
The optimum marker for the detection of lymphatic vessels (Review)
- Authors:
- Ling‑Ling Kong
- Nian‑Zhao Yang
- Liang‑Hui Shi
- Guo‑Hai Zhao
- Wenbin Zhou
- Qiang Ding
- Ming‑Hai Wang
- Yi‑Sheng Zhang
-
Affiliations: Department of General Surgery, The First Affiliated Yijishan Hospital of Wannan Medical College, Wuhu, Anhui 241000, P.R. China - Published online on: July 31, 2017 https://doi.org/10.3892/mco.2017.1356
- Pages: 515-520
-
Copyright: © Kong et al. This is an open access article distributed under the terms of Creative Commons Attribution License.
This article is mentioned in:
Abstract
![]() |
Schulte-Merker S, Sabine A and Petrova TV: Lymphatic vascular morphogenesis in development, physiology and disease. J Cell Biol. 193:607–618. 2011. View Article : Google Scholar : PubMed/NCBI | |
Tammela T and Alitalo K: Lymphangiogenesis: Molecular mechanisms and future promise. Cell. 140:460–476. 2010. View Article : Google Scholar : PubMed/NCBI | |
Kazenwadel J and Harvey NL: Morphogenesis of the lymphatic vasculature: A focus on new progenitors and cellular mechanisms important for constructing lymphatic vessels. Dev Dyn. 245:209–219. 2016. View Article : Google Scholar : PubMed/NCBI | |
Witte MH, Bernas MJ, Martin CP and Witte CL: Lymphangiogenesis and lymphangiodysplasia: From molecular to clinical lymphology. Microsc Res Tech. 55:122–145. 2001. View Article : Google Scholar : PubMed/NCBI | |
Cunnick GH, Jiang WG, Douglas-Jones T, Watkins G, Gomez KF, Morgan MJ, Subramanian A, Mokbel K and Mansel RE: Lymphangiogenesis and lymph node metastasis in breast cancer. Mol Cancer. 7:232008. View Article : Google Scholar : PubMed/NCBI | |
Nunomiya K, Shibata Y, Abe S, Inoue S, Igarashi A, Yamauchi K, Kimura T, Aida Y, Nemoto T, Sato M, et al: Relationship between serum level of lymphatic vessel endothelial hyaluronan receptor-1 and prognosis in patients with lung cancer. J Cancer. 5:242–247. 2014. View Article : Google Scholar : PubMed/NCBI | |
Ramani P, Dungwa JV and May MT: LYVE-1 upregulation and lymphatic invasion correlate with adverse prognostic factors and lymph node metastasis in neuroblastoma. Virchows Arch. 460:183–191. 2012. View Article : Google Scholar : PubMed/NCBI | |
Wigle JT, Harvey N, Detmar M, Lagutina I, Grosveld G, Gunn MD, Jackson DG and Oliver G: An essential role for Prox1 in the induction of the lymphatic endothelial cell phenotype. EMBO J. 21:1505–1513. 2002. View Article : Google Scholar : PubMed/NCBI | |
Wigle JT and Oliver G: Prox1 function is required for the development of the murine lymphatic system. Cell. 98:769–778. 1999. View Article : Google Scholar : PubMed/NCBI | |
Weninger W, Partanen TA, Breiteneder-Geleff S, Mayer C, Kowalski H, Mildner M, Pammer J, Stürzl M, Kerjaschki D, Alitalo K and Tschachler E: Expression of vascular endothelial growth factor receptor-3 and podoplanin suggests a lymphatic endothelial cell origin of Kaposi's sarcoma tumor cells. Lab Invest. 79:243–251. 1999.PubMed/NCBI | |
Breiteneder-Geleff S, Matsui K, Soleiman A, Meraner P, Poczewski H, Kalt R, Schaffner G and Kerjaschki D: Podoplanin, novel 43-kd membrane protein of glomerular epithelial cells, is down-regulated in puromycin nephrosis. Am J Pathol. 151:1141–1152. 1997.PubMed/NCBI | |
Kriehuber E, Breiteneder-Geleff S, Groeger M, Soleiman A, Schoppmann SF, Stingl G, Kerjaschki D and Maurer D: Isolation and characterization of dermal lymphatic and blood endothelial cells reveal stable and functionally specialized cell lineages. J Exp Med. 194:797–808. 2001. View Article : Google Scholar : PubMed/NCBI | |
