Spandidos Publications Logo
  • About
    • About Spandidos
    • Aims and Scopes
    • Abstracting and Indexing
    • Editorial Policies
    • Reprints and Permissions
    • Job Opportunities
    • Terms and Conditions
    • Contact
  • Journals
    • All Journals
    • Oncology Letters
      • Oncology Letters
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Oncology
      • International Journal of Oncology
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Molecular and Clinical Oncology
      • Molecular and Clinical Oncology
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Experimental and Therapeutic Medicine
      • Experimental and Therapeutic Medicine
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Molecular Medicine
      • International Journal of Molecular Medicine
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Biomedical Reports
      • Biomedical Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Oncology Reports
      • Oncology Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Molecular Medicine Reports
      • Molecular Medicine Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • World Academy of Sciences Journal
      • World Academy of Sciences Journal
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Functional Nutrition
      • International Journal of Functional Nutrition
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Epigenetics
      • International Journal of Epigenetics
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Medicine International
      • Medicine International
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
  • Articles
  • Information
    • Information for Authors
    • Information for Reviewers
    • Information for Librarians
    • Information for Advertisers
    • Conferences
  • Language Editing
Spandidos Publications Logo
  • About
    • About Spandidos
    • Aims and Scopes
    • Abstracting and Indexing
    • Editorial Policies
    • Reprints and Permissions
    • Job Opportunities
    • Terms and Conditions
    • Contact
  • Journals
    • All Journals
    • Biomedical Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Experimental and Therapeutic Medicine
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Epigenetics
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Functional Nutrition
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Molecular Medicine
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Oncology
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Medicine International
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Molecular and Clinical Oncology
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Molecular Medicine Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Oncology Letters
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Oncology Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • World Academy of Sciences Journal
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
  • Articles
  • Information
    • For Authors
    • For Reviewers
    • For Librarians
    • For Advertisers
    • Conferences
  • Language Editing
Login Register Submit
  • This site uses cookies
  • You can change your cookie settings at any time by following the instructions in our Cookie Policy. To find out more, you may read our Privacy Policy.

    I agree
Search articles by DOI, keyword, author or affiliation
Search
Advanced Search
presentation
Molecular and Clinical Oncology
Join Editorial Board Propose a Special Issue
Print ISSN: 2049-9450 Online ISSN: 2049-9469
Journal Cover
March-2016 Volume 4 Issue 3

Full Size Image

Sign up for eToc alerts
Recommend to Library

Journals

International Journal of Molecular Medicine

International Journal of Molecular Medicine

International Journal of Molecular Medicine is an international journal devoted to molecular mechanisms of human disease.

International Journal of Oncology

International Journal of Oncology

International Journal of Oncology is an international journal devoted to oncology research and cancer treatment.

Molecular Medicine Reports

Molecular Medicine Reports

Covers molecular medicine topics such as pharmacology, pathology, genetics, neuroscience, infectious diseases, molecular cardiology, and molecular surgery.

Oncology Reports

Oncology Reports

Oncology Reports is an international journal devoted to fundamental and applied research in Oncology.

Experimental and Therapeutic Medicine

Experimental and Therapeutic Medicine

Experimental and Therapeutic Medicine is an international journal devoted to laboratory and clinical medicine.

Oncology Letters

Oncology Letters

Oncology Letters is an international journal devoted to Experimental and Clinical Oncology.

Biomedical Reports

Biomedical Reports

Explores a wide range of biological and medical fields, including pharmacology, genetics, microbiology, neuroscience, and molecular cardiology.

Molecular and Clinical Oncology

Molecular and Clinical Oncology

International journal addressing all aspects of oncology research, from tumorigenesis and oncogenes to chemotherapy and metastasis.

World Academy of Sciences Journal

World Academy of Sciences Journal

Multidisciplinary open-access journal spanning biochemistry, genetics, neuroscience, environmental health, and synthetic biology.

International Journal of Functional Nutrition

International Journal of Functional Nutrition

Open-access journal combining biochemistry, pharmacology, immunology, and genetics to advance health through functional nutrition.

International Journal of Epigenetics

International Journal of Epigenetics

Publishes open-access research on using epigenetics to advance understanding and treatment of human disease.

Medicine International

Medicine International

An International Open Access Journal Devoted to General Medicine.

Journal Cover
March-2016 Volume 4 Issue 3

Full Size Image

Sign up for eToc alerts
Recommend to Library

  • Article
  • Citations
    • Cite This Article
    • Download Citation
    • Create Citation Alert
    • Remove Citation Alert
    • Cited By
  • Similar Articles
    • Related Articles (in Spandidos Publications)
    • Similar Articles (Google Scholar)
    • Similar Articles (PubMed)
  • Download PDF
  • Download XML
  • View XML
Article

Conserved molecular mechanisms underlying the effects of small molecule xenobiotic chemotherapeutics on cells

  • Authors:
    • Hemant Sarin
  • View Affiliations / Copyright

    Affiliations: Freelance Investigator in Translational Science and Medicine, Charleston, WV 25314, USA
  • Pages: 326-368
    |
    Published online on: December 16, 2015
       https://doi.org/10.3892/mco.2015.714
  • Expand metrics +
Metrics: Total Views: 0 (Spandidos Publications: | PMC Statistics: )
Metrics: Total PDF Downloads: 0 (Spandidos Publications: | PMC Statistics: )
Cited By (CrossRef): 0 citations Loading Articles...

This article is mentioned in:



Abstract

For proper determination of the apoptotic potential of chemoxenobiotics in synergism, it is important to understand the modes, levels and character of interactions of chemoxenobiotics with cells in the context of predicted conserved biophysical properties. Chemoxenobiotic structures are studied with respect to atom distribution over molecular space, the predicted overall octanol‑to‑water partition coefficient (Log OWPC; unitless) and molecular size viz a viz van der Waals diameter (vdWD). The Log OWPC‑to‑vdWD (nm‑1) parameter is determined, and where applicable, hydrophilic interacting moiety/core‑to‑vdWD (nm‑1) and lipophilic incorporating hydrophobic moiety/core‑to‑vdWD (nm‑1) parameters of their part‑structures are determined. The cellular and sub‑cellular level interactions of the spectrum of xenobiotic chemotherapies have been characterized, for which a classification system has been developed based on predicted conserved biophysical properties with respect to the mode of chemotherapeutic effect. The findings of this study are applicable towards improving the effectiveness of existing combination chemotherapy regimens and the predictive accuracy of personalized cancer treatment algorithms as well as towards the selection of appropriate novel xenobiotics with the potential to be potent chemotherapeutics for dendrimer nanoparticle‑based effective transvascular delivery.
View Figures

Figure 1

Figure 2

Figure 3

Figure 4

Figure 5

Figure 6

Figure 7

Figure 8

Figure 9

Figure 10

Figure 11

View References

1 

Klassen CD and Watkins IB III: Casarett and Doull's Essentials of Toxicology. New York, NY: McGraw-Hill. 2010. View Article : Google Scholar

2 

Matsumura Y and Maeda H: A new concept for macromolecular therapeutics in cancer chemotherapy: Mechanism of tumoritropic accumulation of proteins and the antitumor agent Smancs. Cancer Res. 46:6387–6392. 1986.PubMed/NCBI

3 

Sarin H: Recent progress towards development of effective systemic chemotherapy for the treatment of malignant brain tumors. J Transl Med. 7:772009. View Article : Google Scholar : PubMed/NCBI

4 

Sarin H: Overcoming the challenges in the effective delivery of chemotherapies to CNS solid tumors. Ther Deliv. 1:289–305. 2010. View Article : Google Scholar : PubMed/NCBI

5 

Sarin H: On the future development of optimally-sized lipid-insoluble systemic therapies for CNS solid tumors and other neuropathologies. Recent Patents CNS Drug Discov. 5:239–252. 2010. View Article : Google Scholar

6 

Sarin H: Effective transvascular delivery of chemotherapy into cancer cells with imageable nanoparticles in the 7 to 10 nanometer size range. Current Advances in the Medical Application of Nanotechnology. Bentham Science Publishers Ltd. 10–24. 2012.

