|
1.
|
Jemal A, Bray F, Center MM, et al: Global
cancer statistics. CA Cancer J Clin. 61:69–90. 2011. View Article : Google Scholar
|
|
2.
|
Jemal A, Siegel R, Xu J and Ward E: Cancer
statistics, 2010. CA Cancer J Clin. 60:277–300. 2010. View Article : Google Scholar
|
|
3.
|
Rajendran L, Knolker HJ and Simons K:
Subcellular targeting strategies for drug design and delivery. Nat
Rev Drug Discov. 9:29–42. 2010. View
Article : Google Scholar : PubMed/NCBI
|
|
4.
|
Blagosklonny MV: Analysis of FDA approved
anticancer drugs reveals the future of cancer therapy. Cell Cycle.
3:1035–1042. 2004. View Article : Google Scholar : PubMed/NCBI
|
|
5.
|
Kanwar JR, Mohan RR, Kanwar RK, et al:
Applications of aptamers in nanodelivery systems in cancer, eye and
inflammatory diseases. Nanomedicine (Lond). 5:1435–1445. 2010.
View Article : Google Scholar : PubMed/NCBI
|
|
6.
|
Ellington AD and Szostak JW: In vitro
selection of RNA molecules that bind specific ligands. Nature.
346:818–822. 1990. View
Article : Google Scholar : PubMed/NCBI
|
|
7.
|
Tuerk C and Gold L: Systematic evolution
of ligands by exponential enrichment: RNA ligands to bacteriophage
T4 DNA polymerase. Science. 249:505–510. 1990. View Article : Google Scholar
|
|
8.
|
Keefe AD and Cload ST: SELEX with modified
nucleotides. Curr Opin Chem Biol. 12:448–456. 2008. View Article : Google Scholar : PubMed/NCBI
|
|
9.
|
Majumder P, Gomes KN and Ulrich H:
Aptamers: from bench side research towards patented molecules with
therapeutic applications. Expert Opin Ther Pat. 19:1603–1613. 2009.
View Article : Google Scholar : PubMed/NCBI
|
|
10.
|
Keefe AD, Pai S and Ellington A: Aptamers
as therapeutics. Nat Rev Drug Discov. 9:537–550. 2010. View Article : Google Scholar : PubMed/NCBI
|
|
11.
|
Ciesiolka J and Yarus M: Small
RNA-divalent domains. RNA. 2:785–793. 1996.PubMed/NCBI
|
|
12.
|
Hofmann HP, Limmer S, Hornung V and
Sprinzl M: Ni2+-binding RNA motifs with an asymmetric
purine-rich internal loop and a G-A base pair. RNA. 3:1289–1300.
1997.
|
|
13.
|
Rajendran M and Ellington AD: Selection of
fluorescent aptamer beacons that light up in the presence of zinc.
Anal Bioanal Chem. 390:1067–1075. 2008. View Article : Google Scholar : PubMed/NCBI
|
|
14.
|
Geiger A, Burgstaller P, von der Eltz H,
et al: RNA aptamers that bind L-arginine with sub-micromolar
dissociation constants and high enantioselectivity. Nucleic Acids
Res. 24:1029–1036. 1996. View Article : Google Scholar : PubMed/NCBI
|
|
15.
|
Connell GJ, Illangesekare M and Yarus M:
Three small ribooligonucleotides with specific arginine sites.
Biochemistry. 32:5497–5502. 1993. View Article : Google Scholar : PubMed/NCBI
|
|
16.
|
Mannironi C, Scerch C, Fruscoloni P and
Tocchini-Valentini GP: Molecular recognition of amino acids by RNA
aptamers: the evolution into an L-tyrosine binder of a
dopamine-binding RNA motif. RNA. 6:520–527. 2000. View Article : Google Scholar : PubMed/NCBI
|
|
17.
|
Harada K and Frankel AD: Identification of
two novel arginine binding DNAs. EMBO J. 14:5798–5811.