Breiteneder-Geleff S, Soleiman A, Kowalski H, Horvat R, Amann G, Kriehuber E, Diem K, Weninger W, Tschachler E, Alitalo K and Kerjaschki D: Angiosarcomas express mixed endothelial phenotypes of blood and lymphatic capillaries: Podoplanin as a specific marker for lymphatic endothelium. Am J Pathol. 154:385–394. 1999. View Article : Google Scholar : PubMed/NCBI | |
Schmid H, Henger A, Cohen CD, Frach K, Gröne HJ, Schlöndorff D and Kretzler M: Gene expression profiles of podocyte-associated molecules as diagnostic markers in acquired proteinuric diseases. J Am Soc Nephrol. 14:2958–2966. 2003. View Article : Google Scholar : PubMed/NCBI | |
Levidiotis V and Power DA: New insights into the molecular biology of the glomerular filtration barrier and associated disease. Nephrology (Carlton). 10:157–166. 2005. View Article : Google Scholar : PubMed/NCBI | |
Kanner WA, Galgano MT and Atkins KA: Podoplanin expression in basal and myoepithelial cells: Utility and potential pitfalls. Appl Immunohistochem Mol Morphol. 18:226–230. 2010. View Article : Google Scholar : PubMed/NCBI | |
Martín-Villar E, Scholl FG, Gamallo C, Yurrita MM, Muñoz-Guerra M, Cruces J and Quintanilla M: Characterization of human PA2.26 antigen (T1alpha-2, podoplanin), a small membrane mucin induced in oral squamous cell carcinomas. Int J Cancer. 113:899–910. 2005. View Article : Google Scholar : PubMed/NCBI | |
Kato Y, Kaneko M, Sata M, Fujita N, Tsuruo T and Osawa M: Enhanced expression of Aggrus (T1alpha/podoplanin), a platelet-aggregation-inducing factor in lung squamous cell carcinoma. Tumour Biol. 26:195–200. 2005. View Article : Google Scholar : PubMed/NCBI | |
Schacht V, Dadras SS, Johnson LA, Jackson DG, Hong YK and Detmar M: Up-regulation of the lymphatic marker podoplanin, a mucin-type transmembrane glycoprotein, in human squamous cell carcinomas and germ cell tumors. Am J Pathol. 166:913–921. 2005. View Article : Google Scholar : PubMed/NCBI | |
Zustin J, Scheuer HA and Friedrich RE: Podoplanin expression in human tooth germ tissues and cystic odontogenic lesions: An immunohistochemical study. J Oral Pathol Med. 39:115–120. 2010. View Article : Google Scholar : PubMed/NCBI | |
Kikuchi K, Ito S, Inoue H, González-Alva P, Miyazaki Y, Sakashita H, Yoshino A, Katayama Y, Terui T, Ide F and Kusama K: Immunohistochemical expression of podoplanin in so-called hard α-keratin-expressing tumors, including calcifying cystic odontogenic tumor, craniopharyngioma and pilomatrixoma. J Oral Sci. 54:165–175. 2012. View Article : Google Scholar : PubMed/NCBI | |
Tsuneki M, Maruyama S, Yamazaki M, Cheng J and Saku T: Podoplanin expression profiles characteristic of odontogenic tumor-specific tissue architectures. Pathol Res Pract. 208:140–146. 2012. View Article : Google Scholar : PubMed/NCBI | |
Moustakas A and Heldin CH: Signaling networks guiding epithelial-mesenchymal transitions during embryogenesis and cancer progression. Cancer Sci. 98:1512–1520. 2007. View Article : Google Scholar : PubMed/NCBI | |
Scholl FG, Gamallo C, Vilaró S and Quintanilla M: Identification of PA2.26 antigen as a novel cell-surface mucin-type glycoprotein that induces plasma membrane extensions and increased motility in keratinocytes. J Cell Sci. 112:4601–4613. 1999.PubMed/NCBI | |