7 

Sarin H: Permeation tt n Silico Pharmacol. 3:52015. View Article : Google Scholar

8 

Sarin H: Translational theranostic methodology for diagnostic imaging and the concomitant treatment of malignant solid tumors. Neurovascular Imaging. 1:32015. View Article : Google Scholar

9 

Lee CC, Gillies ER, Fox ME, Guillaudeu SJ, Fréchet JM, Dy EE and Szoka FC: A single dose of doxorubicin-functionalized bow-tie dendrimer cures mice bearing C-26 colon carcinomas. Proc Natl Acad Sci USA. 103:16649–16654. 2006. View Article : Google Scholar : PubMed/NCBI

10 

Trédan O, Galmarini CM, Patel K and Tannock IF: Drug resistance and the solid tumor microenvironment. J Natl Cancer Inst. 99:1441–1454. 2007. View Article : Google Scholar : PubMed/NCBI

11 

Rosier RN, Teot LA, Hicks DG, Schwartz C, O'Keefe RJ and Puzas JE: Multiple drug resistance in osteosarcoma. Iowa Orthop J. 15:66–73. 1995.PubMed/NCBI

12 

Kleinschmidt-Demasters BK, Kang JS and Lillehei KO: The burden of radiation-induced central nervous system tumors, A single institution experience. J Neuropathol Exp Neurol. 65:204–216. 2006. View Article : Google Scholar : PubMed/NCBI

13 

Verhoef GE: DeW olf-Peeters C, Ferrant A, Deprez S, Meeus P, Stul M, Zacheé P, Cassiman JJ, Van den Berghe H and Boogaerts MA: Myelodysplastic syndromes with bone marrow fibrosis: A myelodysplastic disorder with proliferative features. Ann Hematol. 63:235–241. 1991. View Article : Google Scholar : PubMed/NCBI

14 

Doudican NA, Kumar A, Singh NK, Nair PR, Lala DA, Basu K, Talawdekar AA, Sultana Z, Tiwari KK, Tyagi A, et al: Personalization of cancer treatment using predictive simulation. J Transl Med. 13:432015. View Article : Google Scholar : PubMed/NCBI

15 

Pingle SC, Sultana Z, Pastorino S, Jiang P, Mukthavaram R, Chao Y, Bharati IS, Nomura N, Makale M, Abbasi T, et al: In silico modeling predicts drug sensitivity of patient-derived cancer cells. J Transl Med. 12:1282014. View Article : Google Scholar : PubMed/NCBI

16 

Peacock JD, Cherba D, Kampfschulte K, Smith MK, Monks NR, Webb CP and Steensma M: Molecular-guided therapy predictions reveal drug resistance phenotypes and treatment alternatives in malignant peripheral nerve sheath tumors. J Transl Med. 11:2132013. View Article : Google Scholar : PubMed/NCBI

17 

Sarin H: Pressuromodulation a. a Transl Med. 13:3722015. View Article : Google Scholar

18 

Newlands ES, Stevens MF, Wedge SR, Wheelhouse RT and Brock C: Temozolomide: A review of its discovery, chemical properties, pre-clinical development and clinical trials. Cancer Treat Rev. 23:35–61. 1997. View Article : Google Scholar : PubMed/NCBI

19 

Johnson RE, Campbell RJ and Laws ER Jr: The cytotoxic effect of ethylnitrosourea on the developing rat cerebellum. Histopathology. Acta Neuropathol. 55:257–261. 1981. View Article : Google Scholar : PubMed/NCBI

20 

Kolarić K, Roth A and Fuss V: Combination chemotherapy with 1-methyl-1-nitrosourea and cyclophosphamide in metastatic melanoma. Tumori. 64:89–94. 1978.PubMed/NCBI

21 

An Q, Robins P, Lindahl T and Barnes DE: 5-Fluorouracil incorporated into DNA is excised by the Smug1 DNA glycosylase to reduce drug cytotoxicity. Cancer Res. 67:940–945. 2007. View Article : Google Scholar : PubMed/NCBI

22 

Tentori L, Forini O, Fossile E, Muzi A, Vergati M, Portarena I, Amici C, Gold B and Graziani G: N3-methyladenine induces early poly(ADP-ribosylation), reduction of nuclear factor-kappa B DNA binding ability, and nuclear up-regulation of telomerase activity. Mol Pharmacol. 67:572–581. 2005. View Article : Google Scholar : PubMed/NCBI

23 

Paine PL, Moore LC and Horowitz SB: Nuclear envelope permeability. Nature. 254:109–114. 1975. View Article : Google Scholar : PubMed/NCBI

24 

Rostovtseva T and Colombini M: VDAC channels mediate and gate the flow of ATP: Implications for the regulation of mitochondrial function. Biophys J. 72:1954–1962. 1997. View Article : Google Scholar : PubMed/NCBI

25 

Colombini M, Yeung CL, Tung J and König T: The mitochondrial outer membrane channel, VDAC, is regulated by a synthetic polyanion. Biochim Biophys Acta. 905:279–286. 1987. View Article : Google Scholar : PubMed/NCBI

26 

Nobel PS: Mitochondrial permeability for alcohols aldoses, and amino acids. J Membr Biol. 12:287–299. 1973. View Article : Google Scholar : PubMed/NCBI

27 

Kanzawa T, Germano IM, Komata T, Ito H, Kondo Y and Kondo S: Role of autophagy in temozolomide-induced cytotoxicity for malignant glioma cells. Cell Death Differ. 11:448–457. 2004. View Article : Google Scholar : PubMed/NCBI

28 

Griffin RJ, Arris CE, Bleasdale C, Boyle FT, Calvert AH, Curtin NJ, Dalby C, Kanugula S, Lembicz NK, Newell DR, et al: Resistance-modifying agents. 8. Inhibition of O(6)-alkylguanine-DNA alkyltransferase by O(6)-alkenyl-, O(6)-cycloalkenyl-, and O(6)-(2-oxoalkyl)guanines and potentiation of temozolomide cytotoxicity in vitro by O(6)-(1-cyclopentenylmethyl)guanine. J Med Chem. 43:4071–4083. 2000. View Article : Google Scholar : PubMed/NCBI

29 

Long L and Dolan ME: Role of cytochrome P450 isoenzymes in metabolism of O(6)-benzylguanine: Implications for dacarbazine activation. Clin Cancer Res. 7:4239–4244. 2001.PubMed/NCBI

30 

Ortiz de and Montellano PR: Cytochrome P450-activated prodrugs. Future Med Chem. 5:213–228. 2013. View Article : Google Scholar : PubMed/NCBI

31 

Meyer RP, Podvinec M and Meyer UA: Cytochrome P450 CYP1A1 accumulates in the cytosol of kidney and brain and is activated by heme. Mol Pharmacol. 62:1061–1067. 2002. View Article : Google Scholar : PubMed/NCBI

32 

Sangar MC, Anandatheerthavarada HK, Tang W, Prabu SK, Martin MV, Dostalek M, Guengerich FP and Avadhani NG: Human liver mitochondrial cytochrome P450 2D6 - individual variations and implications in drug metabolism. FEBS J. 276:3440–3453. 2009. View Article : Google Scholar : PubMed/NCBI

33 

Pletsa V, Valavanis C, van Delft JH, Steenwinkel MJ and Kyrtopoulos SA: DNA damage and mutagenesis induced by procarbazine in lambda lacZ transgenic mice, Evidence that bone marrow mutations do not arise primarily through miscoding by O6-methylguanine. Carcinogenesis. 18:2191–2196. 1997. View Article : Google Scholar : PubMed/NCBI

34 

Crook TR, Souhami RL and McLean AE: Cytotoxicity, DNA cross-linking, and single strand breaks induced by activated cyclophosphamide and acrolein in human leukemia cells. Cancer Res. 46:5029–5034. 1986.PubMed/NCBI

35 

Weber GF and Waxman DJ: Denitrosation of the anti-cancer drug 1,3-bis(2-chloroethyl)-1-nitrosourea catalyzed by microsomal glutathione S-transferase and cytochrome P450 monooxygenases. Arch Biochem Biophys. 307:369–378. 1993. View Article : Google Scholar : PubMed/NCBI

36 

Linfoot PA, Gray JW, Dean PN, Marton LJ and Deen DF: Effect of cell cycle position on the survival of 9L cells treated with nitrosoureas that alkylate, cross-link, and carbamoylate. Cancer Res. 46:2402–2406. 1986.PubMed/NCBI

37 

Doroshenko N and Doroshenko P: The glutathione reductase inhibitor carmustine induces an influx of Ca2+ in PC12 cells. Eur J Pharmacol. 497:17–24. 2004. View Article : Google Scholar : PubMed/NCBI

38 

Kehrer JP: The effect of BCNU (carmustine) on tissue glutathione reductase activity. Toxicol Lett. 17:63–68. 1983. View Article : Google Scholar : PubMed/NCBI

39 

FitzGerald GB, Bauman C, Hussoin MS and Wick MM: 2,4-Dihydroxybenzylamine: A specific inhibitor of glutathione reductase. Biochem Pharmacol. 41:185–190. 1991. View Article : Google Scholar : PubMed/NCBI