1995.PubMed/NCBI
|
|
18.
|
Wallis MG, Streicher B, Wank H, et al: In
vitro selection of a viomycin-binding RNA pseudoknot. Chem Biol.
4:357–366. 1997. View Article : Google Scholar : PubMed/NCBI
|
|
19.
|
Wallace ST and Schroeder R: In vitro
selection and characterization of streptomycin-binding RNAs:
recognition discrimination between antibiotics. RNA. 4:112–123.
1998.PubMed/NCBI
|
|
20.
|
Nieuwlandt D, Wecker M and Gold L: In
vitro selection of RNA ligands to substance P. Biochemistry.
34:5651–5659. 1995. View Article : Google Scholar : PubMed/NCBI
|
|
21.
|
Williams KP, Liu XH, Schumacher TN, et al:
Bioactive and nuclease-resistant L-DNA ligand of vasopressin. Proc
Natl Acad Sci USA. 94:11285–11290. 1997. View Article : Google Scholar : PubMed/NCBI
|
|
22.
|
Mallikaratchy P, Stahelin RV, Cao Z, et
al: Selection of DNA ligands for protein kinase C-delta. Chem
Commun (Camb). 30:3229–3231. 2006. View
Article : Google Scholar : PubMed/NCBI
|
|
23.
|
Davis KA, Lin Y, Abrams B and Jayasena SD:
Staining of cell surface human CD4 with 2′-F-pyrimidine-containing
RNA aptamers for flow cytometry. Nucleic Acids Res. 26:3915–3924.
1998.
|
|
24.
|
Shangguan D, Li Y, Tang Z, et al: Aptamers
evolved from live cells as effective molecular probes for cancer
study. Proc Natl Acad Sci USA. 103:11838–11843. 2006. View Article : Google Scholar : PubMed/NCBI
|
|
25.
|
Tang Z, Shangguan D, Wang K, et al:
Selection of aptamers for molecular recognition and
characterization of cancer cells. Anal Chem. 79:4900–4907. 2007.
View Article : Google Scholar : PubMed/NCBI
|
|
26.
|
Chen HW, Medley CD, Sefah K, et al:
Molecular recognition of small-cell lung cancer cells using
aptamers. ChemMedChem. 3:991–1001. 2008. View Article : Google Scholar : PubMed/NCBI
|
|
27.
|
Sefah K, Tang ZW, Shangguan DH, et al:
Molecular recognition of acute myeloid leukemia using aptamers.
Leukemia. 23:235–244. 2009. View Article : Google Scholar : PubMed/NCBI
|
|
28.
|
Lorger M, Engstler M, Homann M and
Goringer HU: Targeting the variable surface of African trypanosomes
with variant surface glycoprotein-specific, serum-stable RNA
aptamers. Eukaryot Cell. 2:84–94. 2003. View Article : Google Scholar : PubMed/NCBI
|
|
29.
|
Tang Z, Parekh P, Turner P, et al:
Generating aptamers for recognition of virus-infected cells. Clin
Chem. 55:813–822. 2009. View Article : Google Scholar : PubMed/NCBI
|
|
30.
|
Bruno JG and Kiel JL: In vitro selection
of DNA aptamers to anthrax spores with electrochemiluminescence
detection. Biosens Bioelectron. 14:457–464. 1999. View Article : Google Scholar : PubMed/NCBI
|
|
31.
|
Shu D and Guo P: A viral RNA that binds
ATP and contains a motif similar to an ATP-binding aptamer from
SELEX. J Biol Chem. 278:7119–7125. 2003. View Article : Google Scholar : PubMed/NCBI
|
|
32.
|
Clark SL and Remcho VT: Aptamers as
analytical reagents. Electrophoresis. 23:1335–1340. 2002.
