force. J Transl Med. 10:2052012. View Article : Google Scholar : PubMed/NCBI
|
|
7.
|
Louis DN, Holland EC and Cairncross JG:
Glioma classification: a molecular reappraisal. Am J Pathol.
159:779–786. 2001. View Article : Google Scholar : PubMed/NCBI
|
|
8.
|
Okada H, Kohanbash G, Zhu X, et al:
Immunotherapeutic approaches for glioma. Crit Rev Immunol. 29:1–42.
2009. View Article : Google Scholar
|
|
9.
|
Iacob G and Dinca EB: Current data and
strategy in glioblastoma multiforme. J Med Life. 2:386–393.
2009.PubMed/NCBI
|
|
10.
|
Bralten LB and French PJ: Genetic
alterations in glioma. Cancers. 3:1129–1140. 2011. View Article : Google Scholar : PubMed/NCBI
|
|
11.
|
Yoshida J: Molecular neurosurgery using
gene therapy to treat malignant glioma. Nagoya J Med Sci.
59:97–105. 1996.PubMed/NCBI
|
|
12.
|
Li J, Di C, Mattox AK, Wu L and Adamson
DC: The future role of personalized medicine in the treatment of
glioblastoma multiforme. Pharmgenomics Pers Med. 3:111–127.
2010.PubMed/NCBI
|
|
13.
|
Chi A and Komaki R: Treatment of brain
metastasis from lung cancer. Cancers. 2:2100–2137. 2010. View Article : Google Scholar : PubMed/NCBI
|
|
14.
|
Mathieu D, Kondziolka D, Cooper PB, et al:
Gamma knife radiosurgery for malignant melanoma brain metastases.
Clin Neurosurg. 54:241–247. 2007.PubMed/NCBI
|
|
15.
|
Daga A, Bottino C, Castriconi R, Gangemi R
and Ferrini S: New perspectives in glioma immunotherapy. Curr Pharm
Des. 17:2439–2467. 2011. View Article : Google Scholar : PubMed/NCBI
|
|
16.
|
Ali SA, McHayleh WM, Ahmad A, et al:
Bevacizumab and irinotecan therapy in glioblastoma multiforme: a
series of 13 cases. J Neurosurg. 109:268–272. 2008. View Article : Google Scholar : PubMed/NCBI
|
|
17.
|
Farrell CJ and Plotkin SR: Genetic causes
of brain tumors: neurofibromatosis, tuberous sclerosis, von
Hippel-Lindau, and other syndromes. Neurol Clin. 25:925–946.
viii2007. View Article : Google Scholar : PubMed/NCBI
|
|
18.
|
Fisher JL, Schwartzbaum JA, Wrensch M and
Wiemels JL: Epidemiology of brain tumors. Neurol Clin. 25:867–890.
vii2007. View Article : Google Scholar : PubMed/NCBI
|
|
19.
|
Chen J, Li Y, Yu TS, et al: A restricted
cell population propagates glioblastoma growth after chemotherapy.
Nature. 488:522–526. 2012. View Article : Google Scholar : PubMed/NCBI
|
|
20.
|
Westermark B: Glioblastoma - a moving
target. Ups J Med Sci. 117:251–256. 2012. View Article : Google Scholar : PubMed/NCBI
|
|
21.
|
Van Gool S, Maes W, Ardon H, Verschuere T,
Van Cauter S and De Vleeschouwer S: Dendritic cell therapy of
high-grade gliomas. Brain Pathol. 19:694–712. 2009.PubMed/NCBI
|
|
22.
|
Gruber ML and Buster WP: Temozolomide in
combination with irinotecan for treatment of recurrent malignant
glioma. Am J Clin Oncol. 27:33–38. 2004. View Article : Google Scholar : PubMed/NCBI
|
|
23.
|
Pluchino S, Zanotti L, Deleidi M and
Martino G: Neural stem cells and their use as therapeutic tool in
neurological disorders. Brain Res Brain Res Rev. 48:211–219. 2005.
