You can change your cookie settings at any time by following the instructions in our Cookie Policy. To find out more, you may read our Privacy Policy.
I agree
International Journal of Molecular Medicine is an international journal devoted to molecular mechanisms of human disease.
International Journal of Oncology is an international journal devoted to oncology research and cancer treatment.
Covers molecular medicine topics such as pharmacology, pathology, genetics, neuroscience, infectious diseases, molecular cardiology, and molecular surgery.
Oncology Reports is an international journal devoted to fundamental and applied research in Oncology.
Experimental and Therapeutic Medicine is an international journal devoted to laboratory and clinical medicine.
Oncology Letters is an international journal devoted to Experimental and Clinical Oncology.
Explores a wide range of biological and medical fields, including pharmacology, genetics, microbiology, neuroscience, and molecular cardiology.
International journal addressing all aspects of oncology research, from tumorigenesis and oncogenes to chemotherapy and metastasis.
Multidisciplinary open-access journal spanning biochemistry, genetics, neuroscience, environmental health, and synthetic biology.
Open-access journal combining biochemistry, pharmacology, immunology, and genetics to advance health through functional nutrition.
Publishes open-access research on using epigenetics to advance understanding and treatment of human disease.
An International Open Access Journal Devoted to General Medicine.
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
|
Klassen CD and Watkins IB III: Casarett and Doull's Essentials of Toxicology. New York, NY: McGraw-Hill. 2010. View Article : Google Scholar | |
|
Matsumura Y and Maeda H: A new concept for macromolecular therapeutics in cancer chemotherapy: Mechanism of tumoritropic accumulation of proteins and the antitumor agent Smancs. Cancer Res. 46:6387–6392. 1986.PubMed/NCBI | |
|
Sarin H: Recent progress towards development of effective systemic chemotherapy for the treatment of malignant brain tumors. J Transl Med. 7:772009. View Article : Google Scholar : PubMed/NCBI | |
|
Sarin H: Overcoming the challenges in the effective delivery of chemotherapies to CNS solid tumors. Ther Deliv. 1:289–305. 2010. View Article : Google Scholar : PubMed/NCBI | |
|
Sarin H: On the future development of optimally-sized lipid-insoluble systemic therapies for CNS solid tumors and other neuropathologies. Recent Patents CNS Drug Discov. 5:239–252. 2010. View Article : Google Scholar | |
|
Sarin H: Effective transvascular delivery of chemotherapy into cancer cells with imageable nanoparticles in the 7 to 10 nanometer size range. Current Advances in the Medical Application of Nanotechnology. Bentham Science Publishers Ltd. 10–24. 2012. | |
|
Sarin H: Permeation tt n Silico Pharmacol. 3:52015. View Article : Google Scholar | |
|
Sarin H: Translational theranostic methodology for diagnostic imaging and the concomitant treatment of malignant solid tumors. Neurovascular Imaging. 1:32015. View Article : Google Scholar | |
|
Lee CC, Gillies ER, Fox ME, Guillaudeu SJ, Fréchet JM, Dy EE and Szoka FC: A single dose of doxorubicin-functionalized bow-tie dendrimer cures mice bearing C-26 colon carcinomas. Proc Natl Acad Sci USA. 103:16649–16654. 2006. View Article : Google Scholar : PubMed/NCBI | |
|
Trédan O, Galmarini CM, Patel K and Tannock IF: Drug resistance and the solid tumor microenvironment. J Natl Cancer Inst. 99:1441–1454. 2007. View Article : Google Scholar : PubMed/NCBI | |
|
Rosier RN, Teot LA, Hicks DG, Schwartz C, O'Keefe RJ and Puzas JE: Multiple drug resistance in osteosarcoma. Iowa Orthop J. 15:66–73. 1995.PubMed/NCBI | |
|
Kleinschmidt-Demasters BK, Kang JS and Lillehei KO: The burden of radiation-induced central nervous system tumors, A single institution experience. J Neuropathol Exp Neurol. 65:204–216. 2006. View Article : Google Scholar : PubMed/NCBI | |
|
Verhoef GE: DeW olf-Peeters C, Ferrant A, Deprez S, Meeus P, Stul M, Zacheé P, Cassiman JJ, Van den Berghe H and Boogaerts MA: Myelodysplastic syndromes with bone marrow fibrosis: A myelodysplastic disorder with proliferative features. Ann Hematol. 63:235–241. 1991. View Article : Google Scholar : PubMed/NCBI | |
|
Doudican NA, Kumar A, Singh NK, Nair PR, Lala DA, Basu K, Talawdekar AA, Sultana Z, Tiwari KK, Tyagi A, et al: Personalization of cancer treatment using predictive simulation. J Transl Med. 13:432015. View Article : Google Scholar : PubMed/NCBI | |
|
Pingle SC, Sultana Z, Pastorino S, Jiang P, Mukthavaram R, Chao Y, Bharati IS, Nomura N, Makale M, Abbasi T, et al: In silico modeling predicts drug sensitivity of patient-derived cancer cells. J Transl Med. 12:1282014. View Article : Google Scholar : PubMed/NCBI | |
|
Peacock JD, Cherba D, Kampfschulte K, Smith MK, Monks NR, Webb CP and Steensma M: Molecular-guided therapy predictions reveal drug resistance phenotypes and treatment alternatives in malignant peripheral nerve sheath tumors. J Transl Med. 11:2132013. View Article : Google Scholar : PubMed/NCBI | |
|
Sarin H: Pressuromodulation a. a Transl Med. 13:3722015. View Article : Google Scholar | |
|
Newlands ES, Stevens MF, Wedge SR, Wheelhouse RT and Brock C: Temozolomide: A review of its discovery, chemical properties, pre-clinical development and clinical trials. Cancer Treat Rev. 23:35–61. 1997. View Article : Google Scholar : PubMed/NCBI | |
|
Johnson RE, Campbell RJ and Laws ER Jr: The cytotoxic effect of ethylnitrosourea on the developing rat cerebellum. Histopathology. Acta Neuropathol. 55:257–261. 1981. View Article : Google Scholar : PubMed/NCBI | |
|
Kolarić K, Roth A and Fuss V: Combination chemotherapy with 1-methyl-1-nitrosourea and cyclophosphamide in metastatic melanoma. Tumori. 64:89–94. 1978.PubMed/NCBI | |
|
An Q, Robins P, Lindahl T and Barnes DE: 5-Fluorouracil incorporated into DNA is excised by the Smug1 DNA glycosylase to reduce drug cytotoxicity. Cancer Res. 67:940–945. 2007. View Article : Google Scholar : PubMed/NCBI | |
|
Tentori L, Forini O, Fossile E, Muzi A, Vergati M, Portarena I, Amici C, Gold B and Graziani G: N3-methyladenine induces early poly(ADP-ribosylation), reduction of nuclear factor-kappa B DNA binding ability, and nuclear up-regulation of telomerase activity. Mol Pharmacol. 67:572–581. 2005. View Article : Google Scholar : PubMed/NCBI | |