Wicki A, Lehembre F, Wick N, Hantusch B, Kerjaschki D and Christofori G: Tumor invasion in the absence of epithelial-mesenchymal transition: Podoplanin-mediated remodeling of the actin cytoskeleton. Cancer cell. 9:261–272. 2006. View Article : Google Scholar : PubMed/NCBI | |
Martín-Villar E, Megías D, Castel S, Yurrita MM, Vilaró S and Quintanilla M: Podoplanin binds ERM proteins to activate RhoA and promote epithelial-mesenchymal transition. J Cell Sci. 119:4541–4553. 2006. View Article : Google Scholar : PubMed/NCBI | |
Marks A, Sutherland DR, Bailey D, Iglesias J, Law J, Lei M, Yeger H, Banerjee D and Baumal R: Characterization and distribution of an oncofetal antigen (M2A antigen) expressed on testicular germ cell tumours. Br J Cancer. 80:569–578. 1999. View Article : Google Scholar : PubMed/NCBI | |
Kahn HJ and Marks A: A new monoclonal antibody, D2-40, for detection of lymphatic invasion in primary tumors. Lab Invest. 82:1255–1257. 2002. View Article : Google Scholar : PubMed/NCBI | |
Ren S, Abuel-Haija M, Khurana JS and Zhang X: D2-40: An additional marker for myoepithelial cells of breast and the precaution in interpreting tumor lymphovascular invasion. Int J Clin Exp Pathol. 4:175–182. 2011.PubMed/NCBI | |
Braun M, Flucke U, Debald M, Walgenbach-Bruenagel G, Walgenbach KJ, Höller T, Pölcher M, Wolfgarten M, Sauerwald A, Keyver-Paik M, et al: Detection of lymphovascular invasion in early breast cancer by D2-40 (podoplanin): A clinically useful predictor for axillary lymph node metastases. Breast Cancer Res Treat. 112:503–511. 2008. View Article : Google Scholar : PubMed/NCBI | |
El-Gendi S and Abdel-Hadi M: Lymphatic vessel density as prognostic factor in breast carcinoma: Relation to clinicopathologic parameters. J Egypt Natl Canc Inst. 21:139–149. 2009.PubMed/NCBI | |
Birner P, Schindl M, Obermair A, Breitenecker G, Kowalski H and Oberhuber G: Lymphatic microvessel density as a novel prognostic factor in early-stage invasive cervical cancer. Int J Cancer. 95:29–33. 2001. View Article : Google Scholar : PubMed/NCBI | |
Niemiec JA, Adamczyk A, Ambicka A, Mucha-Malecka A, Wysocki WM and Ryś J: Distribution of podoplanin-positive tumor vessels predicts disease-specific survival of node-positive breast cancer patients treated with anthracyclines and/or taxanes. Cancer Invest. 32:168–177. 2014. View Article : Google Scholar : PubMed/NCBI | |
Tezuka K, Onoda N, Takashima T, Takagaki K, Ishikawa T, Wakasa T, Wakasa K and Hirakawa K: Prognostic significance of lymphovascular invasion diagnosed by lymphatic endothelium immunostaining in breast cancer patients. Oncol Rep. 17:997–1003. 2007.PubMed/NCBI | |
Rabban JT and Chen YY: D2-40 expression by breast myoepithelium: Potential pitfalls in distinguishing intralymphatic carcinoma from in situ carcinoma. Hum Pathol. 39:175–183. 2008. View Article : Google Scholar : PubMed/NCBI | |
Laurent TC and Fraser JR: Hyaluronan. FASEB J. 6:2397–2404. 1992.PubMed/NCBI | |
Banerji S, Ni J, Wang SX, Clasper S, Su J, Tammi R, Jones M and Jackson DG: LYVE-1, a new homologue of the CD44 glycoprotein, is a lymph-specific receptor for hyaluronan. J Cell Biol. 144:789–801. 1999. View Article : Google Scholar : PubMed/NCBI | |
Jackson DG, Prevo R, Clasper S and Banerji S: LYVE-1, the lymphatic system and tumor lymphangiogenesis. Trends Immunol. 22:317–321. 2001. View Article : Google Scholar : PubMed/NCBI | |
Du Y, Liu Y, Wang Y, He Y, Yang C and Gao F: LYVE-1 enhances the adhesion of HS-578T cells to COS-7 cells via hyaluronan. Clin Invest Med. 34:E45–E54. 2011. View Article : Google Scholar : PubMed/NCBI | |