View Article : Google Scholar : PubMed/NCBI
|
|
24.
|
Goldman S: Glia as neural progenitor
cells. Trends Neurosci. 26:590–596. 2003. View Article : Google Scholar : PubMed/NCBI
|
|
25.
|
Ivanova NB, Dimos JT, Schaniel C, Hackney
JA, Moore KA and Lemischka IR: A stem cell molecular signature.
Science. 298:601–604. 2002. View Article : Google Scholar : PubMed/NCBI
|
|
26.
|
Hadnagy A, Gaboury L, Beaulieu R and
Balicki D: SP analysis may be used to identify cancer stem cell
populations. Exp Cell Res. 312:3701–3710. 2006. View Article : Google Scholar : PubMed/NCBI
|
|
27.
|
Singh SK, Clarke ID, Terasaki M, et al:
Identification of a cancer stem cell in human brain tumors. Cancer
Res. 63:5821–5828. 2003.PubMed/NCBI
|
|
28.
|
Altman J: Autoradiographic and
histological studies of postnatal neurogenesis. 3. Dating the time
of production and onset of differentiation of cerebellar
microneurons in rats. J Comp Neurol. 136:269–293. 1969. View Article : Google Scholar : PubMed/NCBI
|
|
29.
|
Corotto FS, Henegar JA and Maruniak JA:
Neurogenesis persists in the subependymal layer of the adult mouse
brain. Neurosci Lett. 149:111–114. 1993. View Article : Google Scholar : PubMed/NCBI
|
|
30.
|
Eriksson PS, Perfilieva E, Bjork-Eriksson
T, et al: Neurogenesis in the adult human hippocampus. Nat Med.
4:1313–1317. 1998. View
Article : Google Scholar : PubMed/NCBI
|
|
31.
|
Baylin SB and Ohm JE: Epigenetic gene
silencing in cancer - a mechanism for early oncogenic pathway
addiction? Nat Rev Cancer. 6:107–116. 2006. View Article : Google Scholar : PubMed/NCBI
|
|
32.
|
Jaenisch R and Bird A: Epigenetic
regulation of gene expression: how the genome integrates intrinsic
and environmental signals. Nat Genet. 33(Suppl): 245–254. 2003.
View Article : Google Scholar : PubMed/NCBI
|
|
33.
|
Driessens G, Beck B, Caauwe A, Simons BD
and Blanpain C: Defining the mode of tumour growth by clonal
analysis. Nature. 488:527–530. 2012. View Article : Google Scholar : PubMed/NCBI
|
|
34.
|
Vermeulen L, Sprick MR, Kemper K, Stassi G
and Medema JP: Cancer stem cells - old concepts, new insights. Cell
Death Differ. 15:947–958. 2008. View Article : Google Scholar : PubMed/NCBI
|
|
35.
|
Gilbertson RJ and Graham TA: Cancer:
Resolving the stem-cell debate. Nature. 488:462–463. 2012.
View Article : Google Scholar : PubMed/NCBI
|
|
36.
|
Ailles LE and Weissman IL: Cancer stem
cells in solid tumors. Curr Opin Biotechnol. 18:460–466. 2007.
View Article : Google Scholar : PubMed/NCBI
|
|
37.
|
Welte Y, Adjaye J, Lehrach HR and
Regenbrecht CR: Cancer stem cells in solid tumors: elusive or
illusive? Cell Commun Signal. 8:62010. View Article : Google Scholar : PubMed/NCBI
|
|
38.
|
Makino S: The role of tumor stem-cells in
regrowth of the tumor following drastic applications. Acta Unio Int
Contra Cancrum. 15(Suppl 1): 196–198. 1959.PubMed/NCBI
|
|
39.
|
Jordan CT, Guzman ML and Noble M: Cancer
stem cells. N Engl J Med. 355:1253–1261. 2006. View Article : Google Scholar : PubMed/NCBI
|
|
40.
|
Liu G, Yuan X, Zeng Z, et al: Analysis of
gene expression and chemoresistance of CD133+ cancer
stem cells in glioblastoma. Mol Cancer. 5:672006. View Article : Google Scholar : PubMed/NCBI
|
|
41.
|
Albini A and Sporn MB: The tumour
microenvironment as a target for chemoprevention. Nat Rev Cancer.
