|
1
|
Cuenca AG, Jiang H, Hochwald SN, Delano M,
Cance WG and Grobmyer SR: Emerging implications of nanotechnology
on cancer diagnostics and therapeutics. Cancer. 107:459–466. 2006.
View Article : Google Scholar : PubMed/NCBI
|
|
2
|
Gdowski A, Ranjan AP, Mukerjee A and
Vishwanatha JK: Nanobiosensors: role in cancer detection and
diagnosis. Adv Exp Med Biol. 807:33–58. 2014.PubMed/NCBI
|
|
3
|
Laroui H, Rakhya P, Xiao B, Viennois E and
Merlin D: Nanotechnology in diagnostics and therapeutics for
gastrointestinal disorders. Dig Liver Dis. 45:995–1002. 2013.
View Article : Google Scholar : PubMed/NCBI
|
|
4
|
Service RF: Nanotoxicology.Nanotechnology
grows up. Science. 304:1732–1734. 2004. View Article : Google Scholar : PubMed/NCBI
|
|
5
|
Zhang GJ and Ning Y: Silicon nanowire
biosensor and its applications in disease diagnostics: a review.
Anal Chim Acta. 749:1–15. 2012. View Article : Google Scholar : PubMed/NCBI
|
|
6
|
Jabir NR, Tabrez S, Ashraf GM, Shakil S,
Damanhouri GA and Kamal MA: Nanotechnology-based approaches in
anticancer research. Int J Nanomedicine. 7:4391–4408.
2012.PubMed/NCBI
|
|
7
|
Shen MY, Li BR and Li YK: Silicon nanowire
field-effect-transistor based biosensors: from sensitive to
ultra-sensitive. Biosens Bioelectron. 60:101–111. 2014. View Article : Google Scholar : PubMed/NCBI
|
|
8
|
Wang WU, Chen C, Lin KH, Fang Y and Lieber
CM: Label-free detection of small-molecule-protein interactions by
using nanowire nanosensors. Proc Natl Acad Sci USA. 102:3208–3212.
2005. View Article : Google Scholar : PubMed/NCBI
|
|
9
|
Elnathan R, Kwiat M, Pevzner A, et al:
Biorecognition layer engineering: overcoming screening limitations
of nanowire-based FET devices. Nano Lett. 12:5245–5254. 2012.
View Article : Google Scholar : PubMed/NCBI
|
|
10
|
Zhang GJ, Chua JH, Chee RE, Agarwal A and
Wong SM: Label-free direct detection of m iRNAs with silicon
nanowire biosensors. Biosens Bioelectron. 24:2504–2508. 2009.
View Article : Google Scholar : PubMed/NCBI
|
|
11
|
Lee MH, Lee DH, Jung SW, Lee KN, Park YS
and Seong WK: Measurements of serum C-reactive protein levels in
patients with gastric cancer and quantification using silicon
nanowire arrays. Nanomedicine. 6:78–83. 2010. View Article : Google Scholar : PubMed/NCBI
|
|
12
|
Zheng G, Patolsky F, Cui Y, Wang WU and
Lieber CM: Multiplexed electrical detection of cancer markers with
nanowire sensor arrays. Nat Biotechnol. 23:1294–1301. 2005.
View Article : Google Scholar : PubMed/NCBI
|
|
13
|
Stern E, Vacic A, Rajan NK, et al:
Label-free biomarker detection from whole blood. Nat Nanotechnol.
5:138–142. 2010. View Article : Google Scholar : PubMed/NCBI
|
|
14
|
Gupta AK, Nair PR, Akin D, et al:
Anomalous resonance in a nanomechanical biosensor. Proc Natl Acad
Sci USA. 103:13362–13367. 2006. View Article : Google Scholar : PubMed/NCBI
|
|
15
|
Meckes B, Arce FT, Connelly LS and Lal R:
Insulated conducting cantilevered nanotips and two-chamber
recording system for high resolution ion sensing AFM. Sci Rep.
4:44542014. View Article : Google Scholar : PubMed/NCBI
|
|
16
|
Lee JH, Hwang KS, Park J, Yoon KH, Yoon DS
and Kim TS: Immunoassay of prostate-specific antigen (PSA) using
resonant frequency shift of piezoelectric nanomechanical
microcantilever. Biosens Bioelectron. 20:2157–2162. 2005.
View Article : Google Scholar : PubMed/NCBI
|
|
17
|
Savran CA, Knudsen SM, Ellington AD and
Manalis SR: Micromechanical detection of proteins using
aptamer-based receptor molecules. Anal Chem. 76:3194–3198. 2004.