40 

Babson JR and Reed DJ: Inactivation of glutathione reductase by 2-chloroethyl nitrosourea-derived isocyanates. Biochem Biophys Res Commun. 83:754–762. 1978. View Article : Google Scholar : PubMed/NCBI

41 

Bizzozero OA and Ziegler JL: DeJ esus G and Bolognani F: Acute depletion of reduced glutathione causes extensive carbonylation of rat brain proteins. J Neurosci Res. 83:656–667. 2006. View Article : Google Scholar : PubMed/NCBI

42 

Street JC, Mahmood U, Matei C and Koutcher JA: In vivo and in vitro studies of cyclophosphamide chemotherapy in a mouse mammary carcinoma by 31P NMR spectroscopy. NMR Biomed. 8:149–158. 1995. View Article : Google Scholar : PubMed/NCBI

43 

Street JC and Koutcher JA: Effect of radiotherapy and chemotherapy on composition of tumor membrane phospholipids. Lipids. 32:45–49. 1997. View Article : Google Scholar : PubMed/NCBI

44 

Jilani K and Lang F: Carmustine-induced phosphatidylserine translocation in the erythrocyte membrane. Toxins (Basel). 5:703–716. 2013. View Article : Google Scholar : PubMed/NCBI

45 

Westphal M, Hilt DC, Bortey E, Delavault P, Olivares R, Warnke PC, Whittle IR, Jääskeläinen J and Ram Z: A phase 3 trial of local chemotherapy with biodegradable carmustine (BCNU) wafers (Gliadel wafers) in patients with primary malignant glioma. Neuro Oncol. 5:79–88. 2003. View Article : Google Scholar : PubMed/NCBI

46 

Lambros MP and Rahman YE: Effects of cyclosporin A on model lipid membranes. Chem Phys Lipids. 131:63–69. 2004. View Article : Google Scholar : PubMed/NCBI

47 

Birraux J, Kirby JA, Thomason JM and Taylor JJ: The effect of cyclosporin on cell division and apoptosis in human oral keratinocytes. J Periodontal Res. 41:297–302. 2006. View Article : Google Scholar : PubMed/NCBI

48 

Bokemeyer D, Kramer HJ and Meyer-Lehnert H: Atrial natriuretic peptide blunts the cellular effects of cyclosporine in smooth muscle. Hypertension. 21:166–172. 1993. View Article : Google Scholar : PubMed/NCBI

49 

Raymond MA, Mollica L, Vigneault N, Désormeaux A, Chan JS, Filep JG, Hébert MJ, et al: Blockade of the apoptotic machinery by cyclosporin A redirects cell death toward necrosis in arterial endothelial cells: regulation by reactive oxygen species and cathepsin D. FASEB J. 17:515–517. 2003.PubMed/NCBI

50 

Laursen M, Yatime L, Nissen P and Fedosova NU: Crystal structure of the high-affinity Na+K+-ATPase-ouabain complex with Mg2+ bound in the cation binding site. Proc Natl Acad Sci USA. 110:10958–10963. 2013. View Article : Google Scholar : PubMed/NCBI

51 

Liu J, Kesiry R, Periyasamy SM, Malhotra D, Xie Z and Shapiro JI: Ouabain induces endocytosis of plasmalemmal Na/K-ATPase in LLC-PK1 cells by a clathrin-dependent mechanism. Kidney Int. 66:227–241. 2004. View Article : Google Scholar : PubMed/NCBI

52 

Suwalsky M, Hernandez P, Villena F and Sotomayor CP: The anticancer drug chlorambucil interacts with the human erythrocyte membrane and model phospholipid bilayers. Z Naturforsch C. 54:1089–1095. 1999. View Article : Google Scholar : PubMed/NCBI

53 

Krigel R, Liebes LF, Pelle E and Silber R: Chlorambucil therapy in hairy cell leukemia, Effects on lipid composition and lymphocyte subpopulations. Blood. 60:272–275. 1982.PubMed/NCBI

54 

Matsura T, Kai M, Jiang J, Babu H, Kini V, Kusumoto C, Yamada K and Kagan VE: Endogenously generated hydrogen peroxide is required for execution of melphalan-induced apoptosis as well as oxidation and externalization of phosphatidylserine. Chem Res Toxicol. 17:685–696. 2004. View Article : Google Scholar : PubMed/NCBI

55 

Tilby MJ, Lawley PD and Farmer PB: Alkylation of DNA by melphalan in relation to immunoassay of melphalan-DNA adducts, Characterization of mono-alkylated and cross-linked products from reaction of melphalan with dGMP and GMP. Chem Biol Interact. 73:183–194. 1990. View Article : Google Scholar : PubMed/NCBI

56 

Van den Driessche B and Lemière F: VanD ongen W and Esmans EL: Alkylation of DNA by melphalan: Investigation of capillary liquid chromatography-electrospray ionization tandem mass spectrometry in the study of the adducts at the nucleoside level. J Chromatogr B Analyt Technol Biomed Life Sci. 785:21–37. 2003. View Article : Google Scholar : PubMed/NCBI

57 

Rodriguez RJ and Acosta D Jr: Inhibition of mitochondrial function in isolated rate liver mitochondria by azole antifungals. J Biochem Toxicol. 11:127–131. 1996. View Article : Google Scholar : PubMed/NCBI

58 

Maté MJ, Ortiz-Lombardía M, Boitel B, Haouz A, Tello D, Susin SA, Penninger J, Kroemer G and Alzari PM: The crystal structure of the mouse apoptosis-inducing factor AIF. Nat Struct Biol. 9:442–446. 2002. View Article : Google Scholar : PubMed/NCBI

59 

Daugas E, Susin SA, Zamzami N, Ferri KF, Irinopoulou T, Larochette N, Prévost MC, Leber B, Andrews D, Penninger J, et al: Mitochondrio-nuclear translocation of AIF in apoptosis and necrosis. FASEB J. 14:729–739. 2000.PubMed/NCBI

60 

Lewis EM, Wilkinson AS, Davis NY, Horita DA and Wilkinson JC: Nondegradative ubiquitination of apoptosis inducing factor (AIF) by X-linked inhibitor of apoptosis at a residue critical for AIF-mediated chromatin degradation. Biochemistry. 50:11084–11096. 2011. View Article : Google Scholar : PubMed/NCBI

61 

Wei Y, Fox T, Chambers SP, Sintchak J, Coll JT, Golec JM, Swenson L, Wilson KP and Charifson PS: The structures of caspases-1, −3, −7 and −8 reveal the basis for substrate and inhibitor selectivity. Chem Biol. 7:423–432. 2000. View Article : Google Scholar : PubMed/NCBI

62 

Riedl SJ and Shi Y: Molecular mechanisms of caspase regulation during apoptosis. Nat Rev Mol Cell Biol. 5:897–907. 2004. View Article : Google Scholar : PubMed/NCBI

63 

Lindsay J, Esposti MD and Gilmore AP: Bcl-2 proteins and mitochondria - specificity in membrane targeting for death. Biochim Biophys Acta. 1813:532–539. 2011. View Article : Google Scholar : PubMed/NCBI

64 

Miyashita T and Reed JC: Tumor suppressor p53 is a direct transcriptional activator of the human bax gene. Cell. 80:293–299. 1995. View Article : Google Scholar : PubMed/NCBI

65 

Cho Y, Gorina S, Jeffrey PD and Pavletich NP: Crystal structure of a p53 tumor suppressor-DNA complex, Understanding tumorigenic mutations. Science. 265:346–355. 1994. View Article : Google Scholar : PubMed/NCBI

66 

Billen LP, Shamas-Din A and Andrews DW: Bid A Bax-like BH3 protein. Oncogene. 27((Suppl 1)): S93–S104. 2008. View Article : Google Scholar : PubMed/NCBI

67 

Chipuk JE and Green DR: PUMA cooperates with direct activator proteins to promote mitochondrial outer membrane permeabilization and apoptosis. Cell Cycle. 8:2692–2696. 2009. View Article : Google Scholar : PubMed/NCBI

68 

Nakano K and Vousden KH: PUMA a novel proapoptotic gene, is induced by p53. Mol Cell. 7:683–694. 2001. View Article : Google Scholar : PubMed/NCBI

69 

Loose DS, Kan PB, Hirst MA, Marcus RA and Feldman D: Ketoconazole blocks adrenal steroidogenesis by inhibiting cytochrome P450-dependent enzymes. J Clin Invest. 71:1495–1499. 1983. View Article : Google Scholar : PubMed/NCBI