7:139–147. 2007. View Article : Google Scholar : PubMed/NCBI
|
|
42.
|
Calabrese C, Poppleton H, Kocak M, et al:
A perivascular niche for brain tumor stem cells. Cancer Cell.
11:69–82. 2007. View Article : Google Scholar : PubMed/NCBI
|
|
43.
|
Crea F, Danesi R and Farrar WL: Cancer
stem cell epigenetics and chemoresistance. Epigenomics. 1:63–79.
2009. View Article : Google Scholar
|
|
44.
|
Goodell MA, Brose K, Paradis G, Conner AS
and Mulligan RC: Isolation and functional properties of murine
hematopoietic stem cells that are replicating in vivo. J Exp Med.
183:1797–1806. 1996. View Article : Google Scholar : PubMed/NCBI
|
|
45.
|
Hirschmann-Jax C, Foster AE, Wulf GG, et
al: A distinct ‘side population’ of cells with high drug efflux
capacity in human tumor cells. Proc Natl Acad Sci USA.
101:14228–14233. 2004.
|
|
46.
|
Martin CM, Meeson AP, Robertson SM, et al:
Persistent expression of the ATP-binding cassette transporter,
Abcg2, identifies cardiac SP cells in the developing and adult
heart. Dev Biol. 265:262–275. 2004. View Article : Google Scholar : PubMed/NCBI
|
|
47.
|
Shimano K, Satake M, Okaya A, et al:
Hepatic oval cells have the side population phenotype defined by
expression of ATP-binding cassette transporter ABCG2/BCRP1. Am J
Pathol. 163:3–9. 2003. View Article : Google Scholar : PubMed/NCBI
|
|
48.
|
Umemoto T, Yamato M, Nishida K, Yang J,
Tano Y and Okano T: Limbal epithelial side-population cells have
stem cell-like properties, including quiescent state. Stem Cells.
24:86–94. 2006. View Article : Google Scholar : PubMed/NCBI
|
|
49.
|
Yano S, Ito Y, Fujimoto M, Hamazaki TS,
Tamaki K and Okochi H: Characterization and localization of side
population cells in mouse skin. Stem Cells. 23:834–841. 2005.
View Article : Google Scholar : PubMed/NCBI
|
|
50.
|
Ribou AC, Vigo J, Kohen E and Salmon JM:
Microfluorometric study of oxygen dependence of (1″-pyrene
butyl)-2-rhodamine ester probe in mitochondria of living cells. J
Photochem Photobiol B. 70:107–115. 2003.PubMed/NCBI
|
|
51.
|
Liu WH, Qian NS, Li R and Dou KF:
Replacing Hoechst33342 with rhodamine123 in isolation of cancer
stem-like cells from the MHCC97 cell line. Toxicol In Vitro.
24:538–545. 2010. View Article : Google Scholar : PubMed/NCBI
|
|
52.
|
Pfenninger CV, Roschupkina T, Hertwig F,
et al: CD133 is not present on neurogenic astrocytes in the adult
subventricular zone, but on embryonic neural stem cells, ependymal
cells, and glioblastoma cells. Cancer Res. 67:5727–5736. 2007.
View Article : Google Scholar : PubMed/NCBI
|
|
53.
|
Ieta K, Tanaka F, Haraguchi N, et al:
Biological and genetic characteristics of tumor-initiating cells in
colon cancer. Ann Surg Oncol. 15:638–648. 2008. View Article : Google Scholar : PubMed/NCBI
|
|
54.
|
Monzani E, Facchetti F, Galmozzi E, et al:
Melanoma contains CD133 and ABCG2 positive cells with enhanced
tumourigenic potential. Eur J Cancer. 43:935–946. 2007. View Article : Google Scholar : PubMed/NCBI
|
|
55.
|
Singh SK, Hawkins C, Clarke ID, et al:
Identification of human brain tumour initiating cells. Nature.