Cunnick GH, Jiang WG, Gomez KF and Mansel RE: Lymphangiogenesis quantification using quantitative PCR and breast cancer as a model. Biochem Biophys Res Commun. 288:1043–1046. 2001. View Article : Google Scholar : PubMed/NCBI | |
Tsujii M, Kawano S, Tsuji S, Sawaoka H, Hori M and DuBois RN: Cyclooxygenase regulates angiogenesis induced by colon cancer cells. Cell. 93:705–716. 1998. View Article : Google Scholar : PubMed/NCBI | |
Timoshenko AV, Chakraborty C, Wagner GF and Lala PK: COX-2-mediated stimulation of the lymphangiogenic factor VEGF-C in human breast cancer. Br J Cancer. 94:1154–1163. 2006. View Article : Google Scholar : PubMed/NCBI | |
Wong HL, Jin G, Cao R, Zhang S, Cao Y and Zhou Z: MT1-MMP sheds LYVE-1 on lymphatic endothelial cells and suppresses VEGF-C production to inhibit lymphangiogenesis. Nat Commun. 7:108242016. View Article : Google Scholar : PubMed/NCBI | |
Gale NW, Prevo R, Espinosa J, Ferguson DJ, Dominguez MG, Yancopoulos GD, Thurston G and Jackson DG: Normal lymphatic development and function in mice deficient for the lymphatic hyaluronan receptor LYVE-1. Mol Cell Biol. 27:595–604. 2007. View Article : Google Scholar : PubMed/NCBI | |
Schledzewski K, Falkowski M, Moldenhauer G, Metharom P, Kzhyshkowska J, Ganss R, Demory A, Falkowska-Hansen B, Kurzen H, Ugurel S, et al: Lymphatic endothelium-specific hyaluronan receptor LYVE-1 is expressed by stabilin-1+, F4/80+, CD11b+ macrophages in malignant tumours and wound healing tissue in vivo and in bone marrow cultures in vitro: Implications for the assessment of lymphangiogenesis. J Pathol. 209:67–77. 2006. View Article : Google Scholar : PubMed/NCBI | |
Oliver G, Sosa-Pineda B, Geisendorf S, Spana EP, Doe CQ and Gruss P: Prox 1, a prospero-related homeobox gene expressed during mouse development. Mech Dev. 44:3–16. 1993. View Article : Google Scholar : PubMed/NCBI | |
Wigle JT, Chowdhury K, Gruss P and Oliver G: Prox1 function is crucial for mouse lens-fibre elongation. Nat Genet. 21:318–322. 1999. View Article : Google Scholar : PubMed/NCBI | |
Hong YK, Harvey N, Noh YH, Schacht V, Hirakawa S, Detmar M and Oliver G: Prox1 is a master control gene in the program specifying lymphatic endothelial cell fate. Dev Dyn. 225:351–357. 2002. View Article : Google Scholar : PubMed/NCBI | |
Baxter SA, Cheung DY, Bocangel P, Kim HK, Herbert K, Douville JM, Jangamreddy JR, Zhang S, Eisenstat DD and Wigle JT: Regulation of the lymphatic endothelial cell cycle by the PROX1 homeodomain protein. Biochim Biophys Acta. 1813:201–212. 2011. View Article : Google Scholar : PubMed/NCBI | |
Dadras SS, Skrzypek A, Nguyen L, Shin JW, Schulz MM, Arbiser J, Mihm MC and Detmar M: Prox-1 promotes invasion of kaposiform hemangioendotheliomas. J Invest Dermatol. 128:2798–2806. 2008. View Article : Google Scholar : PubMed/NCBI | |
de Andrade BA Benevenuto, Ramírez-Amador V, Anaya-Saavedra G, Martínez-Mata G, Fonseca FP, Graner E and de Almeida O Paes: Expression of PROX-1 in oral Kaposi's sarcoma spindle cells. J Oral Pathol Med. 43:132–136. 2014. View Article : Google Scholar : PubMed/NCBI | |
Pajusola K, Aprelikova O, Armstrong E, Morris S and Alitalo K: Two human FLT4 receptor tyrosine kinase isoforms with distinct carboxy terminal tails are produced by alternative processing of primary transcripts. Oncogene. 8:2931–2937. 1993.PubMed/NCBI | |
Valtola R, Salven P, Heikkilä P, Taipale J, Joensuu H, Rehn M, Pihlajaniemi T, Weich H, deWaal R and Alitalo K: VEGFR-3 and its ligand VEGF-C are associated with angiogenesis in breast cancer. Am J Pathol. 154:1381–1390. 1999. View Article : Google Scholar : PubMed/NCBI | |