70 

Greenblatt DJ, Zhao Y, Venkatakrishnan K, Duan SX, Harmatz JS, Parent SJ, Court MH and von Moltke LL: Mechanism of cytochrome P450-3A inhibition by ketoconazole. J Pharm Pharmacol. 63:214–221. 2011. View Article : Google Scholar : PubMed/NCBI

71 

Ho YS, Tsai PW, Yu CF, Liu HL, Chen RJ and Lin JK: Ketoconazole-induced apoptosis through P53-dependent pathway in human colorectal and hepatocellular carcinoma cell lines. Toxicol Appl Pharmacol. 153:39–47. 1998. View Article : Google Scholar : PubMed/NCBI

72 

Wang YJ, Jeng JH, Chen RJ, Tseng H, Chen LC, Liang YC, Lin CH, Chen CH, Chu JS, Ho WL, et al: Ketoconazole potentiates the antitumor effects of nocodazole: In vivo therapy for human tumor xenografts in nude mice. Mol Carcinog. 34:199–210. 2002. View Article : Google Scholar : PubMed/NCBI

73 

Pascual A, García I, Conejo C and Perea EJ: Uptake and intracellular activity of fluconazole in human polymorphonuclear leukocytes. Antimicrob Agents Chemother. 37:187–190. 1993. View Article : Google Scholar : PubMed/NCBI

74 

Ciccolini J, Fina F, Bezulier K, Giacometti S, Roussel M, Evrard A, Cuq P, Romain S, Martin PM and Aubert C: Transmission of apoptosis in human colorectal tumor cells exposed to capecitabine, Xeloda, is mediated via Fas. Mol Cancer Ther. 1:923–927. 2002.PubMed/NCBI

75 

Baltch AL, Smith RP, Ritz WJ, Bopp LH and Michelsen PB: Intracellular activity of voriconazole, fluconazole, and itraconazole against Candida albicans in human monocytes with and without activation by GM-CSF and TNF-alpha. J Appl Res. 5:42005.

76 

Murphy JW, Cho Y, Sachpatzidis A, Fan C, Hodsdon ME and Lolis E: Structural and functional basis of CXCL12 (stromal cell-derived factor-1 α) binding to heparin. J Biol Chem. 282:10018–10027. 2007. View Article : Google Scholar : PubMed/NCBI

77 

Debnath B, Xu S, Grande F, Garofalo A and Neamati N: Small molecule inhibitors of CXCR4. Theranostics. 3:47–75. 2013. View Article : Google Scholar : PubMed/NCBI

78 

Hatse S, Princen K and Bridger G: DeC lercq E and Schols D: Chemokine receptor inhibition by AMD3100 is strictly confined to CXCR4. FEBS Lett. 527:255–262. 2002. View Article : Google Scholar : PubMed/NCBI

79 

Pron G, Belehradek J Jr and Mir LM: Identification of a plasma membrane protein that specifically binds bleomycin. Biochem Biophys Res Commun. 194:333–337. 1993. View Article : Google Scholar : PubMed/NCBI

80 

Pron G, Belehradek J Jr, Orlowski S and Mir LM: Involvement of membrane bleomycin-binding sites in bleomycin cytotoxicity. Biochem Pharmacol. 48:301–310. 1994. View Article : Google Scholar : PubMed/NCBI

81 

Krishan A and Whitlock S: Bleomycin-induced fine structural alterations in cultured mouse fibroblasts and human lymphocytes of neoplastic origin. Cancer Res. 33:777–785. 1973.PubMed/NCBI

82 

Pron G, Mahrour N, Orlowski S, Tounekti O, Poddevin B, Belehradek J Jr and Mir LM: Internalisation of the bleomycin molecules responsible for bleomycin toxicity: A receptor-mediated endocytosis mechanism. Biochem Pharmacol. 57:45–56. 1999. View Article : Google Scholar : PubMed/NCBI

83 

Ascierto ML, Kmieciak M, Idowu MO, Manjili R, Zhao Y, Grimes M, Dumur C, Wang E, Ramakrishnan V, Wang XY, et al: A signature of immune function genes associated with recurrence-free survival in breast cancer patients. Breast Cancer Res Treat. 131:871–880. 2012. View Article : Google Scholar : PubMed/NCBI

84 

Chen L, Huang Z, Yao G, Lyu X, Li J, Hu X, Cai Y, Li W, Li X and Ye C: The expression of CXCL13 and its relation to unfavorable clinical characteristics in young breast cancer. J Transl Med. 13:1682015. View Article : Google Scholar : PubMed/NCBI

85 

Stamatopoulos B, Meuleman N, De Bruyn C, Pieters K, Mineur P, Le Roy C, Saint-Georges S, Varin-Blank N, Cymbalista F, Bron D, et al: AMD3100 disrupts the cross-talk between chronic lymphocytic leukemia cells and a mesenchymal stromal or nurse-like cell-based microenvironment: Pre-clinical evidence for its association with chronic lymphocytic leukemia treatments. Haematologica. 97:608–615. 2012. View Article : Google Scholar : PubMed/NCBI

86 

Chen LJ, Ye H, Zhang Q, Li FZ, Song LJ, Yang J, Mu Q, Rao SS, Cai PC, Xiang F, et al: Bleomycin induced epithelial-mesenchymal transition (EMT) in pleural mesothelial cells. Toxicol Appl Pharmacol. 283:75–82. 2015. View Article : Google Scholar : PubMed/NCBI

87 

Wu Z, Yang L, Cai L, Zhang M, Cheng X, Yang X and Xu J: Detection of epithelial to mesenchymal transition in airways of a bleomycin induced pulmonary fibrosis model derived from an alpha-smooth muscle actin-Cre transgenic mouse. Respir Res. 8:12007. View Article : Google Scholar : PubMed/NCBI

88 

Yamada A, Aki T, Unuma K, Funakoshi T and Uemura K: Paraquat induces epithelial-mesenchymal transition-like cellular response resulting in fibrogenesis and the prevention of apoptosis in human pulmonary epithelial cells. PLoS One. 10:e01201922015. View Article : Google Scholar : PubMed/NCBI

89 

Dik WA, McAnulty RJ, Versnel MA, Naber BA, Zimmermann LJ, Laurent GJ and Mutsaers SE: Short course dexamethasone treatment following injury inhibits bleomycin induced fibrosis in rats. Thorax. 58:765–771. 2003. View Article : Google Scholar : PubMed/NCBI

90 

Domanska UM, Timmer-Bosscha H, Nagengast WB, Munnink Oude TH, Kruizinga RC, Ananias HJ, Kliphuis NM, Huls G, De Vries EG, de Jong IJ, et al: CXCR4 inhibition with AMD3100 sensitizes prostate cancer to docetaxel chemotherapy. Neoplasia. 14:709–718. 2012. View Article : Google Scholar : PubMed/NCBI

91 

Ujwal R, Cascio D, Colletier JP, Faham S, Zhang J, Toro L, Ping P and Abramson J: The crystal structure of mouse VDAC1 at 2.3 A resolution reveals mechanistic insights into metabolite gating. Proc Natl Acad Sci USA. 105:17742–17747. 2008. View Article : Google Scholar : PubMed/NCBI

92 

Catterall WA: Functional subunit structure of voltage-gated calcium channels. Science. 253:1499–1500. 1991. View Article : Google Scholar : PubMed/NCBI

93 

Barańska W, Kujawa M and Kujawska E: Influence of vincristine on the Golgi apparatus in preimplantation development of the mouse embryo. Gegenbaurs Morphol Jahrb. 134:175–184. 1988.PubMed/NCBI

94 

Kujawa M, Ochocka M and Moskalewski S: Influence of vincristine on the Golgi complex of leukaemic lymphoblasts. Folia Haematologica. 107:193–203. 1980.PubMed/NCBI

95 

Carré M, André N, Carles G, Borghi H, Brichese L, Briand C and Braguer D: Tubulin is an inherent component of mitochondrial membranes that interacts with the voltage-dependent anion channel. J Biol Chem. 277:33664–33669. 2002. View Article : Google Scholar : PubMed/NCBI

96 

Groninger E, Meeuwsen-De Boer GJ, De Graaf SS, Kamps WA and De Bont ES: Vincristine induced apoptosis in acute lymphoblastic leukaemia cells: A mitochondrial controlled pathway regulated by reactive oxygen species? Int J Oncol. 21:1339–1345. 2002.PubMed/NCBI

97 

Eom YW, Kim MA, Park SS, Goo MJ, Kwon HJ, Sohn S, Kim WH, Yoon G and Choi KS: Two distinct modes of cell death induced by doxorubicin, Apoptosis and cell death through mitotic catastrophe accompanied by senescence-like phenotype. Oncogene. 24:4765–4777. 2005. View Article : Google Scholar : PubMed/NCBI