432:396–401. 2004. View Article : Google Scholar : PubMed/NCBI
|
|
56.
|
Yin AH, Miraglia S, Zanjani ED, et al:
AC133, a novel marker for human hematopoietic stem and progenitor
cells. Blood. 90:5002–5012. 1997.PubMed/NCBI
|
|
57.
|
Miraglia S, Godfrey W, Yin AH, et al: A
novel five-transmembrane hematopoietic stem cell antigen:
isolation, characterization, and molecular cloning. Blood.
90:5013–5021. 1997.PubMed/NCBI
|
|
58.
|
Mizrak D, Brittan M and Alison M: CD133:
molecule of the moment. J Pathol. 214:3–9. 2008. View Article : Google Scholar : PubMed/NCBI
|
|
59.
|
Florek M, Haase M, Marzesco AM, et al:
Prominin-1/CD133, a neural and hematopoietic stem cell marker, is
expressed in adult human differentiated cells and certain types of
kidney cancer. Cell Tissue Res. 319:15–26. 2005. View Article : Google Scholar : PubMed/NCBI
|
|
60.
|
Weigmann A, Corbeil D, Hellwig A and
Huttner WB: Prominin, a novel microvilli-specific polytopic
membrane protein of the apical surface of epithelial cells, is
targeted to plasmalemmal protrusions of non-epithelial cells. Proc
Natl Acad Sci USA. 94:12425–12430. 1997. View Article : Google Scholar
|
|
61.
|
Shmelkov SV, Jun L, St Clair R, et al:
Alternative promoters regulate transcription of the gene that
encodes stem cell surface protein AC133. Blood. 103:2055–2061.
2004. View Article : Google Scholar : PubMed/NCBI
|
|
62.
|
Bao S, Wu Q, McLendon RE, et al: Glioma
stem cells promote radioresistance by preferential activation of
the DNA damage response. Nature. 444:756–760. 2006. View Article : Google Scholar : PubMed/NCBI
|
|
63.
|
Yamanaka R: Cell- and peptide-based
immunotherapeutic approaches for glioma. Trends Mol Med.
14:228–235. 2008. View Article : Google Scholar : PubMed/NCBI
|
|
64.
|
Bulik M, Jancalek R, Vanicek J, Skoch A
and Mechl M: Potential of MR spectroscopy for assessment of glioma
grading. Clin Neurol Neurosurg. 115:146–153. 2013. View Article : Google Scholar : PubMed/NCBI
|
|
65.
|
Komoroski RA, Heimberg C, Cardwell D and
Karson CN: Effects of gender and region on proton MRS of normal
human brain. Magn Reson Imaging. 17:427–433. 1999. View Article : Google Scholar : PubMed/NCBI
|
|
66.
|
Li BS, Wang H and Gonen O: Metabolite
ratios to assumed stable creatine level may confound the
quantification of proton brain MR spectroscopy. Magn Reson Imaging.
21:923–928. 2003. View Article : Google Scholar : PubMed/NCBI
|
|
67.
|
Calin GA and Croce CM: MicroRNA signatures
in human cancers. Nat Rev Cancer. 6:857–866. 2006. View Article : Google Scholar : PubMed/NCBI
|
|
68.
|
Lu J, Getz G, Miska EA, et al: MicroRNA
expression profiles classify human cancers. Nature. 435:834–838.
2005. View Article : Google Scholar : PubMed/NCBI
|
|
69.
|
Mitchell PS, Parkin RK, Kroh EM, et al:
Circulating microRNAs as stable blood-based markers for cancer
detection. Proc Natl Acad Sci USA. 105:10513–10518. 2008.
View Article : Google Scholar : PubMed/NCBI
|
|
70.
|
Wang Q, Li P, Li A, et al: Plasma specific
miRNAs as predictive biomarkers for diagnosis and prognosis of
glioma. J Exp Clin Cancer Res. 31:972012. View Article : Google Scholar : PubMed/NCBI
|
|
71.
|
Stupp R, Mason WP, van den Bent MJ, et al:
Radiotherapy plus concomitant and adjuvant temozolomide for
glioblastoma. N Engl J Med. 352:987–996. 2005. View Article : Google Scholar : PubMed/NCBI
|
|
72.
|
Grossman R, Rudek MA, Brastianos H, et al:
The impact of bevacizumab on temozolomide concentrations in
intracranial U87 gliomas. Cancer Chemother Pharmacol. 70:129–139.