|
Paine PL, Moore LC and Horowitz SB: Nuclear envelope permeability. Nature. 254:109–114. 1975. View Article : Google Scholar : PubMed/NCBI | |
|
Rostovtseva T and Colombini M: VDAC channels mediate and gate the flow of ATP: Implications for the regulation of mitochondrial function. Biophys J. 72:1954–1962. 1997. View Article : Google Scholar : PubMed/NCBI | |
|
Colombini M, Yeung CL, Tung J and König T: The mitochondrial outer membrane channel, VDAC, is regulated by a synthetic polyanion. Biochim Biophys Acta. 905:279–286. 1987. View Article : Google Scholar : PubMed/NCBI | |
|
Nobel PS: Mitochondrial permeability for alcohols aldoses, and amino acids. J Membr Biol. 12:287–299. 1973. View Article : Google Scholar : PubMed/NCBI | |
|
Kanzawa T, Germano IM, Komata T, Ito H, Kondo Y and Kondo S: Role of autophagy in temozolomide-induced cytotoxicity for malignant glioma cells. Cell Death Differ. 11:448–457. 2004. View Article : Google Scholar : PubMed/NCBI | |
|
Griffin RJ, Arris CE, Bleasdale C, Boyle FT, Calvert AH, Curtin NJ, Dalby C, Kanugula S, Lembicz NK, Newell DR, et al: Resistance-modifying agents. 8. Inhibition of O(6)-alkylguanine-DNA alkyltransferase by O(6)-alkenyl-, O(6)-cycloalkenyl-, and O(6)-(2-oxoalkyl)guanines and potentiation of temozolomide cytotoxicity in vitro by O(6)-(1-cyclopentenylmethyl)guanine. J Med Chem. 43:4071–4083. 2000. View Article : Google Scholar : PubMed/NCBI | |
|
Long L and Dolan ME: Role of cytochrome P450 isoenzymes in metabolism of O(6)-benzylguanine: Implications for dacarbazine activation. Clin Cancer Res. 7:4239–4244. 2001.PubMed/NCBI | |
|
Ortiz de and Montellano PR: Cytochrome P450-activated prodrugs. Future Med Chem. 5:213–228. 2013. View Article : Google Scholar : PubMed/NCBI | |
|
Meyer RP, Podvinec M and Meyer UA: Cytochrome P450 CYP1A1 accumulates in the cytosol of kidney and brain and is activated by heme. Mol Pharmacol. 62:1061–1067. 2002. View Article : Google Scholar : PubMed/NCBI | |
|
Sangar MC, Anandatheerthavarada HK, Tang W, Prabu SK, Martin MV, Dostalek M, Guengerich FP and Avadhani NG: Human liver mitochondrial cytochrome P450 2D6 - individual variations and implications in drug metabolism. FEBS J. 276:3440–3453. 2009. View Article : Google Scholar : PubMed/NCBI | |
|
Pletsa V, Valavanis C, van Delft JH, Steenwinkel MJ and Kyrtopoulos SA: DNA damage and mutagenesis induced by procarbazine in lambda lacZ transgenic mice, Evidence that bone marrow mutations do not arise primarily through miscoding by O6-methylguanine. Carcinogenesis. 18:2191–2196. 1997. View Article : Google Scholar : PubMed/NCBI | |
|
Crook TR, Souhami RL and McLean AE: Cytotoxicity, DNA cross-linking, and single strand breaks induced by activated cyclophosphamide and acrolein in human leukemia cells. Cancer Res. 46:5029–5034. 1986.PubMed/NCBI | |
|
Weber GF and Waxman DJ: Denitrosation of the anti-cancer drug 1,3-bis(2-chloroethyl)-1-nitrosourea catalyzed by microsomal glutathione S-transferase and cytochrome P450 monooxygenases. Arch Biochem Biophys. 307:369–378. 1993. View Article : Google Scholar : PubMed/NCBI | |
|
Linfoot PA, Gray JW, Dean PN, Marton LJ and Deen DF: Effect of cell cycle position on the survival of 9L cells treated with nitrosoureas that alkylate, cross-link, and carbamoylate. Cancer Res. 46:2402–2406. 1986.PubMed/NCBI | |
|
Doroshenko N and Doroshenko P: The glutathione reductase inhibitor carmustine induces an influx of Ca2+ in PC12 cells. Eur J Pharmacol. 497:17–24. 2004. View Article : Google Scholar : PubMed/NCBI | |
|
Kehrer JP: The effect of BCNU (carmustine) on tissue glutathione reductase activity. Toxicol Lett. 17:63–68. 1983. View Article : Google Scholar : PubMed/NCBI | |
|
FitzGerald GB, Bauman C, Hussoin MS and Wick MM: 2,4-Dihydroxybenzylamine: A specific inhibitor of glutathione reductase. Biochem Pharmacol. 41:185–190. 1991. View Article : Google Scholar : PubMed/NCBI | |
|
Babson JR and Reed DJ: Inactivation of glutathione reductase by 2-chloroethyl nitrosourea-derived isocyanates. Biochem Biophys Res Commun. 83:754–762. 1978. View Article : Google Scholar : PubMed/NCBI | |
|
Bizzozero OA and Ziegler JL: DeJ esus G and Bolognani F: Acute depletion of reduced glutathione causes extensive carbonylation of rat brain proteins. J Neurosci Res. 83:656–667. 2006. View Article : Google Scholar : PubMed/NCBI | |
|
Street JC, Mahmood U, Matei C and Koutcher JA: In vivo and in vitro studies of cyclophosphamide chemotherapy in a mouse mammary carcinoma by 31P NMR spectroscopy. NMR Biomed. 8:149–158. 1995. View Article : Google Scholar : PubMed/NCBI | |
|
Street JC and Koutcher JA: Effect of radiotherapy and chemotherapy on composition of tumor membrane phospholipids. Lipids. 32:45–49. 1997. View Article : Google Scholar : PubMed/NCBI | |
|
Jilani K and Lang F: Carmustine-induced phosphatidylserine translocation in the erythrocyte membrane. Toxins (Basel). 5:703–716. 2013. View Article : Google Scholar : PubMed/NCBI | |
|
Westphal M, Hilt DC, Bortey E, Delavault P, Olivares R, Warnke PC, Whittle IR, Jääskeläinen J and Ram Z: A phase 3 trial of local chemotherapy with biodegradable carmustine (BCNU) wafers (Gliadel wafers) in patients with primary malignant glioma. Neuro Oncol. 5:79–88. 2003. View Article : Google Scholar : PubMed/NCBI | |
|
Lambros MP and Rahman YE: Effects of cyclosporin A on model lipid membranes. Chem Phys Lipids. 131:63–69. 2004. View Article : Google Scholar : PubMed/NCBI | |
|
Birraux J, Kirby JA, Thomason JM and Taylor JJ: The effect of cyclosporin on cell division and apoptosis in human oral keratinocytes. J Periodontal Res. 41:297–302. 2006. View Article : Google Scholar : PubMed/NCBI | |
|
Bokemeyer D, Kramer HJ and Meyer-Lehnert H: Atrial natriuretic peptide blunts the cellular effects of cyclosporine in smooth muscle. Hypertension. 21:166–172. 1993. View Article : Google Scholar : PubMed/NCBI | |
|
Raymond MA, Mollica L, Vigneault N, Désormeaux A, Chan JS, Filep JG, Hébert MJ, et al: Blockade of the apoptotic machinery by cyclosporin A redirects cell death toward necrosis in arterial endothelial cells: regulation by reactive oxygen species and cathepsin D. FASEB J. 17:515–517. 2003.PubMed/NCBI | |
|