View Article : Google Scholar : PubMed/NCBI
|
|
33.
|
Bouvet P: Determination of nucleic acid
recognition sequences by SELEX. Methods Mol Biol. 148:603–610.
2001.PubMed/NCBI
|
|
34.
|
Sablin EP and Fletterick RJ: Nucleotide
switches in molecular motors: structural analysis of kinesins and
myosins. Curr Opin Struct Biol. 11:716–724. 2001. View Article : Google Scholar : PubMed/NCBI
|
|
35.
|
Shenton W, Pum D, Sleytr UB and Mann S:
Synthesis of cadmium sulphide superlattices using self-assembled
bacterial S-layers. Nature. 389:585–587. 1997. View Article : Google Scholar
|
|
36.
|
Yeakley JM, Fan JB, Doucet D, et al:
Profiling alternative splicing on fiber-optic arrays. Nat
Biotechnol. 20:353–358. 2002. View Article : Google Scholar : PubMed/NCBI
|
|
37.
|
Klug SJ and Famulok M: All you wanted to
know about SELEX. Mol Biol Rep. 20:97–107. 1994. View Article : Google Scholar : PubMed/NCBI
|
|
38.
|
Ciesiolka J, Gorski J and Yarus M:
Selection of an RNA domain that binds Zn2+. RNA.
1:538–550. 1995.PubMed/NCBI
|
|
39.
|
Nimjee SM, Rusconi CP, Harrington RA and
Sullenger BA: The potential of aptamers as anticoagulants. Trends
Cardiovasc Med. 15:41–45. 2005. View Article : Google Scholar : PubMed/NCBI
|
|
40.
|
Levy-Nissenbaum E, Radovic-Moreno AF, Wang
AZ, et al: Nanotechnology and aptamers: applications in drug
delivery. Trends Biotechnol. 26:442–449. 2008. View Article : Google Scholar : PubMed/NCBI
|
|
41.
|
Thiel KW and Giangrande PH: Therapeutic
applications of DNA and RNA aptamers. Oligonucleotides. 19:209–222.
2009. View Article : Google Scholar : PubMed/NCBI
|
|
42.
|
Dyke CK, Steinhubl SR, Kleiman NS, et al:
First-in-human experience of an antidote-controlled anticoagulant
using RNA aptamer technology: a phase 1a pharmacodynamic evaluation
of a drug-antidote pair for the controlled regulation of factor IXa
activity. Circulation. 114:2490–2497. 2006. View Article : Google Scholar
|
|
43.
|
Smith JE, Medley CD, Tang Z, et al:
Aptamer-conjugated nanoparticles for the collection and detection
of multiple cancer cells. Anal Chem. 79:3075–3082. 2007. View Article : Google Scholar : PubMed/NCBI
|
|
44.
|
Kang WJ, Chae JR, Cho YL, et al: Multiplex
imaging of single tumor cells using quantum-dot-conjugated
aptamers. Small. 5:2519–2522. 2009. View Article : Google Scholar : PubMed/NCBI
|
|
45.
|
Zhao Z, Xu L, Shi X, et al: Recognition of
subtype non-small cell lung cancer by DNA aptamers selected from
living cells. Analyst. 134:1808–1814. 2009. View Article : Google Scholar : PubMed/NCBI
|
|
46.
|
Hicke BJ and Stephens AW: Escort aptamers:
a delivery service for diagnosis and therapy. J Clin Invest.
106:923–928. 2000. View Article : Google Scholar : PubMed/NCBI
|
|
47.
|
Daniel MC and Astruc D: Gold
nanoparticles: assembly, supramolecular chemistry,
quantum-size-related properties, and applications toward biology,
catalysis, and nanotechnology. Chem Rev. 104:293–346. 2004.
View Article : Google Scholar
|
|
48.
|
Rosi NL, Giljohann DA, Thaxton CS,
Lytton-Jean AK, et al: Oligonucleotide-modified gold nanoparticles
for intracellular gene regulation. Science. 312:1027–1030. 2006.