2012. View Article : Google Scholar : PubMed/NCBI
|
|
73.
|
Walker MD, Alexander E Jr, Hunt WE, et al:
Evaluation of BCNU and/or radiotherapy in the treatment of
anaplastic gliomas. A cooperative clinical trial. J Neurosurg.
49:333–343. 1978. View Article : Google Scholar : PubMed/NCBI
|
|
74.
|
Reardon DA, Quinn JA, Rich JN, et al:
Phase I trial of irinotecan plus temozolomide in adults with
recurrent malignant glioma. Cancer. 104:1478–1486. 2005. View Article : Google Scholar : PubMed/NCBI
|
|
75.
|
Abbott NJ, Ronnback L and Hansson E:
Astrocyte-endothelial interactions at the blood-brain barrier. Nat
Rev Neurosci. 7:41–53. 2006. View Article : Google Scholar : PubMed/NCBI
|
|
76.
|
Anderson CM and Nedergaard M:
Astrocyte-mediated control of cerebral microcirculation. Trends
Neurosci. 26:340–345. 2003. View Article : Google Scholar : PubMed/NCBI
|
|
77.
|
Nedergaard M, Ransom B and Goldman SA: New
roles for astrocytes: redefining the functional architecture of the
brain. Trends Neurosci. 26:523–530. 2003. View Article : Google Scholar : PubMed/NCBI
|
|
78.
|
Pardridge WM: Blood-brain barrier drug
targeting: the future of brain drug development. Mol Interv.
3:90–105. 512003. View Article : Google Scholar : PubMed/NCBI
|
|
79.
|
Abbott NJ: Evidence for bulk flow of brain
interstitial fluid: significance for physiology and pathology.
Neurochem Int. 45:545–552. 2004. View Article : Google Scholar : PubMed/NCBI
|
|
80.
|
Cserr HF and Bundgaard M: Blood-brain
interfaces in vertebrates: a comparative approach. Am J Physiol.
246:R277–R288. 1984.PubMed/NCBI
|
|
81.
|
Hickey MJ, Malone CC, Erickson KL, et al:
Cellular and vaccine therapeutic approaches for gliomas. J Transl
Med. 8:1002010. View Article : Google Scholar : PubMed/NCBI
|
|
82.
|
Folkman J: Tumor angiogenesis: therapeutic
implications. N Engl J Med. 285:1182–1186. 1971. View Article : Google Scholar : PubMed/NCBI
|
|
83.
|
Norden AD, Young GS, Setayesh K, et al:
Bevacizumab for recurrent malignant gliomas: efficacy, toxicity,
and patterns of recurrence. Neurology. 70:779–787. 2008. View Article : Google Scholar : PubMed/NCBI
|
|
84.
|
Afanasieva TA, Wittmer M, Vitaliti A, Ajmo
M, Neri D and Klemenz R: Single-chain antibody and its derivatives
directed against vascular endothelial growth factor: application
for anti-angiogenic gene therapy. Gene Ther. 10:1850–1859. 2003.
View Article : Google Scholar
|
|
85.
|
Sanz L, Blanco B and Alvarez-Vallina L:
Antibodies and gene therapy: teaching old ‘magic bullets’ new
tricks. Trends Immunol. 25:85–91. 2004.
|
|
86.
|
Furnari FB, Fenton T, Bachoo RM, et al:
Malignant astrocytic glioma: genetics, biology, and paths to
treatment. Genes Dev. 21:2683–2710. 2007. View Article : Google Scholar : PubMed/NCBI
|
|
87.
|
Vredenburgh JJ, Desjardins A, Herndon JE
II, et al: Phase II trial of bevacizumab and irinotecan in
recurrent malignant glioma. Clin Cancer Res. 13:1253–1259. 2007.