Laursen M, Yatime L, Nissen P and Fedosova NU: Crystal structure of the high-affinity Na+K+-ATPase-ouabain complex with Mg2+ bound in the cation binding site. Proc Natl Acad Sci USA. 110:10958–10963. 2013. View Article : Google Scholar : PubMed/NCBI | |
|
Liu J, Kesiry R, Periyasamy SM, Malhotra D, Xie Z and Shapiro JI: Ouabain induces endocytosis of plasmalemmal Na/K-ATPase in LLC-PK1 cells by a clathrin-dependent mechanism. Kidney Int. 66:227–241. 2004. View Article : Google Scholar : PubMed/NCBI | |
|
Suwalsky M, Hernandez P, Villena F and Sotomayor CP: The anticancer drug chlorambucil interacts with the human erythrocyte membrane and model phospholipid bilayers. Z Naturforsch C. 54:1089–1095. 1999. View Article : Google Scholar : PubMed/NCBI | |
|
Krigel R, Liebes LF, Pelle E and Silber R: Chlorambucil therapy in hairy cell leukemia, Effects on lipid composition and lymphocyte subpopulations. Blood. 60:272–275. 1982.PubMed/NCBI | |
|
Matsura T, Kai M, Jiang J, Babu H, Kini V, Kusumoto C, Yamada K and Kagan VE: Endogenously generated hydrogen peroxide is required for execution of melphalan-induced apoptosis as well as oxidation and externalization of phosphatidylserine. Chem Res Toxicol. 17:685–696. 2004. View Article : Google Scholar : PubMed/NCBI | |
|
Tilby MJ, Lawley PD and Farmer PB: Alkylation of DNA by melphalan in relation to immunoassay of melphalan-DNA adducts, Characterization of mono-alkylated and cross-linked products from reaction of melphalan with dGMP and GMP. Chem Biol Interact. 73:183–194. 1990. View Article : Google Scholar : PubMed/NCBI | |
|
Van den Driessche B and Lemière F: VanD ongen W and Esmans EL: Alkylation of DNA by melphalan: Investigation of capillary liquid chromatography-electrospray ionization tandem mass spectrometry in the study of the adducts at the nucleoside level. J Chromatogr B Analyt Technol Biomed Life Sci. 785:21–37. 2003. View Article : Google Scholar : PubMed/NCBI | |
|
Rodriguez RJ and Acosta D Jr: Inhibition of mitochondrial function in isolated rate liver mitochondria by azole antifungals. J Biochem Toxicol. 11:127–131. 1996. View Article : Google Scholar : PubMed/NCBI | |
|
Maté MJ, Ortiz-Lombardía M, Boitel B, Haouz A, Tello D, Susin SA, Penninger J, Kroemer G and Alzari PM: The crystal structure of the mouse apoptosis-inducing factor AIF. Nat Struct Biol. 9:442–446. 2002. View Article : Google Scholar : PubMed/NCBI | |
|
Daugas E, Susin SA, Zamzami N, Ferri KF, Irinopoulou T, Larochette N, Prévost MC, Leber B, Andrews D, Penninger J, et al: Mitochondrio-nuclear translocation of AIF in apoptosis and necrosis. FASEB J. 14:729–739. 2000.PubMed/NCBI | |
|
Lewis EM, Wilkinson AS, Davis NY, Horita DA and Wilkinson JC: Nondegradative ubiquitination of apoptosis inducing factor (AIF) by X-linked inhibitor of apoptosis at a residue critical for AIF-mediated chromatin degradation. Biochemistry. 50:11084–11096. 2011. View Article : Google Scholar : PubMed/NCBI | |
|
Wei Y, Fox T, Chambers SP, Sintchak J, Coll JT, Golec JM, Swenson L, Wilson KP and Charifson PS: The structures of caspases-1, −3, −7 and −8 reveal the basis for substrate and inhibitor selectivity. Chem Biol. 7:423–432. 2000. View Article : Google Scholar : PubMed/NCBI | |
|
Riedl SJ and Shi Y: Molecular mechanisms of caspase regulation during apoptosis. Nat Rev Mol Cell Biol. 5:897–907. 2004. View Article : Google Scholar : PubMed/NCBI | |
|
Lindsay J, Esposti MD and Gilmore AP: Bcl-2 proteins and mitochondria - specificity in membrane targeting for death. Biochim Biophys Acta. 1813:532–539. 2011. View Article : Google Scholar : PubMed/NCBI | |
|
Miyashita T and Reed JC: Tumor suppressor p53 is a direct transcriptional activator of the human bax gene. Cell. 80:293–299. 1995. View Article : Google Scholar : PubMed/NCBI | |
|
Cho Y, Gorina S, Jeffrey PD and Pavletich NP: Crystal structure of a p53 tumor suppressor-DNA complex, Understanding tumorigenic mutations. Science. 265:346–355. 1994. View Article : Google Scholar : PubMed/NCBI | |
|
Billen LP, Shamas-Din A and Andrews DW: Bid A Bax-like BH3 protein. Oncogene. 27((Suppl 1)): S93–S104. 2008. View Article : Google Scholar : PubMed/NCBI | |
|
Chipuk JE and Green DR: PUMA cooperates with direct activator proteins to promote mitochondrial outer membrane permeabilization and apoptosis. Cell Cycle. 8:2692–2696. 2009. View Article : Google Scholar : PubMed/NCBI | |
|
Nakano K and Vousden KH: PUMA a novel proapoptotic gene, is induced by p53. Mol Cell. 7:683–694. 2001. View Article : Google Scholar : PubMed/NCBI | |
|
Loose DS, Kan PB, Hirst MA, Marcus RA and Feldman D: Ketoconazole blocks adrenal steroidogenesis by inhibiting cytochrome P450-dependent enzymes. J Clin Invest. 71:1495–1499. 1983. View Article : Google Scholar : PubMed/NCBI | |
|
Greenblatt DJ, Zhao Y, Venkatakrishnan K, Duan SX, Harmatz JS, Parent SJ, Court MH and von Moltke LL: Mechanism of cytochrome P450-3A inhibition by ketoconazole. J Pharm Pharmacol. 63:214–221. 2011. View Article : Google Scholar : PubMed/NCBI | |
|
Ho YS, Tsai PW, Yu CF, Liu HL, Chen RJ and Lin JK: Ketoconazole-induced apoptosis through P53-dependent pathway in human colorectal and hepatocellular carcinoma cell lines. Toxicol Appl Pharmacol. 153:39–47. 1998. View Article : Google Scholar : PubMed/NCBI | |
|
Wang YJ, Jeng JH, Chen RJ, Tseng H, Chen LC, Liang YC, Lin CH, Chen CH, Chu JS, Ho WL, et al: Ketoconazole potentiates the antitumor effects of nocodazole: In vivo therapy for human tumor xenografts in nude mice. Mol Carcinog. 34:199–210. 2002. View Article : Google Scholar : PubMed/NCBI | |
|
Pascual A, García I, Conejo C and Perea EJ: Uptake and intracellular activity of fluconazole in human polymorphonuclear leukocytes. Antimicrob Agents Chemother. 37:187–190. 1993. View Article : Google Scholar : PubMed/NCBI | |
|
Ciccolini J, Fina F, Bezulier K, Giacometti S, Roussel M, Evrard A, Cuq P, Romain S, Martin PM and Aubert C: Transmission of apoptosis in human colorectal tumor cells exposed to capecitabine, Xeloda, is mediated via Fas. Mol Cancer Ther. 1:923–927. 2002.PubMed/NCBI | |
|
Baltch AL, Smith RP, Ritz WJ, Bopp LH and Michelsen PB: Intracellular activity of voriconazole, fluconazole, and itraconazole against Candida albicans in human monocytes with and without activation by GM-CSF and TNF-alpha. J Appl Res. 5:42005. | |
|