View Article : Google Scholar
|
|
49.
|
Sperling RA, Rivera Gil P, Zhang F, et al:
Biological applications of gold nanoparticles. Chem Soc Rev.
37:1896–1908. 2008. View Article : Google Scholar
|
|
50.
|
Storhoff JJ, Lucas AD, Garimella V, et al:
Homogeneous detection of unamplified genomic DNA sequences based on
colorimetric scatter of gold nanoparticle probes. Nat Biotechnol.
22:883–887. 2004. View
Article : Google Scholar : PubMed/NCBI
|
|
51.
|
Grzelczak M, Perez-Juste J, Mulvaney P and
Liz-Marzan LM: Shape control in gold nanoparticle synthesis. Chem
Soc Rev. 37:1783–1791. 2008. View Article : Google Scholar : PubMed/NCBI
|
|
52.
|
Medley CD, Smith JE, Tang Z, et al: Gold
nanoparticle-based colorimetric assay for the direct detection of
cancerous cells. Anal Chem. 80:1067–1072. 2008. View Article : Google Scholar : PubMed/NCBI
|
|
53.
|
Lu W, Arumugam SR, Senapati D, et al:
Multifunctional oval-shaped gold-nanoparticle-based selective
detection of breast cancer cells using simple colorimetric and
highly sensitive two-photon scattering assay. ACS Nano.
4:1739–1749. 2010. View Article : Google Scholar
|
|
54.
|
Zhang J, Jia X, Lv XJ, et al: Fluorescent
quantum dot-labeled aptamer bioprobes specifically targeting mouse
liver cancer cells. Talanta. 81:505–509. 2010. View Article : Google Scholar : PubMed/NCBI
|
|
55.
|
Huang YF, Chang HT and Tan W: Cancer cell
targeting using multiple aptamers conjugated on nanorods. Anal
Chem. 80:567–572. 2008. View Article : Google Scholar : PubMed/NCBI
|
|
56.
|
Estevez MC, O'Donoghue MB, Chen X and Tan
W: Highly fluorescent dye-doped silica nanoparticles increase flow
cytometry sensitivity for cancer cell monitoring. Nano Res.
2:448–461. 2009. View Article : Google Scholar
|
|
57.
|
Chen X, Estevez MC, Zhu Z, et al: Using
aptamer-conjugated fluorescence resonance energy transfer
nanoparticles for multiplexed cancer cell monitoring. Anal Chem.
81:7009–7014. 2009. View Article : Google Scholar : PubMed/NCBI
|
|
58.
|
Wang L and Tan W: Multicolor FRET silica
nanoparticles by single wavelength excitation. Nano Lett. 6:84–88.
2006. View Article : Google Scholar : PubMed/NCBI
|
|
59.
|
Wessels JT, Busse AC, Mahrt J, et al: In
vivo imaging in experimental preclinical tumor research - a review.
Cytometry A. 71:542–549. 2007. View Article : Google Scholar : PubMed/NCBI
|
|
60.
|
Shangguan D, Meng L, Cao ZC, et al:
Identification of liver cancer-specific aptamers using whole live
cells. Anal Chem. 80:721–728. 2008. View Article : Google Scholar : PubMed/NCBI
|
|
61.
|
Davis KA, Abrams B, Lin Y and Jayasena SD:
Use of a high affinity DNA ligand in flow cytometry. Nucleic Acids
Res. 24:702–706. 1996. View Article : Google Scholar : PubMed/NCBI
|
|
62.
|
Bagalkot V, Zhang L, Levy-Nissenbaum E, et
al: Quantum dot-aptamer conjugates for synchronous cancer imaging,
therapy, and sensing of drug delivery based on bi-fluorescence
resonance energy transfer. Nano Lett. 7:3065–3070. 2007. View Article : Google Scholar : PubMed/NCBI
|
|
63.
|
Wang AZ, Bagalkot V, Vasilliou CC, et al:
Superparamagnetic iron oxide nanoparticle-aptamer bioconjugates for
combined prostate cancer imaging and therapy. ChemMedChem.
