|
1
|
Lowe KA, Chia VM, Taylor A, et al: An
international assessment of ovarian cancer incidence and mortality.
Gynecol Oncol. 130:107–114. 2013. View Article : Google Scholar : PubMed/NCBI
|
|
2
|
Siegel R, Ma JM, Zou ZH and Jemal A:
Cancer Statistics, 2014. CA Cancer J Clin. 64:9–29. 2014.
View Article : Google Scholar : PubMed/NCBI
|
|
3
|
Vaughan S, Coward JI, Bast RC, et al:
Rethinking ovarian cancer: recommendations for improving outcomes.
Nat Rev Cancer. 11:719–725. 2011. View
Article : Google Scholar : PubMed/NCBI
|
|
4
|
Bharwani N, Reznek RH and Rockall AG:
Ovarian cancer management: the role of imaging and diagnostic
challenges. Eur J Radiol. 78:41–51. 2011. View Article : Google Scholar : PubMed/NCBI
|
|
5
|
Luvero D, Milani A and Ledermann JA:
Treatment options in recurrent ovarian cancer: latest evidence and
clinical potential. Ther Adv Med Oncol. 6:229–239. 2014. View Article : Google Scholar : PubMed/NCBI
|
|
6
|
Menon U, Griffin M and Gentry-Maharaj A:
Ovarian cancer screening - current status, future directions.
Gynecol Oncol. 132:490–495. 2014. View Article : Google Scholar : PubMed/NCBI
|
|
7
|
Goff BA, Mandel LS, Drescher CW, et al:
Development of an ovarian cancer symptom index: possibilities for
earlier detection. Cancer. 109:221–227. 2007. View Article : Google Scholar : PubMed/NCBI
|
|
8
|
Bast RC, Hennessy B and Mills GB: The
biology of ovarian cancer: new opportunities for translation. Nat
Rev Cancer. 9:415–428. 2009. View
Article : Google Scholar : PubMed/NCBI
|
|
9
|
Romero I and Bast RC Jr: Minireview: human
ovarian cancer: biology, current management, and paths to
personalizing therapy. Endocrinology. 153:1593–1602. 2012.
View Article : Google Scholar : PubMed/NCBI
|
|
10
|
King SM and Burdette JE: Evaluating the
progenitor cells of ovarian cancer: analysis of current animal
models. BMB Rep. 44:435–445. 2011. View Article : Google Scholar : PubMed/NCBI
|
|
11
|
RosalesNieves AE and Gonzalez-Reyes A:
Genetics and mechanisms of ovarian cancer: parallels between
Drosophila and humans. Semin Cell Dev Biol. 28:104–109.
2014. View Article : Google Scholar : PubMed/NCBI
|
|
12
|
Fong MY and Kakar SS: Ovarian cancer mouse
models: a summary of current models and their limitations. J
Ovarian Res. 2:122009. View Article : Google Scholar : PubMed/NCBI
|
|
13
|
Jacob F, Nixdorf S, Hacker NF and
Heinzelmann-Schwarz VA: Reliable in vitro studies require
appropriate ovarian cancer cell lines. J Ovarian Res. 7:602014.
View Article : Google Scholar : PubMed/NCBI
|
|
14
|
Johnson PA and Giles JR: The hen as a
model of ovarian cancer. Nat Rev Cancer. 13:432–436. 2013.
View Article : Google Scholar : PubMed/NCBI
|
|
15
|
Vergara D, Merlot B, Lucot JP, et al:
Epithelial-mesenchymal transition in ovarian cancer. Cancer Lett.
291:59–66. 2010. View Article : Google Scholar : PubMed/NCBI
|
|
16
|
Naora H and Montell DJ: Ovarian cancer
metastasis: integrating insights from disparate model organisms.