98 

Gamen S, Anel A, Lasierra P, Alava MA, Martinez-Lorenzo MJ, Piñeiro A and Naval J: Doxorubicin-induced apoptosis in human T-cell leukemia is mediated by caspase-3 activation in a Fas-independent way. FEBS Lett. 417:360–364. 1997. View Article : Google Scholar : PubMed/NCBI

99 

Kuznetsov AV, Margreiter R, Amberger A, Saks V and Grimm M: Changes in mitochondrial redox state, membrane potential and calcium precede mitochondrial dysfunction in doxorubicin-induced cell death. Biochim Biophys Acta. 1813:1144–1152. 2011. View Article : Google Scholar : PubMed/NCBI

100 

Mizutani H, Tada-Oikawa S, Hiraku Y, Kojima M and Kawanishi S: Mechanism of apoptosis induced by doxorubicin through the generation of hydrogen peroxide. Life Sci. 76:1439–1453. 2005. View Article : Google Scholar : PubMed/NCBI

101 

Wang S, Konorev EA, Kotamraju S, Joseph J, Kalivendi S and Kalyanaraman B: Doxorubicin induces apoptosis in normal and tumor cells via distinctly different mechanisms. Histopathology. J Biol Chem. 279:25535–25543. 2004. View Article : Google Scholar : PubMed/NCBI

102 

Golomb E, Hill MR, Brown RG and Keiser HR: Ouabain enhances the mitogenic effect of serum in vascular smooth muscle cells. Am J Hypertens. 7:69–74. 1994.PubMed/NCBI

103 

Kanai R, Ogawa H, Vilsen B, Cornelius F and Toyoshima C: Crystal structure of a Na+-bound Na+, K+-ATPase preceding the E1P state. Nature. 502:201–206. 2013. View Article : Google Scholar : PubMed/NCBI

104 

Aller SG, Yu J, Ward A, Weng Y, Chittaboina S, Zhuo R, Harrell PM, Trinh YT, Zhang Q, Urbatsch IL, et al: Structure of P-glycoprotein reveals a molecular basis for poly-specific drug binding. Science. 323:1718–1722. 2009. View Article : Google Scholar : PubMed/NCBI

105 

Sehested M, Jensen PB, Skovsgaard T, Bindslev N, Demant EJ, Friche E and Vindeløv L: Inhibition of vincristine binding to plasma membrane vesicles from daunorubicin-resistant Ehrlich ascites cells by multidrug resistance modulators. Br J Cancer. 60:809–814. 1989. View Article : Google Scholar : PubMed/NCBI

106 

Srivalli KMR and Lakshmi P: Overview of P-glycoprotein inhibitors: A rational outlook. Braz J Pharm Sci. 48:353–367. 2012. View Article : Google Scholar

107 

Chen C, Ke J, Zhou XE, Yi W, Brunzelle JS, Li J, Yong EL, Xu HE and Melcher K: Structural basis for molecular recognition of folic acid by folate receptors. Nature. 500:486–489. 2013. View Article : Google Scholar : PubMed/NCBI

108 

Nandini-Kishore SG and Frazier WA: [3H]Methotrexate as a ligand for the folate receptor of Dictyostelium discoideum. Proc Natl Acad Sci USA. 78:7299–7303. 1981. View Article : Google Scholar : PubMed/NCBI

109 

Herman S, Zurgil N and Deutsch M: Low dose methotrexate induces apoptosis with reactive oxygen species involvement in T lymphocytic cell lines to a greater extent than in monocytic lines. Inflamm Res. 54:273–280. 2005. View Article : Google Scholar : PubMed/NCBI

110 

Ramadan AA, Yousif WB and Ali AM: The effect of methotrexate (MTX) on the small intestine of the mouse. IV. The Golgi apparatus, phosphatases and esterases. Funct Dev Morphol. 2:111–119. 1992.PubMed/NCBI

111 

Ramadan AA, Yousif WB and Ali AM: The effect of methotrexate (MTX) on the small intestine of the mouse. Histopathology. Funct Dev Morphol. 2:3–9. 1992.PubMed/NCBI

112 

Pritchard DM, Bower L, Potten CS, Jackman AL and Hickman JA: The importance of p53-independent apoptosis in the intestinal toxicity induced by raltitrexed (ZD1694, Tomudex): genetic differences between BALB/c and DBA/2 mice. Clin Cancer Res. 6:4389–4395. 2000.PubMed/NCBI

113 

Xue S, Chen YX, Qin SK, Yang AZ, Wang L, Xu HJ and Geng HY: Raltitrexed induces mitochondrial mediated apoptosis in SGC7901 human gastric cancer cells. Mol Med Rep. 10:1927–1934. 2014.PubMed/NCBI

114 

Chattopadhyay S, Moran RG and Goldman ID: Pemetrexed Biochemical and cellular pharmacology, mechanisms, and clinical applications. Mol Cancer Ther. 6:404–417. 2007. View Article : Google Scholar : PubMed/NCBI

115 

Fischer CD: daC osta M and Rothenberg SP: The heterogeneity and properties of folate binding proteins from chronic myelogenous leukemia cells. Blood. 46:855–867. 1975.PubMed/NCBI

116 

Fischer CD: DaC osta M and Rothenberg SP: Properties of purified folate-binding proteins from chronic myelogenous leukemia cells. Biochim Biophys Acta. 543:328–339. 1978. View Article : Google Scholar : PubMed/NCBI

117 

Barford PA, Blair JA and Malghani MA: The effect of methotrexate on folate metabolism in the rat. Br J Cancer. 41:816–820. 1980. View Article : Google Scholar : PubMed/NCBI

118 

Ohbayashi M, Kubota S, Kawase A, Kohyama N, Kobayashi Y and Yamamoto T: Involvement of epithelial-mesenchymal transition in methotrexate-induced pulmonary fibrosis. J Toxicol Sci. 39:319–330. 2014. View Article : Google Scholar : PubMed/NCBI

119 

Shprung T and Gozes I: A novel method for analyzing mitochondrial movement: inhibition by paclitaxel in a pheochromocytoma cell model. J Mol Neurosci. 37:254–262. 2009. View Article : Google Scholar : PubMed/NCBI

120 

Foland TB, Dentler WL, Suprenant KA, Gupta ML Jr and Himes RH: Paclitaxel-induced microtubule stabilization causes mitotic block and apoptotic-like cell death in a paclitaxel-sensitive strain of Saccharomyces cerevisiae. Yeast. 22:971–978. 2005. View Article : Google Scholar : PubMed/NCBI

121 

Salido M, Gonzalez JL and Vilches J: Loss of mitochondrial membrane potential is inhibited by bombesin in etoposide-induced apoptosis in PC-3 prostate carcinoma cells. Mol Cancer Ther. 6:1292–1299. 2007. View Article : Google Scholar : PubMed/NCBI

122 

Mizukami S, Kikuchi K, Higuchi T, Urano Y, Mashima T, Tsuruo T and Nagano T: Imaging of caspase-3 activation in HeLa cells stimulated with etoposide using a novel fluorescent probe. FEBS Lett. 453:356–360. 1999. View Article : Google Scholar : PubMed/NCBI

123 

Matsushima Y, Kanzawa F, Miyazawa N, Sasaki Y and Saijo N: In vitro antitumor activity of teniposide against carcinoma of the lung in human tumor clonogenic assay. Anticancer Res. 6:921–924. 1986.PubMed/NCBI

124 

Sánchez-Alcázar JA, Khodjakov A and Schneider E: Anticancer drugs induce increased mitochondrial cytochrome c expression that precedes cell death. Cancer Res. 61:1038–1044. 2001.PubMed/NCBI

125 

Uyar D, Takigawa N, Mekhail T, Grabowski D, Markman M, Lee F, Canetta R, Peck R, Bukowski R and Ganapathi R: Apoptotic pathways of epothilone BMS 310705. Gynecol Oncol. 91:173–178. 2003. View Article : Google Scholar : PubMed/NCBI

126 

Thomson AER and Robinson MA: Cytocidal action of colchicine in vitro on lymphocytes in chronic lymphocytic leukaemia. Lancet. 2:868–870. 1967. View Article : Google Scholar : PubMed/NCBI

127 

Chen XM, Liu J, Wang T and Shang J: Colchicine-induced apoptosis in human normal liver L-02 cells by mitochondrial mediated pathways. Toxicol In Vitro. 26:649–655. 2012. View Article : Google Scholar : PubMed/NCBI