View Article : Google Scholar : PubMed/NCBI
|
|
18
|
Hansen KM, Ji HF, Wu G, et al:
Cantilever-based optical deflection assay for discrimination of DNA
single-nucleotide mismatches. Anal Chem. 73:1567–1571. 2001.
View Article : Google Scholar : PubMed/NCBI
|
|
19
|
Liao HS, Huang KY, Hwang IS, Chang TJ,
Hsiao WW, Lin HH, Hwu ET and Chang CS: Operation of
astigmatic-detection atomic force microscopy in liquid
environments. Rev Sci Instrum. 84:1037092013. View Article : Google Scholar : PubMed/NCBI
|
|
20
|
Gunning AP, Chambers S, Pin C, Man AL,
Morris VJ and Nicoletti C: Mapping specific adhesive interactions
on living human intestinal epithelial cells with atomic force
microscopy. FASEB J. 22:2331–2339. 2008. View Article : Google Scholar : PubMed/NCBI
|
|
21
|
Krause M, Te Riet J and Wolf K: Probing
the compressibility of tumor cell nuclei by combined atomic
force-confocal microscopy. Phys Biol. 10:0650022013. View Article : Google Scholar : PubMed/NCBI
|
|
22
|
Wu TH, Chiou YW, Chiu WT, Tang MJ, Chen CH
and Yeh ML: The F-actin and adherence-dependent mechanical
differentiation of normal epithelial cells after TGF-beta1-induced
EMT (tEMT) using a microplate measurement system. Biomed
Microdevices. 16:465–478. 2014. View Article : Google Scholar : PubMed/NCBI
|
|
23
|
Zrazhevskiy P, Sena M and Gao X: Designing
multifunctional quantum dots for bioimaging, detection, and drug
delivery. Chem Soc Rev. 39:4326–4354. 2010. View Article : Google Scholar : PubMed/NCBI
|
|
24
|
Larson DR, Zipfel WR, Williams RM, et al:
Water-soluble quantum dots for multiphoton fluorescence imaging in
vivo. Science. 300:1434–1436. 2003. View Article : Google Scholar : PubMed/NCBI
|
|
25
|
Morgan NY, English S, Chen W, et al: Real
time in vivo non-invasive optical imaging using near-infrared
fluorescent quantum dots. Acad Radiol. 12:313–323. 2005. View Article : Google Scholar : PubMed/NCBI
|
|
26
|
Rizvi SB, Ghaderi S, Keshtgar M and
Seifalian AM: Semiconductor quantum dots as fluorescent probes for
in vitro and in vivo bio-molecular and cellular imaging. Nano Rev.
1:Aug 16–2010. View Article : Google Scholar : PubMed/NCBI
|
|
27
|
Zhang T, Stilwell JL, Gerion D, et al:
Cellular effect of high doses of silica-coated quantum dot profiled
with high throughput gene expression analysis and high content
cellomics measurements. Nano Lett. 6:800–808. 2006. View Article : Google Scholar : PubMed/NCBI
|
|
28
|
Wu C, Wang C, Han T, Zhou X, Guo S and
Zhang J: Insight into the cellular internalization and cytotoxicity
of graphene quantum dots. Adv Healthc Mater. 2:1613–1619. 2013.
View Article : Google Scholar : PubMed/NCBI
|
|
29
|
Zhang H, Fu X, Hu J and Zhu Z:
Microfluidic bead-based multienzyme-nanoparticle amplification for
detection of circulating tumor cells in the blood using quantum
dots labels. Anal Chim Acta. 779:64–71. 2013. View Article : Google Scholar : PubMed/NCBI
|
|
30
|
Yu Y, Xu L, Chen J, et al: Hydrothermal
synthesis of GSH-TGA co-capped CdTe quantum dots and their
application in labeling colorectal cancer cells. Colloids Surf B
Biointerfaces. 95:247–253. 2012. View Article : Google Scholar : PubMed/NCBI
|
|
31
|
Gazouli M, Lyberopoulou A, Pericleous P,
et al: Development of a quantum-dot-labelled magnetic immunoassay
method for circulating colorectal cancer cell detection. World J
Gastroenterol. 18:4419–4426. 2012. View Article : Google Scholar : PubMed/NCBI
|
|
32
|
Bodo J, Durkin L and Hsi ED: Quantitative
in situ detection of phosphoproteins in fixed tissues using quantum
dot technology. J Histochem Cytochem. 57:701–708. 2009. View Article : Google Scholar : PubMed/NCBI
|
|
33
|
Ballou B, Ernst LA, Andreko S, et al:
Sentinel lymph node imaging using quantum dots in mouse tumor
models. Bioconjug Chem. 18:389–396. 2007. View Article : Google Scholar : PubMed/NCBI
|
|
34
|
Khullar O, Frangioni JV, Grinstaff M and
Colson YL: Image-guided sentinel lymph node mapping and
nanotechnology-based nodal treatment in lung cancer using invisible
near-infrared fluorescent light. Semin Thorac Cardiovasc Surg.
