|
1
|
Huggins C and Hodges CV: Studies on
prostatic cancer. I. The effect of castration, of estrogen and
androgen injection on serum phosphatases in metastatic carcinoma of
the prostate. CA Cancer J Clin. 22:232–240. 1972. View Article : Google Scholar : PubMed/NCBI
|
|
2
|
Lawson DA and Witte ON: Stem cells in
prostate cancer initiation and progression. J Clin Invest.
117:2044–2050. 2007. View
Article : Google Scholar : PubMed/NCBI
|
|
3
|
Bonnet D and Dick JE: Human acute myeloid
leukemia is organized as a hierarchy that originates from a
primitive hematopoietic cell. Nat Med. 3:730–737. 1997. View Article : Google Scholar : PubMed/NCBI
|
|
4
|
Hanahan D and Weinberg RA: The hallmarks
of cancer. Cell. 100:57–70. 2000. View Article : Google Scholar : PubMed/NCBI
|
|
5
|
Hanahan D and Weinberg RA: Hallmarks of
cancer: The next generation. Cell. 144:646–674. 2011. View Article : Google Scholar : PubMed/NCBI
|
|
6
|
Stegmeier F, Warmuth M, Sellers WR and
Dorsch M: Targeted cancer therapies in the twenty-first century:
Lessons from imatinib. Clin Pharmacol Ther. 87:543–552. 2010.
View Article : Google Scholar : PubMed/NCBI
|
|
7
|
Nawijn MC, Alendar A and Berns A: For
better or for worse: The role of Pim-1 oncogenes in tumorigenesis.
Nat Rev Cancer. 11:23–34. 2011. View
Article : Google Scholar : PubMed/NCBI
|
|
8
|
Arunesh GM, Shanthi E, Krishna MH, Sooriya
Kumar J and Viswanadhan VN: Small molecule inhibitors of Pim-1
kinase: July 2009 to February 2013 patent update. Expert Opin Ther
Pat. 24:5–17. 2014. View Article : Google Scholar : PubMed/NCBI
|
|
9
|
Brault L, Gasser C, Bracher F, Huber K,
Knapp S and Schwaller J: PIM serine/threonine kinases in the
pathogenesis and therapy of hematologic malignancies and solid
cancers. Haematologica. 95:1004–1015. 2010. View Article : Google Scholar : PubMed/NCBI
|
|
10
|
Hoover D, Friedmann M, Reeves R and
Magnuson NS: Recombinant human pim-1 protein exhibits
serine/threonine kinase activity. J Biol Chem. 266:14018–14023.
1991.PubMed/NCBI
|
|
11
|
Saris CJ, Domen J and Berns A: The pim-1
oncogene encodes two related protein-serine/threonine kinases by
alternative initiation at AUG and CUG. EMBO J. 10:655–664.
1991.PubMed/NCBI
|
|
12
|
Kim J, Roh M and Abdulkadir SA: Pim1
promotes human prostate cancer cell tumorigenicity and c-MYC
transcriptional activity. BMC Cancer. 10:2482010. View Article : Google Scholar : PubMed/NCBI
|
|
13
|
Wang J, Kim J, Roh M, Franco OE, Hayward
SW, Wills ML and Abdulkadir SA: Pim1 kinase synergizes with c-MYC
to induce advanced prostate carcinoma. Oncogene. 29:2477–2487.
2010. View Article : Google Scholar : PubMed/NCBI
|
|
14
|
Bullock AN, Debreczeni J, Amos AL, Knapp S
and Turk BE: Structure and substrate specificity of the Pim-1
kinase. J Biol Chem. 280:41675–41682. 2005. View Article : Google Scholar : PubMed/NCBI
|
|
15
|
Jacobs MD, Black J, Futer O, Swenson L,
Hare B, Fleming M and Saxena K: Pim-1 ligand bound structures
reveal the mechanism of serine/threonine kinase inhibition by
LY294002. J Biol Chem. 280:13728–13734. 2005. View Article : Google Scholar : PubMed/NCBI
|
|
16
|
Xie Y, Xu K, Dai B, Guo Z, Jiang T, Chen H
and Qiu Y: The 44 kDa Pim-1 kinase directly interacts with tyrosine
kinase Etk/BMX and protects human prostate cancer cells from
apoptosis induced by chemotherapeutic drugs. Oncogene. 25:70–78.
2006.PubMed/NCBI
|
|
17
|
Eichmann A, Yuan L, Bréant C, Alitalo K
and Koskinen PJ: Developmental expression of pim kinases suggests
functions also outside of the hematopoietic system. Oncogene.
19:1215–1224. 2000. View Article : Google Scholar : PubMed/NCBI
|
|
18
|
Bachmann M and Möröy T: The
serine/threonine kinase Pim-1. Int J Biochem Cell Biol. 37:726–730.