128 

Jelínek M, Balušíková K, Schmiedlová M, Němcová-Fürstová V, Šrámek J, Stančíková J, Zanardi I, Ojima I and Kovář J: The role of individual caspases in cell death induction by taxanes in breast cancer cells. Cancer Cell Int. 15:82015. View Article : Google Scholar : PubMed/NCBI

129 

André N, Braguer D, Brasseur G, Gonçalves A, Lemesle-Meunier D, Guise S, Jordan MA and Briand C: Paclitaxel induces release of cytochrome c from mitochondria isolated from human neuroblastoma cells'. Cancer Res. 60:5349–5353. 2000.PubMed/NCBI

130 

Khawaja NR, Carré M, Kovacic H, Estève MA and Braguer D: Patupilone-induced apoptosis is mediated by mitochondrial reactive oxygen species through Bim relocalization to mitochondria. Mol Pharmacol. 74:1072–1083. 2008. View Article : Google Scholar : PubMed/NCBI

131 

Salim AA, Xiao X, Cho KJ, Piggott AM, Lacey E, Hancock JF and Capon RJ: Rare Streptomyces sp. polyketides as modulators of K-Ras localisation. Org Biomol Chem. 12:4872–4878. 2014. View Article : Google Scholar : PubMed/NCBI

132 

Pusceddu S, Indini A and Procopio G: Everolimus treatment in advanced solid tumors: a personal view. Future Science. 2015.OA March 20, (Epub ahead of print) doi:10.4155/fso.14.1. View Article : Google Scholar

133 

Chambraud B, Belabes H, Fontaine-Lenoir V, Fellous A and Baulieu EE: The immunophilin FKBP52 specifically binds to tubulin and prevents microtubule formation. FASEB J. 21:2787–2797. 2007. View Article : Google Scholar : PubMed/NCBI

134 

Shirane M and Nakayama KI: Inherent calcineurin inhibitor FKBP38 targets Bcl-2 to mitochondria and inhibits apoptosis. Nat Cell Biol. 5:28–37. 2003. View Article : Google Scholar : PubMed/NCBI

135 

Tanaka K, Fujita N, Higashi Y and Ogawa N: Neuroprotective and antioxidant properties of FKBP-binding immunophilin ligands are independent on the FKBP12 pathway in human cells. Neurosci Lett. 330:147–150. 2002. View Article : Google Scholar : PubMed/NCBI

136 

Simon N, Morin C, Urien S, Tillement JP and Bruguerolle B: Tacrolimus and sirolimus decrease oxidative phosphorylation of isolated rat kidney mitochondria. Br J Pharmacol. 138:369–376. 2003. View Article : Google Scholar : PubMed/NCBI

137 

Zini R, Simon N, Morin C, Thiault L and Tillement JP: Tacrolimus decreases in vitro oxidative phosphorylation of mitochondria from rat forebrain. Life Sci. 63:357–368. 1998. View Article : Google Scholar : PubMed/NCBI

138 

Zoli W, Ulivi P, Tesei A, Fabbri F, Rosetti M, Maltoni R, Giunchi DC, Ricotti L, Brigliadori G, Vannini I, et al: Addition of 5-fluorouracil to doxorubicin-paclitaxel sequence increases caspase-dependent apoptosis in breast cancer cell lines. Breast Cancer Res. 7:R681–R689. 2005. View Article : Google Scholar : PubMed/NCBI

139 

Yang Y, Niu X, Zhang Q, Hao L, Ding Y and Xu H: The efficacy of abraxane on osteosarcoma xenografts in nude mice and expression of secreted protein, acidic and rich in cysteine. Am J Med Sci. 344:199–205. 2012. View Article : Google Scholar : PubMed/NCBI

140 

Saif MW: U.S. Food and Drug Administration approves paclitaxel protein-bound particles (Abraxane®) in combination with gemcitabine as first-line treatment of patients with metastatic pancreatic cancer. JOP. 14:686–688. 2013.PubMed/NCBI

141 

Coward P, Lee D, Hull MV and Lehmann JM: 4-Hydroxytamoxifen binds to and deactivates the estrogen-related receptor gamma. Proc Natl Acad Sci USA. 98:8880–8884. 2001. View Article : Google Scholar : PubMed/NCBI

142 

Richards J, Lim AC, Hay CW, Taylor AE, Wingate A, Nowakowska K, Pezaro C, Carreira S, Goodall J, Arlt W, et al: Interactions of abiraterone, eplerenone, and prednisolone with wild-type and mutant androgen receptor: A rationale for increasing abiraterone exposure or combining with MDV3100. Cancer Res. 72:2176–2182. 2012. View Article : Google Scholar : PubMed/NCBI

143 

Darbre PD and King RJB: Differential effects of steroid hormones on parameters of cell growth. Cancer Res. 47:2937–2944. 1987.PubMed/NCBI

144 

Yates J and King RJB: Correlation of growth properties and morphology with hormone responsiveness of mammary tumor cells in culture. Cancer Res. 41:258–262. 1981.PubMed/NCBI

145 

Talwar GP, Raina K, Gupta JC, Ray R, Wadhwa S and Ali MM: A recombinant luteinising-hormone-releasing- hormone immunogen bioeffective in causing prostatic atrophy. Vaccine. 22:3713–3721. 2004. View Article : Google Scholar : PubMed/NCBI

146 

Brandes AA, Ermani M, Turazzi S, Scelzi E, Berti F, Amistà P, Rotilio A, Licata C and Fiorentino MV: Procarbazine and high-dose tamoxifen as a second-line regimen in recurrent high-grade gliomas, A phase II study. J Clin Oncol. 17:645–650. 1999.PubMed/NCBI

147 

de Bono JS, Logothetis CJ, Molina A, Fizazi K, North S, Chu L, Chi KN, Jones RJ, Goodman OB Jr, Saad F, et al: COU-AA-301 Investigators: Abiraterone and increased survival in metastatic prostate cancer. N Engl J Med. 364:1995–2005. 2011. View Article : Google Scholar : PubMed/NCBI

148 

Kosaka T, Miyajima A, Yasumizu Y, Miyazaki Y, Kikuchi E and Oya M: Limited in vitro efficacy of CYP17A1 inhibition on human castration resistant prostate cancer. Steroids. 92:39–44. 2014. View Article : Google Scholar : PubMed/NCBI

149 

Louderbough JMV, Lopez JI and Schroeder JA: Matrix hyaluronan alters epidermal growth factor receptor-dependent cell morphology. Cell Adhes Migr. 4:26–31. 2010. View Article : Google Scholar

150 

Hara F, Aoe M, Doihara H, Taira N, Shien T, Takahashi H, Yoshitomi S, Tsukuda K, Toyooka S, Ohta T, et al: Antitumor effect of gefitinib ('Iressa') on esophageal squamous cell carcinoma cell lines in vitro and in vivo. Cancer Lett. 226:37–47. 2005. View Article : Google Scholar : PubMed/NCBI

151 

Stegmaier K, Corsello SM, Ross KN, Wong JS, Deangelo DJ and Golub TR: Gefitinib induces myeloid differentiation of acute myeloid leukemia. Blood. 106:2841–2848. 2005. View Article : Google Scholar : PubMed/NCBI

152 

Augustin A, Lamerz J, Meistermann H, Golling S, Scheiblich S, Hermann JC, Duchateau-Nguyen G, Tzouros M, Avila DW, Langen H, et al: Quantitative chemical proteomics profiling differentiates erlotinib from gefitinib in EGFR wild-type non-small cell lung carcinoma cell lines. Mol Cancer Ther. 12:520–529. 2013. View Article : Google Scholar : PubMed/NCBI

153 

Huang HL, Chen YC, Huang YC, Yang KC, Pan H, Shih SP and Chen YJ: Lapatinib induces autophagy, apoptosis and megakaryocytic differentiation in chronic myelogenous leukemia K562 cells. PLoS One. 6:e290142011. View Article : Google Scholar : PubMed/NCBI

154 

Diaz R, Nguewa PA, Parrondo R, Perez-Stable C, Manrique I, Redrado M, Catena R, Collantes M, Peñuelas I, Díaz-González JA, et al: Antitumor and antiangiogenic effect of the dual EGFR and HER-2 tyrosine kinase inhibitor lapatinib in a lung cancer model. BMC Cancer. 10:1882010. View Article : Google Scholar : PubMed/NCBI

155 

Chen G, Noor A, Kronenberger P, Teugels E, Umelo IA and De Grève J: Synergistic effect of afatinib with su11274 in non-small cell lung cancer cells resistant to gefitinib or erlotinib. PLoS One. 8:e597082013. View Article : Google Scholar : PubMed/NCBI