21:309–315. 2009. View Article : Google Scholar : PubMed/NCBI
|
|
35
|
He Y, Xu H, Chen C, et al: In situ
spectral imaging of marker proteins in gastric cancer with
near-infrared and visible quantum dots probes. Talanta. 85:136–141.
2011. View Article : Google Scholar : PubMed/NCBI
|
|
36
|
Jain R, Dandekar P and Patravale V:
Diagnostic nanocarriers for sentinel lymph node imaging. J Control
Release. 138:90–102. 2009. View Article : Google Scholar : PubMed/NCBI
|
|
37
|
Soltesz EG, Kim S, Kim SW, et al: Sentinel
lymph node mapping of the gastrointestinal tract by using invisible
light. Ann Surg Oncol. 13:386–396. 2006. View Article : Google Scholar : PubMed/NCBI
|
|
38
|
Hikage M, Gonda K, Takeda M, et al:
Nano-imaging of the lymph network structure with quantum dots.
Nanotechnology. 21:1851032010. View Article : Google Scholar : PubMed/NCBI
|
|
39
|
Zhang YP, Sun P, Zhang XR and Yang WL: In
vitro gastric cancer cell imaging using near-infrared quantum
dot-conjugated CC49. Oncol Lett. 4:996–1002. 2012.PubMed/NCBI
|
|
40
|
Geraldo DA, Duran-Lara EF, Aguayo D, et
al: Supramolecular complexes of quantum dots and a polyamidoamine
(PAMAM)-folate derivative for molecular imaging of cancer cells.
Anal Bioanal Chem. 400:483–492. 2011. View Article : Google Scholar : PubMed/NCBI
|
|
41
|
Oostendorp M, Douma K, Hackeng TM, et al:
Quantitative molecular magnetic resonance imaging of tumor
angiogenesis using cNGR-labeled paramagnetic quantum dots. Cancer
Res. 68:7676–7683. 2008. View Article : Google Scholar : PubMed/NCBI
|
|
42
|
Diagaradjane P, Orenstein-Cardona JM,
Colon-Casasnovas NE, et al: Imaging epidermal growth factor
receptor expression in vivo: pharmacokinetic and biodistribution
characterization of a bioconjugated quantum dot nanoprobe. Clin
Cancer Res. 14:731–741. 2008. View Article : Google Scholar : PubMed/NCBI
|
|
43
|
Zhao X, He Y, Gao J, et al: Caveolin-1
expression level in cancer associated fibroblasts predicts outcome
in gastric cancer. PLoS One. 8:e591022013. View Article : Google Scholar : PubMed/NCBI
|
|
44
|
He Y, Zhao X, Gao J, et al: Quantum
dots-based immunofluorescent imaging of stromal fibroblasts
caveolin-1 and light chain 3B expression and identification of
their clinical significance in human gastric cancer. Int J Mol Sci.
13:13764–13780. 2012. View Article : Google Scholar : PubMed/NCBI
|
|
45
|
Xing Y, Chaudry Q, Shen C, et al:
Bioconjugated quantum dots for multiplexed and quantitative
immunohistochemistry. Nat Protoc. 2:1152–1165. 2007. View Article : Google Scholar : PubMed/NCBI
|
|
46
|
Bostick RM, Kong KY, Ahearn TU, Chaudry Q,
Cohen V and Wang MD: Detecting and quantifying biomarkers of risk
for colorectal cancer using quantum dots and novel image analysis
algorithms. Conf Proc IEEE Eng Med Biol Soc. 1:3313–3316.
2006.PubMed/NCBI
|
|
47
|
Hu WQ, Fang M, Zhao HL, et al: Tumor
invasion unit in gastric cancer revealed by QDs-based in situ
molecular imaging and multispectral analysis. Biomaterials.