Murphy JW, Cho Y, Sachpatzidis A, Fan C, Hodsdon ME and Lolis E: Structural and functional basis of CXCL12 (stromal cell-derived factor-1 α) binding to heparin. J Biol Chem. 282:10018–10027. 2007. View Article : Google Scholar : PubMed/NCBI | |
|
Debnath B, Xu S, Grande F, Garofalo A and Neamati N: Small molecule inhibitors of CXCR4. Theranostics. 3:47–75. 2013. View Article : Google Scholar : PubMed/NCBI | |
|
Hatse S, Princen K and Bridger G: DeC lercq E and Schols D: Chemokine receptor inhibition by AMD3100 is strictly confined to CXCR4. FEBS Lett. 527:255–262. 2002. View Article : Google Scholar : PubMed/NCBI | |
|
Pron G, Belehradek J Jr and Mir LM: Identification of a plasma membrane protein that specifically binds bleomycin. Biochem Biophys Res Commun. 194:333–337. 1993. View Article : Google Scholar : PubMed/NCBI | |
|
Pron G, Belehradek J Jr, Orlowski S and Mir LM: Involvement of membrane bleomycin-binding sites in bleomycin cytotoxicity. Biochem Pharmacol. 48:301–310. 1994. View Article : Google Scholar : PubMed/NCBI | |
|
Krishan A and Whitlock S: Bleomycin-induced fine structural alterations in cultured mouse fibroblasts and human lymphocytes of neoplastic origin. Cancer Res. 33:777–785. 1973.PubMed/NCBI | |
|
Pron G, Mahrour N, Orlowski S, Tounekti O, Poddevin B, Belehradek J Jr and Mir LM: Internalisation of the bleomycin molecules responsible for bleomycin toxicity: A receptor-mediated endocytosis mechanism. Biochem Pharmacol. 57:45–56. 1999. View Article : Google Scholar : PubMed/NCBI | |
|
Ascierto ML, Kmieciak M, Idowu MO, Manjili R, Zhao Y, Grimes M, Dumur C, Wang E, Ramakrishnan V, Wang XY, et al: A signature of immune function genes associated with recurrence-free survival in breast cancer patients. Breast Cancer Res Treat. 131:871–880. 2012. View Article : Google Scholar : PubMed/NCBI | |
|
Chen L, Huang Z, Yao G, Lyu X, Li J, Hu X, Cai Y, Li W, Li X and Ye C: The expression of CXCL13 and its relation to unfavorable clinical characteristics in young breast cancer. J Transl Med. 13:1682015. View Article : Google Scholar : PubMed/NCBI | |
|
Stamatopoulos B, Meuleman N, De Bruyn C, Pieters K, Mineur P, Le Roy C, Saint-Georges S, Varin-Blank N, Cymbalista F, Bron D, et al: AMD3100 disrupts the cross-talk between chronic lymphocytic leukemia cells and a mesenchymal stromal or nurse-like cell-based microenvironment: Pre-clinical evidence for its association with chronic lymphocytic leukemia treatments. Haematologica. 97:608–615. 2012. View Article : Google Scholar : PubMed/NCBI | |
|
Chen LJ, Ye H, Zhang Q, Li FZ, Song LJ, Yang J, Mu Q, Rao SS, Cai PC, Xiang F, et al: Bleomycin induced epithelial-mesenchymal transition (EMT) in pleural mesothelial cells. Toxicol Appl Pharmacol. 283:75–82. 2015. View Article : Google Scholar : PubMed/NCBI | |
|
Wu Z, Yang L, Cai L, Zhang M, Cheng X, Yang X and Xu J: Detection of epithelial to mesenchymal transition in airways of a bleomycin induced pulmonary fibrosis model derived from an alpha-smooth muscle actin-Cre transgenic mouse. Respir Res. 8:12007. View Article : Google Scholar : PubMed/NCBI | |
|
Yamada A, Aki T, Unuma K, Funakoshi T and Uemura K: Paraquat induces epithelial-mesenchymal transition-like cellular response resulting in fibrogenesis and the prevention of apoptosis in human pulmonary epithelial cells. PLoS One. 10:e01201922015. View Article : Google Scholar : PubMed/NCBI | |
|
Dik WA, McAnulty RJ, Versnel MA, Naber BA, Zimmermann LJ, Laurent GJ and Mutsaers SE: Short course dexamethasone treatment following injury inhibits bleomycin induced fibrosis in rats. Thorax. 58:765–771. 2003. View Article : Google Scholar : PubMed/NCBI | |
|
Domanska UM, Timmer-Bosscha H, Nagengast WB, Munnink Oude TH, Kruizinga RC, Ananias HJ, Kliphuis NM, Huls G, De Vries EG, de Jong IJ, et al: CXCR4 inhibition with AMD3100 sensitizes prostate cancer to docetaxel chemotherapy. Neoplasia. 14:709–718. 2012. View Article : Google Scholar : PubMed/NCBI | |
|
Ujwal R, Cascio D, Colletier JP, Faham S, Zhang J, Toro L, Ping P and Abramson J: The crystal structure of mouse VDAC1 at 2.3 A resolution reveals mechanistic insights into metabolite gating. Proc Natl Acad Sci USA. 105:17742–17747. 2008. View Article : Google Scholar : PubMed/NCBI | |
|
Catterall WA: Functional subunit structure of voltage-gated calcium channels. Science. 253:1499–1500. 1991. View Article : Google Scholar : PubMed/NCBI | |
|
Barańska W, Kujawa M and Kujawska E: Influence of vincristine on the Golgi apparatus in preimplantation development of the mouse embryo. Gegenbaurs Morphol Jahrb. 134:175–184. 1988.PubMed/NCBI | |
|
Kujawa M, Ochocka M and Moskalewski S: Influence of vincristine on the Golgi complex of leukaemic lymphoblasts. Folia Haematologica. 107:193–203. 1980.PubMed/NCBI | |
|
Carré M, André N, Carles G, Borghi H, Brichese L, Briand C and Braguer D: Tubulin is an inherent component of mitochondrial membranes that interacts with the voltage-dependent anion channel. J Biol Chem. 277:33664–33669. 2002. View Article : Google Scholar : PubMed/NCBI | |
|
Groninger E, Meeuwsen-De Boer GJ, De Graaf SS, Kamps WA and De Bont ES: Vincristine induced apoptosis in acute lymphoblastic leukaemia cells: A mitochondrial controlled pathway regulated by reactive oxygen species? Int J Oncol. 21:1339–1345. 2002.PubMed/NCBI | |
|
Eom YW, Kim MA, Park SS, Goo MJ, Kwon HJ, Sohn S, Kim WH, Yoon G and Choi KS: Two distinct modes of cell death induced by doxorubicin, Apoptosis and cell death through mitotic catastrophe accompanied by senescence-like phenotype. Oncogene. 24:4765–4777. 2005. View Article : Google Scholar : PubMed/NCBI | |
|
Gamen S, Anel A, Lasierra P, Alava MA, Martinez-Lorenzo MJ, Piñeiro A and Naval J: Doxorubicin-induced apoptosis in human T-cell leukemia is mediated by caspase-3 activation in a Fas-independent way. FEBS Lett. 417:360–364. 1997. View Article : Google Scholar : PubMed/NCBI | |
|
Kuznetsov AV, Margreiter R, Amberger A, Saks V and Grimm M: Changes in mitochondrial redox state, membrane potential and calcium precede mitochondrial dysfunction in doxorubicin-induced cell death. Biochim Biophys Acta. 1813:1144–1152. 2011. View Article : Google Scholar : PubMed/NCBI | |
|
Mizutani H, Tada-Oikawa S, Hiraku Y, Kojima M and Kawanishi S: Mechanism of apoptosis induced by doxorubicin through the generation of hydrogen peroxide. Life Sci. 76:1439–1453. 2005. View Article : Google Scholar : PubMed/NCBI | |