Nat Rev Cancer. 5:355–366. 2005. View Article : Google Scholar : PubMed/NCBI
|
|
17
|
Fathalla MF: Incessant ovulation - a
factor in ovarian neoplasia? Lancet. 2:1631971. View Article : Google Scholar : PubMed/NCBI
|
|
18
|
Erickson BK, Conner MG and Landen CN Jr:
The role of the Fallopian tube in the origin of ovarian cancer. Am
J Obstet Gynecol. 209:409–414. 2013. View Article : Google Scholar : PubMed/NCBI
|
|
19
|
Fleming JS, Beaugie CR, Haviv I,
ChenevixTrench G and Tan OL: Incessant ovulation, inflammation and
epithelial ovarian carcinogenesis: revisiting old hypotheses. Mol
Cell Endocrinol. 247:4–21. 2006. View Article : Google Scholar : PubMed/NCBI
|
|
20
|
Murdoch WJ and McDonnel AC: Roles of the
ovarian surface epithelium in ovulation and carcinogenesis.
Reproduction. 123:743–750. 2002. View Article : Google Scholar : PubMed/NCBI
|
|
21
|
Murdoch WJ: Ovarian surface epithelium,
ovulation and carcinogenesis. Biol Rev Camb Philos Soc. 71:529–543.
1996. View Article : Google Scholar : PubMed/NCBI
|
|
22
|
Auersperg N, Wong AS, Choi KC, Kang SK and
Leung PC: Ovarian surface epithelium: biology, endocrinology, and
pathology. Endocr Rev. 22:255–288. 2001. View Article : Google Scholar : PubMed/NCBI
|
|
23
|
Maccio A and Madeddu C: Inflammation and
ovarian cancer. Cytokine. 58:133–147. 2012. View Article : Google Scholar : PubMed/NCBI
|
|
24
|
Salehi F, Dunfield L, Phillips KP, Krewski
D and Vanderhyden BC: Risk factors for ovarian cancer: an overview
with emphasis on hormonal factors. J Toxicol Environ Health B Crit
Rev. 11:301–321. 2008. View Article : Google Scholar : PubMed/NCBI
|
|
25
|
De Sousa Damião R, Fujiyama Oshima CT,
Stávale JN and Gonçalves WJ: Analysis of the expression of estrogen
receptor, progesterone receptor and chicken ovalbumin upstream
promoter-transcription factor I in ovarian epithelial cancers and
normal ovaries. Oncol Rep. 18:25–32. 2007.PubMed/NCBI
|
|
26
|
Moorman PG, Havrilesky LJ, Gierisch JM, et
al: Oral contraceptives and risk of ovarian cancer and breast
cancer among high-risk women: a systematic review and
meta-analysis. J Clin Oncol. 31:4188–4198. 2013. View Article : Google Scholar : PubMed/NCBI
|
|
27
|
Auersperg N: Specific keynote:
experimental models of epithelial ovarian carcinogenesis. Gynecol
Oncol. 88:S47–51; discussion S52-55. 2003. View Article : Google Scholar : PubMed/NCBI
|
|
28
|
Hakim AH, Turbov J and Rodriguez G:
Ovarian adenocarcinomas in the laying hen and women share similar
alterations in p53, ras, and HER-2/neu. Cancer Prev Res (Phila).
2:114–121. 2009. View Article : Google Scholar : PubMed/NCBI
|
|
29
|
Kolwijck E, Span PN, Thomas CM, et al:
Prognostic value of CA 125 in ovarian cyst fluid of patients with
epithelial ovarian cancer. Oncol Rep. 23:579–584. 2010.PubMed/NCBI
|
|
30
|
Walsh T, Casadei S, Lee MK, et al:
Mutations in 12 genes for inherited ovarian, Fallopian tube, and
peritoneal carcinoma identified by massively parallel sequencing.
Proc Natl Acad Sci USA. 108:18032–18037. 2011. View Article : Google Scholar : PubMed/NCBI
|
|
31
|
Grant P, Sakellis C and Jacene HA:
Gynecologic oncologic imaging with PET/CT. Semin Nucl Med.