35:4125–4132. 2014. View Article : Google Scholar : PubMed/NCBI
|
|
48
|
Peng CW, Tian Q, Yang GF, et al:
Quantum-dots based simultaneous detection of multiple biomarkers of
tumor stromal features to predict clinical outcomes in gastric
cancer. Biomaterials. 33:5742–5752. 2012. View Article : Google Scholar : PubMed/NCBI
|
|
49
|
Peng CW, Liu XL, Chen C, et al: Patterns
of cancer invasion revealed by QDs-based quantitative multiplexed
imaging of tumor microenvironment. Biomaterials. 32:2907–2917.
2011. View Article : Google Scholar : PubMed/NCBI
|
|
50
|
Svenson S and Tomalia DA: Dendrimers in
biomedical applications - reflections on the field. Adv Drug Deliv
Rev. 57:2106–2129. 2005. View Article : Google Scholar : PubMed/NCBI
|
|
51
|
Kannan RM, Nance E, Kannan S and Tomalia
DA: Emerging concepts in dendrimer-based nanomedicine: from design
principles to clinical applications. J Intern Med. Jul 3–2014.(Epub
ahead of print). View Article : Google Scholar : PubMed/NCBI
|
|
52
|
Talanov VS, Regino CA, Kobayashi H,
Bernardo M, Choyke PL and Brechbiel MW: Dendrimer-based nanoprobe
for dual modality magnetic resonance and fluorescence imaging. Nano
Lett. 6:1459–1463. 2006. View Article : Google Scholar : PubMed/NCBI
|
|
53
|
Davis SS: Biomedical applications of
nanotechnology - implications for drug targeting and gene therapy.
Trends Biotechnol. 15:217–224. 1997. View Article : Google Scholar : PubMed/NCBI
|
|
54
|
Teow HM, Zhou Z, Najlah M, Yusof SR,
Abbott NJ and D'Emanuele A: Delivery of paclitaxel across cellular
barriers using a dendrimer-based nanocarrier. Int J Pharm.
441:701–711. 2013. View Article : Google Scholar : PubMed/NCBI
|
|
55
|
Dufes C, Keith WN, Bilsland A, Proutski I,
Uchegbu IF and Schatzlein AG: Synthetic anticancer gene medicine
exploits intrinsic antitumor activity of cationic vector to cure
established tumors. Cancer Res. 65:8079–8084. 2005. View Article : Google Scholar : PubMed/NCBI
|
|
56
|
Li Z, Huang ZH, Cui DX, Yao H, Yu JL, Li
Q, Pan BF and Gao F: Polyamidoamine dendrimer-mediated survivin
antisense oligonucleotide inhibits the growth of subcutaneously
transplanted colorectal cancer in nude mice. J South Med Univ.
28:1935–1938. 2008.(In Chinese).
|
|
57
|
van der Poll DG, Kieler-Ferguson HM, Floyd
WC, et al: Design, synthesis, and biological evaluation of a
robust, biodegradable dendrimer. Bioconjug Chem. 21:764–773. 2010.
View Article : Google Scholar : PubMed/NCBI
|
|
58
|
Goldberg DS, Vijayalakshmi N, Swaan PW and
Ghandehari H: G3.5 PAMAM dendrimers enhance transepithelial
transport of SN38 while minimizing gastrointestinal toxicity. J
Control Release. 150:318–325. 2011. View Article : Google Scholar : PubMed/NCBI
|
|
59
|
Vijayalakshmi N, Ray A, Malugin A and
Ghandehari H: Carboxyl-terminated PAMAM-SN38 conjugates: synthesis,
characterization, and in vitro evaluation. Bioconjug Chem.
21:1804–1810. 2010. View Article : Google Scholar : PubMed/NCBI
|
|
60
|
Pan B, Cui D, Sheng Y, et al:
Dendrimer-modified magnetic nanoparticles enhance efficiency of
gene delivery system. Cancer Res. 67:8156–8163. 2007. View Article : Google Scholar : PubMed/NCBI
|
|
61
|
Nourazarian AR, Pashaei-Asl R, Omidi Y and
Najar AG: c-Src antisense complexed with PAMAM dendrimers decreases
c-Src expression and EGFR-dependent downstream genes in the human
HT-29 colon cancer cell line. Asian Pac J Cancer Prev.