|
Wang S, Konorev EA, Kotamraju S, Joseph J, Kalivendi S and Kalyanaraman B: Doxorubicin induces apoptosis in normal and tumor cells via distinctly different mechanisms. Histopathology. J Biol Chem. 279:25535–25543. 2004. View Article : Google Scholar : PubMed/NCBI | |
|
Golomb E, Hill MR, Brown RG and Keiser HR: Ouabain enhances the mitogenic effect of serum in vascular smooth muscle cells. Am J Hypertens. 7:69–74. 1994.PubMed/NCBI | |
|
Kanai R, Ogawa H, Vilsen B, Cornelius F and Toyoshima C: Crystal structure of a Na+-bound Na+, K+-ATPase preceding the E1P state. Nature. 502:201–206. 2013. View Article : Google Scholar : PubMed/NCBI | |
|
Aller SG, Yu J, Ward A, Weng Y, Chittaboina S, Zhuo R, Harrell PM, Trinh YT, Zhang Q, Urbatsch IL, et al: Structure of P-glycoprotein reveals a molecular basis for poly-specific drug binding. Science. 323:1718–1722. 2009. View Article : Google Scholar : PubMed/NCBI | |
|
Sehested M, Jensen PB, Skovsgaard T, Bindslev N, Demant EJ, Friche E and Vindeløv L: Inhibition of vincristine binding to plasma membrane vesicles from daunorubicin-resistant Ehrlich ascites cells by multidrug resistance modulators. Br J Cancer. 60:809–814. 1989. View Article : Google Scholar : PubMed/NCBI | |
|
Srivalli KMR and Lakshmi P: Overview of P-glycoprotein inhibitors: A rational outlook. Braz J Pharm Sci. 48:353–367. 2012. View Article : Google Scholar | |
|
Chen C, Ke J, Zhou XE, Yi W, Brunzelle JS, Li J, Yong EL, Xu HE and Melcher K: Structural basis for molecular recognition of folic acid by folate receptors. Nature. 500:486–489. 2013. View Article : Google Scholar : PubMed/NCBI | |
|
Nandini-Kishore SG and Frazier WA: [3H]Methotrexate as a ligand for the folate receptor of Dictyostelium discoideum. Proc Natl Acad Sci USA. 78:7299–7303. 1981. View Article : Google Scholar : PubMed/NCBI | |
|
Herman S, Zurgil N and Deutsch M: Low dose methotrexate induces apoptosis with reactive oxygen species involvement in T lymphocytic cell lines to a greater extent than in monocytic lines. Inflamm Res. 54:273–280. 2005. View Article : Google Scholar : PubMed/NCBI | |
|
Ramadan AA, Yousif WB and Ali AM: The effect of methotrexate (MTX) on the small intestine of the mouse. IV. The Golgi apparatus, phosphatases and esterases. Funct Dev Morphol. 2:111–119. 1992.PubMed/NCBI | |
|
Ramadan AA, Yousif WB and Ali AM: The effect of methotrexate (MTX) on the small intestine of the mouse. Histopathology. Funct Dev Morphol. 2:3–9. 1992.PubMed/NCBI | |
|
Pritchard DM, Bower L, Potten CS, Jackman AL and Hickman JA: The importance of p53-independent apoptosis in the intestinal toxicity induced by raltitrexed (ZD1694, Tomudex): genetic differences between BALB/c and DBA/2 mice. Clin Cancer Res. 6:4389–4395. 2000.PubMed/NCBI | |
|
Xue S, Chen YX, Qin SK, Yang AZ, Wang L, Xu HJ and Geng HY: Raltitrexed induces mitochondrial mediated apoptosis in SGC7901 human gastric cancer cells. Mol Med Rep. 10:1927–1934. 2014.PubMed/NCBI | |
|
Chattopadhyay S, Moran RG and Goldman ID: Pemetrexed Biochemical and cellular pharmacology, mechanisms, and clinical applications. Mol Cancer Ther. 6:404–417. 2007. View Article : Google Scholar : PubMed/NCBI | |
|
Fischer CD: daC osta M and Rothenberg SP: The heterogeneity and properties of folate binding proteins from chronic myelogenous leukemia cells. Blood. 46:855–867. 1975.PubMed/NCBI | |
|
Fischer CD: DaC osta M and Rothenberg SP: Properties of purified folate-binding proteins from chronic myelogenous leukemia cells. Biochim Biophys Acta. 543:328–339. 1978. View Article : Google Scholar : PubMed/NCBI | |
|
Barford PA, Blair JA and Malghani MA: The effect of methotrexate on folate metabolism in the rat. Br J Cancer. 41:816–820. 1980. View Article : Google Scholar : PubMed/NCBI | |
|
Ohbayashi M, Kubota S, Kawase A, Kohyama N, Kobayashi Y and Yamamoto T: Involvement of epithelial-mesenchymal transition in methotrexate-induced pulmonary fibrosis. J Toxicol Sci. 39:319–330. 2014. View Article : Google Scholar : PubMed/NCBI | |
|
Shprung T and Gozes I: A novel method for analyzing mitochondrial movement: inhibition by paclitaxel in a pheochromocytoma cell model. J Mol Neurosci. 37:254–262. 2009. View Article : Google Scholar : PubMed/NCBI | |
|
Foland TB, Dentler WL, Suprenant KA, Gupta ML Jr and Himes RH: Paclitaxel-induced microtubule stabilization causes mitotic block and apoptotic-like cell death in a paclitaxel-sensitive strain of Saccharomyces cerevisiae. Yeast. 22:971–978. 2005. View Article : Google Scholar : PubMed/NCBI | |
|
Salido M, Gonzalez JL and Vilches J: Loss of mitochondrial membrane potential is inhibited by bombesin in etoposide-induced apoptosis in PC-3 prostate carcinoma cells. Mol Cancer Ther. 6:1292–1299. 2007. View Article : Google Scholar : PubMed/NCBI | |
|
Mizukami S, Kikuchi K, Higuchi T, Urano Y, Mashima T, Tsuruo T and Nagano T: Imaging of caspase-3 activation in HeLa cells stimulated with etoposide using a novel fluorescent probe. FEBS Lett. 453:356–360. 1999. View Article : Google Scholar : PubMed/NCBI | |
|
Matsushima Y, Kanzawa F, Miyazawa N, Sasaki Y and Saijo N: In vitro antitumor activity of teniposide against carcinoma of the lung in human tumor clonogenic assay. Anticancer Res. 6:921–924. 1986.PubMed/NCBI | |
|
Sánchez-Alcázar JA, Khodjakov A and Schneider E: Anticancer drugs induce increased mitochondrial cytochrome c expression that precedes cell death. Cancer Res. 61:1038–1044. 2001.PubMed/NCBI | |
|
Uyar D, Takigawa N, Mekhail T, Grabowski D, Markman M, Lee F, Canetta R, Peck R, Bukowski R and Ganapathi R: Apoptotic pathways of epothilone BMS 310705. Gynecol Oncol. 91:173–178. 2003. View Article : Google Scholar : PubMed/NCBI | |
|
Thomson AER and Robinson MA: Cytocidal action of colchicine in vitro on lymphocytes in chronic lymphocytic leukaemia. Lancet. 2:868–870. 1967. View Article : Google Scholar : PubMed/NCBI | |
|
Chen XM, Liu J, Wang T and Shang J: Colchicine-induced apoptosis in human normal liver L-02 cells by mitochondrial mediated pathways. Toxicol In Vitro. 26:649–655. 2012. View Article : Google Scholar : PubMed/NCBI | |
|
Jelínek M, Balušíková K, Schmiedlová M, Němcová-Fürstová V, Šrámek J, Stančíková J, Zanardi I, Ojima I and Kovář J: The role of individual caspases in cell death induction by taxanes in breast cancer cells. Cancer Cell Int. 15:82015. View Article : Google Scholar : PubMed/NCBI | |