44:461–478. 2014. View Article : Google Scholar : PubMed/NCBI
|
|
32
|
Chene G, PenaultLlorca F, Robin N, et al:
Early detection of ovarian cancer: Tomorrow? A review. J Gynecol
Obstet Biol Reprod (Paris). 42:5–11. 2013.(In French). View Article : Google Scholar : PubMed/NCBI
|
|
33
|
Lokshin AE: The quest for ovarian cancer
screening biomarkers: Are we on the right road? Int J Gynecol
Cancer. 22 Suppl 1:S35–S40. 2012. View Article : Google Scholar : PubMed/NCBI
|
|
34
|
Muggia F: Platinum compounds 30 years
after the introduction of cisplatin: implications for the treatment
of ovarian cancer. Gynecol Oncol. 112:275–281. 2009. View Article : Google Scholar : PubMed/NCBI
|
|
35
|
Kumar S, Mahdi H, Bryant C, et al:
Clinical trials and progress with paclitaxel in ovarian cancer. Int
J Womens Health. 2:411–427. 2010. View Article : Google Scholar : PubMed/NCBI
|
|
36
|
Huang RY, Chung VY and Thiery JP:
Targeting pathways contributing to epithelial-mesenchymal
transition (EMT) in epithelial ovarian cancer. Curr Drug Targets.
13:1649–1653. 2012. View Article : Google Scholar : PubMed/NCBI
|
|
37
|
Kalachand R, Hennessy BT and Markman M:
Molecular targeted therapy in ovarian cancer: what is on the
horizon? Drugs. 71:947–967. 2011. View Article : Google Scholar : PubMed/NCBI
|
|
38
|
Syrios J, Banerjee S and Kaye SB: Advanced
epithelial ovarian cancer: from standard chemotherapy to promising
molecular pathway targets - where are we now? Anticancer Res.
34:2069–2077. 2014.PubMed/NCBI
|
|
39
|
Itamochi H and Kigawa J: Clinical trials
and future potential of targeted therapy for ovarian cancer. Int J
Clin Oncol. 17:430–440. 2012. View Article : Google Scholar : PubMed/NCBI
|
|
40
|
Caponigro G and Sellers WR: Advances in
the preclinical testing of cancer therapeutic hypotheses. Nat Rev
Drug Discov. 10:179–187. 2011. View Article : Google Scholar : PubMed/NCBI
|
|
41
|
Brumby AM and Richardson HE: Using
Drosophila melanogaster to map human cancer pathways. Nat
Rev Cancer. 5:626–639. 2005. View Article : Google Scholar : PubMed/NCBI
|
|
42
|
Hall CA, Wang R, Miao J, et al: Hippo
pathway effector Yap is an ovarian cancer oncogene. Cancer Res.
70:8517–8525. 2010. View Article : Google Scholar : PubMed/NCBI
|
|
43
|
House CD, Hernandez L and Annunziata CM:
Recent technological advances in using mouse models to study
ovarian cancer. Front Oncol. 4:262014. View Article : Google Scholar : PubMed/NCBI
|
|
44
|
Shaw TJ, Senterman MK, Dawson K, Crane CA
and Vanderhyden BC: Characterization of intraperitoneal,
orthotopic, and metastatic xenograft models of human ovarian
cancer. Mol Ther. 10:1032–1042. 2004. View Article : Google Scholar : PubMed/NCBI
|
|
45
|
Fu X and Hoffman RM: Human ovarian
carcinoma metastatic models constructed in nude mice by orthotopic
transplantation of histologically-intact patient specimens.