3:1311–1315. 2008. View Article : Google Scholar : PubMed/NCBI
|
|
64.
|
Kim D, Jeong YY and Jon S: A drug-loaded
aptamer-gold nanoparticle bioconjugate for combined CT imaging and
therapy of prostate cancer. ACS Nano. 4:3689–3696. 2010. View Article : Google Scholar : PubMed/NCBI
|
|
65.
|
Bander NH: Technology insight: monoclonal
antibody imaging of prostate cancer. Nat Clin Pract Urol.
3:216–225. 2006. View Article : Google Scholar : PubMed/NCBI
|
|
66.
|
Lupold SE, Hicke BJ, Lin Y and Coffey DS:
Identification and characterization of nuclease-stabilized RNA
molecules that bind human prostate cancer cells via the
prostate-specific membrane antigen. Cancer Res. 62:4029–4033.
2002.PubMed/NCBI
|
|
67.
|
McNamara JO II, Andrechek ER, Wang Y, et
al: Cell type-specific delivery of siRNAs with aptamer-siRNA
chimeras. Nat Biotechnol. 24:1005–1015. 2006. View Article : Google Scholar : PubMed/NCBI
|
|
68.
|
Ni X, Zhang Y, Ribas J, et al:
Prostate-targeted radiosensitization via aptamer-shRNA chimeras in
human tumor xenografts. J Clin Invest. 121:2383–2390. 2011.
View Article : Google Scholar : PubMed/NCBI
|
|
69.
|
Farokhzad OC, Jon S, Khademhosseini A, et
al: Nanoparticle-aptamer bioconjugates: a new approach for
targeting prostate cancer cells. Cancer Res. 64:7668–7672. 2004.
View Article : Google Scholar : PubMed/NCBI
|
|
70.
|
Bleickardt E, Argiris A, Rich R, et al:
Phase I dose escalation trial of weekly docetaxel plus irinotecan
in patients with advanced cancer. Cancer Biol Ther. 1:646–651.
2002. View Article : Google Scholar : PubMed/NCBI
|
|
71.
|
Farokhzad OC, Cheng J, Teply BA, et al:
Targeted nanoparticle-aptamer bioconjugates for cancer chemotherapy
in vivo. Proc Natl Acad Sci USA. 103:6315–6320. 2006. View Article : Google Scholar : PubMed/NCBI
|
|
72.
|
Cheng J, Teply BA, Sherifi I, et al:
Formulation of functionalized PLGA-PEG nanoparticles for in vivo
targeted drug delivery. Biomaterials. 28:869–876. 2007. View Article : Google Scholar : PubMed/NCBI
|
|
73.
|
Farokhzad OC, Khademhosseini A, Jon S, et
al: Microfluidic system for studying the interaction of
nanoparticles and microparticles with cells. Anal Chem.
77:5453–5459. 2005. View Article : Google Scholar : PubMed/NCBI
|
|
74.
|
Gu F, Zhang L, Teply BA, et al: Precise
engineering of targeted nanoparticles by using self-assembled
biointegrated block copolymers. Proc Natl Acad Sci USA.
105:2586–2591. 2008. View Article : Google Scholar : PubMed/NCBI
|
|
75.
|
Dhar S, Kolishetti N, Lippard SJ and
Farokhzad OC: Targeted delivery of a cisplatin prodrug for safer
and more effective prostate cancer therapy in vivo. Proc Natl Acad
Sci USA. 108:1850–1855. 2011. View Article : Google Scholar : PubMed/NCBI
|
|
76.
|
Ireson CR and Kelland LR: Discovery and
development of anti-cancer aptamers. Mol Cancer Ther. 5:2957–2962.