|
André N, Braguer D, Brasseur G, Gonçalves A, Lemesle-Meunier D, Guise S, Jordan MA and Briand C: Paclitaxel induces release of cytochrome c from mitochondria isolated from human neuroblastoma cells'. Cancer Res. 60:5349–5353. 2000.PubMed/NCBI | |
|
Khawaja NR, Carré M, Kovacic H, Estève MA and Braguer D: Patupilone-induced apoptosis is mediated by mitochondrial reactive oxygen species through Bim relocalization to mitochondria. Mol Pharmacol. 74:1072–1083. 2008. View Article : Google Scholar : PubMed/NCBI | |
|
Salim AA, Xiao X, Cho KJ, Piggott AM, Lacey E, Hancock JF and Capon RJ: Rare Streptomyces sp. polyketides as modulators of K-Ras localisation. Org Biomol Chem. 12:4872–4878. 2014. View Article : Google Scholar : PubMed/NCBI | |
|
Pusceddu S, Indini A and Procopio G: Everolimus treatment in advanced solid tumors: a personal view. Future Science. 2015.OA March 20, (Epub ahead of print) doi:10.4155/fso.14.1. View Article : Google Scholar | |
|
Chambraud B, Belabes H, Fontaine-Lenoir V, Fellous A and Baulieu EE: The immunophilin FKBP52 specifically binds to tubulin and prevents microtubule formation. FASEB J. 21:2787–2797. 2007. View Article : Google Scholar : PubMed/NCBI | |
|
Shirane M and Nakayama KI: Inherent calcineurin inhibitor FKBP38 targets Bcl-2 to mitochondria and inhibits apoptosis. Nat Cell Biol. 5:28–37. 2003. View Article : Google Scholar : PubMed/NCBI | |
|
Tanaka K, Fujita N, Higashi Y and Ogawa N: Neuroprotective and antioxidant properties of FKBP-binding immunophilin ligands are independent on the FKBP12 pathway in human cells. Neurosci Lett. 330:147–150. 2002. View Article : Google Scholar : PubMed/NCBI | |
|
Simon N, Morin C, Urien S, Tillement JP and Bruguerolle B: Tacrolimus and sirolimus decrease oxidative phosphorylation of isolated rat kidney mitochondria. Br J Pharmacol. 138:369–376. 2003. View Article : Google Scholar : PubMed/NCBI | |
|
Zini R, Simon N, Morin C, Thiault L and Tillement JP: Tacrolimus decreases in vitro oxidative phosphorylation of mitochondria from rat forebrain. Life Sci. 63:357–368. 1998. View Article : Google Scholar : PubMed/NCBI | |
|
Zoli W, Ulivi P, Tesei A, Fabbri F, Rosetti M, Maltoni R, Giunchi DC, Ricotti L, Brigliadori G, Vannini I, et al: Addition of 5-fluorouracil to doxorubicin-paclitaxel sequence increases caspase-dependent apoptosis in breast cancer cell lines. Breast Cancer Res. 7:R681–R689. 2005. View Article : Google Scholar : PubMed/NCBI | |
|
Yang Y, Niu X, Zhang Q, Hao L, Ding Y and Xu H: The efficacy of abraxane on osteosarcoma xenografts in nude mice and expression of secreted protein, acidic and rich in cysteine. Am J Med Sci. 344:199–205. 2012. View Article : Google Scholar : PubMed/NCBI | |
|
Saif MW: U.S. Food and Drug Administration approves paclitaxel protein-bound particles (Abraxane®) in combination with gemcitabine as first-line treatment of patients with metastatic pancreatic cancer. JOP. 14:686–688. 2013.PubMed/NCBI | |
|
Coward P, Lee D, Hull MV and Lehmann JM: 4-Hydroxytamoxifen binds to and deactivates the estrogen-related receptor gamma. Proc Natl Acad Sci USA. 98:8880–8884. 2001. View Article : Google Scholar : PubMed/NCBI | |
|
Richards J, Lim AC, Hay CW, Taylor AE, Wingate A, Nowakowska K, Pezaro C, Carreira S, Goodall J, Arlt W, et al: Interactions of abiraterone, eplerenone, and prednisolone with wild-type and mutant androgen receptor: A rationale for increasing abiraterone exposure or combining with MDV3100. Cancer Res. 72:2176–2182. 2012. View Article : Google Scholar : PubMed/NCBI | |
|
Darbre PD and King RJB: Differential effects of steroid hormones on parameters of cell growth. Cancer Res. 47:2937–2944. 1987.PubMed/NCBI | |
|
Yates J and King RJB: Correlation of growth properties and morphology with hormone responsiveness of mammary tumor cells in culture. Cancer Res. 41:258–262. 1981.PubMed/NCBI | |
|
Talwar GP, Raina K, Gupta JC, Ray R, Wadhwa S and Ali MM: A recombinant luteinising-hormone-releasing- hormone immunogen bioeffective in causing prostatic atrophy. Vaccine. 22:3713–3721. 2004. View Article : Google Scholar : PubMed/NCBI | |
|
Brandes AA, Ermani M, Turazzi S, Scelzi E, Berti F, Amistà P, Rotilio A, Licata C and Fiorentino MV: Procarbazine and high-dose tamoxifen as a second-line regimen in recurrent high-grade gliomas, A phase II study. J Clin Oncol. 17:645–650. 1999.PubMed/NCBI | |
|
de Bono JS, Logothetis CJ, Molina A, Fizazi K, North S, Chu L, Chi KN, Jones RJ, Goodman OB Jr, Saad F, et al: COU-AA-301 Investigators: Abiraterone and increased survival in metastatic prostate cancer. N Engl J Med. 364:1995–2005. 2011. View Article : Google Scholar : PubMed/NCBI | |
|
Kosaka T, Miyajima A, Yasumizu Y, Miyazaki Y, Kikuchi E and Oya M: Limited in vitro efficacy of CYP17A1 inhibition on human castration resistant prostate cancer. Steroids. 92:39–44. 2014. View Article : Google Scholar : PubMed/NCBI | |
|
Louderbough JMV, Lopez JI and Schroeder JA: Matrix hyaluronan alters epidermal growth factor receptor-dependent cell morphology. Cell Adhes Migr. 4:26–31. 2010. View Article : Google Scholar | |
|
Hara F, Aoe M, Doihara H, Taira N, Shien T, Takahashi H, Yoshitomi S, Tsukuda K, Toyooka S, Ohta T, et al: Antitumor effect of gefitinib ('Iressa') on esophageal squamous cell carcinoma cell lines in vitro and in vivo. Cancer Lett. 226:37–47. 2005. View Article : Google Scholar : PubMed/NCBI | |
|
Stegmaier K, Corsello SM, Ross KN, Wong JS, Deangelo DJ and Golub TR: Gefitinib induces myeloid differentiation of acute myeloid leukemia. Blood. 106:2841–2848. 2005. View Article : Google Scholar : PubMed/NCBI | |
|
Augustin A, Lamerz J, Meistermann H, Golling S, Scheiblich S, Hermann JC, Duchateau-Nguyen G, Tzouros M, Avila DW, Langen H, et al: Quantitative chemical proteomics profiling differentiates erlotinib from gefitinib in EGFR wild-type non-small cell lung carcinoma cell lines. Mol Cancer Ther. 12:520–529. 2013. View Article : Google Scholar : PubMed/NCBI | |
|
Huang HL, Chen YC, Huang YC, Yang KC, Pan H, Shih SP and Chen YJ: Lapatinib induces autophagy, apoptosis and megakaryocytic differentiation in chronic myelogenous leukemia K562 cells. PLoS One. 6:e290142011. View Article : Google Scholar : PubMed/NCBI | |
|