Anticancer Res. 13:283–286. 1993.PubMed/NCBI
|
|
46
|
Roby KF, Taylor CC, Sweetwood JP, et al:
Development of a syngeneic mouse model for events related to
ovarian cancer. Carcinogenesis. 21:585–591. 2000. View Article : Google Scholar : PubMed/NCBI
|
|
47
|
Urzua U, Roby KF, Gangi LM, et al:
Transcriptomic analysis of an in vitro murine model of
ovarian carcinoma: functional similarity to the human disease and
identification of prospective tumoral markers and targets. J Cell
Physiol. 206:594–602. 2006. View Article : Google Scholar : PubMed/NCBI
|
|
48
|
Orsulic S, Li Y, Soslow RA, et al:
Induction of ovarian cancer by defined multiple genetic changes in
a mouse model system. Cancer Cell. 1:53–62. 2002. View Article : Google Scholar : PubMed/NCBI
|
|
49
|
Xing D and Orsulic S: A mouse model for
the molecular characterization of brca1-associated ovarian
carcinoma. Cancer Res. 66:8949–8953. 2006. View Article : Google Scholar : PubMed/NCBI
|
|
50
|
FleskenNikitin A, Choi KC, Eng JP, Shmidt
EN and Nikitin AY: Induction of carcinogenesis by concurrent
inactivation of p53 and Rb1 in the mouse ovarian surface
epithelium. Cancer Res. 63:3459–3463. 2003.PubMed/NCBI
|
|
51
|
Wu R, HendrixLucas N, Kuick R, et al:
Mouse model of human ovarian endometrioid adenocarcinoma based on
somatic defects in the Wnt/beta-catenin and PI3K/Pten signaling
pathways. Cancer Cell. 11:321–333. 2007. View Article : Google Scholar : PubMed/NCBI
|
|
52
|
Fuller ES and Howell VM: Culture models to
define key mediators of cancer matrix remodeling. Front Oncol.
4:572014. View Article : Google Scholar : PubMed/NCBI
|
|
53
|
Gillet JP, Calcagno AM, Varma S, et al:
Redefining the relevance of established cancer cell lines to the
study of mechanisms of clinical anti-cancer drug resistance. Proc
Natl Acad Sci USA. 108:18708–18713. 2011. View Article : Google Scholar : PubMed/NCBI
|
|
54
|
Yagi H, Yotsumoto F and Miyamoto S:
Heparin-binding epidermal growth factor-like growth factor promotes
transcoelomic metastasis in ovarian cancer through
epithelial-mesenchymal transition. Mol Cancer Ther. 7:3441–3451.
2008. View Article : Google Scholar : PubMed/NCBI
|
|
55
|
Sodek KL, Brown TJ and Ringuette MJ:
Collagen I but not Matrigel matrices provide an MMP-dependent
barrier to ovarian cancer cell penetration. BMC Cancer. 8:2232008.
View Article : Google Scholar : PubMed/NCBI
|
|
56
|
Kenny HA, Krausz T, Yamada SD and Lengyel
E: Use of a novel 3D culture model to elucidate the role of
mesothelial cells, fibroblasts and extra-cellular matrices on
adhesion and invasion of ovarian cancer cells to the omentum. Int J
Cancer. 121:1463–1472. 2007. View Article : Google Scholar : PubMed/NCBI
|
|
57
|
Yamada KM and Cukierman E: Modeling tissue
morphogenesis and cancer in 3D. Cell. 130:601–610. 2007. View Article : Google Scholar : PubMed/NCBI
|
|
58
|
Lee JM, MhawechFauceglia P, Lee N, et al:
A three-dimensional microenvironment alters protein expression and
chemosensitivity of epithelial ovarian cancer cells in vitro. Lab
Invest. 93:528–542. 2013. View Article : Google Scholar : PubMed/NCBI
|
|
59
|
White EA, Kenny HA and Lengyel E:
Three-dimensional modeling of ovarian cancer. Adv Drug Deliv Rev
79–80. 184–192. 2014. View Article : Google Scholar
|
|
60
|
Pollock CG and Orosz SE: Avian
reproductive anatomy, physiology and endocrinology. Vet Clin North
Am Exot Anim Pract. 5:441–474. 2002. View Article : Google Scholar : PubMed/NCBI
|
|
61
|
Barnes MN, Berry WD, Straughn JM, et al: A
pilot study of ovarian cancer chemoprevention using
medroxyprogesterone acetate in an avian model of spontaneous
ovarian carcinogenesis. Gynecol Oncol. 87:57–63. 2002. View Article : Google Scholar : PubMed/NCBI
|
|
62
|
Carver DK, Barnes HJ, Anderson KE, et al:
Reduction of ovarian and oviductal cancers in calorie-restricted
laying chickens. Cancer Prev Res (Phila). 4:562–567. 2011.