View Article : Google Scholar : PubMed/NCBI
|
|
88.
|
Vredenburgh JJ, Desjardins A, Herndon JE
II, et al: Bevacizumab plus irinotecan in recurrent glioblastoma
multiforme. J Clin Oncol. 25:4722–4729. 2007. View Article : Google Scholar : PubMed/NCBI
|
|
89.
|
Hurwitz H, Fehrenbacher L, Novotny W, et
al: Bevacizumab plus irinotecan, fluorouracil, and leucovorin for
metastatic colorectal cancer. N Engl J Med. 350:2335–2342. 2004.
View Article : Google Scholar : PubMed/NCBI
|
|
90.
|
Johnson DH, Fehrenbacher L, Novotny WF, et
al: Randomized phase II trial comparing bevacizumab plus
carboplatin and paclitaxel with carboplatin and paclitaxel alone in
previously untreated locally advanced or metastatic non-small-cell
lung cancer. J Clin Oncol. 22:2184–2191. 2004. View Article : Google Scholar
|
|
91.
|
Friedman HS, Petros WP, Friedman AH, et
al: Irinotecan therapy in adults with recurrent or progressive
malignant glioma. J Clin Oncol. 17:1516–1525. 1999.PubMed/NCBI
|
|
92.
|
Prados MD, Lamborn K, Yung WK, et al: A
phase 2 trial of irinotecan (CPT-11) in patients with recurrent
malignant glioma: a North American Brain Tumor Consortium study.
Neuro Oncol. 8:189–193. 2006. View Article : Google Scholar
|
|
93.
|
Stark-Vance V: Bevacizumab and CPT-11 in
the treatment of relapsed malignant glioma. Neuro Oncol.
7:3692005.
|
|
94.
|
Pope WB, Lai A, Nghiemphu P, Mischel P and
Cloughesy TF: MRI in patients with high-grade gliomas treated with
bevacizumab and chemotherapy. Neurology. 66:1258–1260. 2006.
View Article : Google Scholar : PubMed/NCBI
|
|
95.
|
Narayana A, Kelly P, Golfinos J, et al:
Antiangiogenic therapy using bevacizumab in recurrent high-grade
glioma: impact on local control and patient survival. J Neurosurg.
110:173–180. 2009. View Article : Google Scholar : PubMed/NCBI
|
|
96.
|
Mountain A: Gene therapy: the first
decade. Trends Biotechnol. 18:119–128. 2000. View Article : Google Scholar
|
|
97.
|
Carter P: Improving the efficacy of
antibody-based cancer therapies. Nat Rev Cancer. 1:118–129. 2001.
View Article : Google Scholar : PubMed/NCBI
|
|
98.
|
Segal DM, Weiner GJ and Weiner LM:
Bispecific antibodies in cancer therapy. Curr Opin Immunol.
11:558–562. 1999. View Article : Google Scholar : PubMed/NCBI
|
|
99.
|
Hudson PJ: Recombinant antibody constructs
in cancer therapy. Curr Opin Immunol. 11:548–557. 1999. View Article : Google Scholar : PubMed/NCBI
|
|
100.
|
Cortez-Retamozo V, Backmann N, Senter PD,
et al: Efficient cancer therapy with a nanobody-based conjugate.
Cancer Res. 64:2853–2857. 2004. View Article : Google Scholar : PubMed/NCBI
|
|
101.
|
Vu KB, Ghahroudi MA, Wyns L and
Muyldermans S: Comparison of llama VH sequences from conventional
and heavy chain antibodies. Mol Immunol. 34:1121–1131. 1997.
View Article : Google Scholar : PubMed/NCBI
|
|
102.
|
Song E, Zhu P, Lee SK, et al: Antibody
mediated in vivo delivery of small interfering RNAs via
cell-surface receptors. Nat Biotechnol. 23:709–717. 2005.
View Article : Google Scholar : PubMed/NCBI
|
|
103.
|
Sioud M: Induction of inflammatory
cytokines and interferon responses by double-stranded and
single-stranded siRNAs is sequence-dependent and requires endosomal
localization. J Mol Biol. 348:1079–1090. 2005. View Article : Google Scholar
|