Diaz R, Nguewa PA, Parrondo R, Perez-Stable C, Manrique I, Redrado M, Catena R, Collantes M, Peñuelas I, Díaz-González JA, et al: Antitumor and antiangiogenic effect of the dual EGFR and HER-2 tyrosine kinase inhibitor lapatinib in a lung cancer model. BMC Cancer. 10:1882010. View Article : Google Scholar : PubMed/NCBI | |
|
Chen G, Noor A, Kronenberger P, Teugels E, Umelo IA and De Grève J: Synergistic effect of afatinib with su11274 in non-small cell lung cancer cells resistant to gefitinib or erlotinib. PLoS One. 8:e597082013. View Article : Google Scholar : PubMed/NCBI | |
|
Solca F, Dahl G, Zoephel A, Bader G, Sanderson M, Klein C, Kraemer O, Himmelsbach F, Haaksma E and Adolf GR: Target binding properties and cellular activity of afatinib (BIBW 2992), an irreversible ErbB family blocker. J Pharmacol Exp Ther. 343:342–350. 2012. View Article : Google Scholar : PubMed/NCBI | |
|
Stoica GE, Kuo A, Powers C, Bowden ET, Sale EB, Riegel AT and Wellstein A: Midkine binds to anaplastic lymphoma kinase (ALK) and acts as a growth factor for different cell types. J Biol Chem. 277:35990–35998. 2002. View Article : Google Scholar : PubMed/NCBI | |
|
Sumi Y, Muramatsu H, Hata K, Ueda M and Muramatsu T: Midkine enhances early stages of collagen gel contraction. J Biochem. 127:247–251. 2000. View Article : Google Scholar : PubMed/NCBI | |
|
Kadomatsu K and Muramatsu T: Midkine and pleiotrophin in neural development and cancer. Cancer Lett. 204:127–143. 2004. View Article : Google Scholar : PubMed/NCBI | |
|
Friboulet L, Li N, Katayama R, Lee CC, Gainor JF, Crystal AS, Michellys PY, Awad MM, Yanagitani N, Kim S, et al: The ALK inhibitor ceritinib overcomes crizotinib resistance in non-small cell lung cancer. Cancer Discov. 4:662–673. 2014. View Article : Google Scholar : PubMed/NCBI | |
|
Lisignoli G, Toneguzzi S, Piacentini A, Cristino S, Grassi F, Cavallo C and Facchini A: CXCL12 (SDF-1) and CXCL13 (BCA-1) chemokines significantly induce proliferation and collagen type I expression in osteoblasts from osteoarthritis patients. J Cell Physiol. 206:78–85. 2006. View Article : Google Scholar : PubMed/NCBI | |
|
Kalinina OV, Pfeifer N and Lengauer T: Modelling binding between CCR5 and CXCR4 receptors and their ligands suggests the surface electrostatic potential of the co-receptor to be a key player in the HIV-1 tropism. Retrovirology. 10:1302013. View Article : Google Scholar : PubMed/NCBI | |
|
Massarelli I, Chiellini F, Chiellini E and Bianucci AM: Three-dimensional models of the oligomeric human asialoglycoprotein receptor (ASGP-R). Int J Mol Sci. 11:3867–3884. 2010. View Article : Google Scholar : PubMed/NCBI | |
|
Fallon RJ and Danaher M: The effect of staurosporine a protein kinase inhibitor, on asialoglycoprotein receptor endocytosis. Exp Cell Res. 203:420–426. 1992. View Article : Google Scholar : PubMed/NCBI | |
|
Trerè D, Fiume L, De Giorgi LB, Di Stefano G, Migaldi M and Derenzini M: The asialoglycoprotein receptor in human hepatocellular carcinomas: Its expression on proliferating cells. Br J Cancer. 81:404–408. 1999. View Article : Google Scholar : PubMed/NCBI | |
|
Becherer U, Guatimosim C and Betz W: Effects of staurosporine on exocytosis and endocytosis at frog motor nerve terminals. J Neurosci. 21:782–787. 2001.PubMed/NCBI | |
|
Belmokhtar CA, Hillion J and Ségal-Bendirdjian E: Staurosporine induces apoptosis through both caspase-dependent and caspase-independent mechanisms. Oncogene. 20:3354–3362. 2001. View Article : Google Scholar : PubMed/NCBI | |
|
Zhang XD, Gillespie SK and Hersey P: Staurosporine induces apoptosis of melanoma by both caspase-dependent and -independent apoptotic pathways. Mol Cancer Ther. 3:187–197. 2004.PubMed/NCBI | |
|
Dunai ZA, Imre G, Barna G, Korcsmaros T, Petak I, Bauer PI and Mihalik R: Staurosporine induces necroptotic cell death under caspase-compromised conditions in U937 cells. PLoS One. 7:e419452012. View Article : Google Scholar : PubMed/NCBI | |
|
Chan KC, Knox WF, Gee JM, Morris J, Nicholson RI, Potten CS and Bundred NJ: Effect of epidermal growth factor receptor tyrosine kinase inhibition on epithelial proliferation in normal and premalignant breast. Cancer Res. 62:122–128. 2002.PubMed/NCBI | |
|
Maity A, Pore N, Lee J, Solomon D and O'Rourke DM: Epidermal growth factor receptor transcriptionally up-regulates vascular endothelial growth factor expression in human glioblastoma cells via a pathway involving phosphatidylinositol 3-kinase and distinct from that induced by hypoxia. Cancer Res. 60:5879–5886. 2000.PubMed/NCBI | |
|
Ouchi T, Monteiro ANA, August A, Aaronson SA and Hanafusa H: BRCA1 regulates p53-dependent gene expression. Proc Natl Acad Sci USA. 95:2302–2306. 1998. View Article : Google Scholar : PubMed/NCBI | |
|
Arizti P, Fang L, Park I, Yin Y, Solomon E, Ouchi T, Aaronson SA and Lee SW: Tumor suppressor p53 is required to modulate BRCA1 expression. Mol Cell Biol. 20:7450–7459. 2000. View Article : Google Scholar : PubMed/NCBI | |
|
Andreassen A, Øyjord T, Hovig E, Holm R, Flørenes VA, Nesland JM, Myklebost O, Høie J, Bruland OS, Børresen AL, et al: p53 abnormalities in different subtypes of human sarcomas. Cancer Res. 53:468–471. 1993.PubMed/NCBI | |
|
O'Hare T, Pollock R, Stoffregen EP, Keats JA, Abdullah OM, Moseson EM, Rivera VM, Tang H, Metcalf CA III, Bohacek RS, et al: Inhibition of wild-type and mutant Bcr-Abl by AP23464, a potent ATP-based oncogenic protein kinase inhibitor: Implications for CML. Blood. 104:2532–2539. 2004. View Article : Google Scholar : PubMed/NCBI | |
|
Grisolano JL, O'Neal J, Cain J and Tomasson MH: An activated receptor tyrosine kinase, TEL/PDGFbetaR, cooperates with AML1/ETO to induce acute myeloid leukemia in mice. Proc Natl Acad Sci USA. 100:9506–9511. 2003. View Article : Google Scholar : PubMed/NCBI | |
|
Aoki M, Nabeshima K, Koga K, Hamasaki M, Suzumiya J, Tamura K and Iwasaki H: Imatinib mesylate inhibits cell invasion of malignant peripheral nerve sheath tumor induced by platelet-derived growth factor-BB. Lab Invest. 87:767–779. 2007. View Article : Google Scholar : PubMed/NCBI | |
|
Hercus TR, Thomas D, Guthridge MA, Ekert PG, King-Scott J, Parker MW and Lopez AF: The granulocyte-macrophage colony-stimulating factor receptor, linking its structure to cell signaling and its role in disease. Blood. 114:1289–1298. 2009. View Article : Google Scholar : PubMed/NCBI | |
|