View Article : Google Scholar : PubMed/NCBI
|
|
63
|
Giles JR, Elkin RG, Trevino LS, et al: The
restricted ovulator chicken: a unique animal model for
investigating the etiology of ovarian cancer. Int J Gynecol Cancer.
20:738–744. 2010. View Article : Google Scholar : PubMed/NCBI
|
|
64
|
Seo HW, Rengaraj D, Choi JW, et al: The
expression profile of apoptosis-related genes in the chicken as a
human epithelial ovarian cancer model. Oncol Rep. 25:49–56.
2011.PubMed/NCBI
|
|
65
|
Havrilesky LJ, Gierisch JM, Moorman PG, et
al: Oral contraceptive use for the primary prevention of ovarian
cancer. Evid Rep Technol Assess (Full Rep). 212:1–514.
2013.PubMed/NCBI
|
|
66
|
Johnson PA and Giles JR: Use of genetic
strains of chickens in studies of ovarian cancer. Poult Sci.
85:246–250. 2006. View Article : Google Scholar : PubMed/NCBI
|
|
67
|
Hawkridge AM: The chicken model of
spontaneous ovarian cancer. Proteomics Clin Appl. 8:689–699. 2014.
View Article : Google Scholar : PubMed/NCBI
|
|
68
|
Fredrickson TN: Ovarian tumors of the hen.
Environ Health Perspect. 73:35–51. 1987. View Article : Google Scholar : PubMed/NCBI
|
|
69
|
Trevino LS, Buckles EL and Johnson PA:
Oral contraceptives decrease the prevalence of ovarian cancer in
the hen. Cancer Prev Res (Phila). 5:343–349. 2012. View Article : Google Scholar : PubMed/NCBI
|
|
70
|
Barua A, Bitterman P, Abramowicz JS, et
al: Histopathology of ovarian tumors in laying hens: a preclinical
model of human ovarian cancer. Int J Gynecol Cancer. 19:531–539.
2009. View Article : Google Scholar : PubMed/NCBI
|
|
71
|
International Chicken Genome Sequencing
Consortium, . Sequence and comparative analysis of the chicken
genome provide unique perspectives on vertebrate evolution. Nature.
432:695–716. 2004. View Article : Google Scholar : PubMed/NCBI
|
|
72
|
Trevino LS, Giles JR, Wang W, Urick ME and
Johnson PA: Gene expression profiling reveals differentially
expressed genes in ovarian cancer of the hen: support for oviductal
origin? Horm Cancer. 1:177–186. 2010. View Article : Google Scholar : PubMed/NCBI
|
|
73
|
Ansenberger K, Zhuge Y, Lagman JA, et al:
E-cadherin expression in ovarian cancer in the laying hen,
Gallus domesticus, compared to human ovarian cancer. Gynecol
Oncol. 113:362–369. 2009. View Article : Google Scholar : PubMed/NCBI
|
|
74
|
Jackson E, Anderson K, Ashwell C, Petitte
J and Mozdziak PE: CA 125 expression in spontaneous ovarian
adenocarcinomas from laying hens. Gynecol Oncol. 104:192–198. 2007.
View Article : Google Scholar : PubMed/NCBI
|
|
75
|
Lim CH, Lim W, Jeong W, et al: Avian WNT4
in the female reproductive tracts: potential role of oviduct
development and ovarian carcinogenesis. PLoS One. 8:e659352013.
View Article : Google Scholar : PubMed/NCBI
|
|
76
|
Kim J, Coffey DM, Creighton CJ, et al:
High-grade serous ovarian cancer arises from Fallopian tube in a
mouse model. Proc Natl Acad Sci USA. 109:3921–3926. 2012.