2006. View Article : Google Scholar : PubMed/NCBI
|
|
77.
|
Soundararajan S, Chen W, Spicer EK, et al:
The nucleolin targeting aptamer AS1411 destabilizes Bcl-2 messenger
RNA in human breast cancer cells. Cancer Res. 68:2358–2365. 2008.
View Article : Google Scholar : PubMed/NCBI
|
|
78.
|
Cao Z, Tong R, Mishra A, et al: Reversible
cell-specific drug delivery with aptamer-functionalized liposomes.
Angew Chem Int Ed Engl. 48:6494–6498. 2009. View Article : Google Scholar : PubMed/NCBI
|
|
79.
|
Bates PJ, Laber DA, Miller DM, et al:
Discovery and development of the G-rich oligonucleotide AS1411 as a
novel treatment for cancer. Exp Mol Pathol. 86:151–164. 2009.
View Article : Google Scholar : PubMed/NCBI
|
|
80.
|
Mongelard F and Bouvet P: AS-1411, a
guanosine-rich oligo-nucleotide aptamer targeting nucleolin for the
potential treatment of cancer, including acute myeloid leukemia.
Curr Opin Mol Ther. 12:107–114. 2010.
|
|
81.
|
Gendler SJ: MUC1, the renaissance
molecule. J Mammary Gland Biol Neoplasia. 6:339–353. 2001.
View Article : Google Scholar : PubMed/NCBI
|
|
82.
|
Brockhausen I, Yang JM, Burchell J, et al:
Mechanisms underlying aberrant glycosylation of MUC1 mucin in
breast cancer cells. Eur J Biochem. 233:607–617. 1995. View Article : Google Scholar : PubMed/NCBI
|
|
83.
|
Reis CA, David L, Seixas M, et al:
Expression of fully and under-glycosylated forms of MUC1 mucin in
gastric carcinoma. Int J Cancer. 79:402–410. 1998. View Article : Google Scholar : PubMed/NCBI
|
|
84.
|
Ferreira CS, Matthews CS and Missailidis
S: DNA aptamers that bind to MUC1 tumour marker: design and
characterization of MUC1-binding single-stranded DNA aptamers.
Tumour Biol. 27:289–301. 2006. View Article : Google Scholar : PubMed/NCBI
|
|
85.
|
Borbas KE, Ferreira CS, Perkins A, Bruce
JI and Missailidis S: Design and synthesis of mono- and multimeric
targeted radio-pharmaceuticals based on novel cyclen ligands
coupled to anti-MUC1 aptamers for the diagnostic imaging and
targeted radiotherapy of cancer. Bioconjug Chem. 18:1205–1212.
2007. View Article : Google Scholar
|
|
86.
|
Ferreira CS, Cheung MC, Missailidis S, et
al: Phototoxic aptamers selectively enter and kill epithelial
cancer cells. Nucleic Acids Res. 37:866–876. 2009. View Article : Google Scholar : PubMed/NCBI
|
|
87.
|
Savla R, Taratula O, Garbuzenko O and
Minko T: Tumor targeted quantum dot-mucin 1 aptamer-doxorubicin
conjugate for imaging and treatment of cancer. J Control Release.
153:16–22. 2011. View Article : Google Scholar : PubMed/NCBI
|
|
88.
|
Nolte A, Klussmann S, Bald R, et al:
Mirror-design of L-oligonucleotide ligands binding to L-arginine.
Nat Biotechnol. 14:1116–1119. 1996. View Article : Google Scholar : PubMed/NCBI
|
|
89.
|
Sayyed SG, Hagele H, Kulkarni OP, et al:
Podocytes produce homeostatic chemokine stromal cell-derived
factor-1/CXCL12, which contributes to glomerulosclerosis, podocyte
loss and albuminuria in a mouse model of type 2 diabetes.
Diabetologia. 52:2445–2454. 2009. View Article : Google Scholar
|