156 

Solca F, Dahl G, Zoephel A, Bader G, Sanderson M, Klein C, Kraemer O, Himmelsbach F, Haaksma E and Adolf GR: Target binding properties and cellular activity of afatinib (BIBW 2992), an irreversible ErbB family blocker. J Pharmacol Exp Ther. 343:342–350. 2012. View Article : Google Scholar : PubMed/NCBI

157 

Stoica GE, Kuo A, Powers C, Bowden ET, Sale EB, Riegel AT and Wellstein A: Midkine binds to anaplastic lymphoma kinase (ALK) and acts as a growth factor for different cell types. J Biol Chem. 277:35990–35998. 2002. View Article : Google Scholar : PubMed/NCBI

158 

Sumi Y, Muramatsu H, Hata K, Ueda M and Muramatsu T: Midkine enhances early stages of collagen gel contraction. J Biochem. 127:247–251. 2000. View Article : Google Scholar : PubMed/NCBI

159 

Kadomatsu K and Muramatsu T: Midkine and pleiotrophin in neural development and cancer. Cancer Lett. 204:127–143. 2004. View Article : Google Scholar : PubMed/NCBI

160 

Friboulet L, Li N, Katayama R, Lee CC, Gainor JF, Crystal AS, Michellys PY, Awad MM, Yanagitani N, Kim S, et al: The ALK inhibitor ceritinib overcomes crizotinib resistance in non-small cell lung cancer. Cancer Discov. 4:662–673. 2014. View Article : Google Scholar : PubMed/NCBI

161 

Lisignoli G, Toneguzzi S, Piacentini A, Cristino S, Grassi F, Cavallo C and Facchini A: CXCL12 (SDF-1) and CXCL13 (BCA-1) chemokines significantly induce proliferation and collagen type I expression in osteoblasts from osteoarthritis patients. J Cell Physiol. 206:78–85. 2006. View Article : Google Scholar : PubMed/NCBI

162 

Kalinina OV, Pfeifer N and Lengauer T: Modelling binding between CCR5 and CXCR4 receptors and their ligands suggests the surface electrostatic potential of the co-receptor to be a key player in the HIV-1 tropism. Retrovirology. 10:1302013. View Article : Google Scholar : PubMed/NCBI

163 

Massarelli I, Chiellini F, Chiellini E and Bianucci AM: Three-dimensional models of the oligomeric human asialoglycoprotein receptor (ASGP-R). Int J Mol Sci. 11:3867–3884. 2010. View Article : Google Scholar : PubMed/NCBI

164 

Fallon RJ and Danaher M: The effect of staurosporine a protein kinase inhibitor, on asialoglycoprotein receptor endocytosis. Exp Cell Res. 203:420–426. 1992. View Article : Google Scholar : PubMed/NCBI

165 

Trerè D, Fiume L, De Giorgi LB, Di Stefano G, Migaldi M and Derenzini M: The asialoglycoprotein receptor in human hepatocellular carcinomas: Its expression on proliferating cells. Br J Cancer. 81:404–408. 1999. View Article : Google Scholar : PubMed/NCBI

166 

Becherer U, Guatimosim C and Betz W: Effects of staurosporine on exocytosis and endocytosis at frog motor nerve terminals. J Neurosci. 21:782–787. 2001.PubMed/NCBI

167 

Belmokhtar CA, Hillion J and Ségal-Bendirdjian E: Staurosporine induces apoptosis through both caspase-dependent and caspase-independent mechanisms. Oncogene. 20:3354–3362. 2001. View Article : Google Scholar : PubMed/NCBI

168 

Zhang XD, Gillespie SK and Hersey P: Staurosporine induces apoptosis of melanoma by both caspase-dependent and -independent apoptotic pathways. Mol Cancer Ther. 3:187–197. 2004.PubMed/NCBI

169 

Dunai ZA, Imre G, Barna G, Korcsmaros T, Petak I, Bauer PI and Mihalik R: Staurosporine induces necroptotic cell death under caspase-compromised conditions in U937 cells. PLoS One. 7:e419452012. View Article : Google Scholar : PubMed/NCBI

170 

Chan KC, Knox WF, Gee JM, Morris J, Nicholson RI, Potten CS and Bundred NJ: Effect of epidermal growth factor receptor tyrosine kinase inhibition on epithelial proliferation in normal and premalignant breast. Cancer Res. 62:122–128. 2002.PubMed/NCBI

171 

Maity A, Pore N, Lee J, Solomon D and O'Rourke DM: Epidermal growth factor receptor transcriptionally up-regulates vascular endothelial growth factor expression in human glioblastoma cells via a pathway involving phosphatidylinositol 3-kinase and distinct from that induced by hypoxia. Cancer Res. 60:5879–5886. 2000.PubMed/NCBI

172 

Ouchi T, Monteiro ANA, August A, Aaronson SA and Hanafusa H: BRCA1 regulates p53-dependent gene expression. Proc Natl Acad Sci USA. 95:2302–2306. 1998. View Article : Google Scholar : PubMed/NCBI

173 

Arizti P, Fang L, Park I, Yin Y, Solomon E, Ouchi T, Aaronson SA and Lee SW: Tumor suppressor p53 is required to modulate BRCA1 expression. Mol Cell Biol. 20:7450–7459. 2000. View Article : Google Scholar : PubMed/NCBI

174 

Andreassen A, Øyjord T, Hovig E, Holm R, Flørenes VA, Nesland JM, Myklebost O, Høie J, Bruland OS, Børresen AL, et al: p53 abnormalities in different subtypes of human sarcomas. Cancer Res. 53:468–471. 1993.PubMed/NCBI

175 

O'Hare T, Pollock R, Stoffregen EP, Keats JA, Abdullah OM, Moseson EM, Rivera VM, Tang H, Metcalf CA III, Bohacek RS, et al: Inhibition of wild-type and mutant Bcr-Abl by AP23464, a potent ATP-based oncogenic protein kinase inhibitor: Implications for CML. Blood. 104:2532–2539. 2004. View Article : Google Scholar : PubMed/NCBI

176 

Grisolano JL, O'Neal J, Cain J and Tomasson MH: An activated receptor tyrosine kinase, TEL/PDGFbetaR, cooperates with AML1/ETO to induce acute myeloid leukemia in mice. Proc Natl Acad Sci USA. 100:9506–9511. 2003. View Article : Google Scholar : PubMed/NCBI

177 

Aoki M, Nabeshima K, Koga K, Hamasaki M, Suzumiya J, Tamura K and Iwasaki H: Imatinib mesylate inhibits cell invasion of malignant peripheral nerve sheath tumor induced by platelet-derived growth factor-BB. Lab Invest. 87:767–779. 2007. View Article : Google Scholar : PubMed/NCBI

178 

Hercus TR, Thomas D, Guthridge MA, Ekert PG, King-Scott J, Parker MW and Lopez AF: The granulocyte-macrophage colony-stimulating factor receptor, linking its structure to cell signaling and its role in disease. Blood. 114:1289–1298. 2009. View Article : Google Scholar : PubMed/NCBI

179 

Ding W, Shanafelt TD, Lesnick CE, Erlichman C, Leis JF, Secreto C, Sassoon TR, Call TG, Bowen DA, Conte M, et al: Akt inhibitor MK2206 selectively targets CLL B-cell receptor induced cytokines, mobilizes lymphocytes and synergizes with bendamustine to induce CLL apoptosis. Br J Haematol. 164:146–150. 2014. View Article : Google Scholar : PubMed/NCBI

180 

Zhao Y-Y, Tian Y, Zhang J, Xu F, Yang YP, Huang Y, Zhao HY, Zhang JW, Xue C, Lam MH, et al: Effects of an oral allosteric AKT inhibitor (MK-2206) on human nasopharyngeal cancer in vitro and in vivo. Drug Des Devel Ther. 8:1827–1837. 2014. View Article : Google Scholar : PubMed/NCBI

181 

Agarwal E, Chaudhuri A, Leiphrakpam PD, Haferbier KL, Brattain MG and Chowdhury S: Akt inhibitor MK-2206 promotes anti-tumor activity and cell death by modulation of AIF and Ezrin in colorectal cancer. BMC Cancer. 14:1452014. View Article : Google Scholar : PubMed/NCBI

182 

Fu YR, Yi ZJ, Yan YR and Qiu ZY: Hydroxycamptothecin-induced apoptosis in hepatoma SMMC-7721 cells and the role of mitochondrial pathway. Mitochondrion. 6:211–217. 2006. View Article : Google Scholar : PubMed/NCBI