View Article : Google Scholar : PubMed/NCBI
|
|
77
|
Kain KH, Miller JW, JonesParis CR, et al:
The chick embryo as an expanding experimental model for cancer and
cardiovascular research. Dev Dyn. 243:216–228. 2014. View Article : Google Scholar : PubMed/NCBI
|
|
78
|
Kurman RJ and Shih IeM: The origin and
pathogenesis of epithelial ovarian cancer: a proposed unifying
theory. Am J Surg Pathol. 34:433–443. 2010. View Article : Google Scholar : PubMed/NCBI
|
|
79
|
Davey MG and Tickle C: The chicken as a
model for embryonic development. Cytogenet Genome Res. 117:231–239.
2007. View Article : Google Scholar : PubMed/NCBI
|
|
80
|
Ayers KL, Sinclair AH and Smith CA: The
molecular genetics of ovarian differentiation in the avian model.
Sex Dev. 7:80–94. 2013. View Article : Google Scholar : PubMed/NCBI
|
|
81
|
Smith CA and Sinclair AH: Sex
determination: insights from the chicken. Bioessays. 26:120–132.
2004. View Article : Google Scholar : PubMed/NCBI
|
|
82
|
Mittwoch U: Phenotypic manifestations
during the development of the dominant and default gonads in
mammals and birds. J Exp Zool. 281:466–471. 1998. View Article : Google Scholar : PubMed/NCBI
|
|
83
|
Mittwoch U: Sex determination. EMBO Rep.
14:588–592. 2013. View Article : Google Scholar : PubMed/NCBI
|
|
84
|
Roychoudhuri R, Putcha V and Moller H:
Cancer and laterality: a study of the five major paired organs
(UK). Cancer Causes Control. 17:655–662. 2006. View Article : Google Scholar : PubMed/NCBI
|
|
85
|
RodriguezLeon J, Rodriguez Esteban C,
Marti M, et al: PITX2 regulates gonad morphogenesis. Proc Natl Acad
Sci USA. 105:11242–11247. 2008. View Article : Google Scholar : PubMed/NCBI
|
|
86
|
Fung FK, Chan DW, Liu VW, et al: Increased
expression of PITX2 transcription factor contributes to ovarian
cancer progression. PLoS One. 7:e370762012. View Article : Google Scholar : PubMed/NCBI
|
|
87
|
Guioli S and Lovell-Badge R: PITX2
controls asymmetric gonadal development in both sexes of the chick
and can rescue the degeneration of the right ovary. Development.
134:4199–4208. 2007. View Article : Google Scholar : PubMed/NCBI
|
|
88
|
Vela I, Morrissey C, Zhang X, et al: PITX2
and non-canonical Wnt pathway interaction in metastatic prostate
cancer. Clin Exp Metastasis. 31:199–211. 2014. View Article : Google Scholar : PubMed/NCBI
|
|
89
|
Gobel G, Auer D, Gaugg I, et al:
Prognostic significance of methylated RASSF1A and PITX2 genes in
blood- and bone marrow plasma of breast cancer patients. Breast
Cancer Res Treat. 130:109–117. 2011. View Article : Google Scholar : PubMed/NCBI
|
|
90
|
Wilting J and Hagedorn M: Left-right
asymmetry in embryonic development and breast cancer: common
molecular determinants? Curr Med Chem. 18:5519–5527. 2011.
View Article : Google Scholar : PubMed/NCBI
|
|
91
|
Vandenberg LN and Levin M: A unified model
for left-right asymmetry? Comparison and synthesis of molecular
models of embryonic laterality. Dev Biol. 379:1–15. 2013.
View Article : Google Scholar : PubMed/NCBI
|
|
92
|
Stern CD: The chick embryo - past, present
and future as a model system in developmental biology. Mech Dev.
121:1011–1013. 2004. View Article : Google Scholar : PubMed/NCBI
|
|
93
|
SaukaSpengler T and Barembaum M: Gain- and
loss-of-function approaches in the chick embryo. Methods Cell Biol.
87:237–256. 2008. View Article : Google Scholar : PubMed/NCBI
|
|
94
|
Intarapat S and Stern CD: Chick stem
cells: current progress and future prospects. Stem Cell Res.
11:1378–1392. 2013. View Article : Google Scholar : PubMed/NCBI
|