2005. View Article : Google Scholar : PubMed/NCBI
|
|
19
|
Merkel AL, Meggers E and Ocker M: PIM1
kinase as a target for cancer therapy. Expert Opin Investig Drugs.
21:425–436. 2012. View Article : Google Scholar : PubMed/NCBI
|
|
20
|
Magistroni V, Mologni L, Sanselicio S,
Reid JF, Redaelli S, Piazza R, Viltadi M, Bovo G, Strada G, Grasso
M, et al: ERG deregulation induces PIM1 over-expression and
aneuploidy in prostate epithelial cells. PLoS One. 6:e281622011.
View Article : Google Scholar : PubMed/NCBI
|
|
21
|
Wang Z, Bhattacharya N, Mixter PF, Wei W,
Sedivy J and Magnuson NS: Phosphorylation of the cell cycle
inhibitor p21Cip1/WAF1 by Pim-1 kinase. Biochim Biophys Acta.
1593:45–55. 2002. View Article : Google Scholar : PubMed/NCBI
|
|
22
|
Aho TL, Sandholm J, Peltola KJ, Mankonen
HP, Lilly M and Koskinen J: Pim-1 kinase promotes inactivation of
the pro-apoptotic Bad protein by phosphorylating it on the Ser112
gatekeeper site. FEBS Letters. 571:43–49. 2004. View Article : Google Scholar : PubMed/NCBI
|
|
23
|
Xie Y, Xu K, Linn DE, Yang X, Guo Z,
Shimelis H, Nakanishi T, Ross DD, Chen H, Fazli L, et al: The
44-kDa Pim-1 kinase phosphorylates BCRP/ABCG2 and thereby promotes
its multimerization and drug-resistant activity in human prostate
cancer cells. J Biol Chem. 283:3349–3356. 2008. View Article : Google Scholar : PubMed/NCBI
|
|
24
|
Xie Y, Burcu M, Linn DE, Qiu Y and Baer
MR: Pim-1 kinase protects P-glycoprotein from degradation and
enables its glycosylation and cell surface expression. Mol
Pharmacol. 78:310–318. 2010. View Article : Google Scholar : PubMed/NCBI
|
|
25
|
Krishnamurthy P, Ross DD, Nakanishi T,
Bailey-Dell K, Zhou S, Mercer KE, Sarkadi B, Sorrentino BP and
Schuetz JD: The stem cell marker Bcrp/ABCG2 enhances hypoxic cell
survival through interactions with heme. J Biol Chem.
279:24218–24225. 2004. View Article : Google Scholar : PubMed/NCBI
|
|
26
|
Guo S, Mao X, Chen J, Huang B, Jin C, Xu Z
and Qiu S: Overexpression of Pim-1 in bladder cancer. J Exp Clin
Cancer Res. 29:1612010. View Article : Google Scholar : PubMed/NCBI
|
|
27
|
Foulks JM, Carpenter KJ, Luo B, Xu Y,
Senina A, Nix R, Chan A, Clifford A, Wilkes M, Vollmer D, et al: A
small-molecule inhibitor of PIM kinases as a potential treatment
for urothelial carcinomas. Neoplasia. 16:403–412. 2014. View Article : Google Scholar : PubMed/NCBI
|
|
28
|
Dhanasekaran SM, Barrette TR, Ghosh D,
Shah R, Varambally S, Kurachi K, Pienta KJ, Rubin MA and Chinnaiyan
AM: Delineation of prognostic biomarkers in prostate cancer.
Nature. 412:822–826. 2001. View
Article : Google Scholar : PubMed/NCBI
|
|
29
|
Guo Z, Dai B, Jiang T, Xu K, Xie Y, Kim O,
Nesheiwat I, Kong X, Melamed J, Handratta VD, et al: Regulation of
androgen receptor activity by tyrosine phosphorylation. Cancer
Cell. 10:309–319. 2006. View Article : Google Scholar : PubMed/NCBI
|
|
30
|
Linn DE, Yang X, Xie Y, Alfano A, Deshmukh
D, Wang X, Shimelis H, Chen H, Li W, Xu K, et al: Differential
regulation of androgen receptor by PIM-1 kinases via
phosphorylation-dependent recruitment of distinct ubiquitin E3
ligases. J Biol Chem. 287:22959–22968. 2012. View Article : Google Scholar : PubMed/NCBI
|
|
31
|
Huang CK, Luo J, Lee SO and Chang C:
Concise review: Androgen receptor differential roles in
stem/progenitor cells including prostate, embryonic, stromal and
hematopoietic lineages. Stem Cells. 32:2299–2308. 2014. View Article : Google Scholar : PubMed/NCBI
|
|
32
|
Schroeder A, Herrmann A, Cherryholmes G,
Kowolik C, Buettner R, Pal S, Yu H, Müller-Newen G and Jove R: Loss
of androgen receptor expression promotes a stem-like cell phenotype
in prostate cancer through STAT3 signaling. Cancer Res.