183 

Uckun FM, Stewart CF, Reaman G, Chelstrom LM, Jin J, Chandan-Langlie M, Waddick KG, White J and Evans WE: In vitro and in vivo activity of topotecan against human B-lineage acute lymphoblastic leukemia cells. Blood. 85:2817–2828. 1995.PubMed/NCBI

184 

Caserini C, Pratesi G, Tortoreto M, Bedogné B, Carenini N, Supino R, Perego P, Righetti SC and Zunino F: Apoptosis as a determinant of tumor sensitivity to topotecan in human ovarian tumors, preclinical in vitro/in vivo studies. Clin Cancer Res. 3:955–961. 1997.PubMed/NCBI

185 

Kim MK, James J and Annunziata CM: Topotecan synergizes with CHEK1 (CHK1) inhibitor to induce apoptosis in ovarian cancer cells. BMC Cancer. 15:1962015. View Article : Google Scholar : PubMed/NCBI

186 

Tolis C, Peters GJ, Ferreira CG, Pinedo HM and Giaccone G: Cell cycle disturbances and apoptosis induced by topotecan and gemcitabine on human lung cancer cell lines. Eur J Cancer. 35:796–807. 1999. View Article : Google Scholar : PubMed/NCBI

187 

Szalay K, Rázga Z and Duda E: TNF inhibits myogenesis and downregulates the expression of myogenic regulatory factors myoD and myogenin. Eur J Cell Biol. 74:391–398. 1997.PubMed/NCBI

188 

Fiers W, Beyaert R, Brouckaert P, Everaerdt B, Haegeman C, Suffys P, Tavernier J and Vanhaesebroeck B: TNF Its potential as an antitumour agent. Dev Biol Stand. 69:143–151. 1988.PubMed/NCBI

189 

Smith RA and Baglioni C: The active form of tumor necrosis factor is a trimer. J Biol Chem. 262:6951–6954. 1987.PubMed/NCBI

190 

Udagawa N, Takahashi N, Jimi E, Matsuzaki K, Tsurukai T, Itoh K, Nakagawa N, Yasuda H, Goto M, Tsuda E, et al: Osteoblasts/stromal cells stimulate osteoclast activation through expression of osteoclast differentiation factor/RANKL but not macrophage colony-stimulating factor: Receptor activator of NF-kappa B ligand. Bone. 25:517–523. 1999. View Article : Google Scholar : PubMed/NCBI

191 

Luan X, Lu Q, Jiang Y, Zhang S, Wang Q, Yuan H, Zhao W, Wang J and Wang X: Crystal structure of human RANKL complexed with its decoy receptor osteoprotegerin. J Immunol. 189:245–252. 2012. View Article : Google Scholar : PubMed/NCBI

192 

Ciusani E, Croci D, Gelati M, Calatozzolo C, Sciacca F, Fumagalli L, Balzarotti M, Fariselli L, Boiardi A and Salmaggi A: In vitro effects of topotecan and ionizing radiation on TRAIL/Apo2L-mediated apoptosis in malignant glioma. J Neurooncol. 71:19–25. 2005. View Article : Google Scholar : PubMed/NCBI

193 

Chen S, Gomez SP, McCarley D and Mainwaring MG: Topotecan-induced topoisomerase IIalpha expression increases the sensitivity of the CML cell line K562 to subsequent etoposide plus mitoxantrone treatment. Cancer Chemother Pharmacol. 49:347–355. 2002. View Article : Google Scholar : PubMed/NCBI

194 

Naldini L, Weidner KM, Vigna E, Gaudino G, Bardelli A, Ponzetto C, Narsimhan RP, Hartmann G, Zarnegar R, Michalopoulos GK, et al: Scatter factor and hepatocyte growth factor are indistinguishable ligands for the MET receptor. EMBO J. 10:2867–2878. 1991.PubMed/NCBI

195 

Stamos J, Lazarus RA, Yao X, Kirchhofer D and Wiesmann C: Crystal structure of the HGF beta-chain in complex with the Sema domain of the Met receptor. EMBO J. 23:2325–2335. 2004. View Article : Google Scholar : PubMed/NCBI

196 

Paulson AK, Linklater ES, Berghuis BD, App CA, Oostendorp LD, Paulson JE, Pettinga JE and Melnik MK: VandeW oude GF and Graveel CR: MET and ERBB2 are coexpressed in ERBB2+ breast cancer and contribute to innate resistance. Mol Cancer Res. 11:1112–1121. 2013. View Article : Google Scholar : PubMed/NCBI

197 

Xie Q, Su Y, Dykema K, Johnson J, Koeman J, De Giorgi V, Huang A, Schlegel R, Essenburg C, Kang L, et al: Overexpression of HGF promotes HBV-induced hepatocellular carcinoma progression and is an effective indicator for Met-targeting therapy. Genes Cancer. 4:247–260. 2013. View Article : Google Scholar : PubMed/NCBI

198 

Simonetti S, Molina MA, Queralt C, de Aguirre I, Mayo C, Bertran-Alamillo J, Sanchez JJ, Gonzalez-Larriba JL, Jimenez U, Isla D, et al: Detection of EGFR mutations with mutation-specific antibodies in stage IV non-small-cell lung cancer. J Transl Med. 8:1352010. View Article : Google Scholar : PubMed/NCBI

199 

Maseki S, Ijichi K, Tanaka H, Fujii M, Hasegawa Y, Ogawa T, Murakami S, Kondo E and Nakanishi H: Acquisition of EMT phenotype in the gefitinib-resistant cells of a head and neck squamous cell carcinoma cell line through Akt/GSK-3β/snail signalling pathway. Br J Cancer. 106:1196–1204. 2012. View Article : Google Scholar : PubMed/NCBI

200 

Stahtea XN, Roussidis AE, Kanakis I, Tzanakakis GN, Chalkiadakis G, Mavroudis D, Kletsas D and Karamanos NK: Imatinib inhibits colorectal cancer cell growth and suppresses stromal-induced growth stimulation, MT1-MMP expression and pro-MMP2 activation. Int J Cancer. 121:2808–2814. 2007. View Article : Google Scholar : PubMed/NCBI

201 

Hirai H, Sootome H, Nakatsuru Y, Miyama K, Taguchi S, Tsujioka K, Ueno Y, Hatch H, Majumder PK, Pan BS, et al: MK-2206, an allosteric Akt inhibitor, enhances antitumor efficacy by standard chemotherapeutic agents or molecular targeted drugs in vitro and in vivo. Mol Cancer Ther. 9:1956–1967. 2010. View Article : Google Scholar : PubMed/NCBI

Related Articles

  • Abstract
  • View
  • Download
  • Twitter
Copy and paste a formatted citation
Spandidos Publications style
Sarin H: Conserved molecular mechanisms underlying the effects of small molecule xenobiotic chemotherapeutics on cells. Mol Clin Oncol 4: 326-368, 2016.
APA
Sarin, H. (2016). Conserved molecular mechanisms underlying the effects of small molecule xenobiotic chemotherapeutics on cells. Molecular and Clinical Oncology, 4, 326-368. https://doi.org/10.3892/mco.2015.714
MLA
Sarin, H."Conserved molecular mechanisms underlying the effects of small molecule xenobiotic chemotherapeutics on cells". Molecular and Clinical Oncology 4.3 (2016): 326-368.
Chicago
Sarin, H."Conserved molecular mechanisms underlying the effects of small molecule xenobiotic chemotherapeutics on cells". Molecular and Clinical Oncology 4, no. 3 (2016): 326-368. https://doi.org/10.3892/mco.2015.714
Copy and paste a formatted citation
x
Spandidos Publications style
Sarin H: Conserved molecular mechanisms underlying the effects of small molecule xenobiotic chemotherapeutics on cells. Mol Clin Oncol 4: 326-368, 2016.
APA
Sarin, H. (2016). Conserved molecular mechanisms underlying the effects of small molecule xenobiotic chemotherapeutics on cells. Molecular and Clinical Oncology, 4, 326-368. https://doi.org/10.3892/mco.2015.714
MLA
Sarin, H."Conserved molecular mechanisms underlying the effects of small molecule xenobiotic chemotherapeutics on cells". Molecular and Clinical Oncology 4.3 (2016): 326-368.
Chicago
Sarin, H."Conserved molecular mechanisms underlying the effects of small molecule xenobiotic chemotherapeutics on cells". Molecular and Clinical Oncology 4, no. 3 (2016): 326-368. https://doi.org/10.3892/mco.2015.714
Follow us
  • Twitter
  • LinkedIn
  • Facebook
About
  • Spandidos Publications
  • Careers
  • Cookie Policy
  • Privacy Policy
How can we help?
  • Help
  • Live Chat
  • Contact
  • Email to our Support Team