Ding W, Shanafelt TD, Lesnick CE, Erlichman C, Leis JF, Secreto C, Sassoon TR, Call TG, Bowen DA, Conte M, et al: Akt inhibitor MK2206 selectively targets CLL B-cell receptor induced cytokines, mobilizes lymphocytes and synergizes with bendamustine to induce CLL apoptosis. Br J Haematol. 164:146–150. 2014. View Article : Google Scholar : PubMed/NCBI | |
|
Zhao Y-Y, Tian Y, Zhang J, Xu F, Yang YP, Huang Y, Zhao HY, Zhang JW, Xue C, Lam MH, et al: Effects of an oral allosteric AKT inhibitor (MK-2206) on human nasopharyngeal cancer in vitro and in vivo. Drug Des Devel Ther. 8:1827–1837. 2014. View Article : Google Scholar : PubMed/NCBI | |
|
Agarwal E, Chaudhuri A, Leiphrakpam PD, Haferbier KL, Brattain MG and Chowdhury S: Akt inhibitor MK-2206 promotes anti-tumor activity and cell death by modulation of AIF and Ezrin in colorectal cancer. BMC Cancer. 14:1452014. View Article : Google Scholar : PubMed/NCBI | |
|
Fu YR, Yi ZJ, Yan YR and Qiu ZY: Hydroxycamptothecin-induced apoptosis in hepatoma SMMC-7721 cells and the role of mitochondrial pathway. Mitochondrion. 6:211–217. 2006. View Article : Google Scholar : PubMed/NCBI | |
|
Uckun FM, Stewart CF, Reaman G, Chelstrom LM, Jin J, Chandan-Langlie M, Waddick KG, White J and Evans WE: In vitro and in vivo activity of topotecan against human B-lineage acute lymphoblastic leukemia cells. Blood. 85:2817–2828. 1995.PubMed/NCBI | |
|
Caserini C, Pratesi G, Tortoreto M, Bedogné B, Carenini N, Supino R, Perego P, Righetti SC and Zunino F: Apoptosis as a determinant of tumor sensitivity to topotecan in human ovarian tumors, preclinical in vitro/in vivo studies. Clin Cancer Res. 3:955–961. 1997.PubMed/NCBI | |
|
Kim MK, James J and Annunziata CM: Topotecan synergizes with CHEK1 (CHK1) inhibitor to induce apoptosis in ovarian cancer cells. BMC Cancer. 15:1962015. View Article : Google Scholar : PubMed/NCBI | |
|
Tolis C, Peters GJ, Ferreira CG, Pinedo HM and Giaccone G: Cell cycle disturbances and apoptosis induced by topotecan and gemcitabine on human lung cancer cell lines. Eur J Cancer. 35:796–807. 1999. View Article : Google Scholar : PubMed/NCBI | |
|
Szalay K, Rázga Z and Duda E: TNF inhibits myogenesis and downregulates the expression of myogenic regulatory factors myoD and myogenin. Eur J Cell Biol. 74:391–398. 1997.PubMed/NCBI | |
|
Fiers W, Beyaert R, Brouckaert P, Everaerdt B, Haegeman C, Suffys P, Tavernier J and Vanhaesebroeck B: TNF Its potential as an antitumour agent. Dev Biol Stand. 69:143–151. 1988.PubMed/NCBI | |
|
Smith RA and Baglioni C: The active form of tumor necrosis factor is a trimer. J Biol Chem. 262:6951–6954. 1987.PubMed/NCBI | |
|
Udagawa N, Takahashi N, Jimi E, Matsuzaki K, Tsurukai T, Itoh K, Nakagawa N, Yasuda H, Goto M, Tsuda E, et al: Osteoblasts/stromal cells stimulate osteoclast activation through expression of osteoclast differentiation factor/RANKL but not macrophage colony-stimulating factor: Receptor activator of NF-kappa B ligand. Bone. 25:517–523. 1999. View Article : Google Scholar : PubMed/NCBI | |
|
Luan X, Lu Q, Jiang Y, Zhang S, Wang Q, Yuan H, Zhao W, Wang J and Wang X: Crystal structure of human RANKL complexed with its decoy receptor osteoprotegerin. J Immunol. 189:245–252. 2012. View Article : Google Scholar : PubMed/NCBI | |
|
Ciusani E, Croci D, Gelati M, Calatozzolo C, Sciacca F, Fumagalli L, Balzarotti M, Fariselli L, Boiardi A and Salmaggi A: In vitro effects of topotecan and ionizing radiation on TRAIL/Apo2L-mediated apoptosis in malignant glioma. J Neurooncol. 71:19–25. 2005. View Article : Google Scholar : PubMed/NCBI | |
|
Chen S, Gomez SP, McCarley D and Mainwaring MG: Topotecan-induced topoisomerase IIalpha expression increases the sensitivity of the CML cell line K562 to subsequent etoposide plus mitoxantrone treatment. Cancer Chemother Pharmacol. 49:347–355. 2002. View Article : Google Scholar : PubMed/NCBI | |
|
Naldini L, Weidner KM, Vigna E, Gaudino G, Bardelli A, Ponzetto C, Narsimhan RP, Hartmann G, Zarnegar R, Michalopoulos GK, et al: Scatter factor and hepatocyte growth factor are indistinguishable ligands for the MET receptor. EMBO J. 10:2867–2878. 1991.PubMed/NCBI | |
|
Stamos J, Lazarus RA, Yao X, Kirchhofer D and Wiesmann C: Crystal structure of the HGF beta-chain in complex with the Sema domain of the Met receptor. EMBO J. 23:2325–2335. 2004. View Article : Google Scholar : PubMed/NCBI | |
|
Paulson AK, Linklater ES, Berghuis BD, App CA, Oostendorp LD, Paulson JE, Pettinga JE and Melnik MK: VandeW oude GF and Graveel CR: MET and ERBB2 are coexpressed in ERBB2+ breast cancer and contribute to innate resistance. Mol Cancer Res. 11:1112–1121. 2013. View Article : Google Scholar : PubMed/NCBI | |
|
Xie Q, Su Y, Dykema K, Johnson J, Koeman J, De Giorgi V, Huang A, Schlegel R, Essenburg C, Kang L, et al: Overexpression of HGF promotes HBV-induced hepatocellular carcinoma progression and is an effective indicator for Met-targeting therapy. Genes Cancer. 4:247–260. 2013. View Article : Google Scholar : PubMed/NCBI | |
|
Simonetti S, Molina MA, Queralt C, de Aguirre I, Mayo C, Bertran-Alamillo J, Sanchez JJ, Gonzalez-Larriba JL, Jimenez U, Isla D, et al: Detection of EGFR mutations with mutation-specific antibodies in stage IV non-small-cell lung cancer. J Transl Med. 8:1352010. View Article : Google Scholar : PubMed/NCBI | |
|
Maseki S, Ijichi K, Tanaka H, Fujii M, Hasegawa Y, Ogawa T, Murakami S, Kondo E and Nakanishi H: Acquisition of EMT phenotype in the gefitinib-resistant cells of a head and neck squamous cell carcinoma cell line through Akt/GSK-3β/snail signalling pathway. Br J Cancer. 106:1196–1204. 2012. View Article : Google Scholar : PubMed/NCBI | |
|
Stahtea XN, Roussidis AE, Kanakis I, Tzanakakis GN, Chalkiadakis G, Mavroudis D, Kletsas D and Karamanos NK: Imatinib inhibits colorectal cancer cell growth and suppresses stromal-induced growth stimulation, MT1-MMP expression and pro-MMP2 activation. Int J Cancer. 121:2808–2814. 2007. View Article : Google Scholar : PubMed/NCBI | |
|
Hirai H, Sootome H, Nakatsuru Y, Miyama K, Taguchi S, Tsujioka K, Ueno Y, Hatch H, Majumder PK, Pan BS, et al: MK-2206, an allosteric Akt inhibitor, enhances antitumor efficacy by standard chemotherapeutic agents or molecular targeted drugs in vitro and in vivo. Mol Cancer Ther. 9:1956–1967. 2010. View Article : Google Scholar : PubMed/NCBI |