74:1227–1237. 2014. View Article : Google Scholar : PubMed/NCBI
|
|
33
|
Wang J, Kim J, Roh M, Franco OE, Hayward
SW, Wills ML and Abdulkadir SA: Pim1 kinase synergizes with c-MYC
to induce advanced prostate carcinoma. Oncogene. 29:2477–2487.
2010. View Article : Google Scholar : PubMed/NCBI
|
|
34
|
Zhang Y, Wang Z, Li X and Magnuson NS: Pim
kinase-dependent inhibition of c-Myc degradation. Oncogene.
27:4809–4819. 2008. View Article : Google Scholar : PubMed/NCBI
|
|
35
|
Aksoy I, Sakabedoyan C, Bourillot PY,
Malashicheva AB, Mancip J, Knoblauch K, Afanassieff M and Savatier
P: Self-renewal of murine embryonic stem cells is supported by the
serine/threonine kinases Pim-1 and Pim-3. Stem Cells. 25:2996–3004.
2007. View Article : Google Scholar : PubMed/NCBI
|
|
36
|
Cartwright P, McLean C, Sheppard A, Rivett
D, Jones K and Dalton S: LIF/STAT3 controls ES cell self-renewal
and pluripotency by a Myc-dependent mechanism. Development.
132:885–896. 2005. View Article : Google Scholar : PubMed/NCBI
|
|
37
|
Li Y, McClintick J, Zhong L, Edenberg HJ,
Yoder MC and Chan RJ: Murine embryonic stem cell differentiation is
promoted by SOCS-3 and inhibited by the zinc finger transcription
factor Klf4. Blood. 105:635–637. 2005. View Article : Google Scholar : PubMed/NCBI
|
|
38
|
Brady JJ, Li M, Suthram S, Jiang H, Wong
WH and Blau HM: Early role for IL-6 signalling during generation of
induced pluripotent stem cells revealed by heterokaryon RNA-Seq.
Nat Cell Biol. 15:1244–1252. 2013. View
Article : Google Scholar : PubMed/NCBI
|
|
39
|
Tu ML, Wang HQ, Sun XD, Chen LJ, Peng XC,
Yuan YH, Li RM, Ruan XZ, Li DS, Xu YJ and Ke ZJ: Pim-1 is
up-regulated by shear stress and is involved in shear
stress-induced proliferation of rat mesenchymal stem cells. Life
Sci. 88:233–238. 2011. View Article : Google Scholar : PubMed/NCBI
|
|
40
|
Zhao Y, Hu J, Buckingham B, Pittenger MF,
Wu ZJ and Griffith BP: Pim-1 kinase cooperates with serum signals
supporting mesenchymal stem cell propagation. Cells Tissues Organs.
199:140–149. 2014. View Article : Google Scholar : PubMed/NCBI
|
|
41
|
An N, Lin YW, Mahajan S, Kellner JN, Wang
Y, Li Z, Kraft AS and Kang Y: Pim1 serine/threonine kinase
regulates the number and functions of murine hematopoietic stem
cells. Stem Cells. 31:1202–1212. 2013. View Article : Google Scholar : PubMed/NCBI
|
|
42
|
Li L, Piloto O, Kim KT, Ye Z, Nguyen HB,
Yu X, Levis M, Cheng L and Small D: FLT3/ITD expression increases
expansion, survival and entry into cell cycle of human
haematopoietic stem/progenitor cells. Nat Cell Biol. 137:64–75.
2007.
|
|
43
|
Chu SH, Heiser D, Li L, Kaplan I,
Collector M, Huso D, Sharkis SJ, Civin C and Small D: FLT3-ITD
knockin impairs hematopoietic stem cell quiescence/homeostasis,
leading to myeloproliferative neoplasm. Cell Stem Cell. 11:346–358.
2012. View Article : Google Scholar : PubMed/NCBI
|
|
44
|
Natarajan K, Xie Y, Burcu M, Linn DE, Qiu
Y and Baer MR: Pim-1 kinase phosphorylates and stabilizes 130 kDa
FLT3 and promotes aberrant STAT5 signaling in acute myeloid
leukemia with FLT3 internal tandem duplication. PLoS One.