13:2235–2240. 2012. View Article : Google Scholar : PubMed/NCBI
|
|
62
|
Morgan MT, Nakanishi Y, Kroll DJ, et al:
Dendrimer-encapsulated camptothecins: increased solubility,
cellular uptake, and cellular retention affords enhanced anticancer
activity in vitro. Cancer Res. 66:11913–11921. 2006. View Article : Google Scholar : PubMed/NCBI
|
|
63
|
Thiagarajan G, Ray A, Malugin A and
Ghandehari H: PAMAM-camptothecin conjugate inhibits proliferation
and induces nuclear fragmentation in colorectal carcinoma cells.
Pharm Res. 27:2307–2316. 2010. View Article : Google Scholar : PubMed/NCBI
|
|
64
|
Lee CC, Gillies ER, Fox ME, Guillaudeu SJ,
Fréchet JM, Dy EE and Szoka FC: A single dose of
doxorubicin-functionalized bow-tie dendrimer cures mice bearing
C-26 colon carcinomas. Proc Natl Acad Sci USA. 103:16649–16654.
2006. View Article : Google Scholar : PubMed/NCBI
|
|
65
|
Tomalia DA, Reyna LA and Svenson S:
Dendrimers as multi-purpose nanodevices for oncology drug delivery
and diagnostic imaging. Biochem Soc Trans. 35:61–67. 2007.
View Article : Google Scholar : PubMed/NCBI
|
|
66
|
Khosroshahi AG, Amanlou M, Sabzevari O, et
al: A comparative study of two novel nanosized radiolabeled
analogues of methionine for SPECT tumor imaging. Curr Med Chem.
20:123–133. 2013. View Article : Google Scholar : PubMed/NCBI
|
|
67
|
Kobayashi H, Sato N, Kawamoto S, et al: 3D
MR angiography of intratumoral vasculature using a novel
macromolecular MR contrast agent. Magn Reson Med. 46:579–585. 2001.
View Article : Google Scholar : PubMed/NCBI
|
|
68
|
Kabanov AV and Vinogradov SV: Nanogels as
pharmaceutical carriers: finite networks of infinite capabilities.
Angew Chem Int Ed Engl. 48:5418–5429. 2009. View Article : Google Scholar : PubMed/NCBI
|
|
69
|
Arunraj TR, Sanoj Rejinold N, Ashwin Kumar
N and Jayakumar R: Bio-responsive chitin-poly(L-lactic acid)
composite nanogels for liver cancer. Colloids Surf B Biointerfaces.
113:394–402. 2014. View Article : Google Scholar : PubMed/NCBI
|
|
70
|
Kong SH, Noh YW, Suh YS, et al: Evaluation
of the novel near-infrared fluorescence tracers pullulan polymer
nanogel and indocyanine green/gamma-glutamic acid complex for
sentinel lymph node navigation surgery in large animal models.
Gastric Cancer. Jan 31–2014.(Epub ahead of print).
|
|
71
|
Chacko RT, Ventura J, Zhuang J and
Thayumanavan S: Polymer nanogels: a versatile nanoscopic drug
delivery platform. Adv Drug Deliv Rev. 64:836–851. 2012. View Article : Google Scholar : PubMed/NCBI
|
|
72
|
Gou M, Men K, Zhang J, et al: Efficient
inhibition of C-26 colon carcinoma by VSVMP gene delivered by
biodegradable cationic nanogel derived from polyethyleneimine. ACS
Nano. 4:5573–5584. 2010. View Article : Google Scholar : PubMed/NCBI
|
|
73
|
Ashwanikumar N, Kumar NA, Nair SA and
Kumar GV: Methacrylic-based nanogels for the pH-sensitive delivery
of 5-fluorouracil in the colon. Int J Nanomedicine. 7:5769–5779.
2012.PubMed/NCBI
|
|
74
|
Yim H, Park SJ, Bae YH and Na K:
Biodegradable cationic nanoparticles loaded with an anticancer drug
for deep penetration of heterogeneous tumours. Biomaterials.
34:7674–7682. 2013. View Article : Google Scholar : PubMed/NCBI
|
|
75
|
Senanayake TH, Warren G and Vinogradov SV:
Novel anticancer polymeric conjugates of activated nucleoside
analogues. Bioconjug Chem. 22:1983–1993. 2011. View Article : Google Scholar : PubMed/NCBI
|
|
76
|
Senanayake TH, Warren G, Wei X and
Vinogradov SV: Application of activated nucleoside analogs for the
treatment of drug-resistant tumors by oral delivery of nanogel-drug
conjugates. J Control Release. 167:200–209. 2013. View Article : Google Scholar : PubMed/NCBI
|