8:e746532013. View Article : Google Scholar : PubMed/NCBI
|
|
45
|
Mohsin S, Khan M, Nguyen J, Alkatib M,
Siddiqi S, Hariharan N, Wallach K, Monsanto M, Gude N, Dembitsky W
and Sussman MA: Rejuvenation of human cardiac progenitor cells with
Pim-1 kinase. Circ Res. 113:1169–1179. 2013. View Article : Google Scholar : PubMed/NCBI
|
|
46
|
Linn DE, Yang X, Sun F, Alkatib M, Siddiqi
S, Hariharan N, Wallach K, Monsanto M, Gude N, Dembitsky W and
Sussman MA: A role for OCT4 in tumor initiation of drug-resistant
prostate cancer cells. Genes Cancer. 1:908–916. 2010. View Article : Google Scholar : PubMed/NCBI
|
|
47
|
Zhou S, Morris JJ, Barnes Y, Lan L,
Schuetz JD and Sorrentino BP: Bcrp1 gene expression is required for
normal numbers of side population stem cells in mice, and confers
relative protection to mitoxantrone in hematopoietic cells in vivo.
Proc Natl Acad Sci USA. 99:12339–12344. 2002. View Article : Google Scholar : PubMed/NCBI
|
|
48
|
Foster BA, Gangavarapu KJ, Mathew G,
Azabdaftari G, Morrison CD, Miller A and Huss WJ: Human prostate
side population cells demonstrate stem cell properties in
recombination with urogenital sinus mesenchyme. PLoS One.
8:e550622013. View Article : Google Scholar : PubMed/NCBI
|
|
49
|
Patrawala L, Calhoun T,
Schneider-Broussard R, Zhou J, Claypool K and Tang DG: Side
population is enriched in tumorigenic, stem-like cancer cells,
whereas ABCG2+ and ABCG2- cancer cells are similarly tumorigenic.
Cancer Res. 65:6207–6219. 2005. View Article : Google Scholar : PubMed/NCBI
|
|
50
|
Linn DE: The role of Pim-1 kinases in
advanced prostate cancer therapeutic resistance. Ph.D.
dissertation. University of Maryland School of Medicine.
|
|
51
|
Brumbaugh J, Hou Z, Russell JD, Howden SE,
Yu P, Ledvina AR, Coon JJ and Thomson JA: Phosphorylation regulates
human OCT4. Proc Natl Acad Sci USA. 109:7162–7168. 2012. View Article : Google Scholar : PubMed/NCBI
|
|
52
|
Li Y, Li A, Glas M, Lal B, Ying M, Sang Y,
Xia S, Trageser D, Guerrero-Cázares H, Eberhart CG, et al: c-Met
signaling induces a reprogramming network and supports the
glioblastoma stem-like phenotype. Proc Natl Acad Sci USA.
108:9951–9956. 2011. View Article : Google Scholar : PubMed/NCBI
|
|
53
|
van Leenders GJ, Sookhlall R, Teubel WJ,
de Ridder CM, Reneman S, Sacchetti A, Vissers KJ, van Weerden W and
Jenster G: Activation of c-MET induces a stem-like phenotype in
human prostate cancer. PLoS One. 6:e267532011. View Article : Google Scholar : PubMed/NCBI
|
|
54
|
Cen B, Xiong Y, Song JH, Mahajan S, DuPont
R, McEachern K, DeAngelo DJ, Cortes JE, Minden MD, Ebens A, et al:
The Pim-1 protein kinase is an important regulator of MET receptor
tyrosine kinase levels and signaling. Mol Cell Biol. 34:2517–2532.
2014. View Article : Google Scholar : PubMed/NCBI
|
|
55
|
Xie Y, Lu W, Liu S, Yang Q, Carver BS, Li
E, Wang Y, Fazli L, Gleave M and Chen Z: Crosstalk between nuclear
MET and SOX9/β-catenin correlates with castration-resistant
prostate cancer. Mol Endocrinol. 28:1629–39. 2014. View Article : Google Scholar : PubMed/NCBI
|
|
56
|
Mumenthaler SM, Ng PY, Hodge A, Bearss D,
Berk G, Kanekal S, Redkar S, Taverna P, Agus DB and Jain A:
Pharmacologic inhibition of Pim kinases alters prostate cancer cell
growth and resensitizes chemoresistant cells to taxanes. Mol Cancer
Ther. 8:2882–2893. 2009. View Article : Google Scholar : PubMed/NCBI
|
|
57
|
Kirschner AN, Wang J, van der Meer R,
Anderson PD, Franco-Coronel OE, Kushner MH, Everett JH, Hameed O,
Keeton EK, Ahdesmaki M, et al: PIM kinase inhibitor AZD1208 for
treatment of MYC-driven prostate cancer. J Natl Cancer Inst.
107:dju4072014. View Article : Google Scholar : PubMed/NCBI
|