Joukov V, Sorsa T, Kumar V, Jeltsch M, Claesson-Welsh L, Cao Y, Saksela O, Kalkkinen N and Alitalo K: Proteolytic processing regulates receptor specificity and activity of VEGF-C. EMBO J. 16:3898–3911. 1997. View Article : Google Scholar : PubMed/NCBI | |
Stacker SA, Stenvers K, Caesar C, Vitali A, Domagala T, Nice E, Roufail S, Simpson RJ, Moritz R, Karpanen T, et al: Biosynthesis of vascular endothelial growth factor-D involves proteolytic processing which generates non-covalent homodimers. J Biol Chem. 274:32127–32136. 1999. View Article : Google Scholar : PubMed/NCBI | |
Mäkinen T, Veikkola T, Mustjoki S, Karpanen T, Catimel B, Nice EC, Wise L, Mercer A, Kowalski H, Kerjaschki D, et al: Isolated lymphatic endothelial cells transduce growth, survival and migratory signals via the VEGF-C/D receptor VEGFR-3. EMBO J. 20:4762–4773. 2001. View Article : Google Scholar : PubMed/NCBI | |
Jeltsch M, Karpanen T, Strandin T, Aho K, Lankinen H and Alitalo K: Vascular endothelial growth factor (VEGF)/VEGF-C mosaic molecules reveal specificity determinants and feature novel receptor binding patterns. J Biol Chem. 281:12187–12195. 2006. View Article : Google Scholar : PubMed/NCBI | |
Leppänen VM, Prota AE, Jeltsch M, Anisimov A, Kalkkinen N, Strandin T, Lankinen H, Goldman A, Ballmer-Hofer K and Alitalo K: Structural determinants of growth factor binding and specificity by VEGF receptor 2. Proc Natl Acad Sci USA. 107:2425–2430. 2010. View Article : Google Scholar : PubMed/NCBI | |
Baldwin ME, Catimel B, Nice EC, Roufail S, Hall NE, Stenvers KL, Karkkainen MJ, Alitalo K, Stacker SA and Achen MG: The specificity of receptor binding by vascular endothelial growth factor-d is different in mouse and man. J Biol Chem. 276:19166–19171. 2001. View Article : Google Scholar : PubMed/NCBI | |
Leppänen VM, Jeltsch M, Anisimov A, Tvorogov D, Aho K, Kalkkinen N, Toivanen P, Ylä-Herttuala S, Ballmer-Hofer K and Alitalo K: Structural determinants of vascular endothelial growth factor-D receptor binding and specificity. Blood. 117:1507–1515. 2011. View Article : Google Scholar : PubMed/NCBI | |
Kaipainen A, Korhonen J, Mustonen T, van Hinsbergh VW, Fang GH, Dumont D, Breitman M and Alitalo K: Expression of the fms-like tyrosine kinase 4 gene becomes restricted to lymphatic endothelium during development. Proc Natl Acad Sci USA. 92:3566–3570. 1995. View Article : Google Scholar : PubMed/NCBI | |
Pajusola K, Aprelikova O, Korhonen J, Kaipainen A, Pertovaara L, Alitalo R and Alitalo K: FLT4 receptor tyrosine kinase contains seven immunoglobulin-like loops and is expressed in multiple human tissues and cell lines. Cancer Res. 52:5738–5743. 1992.PubMed/NCBI | |
Dumont DJ, Jussila L, Taipale J, Lymboussaki A, Mustonen T, Pajusola K, Breitman M and Alitalo K: Cardiovascular failure in mouse embryos deficient in VEGF receptor-3. Science. 282:946–949. 1998. View Article : Google Scholar : PubMed/NCBI | |
Stacker SA, Caesar C, Baldwin ME, Thornton GE, Williams RA, Prevo R, Jackson DG, Nishikawa S, Kubo H and Achen MG: VEGF-D promotes the metastatic spread of tumor cells via the lymphatics. Nat Med. 7:186–191. 2001. View Article : Google Scholar : PubMed/NCBI | |
Jain RK and Padera TP: Prevention and treatment of lymphatic metastasis by antilymphangiogenic therapy. J Natl Cancer Inst. 94:785–787. 2002. View Article : Google Scholar : PubMed/NCBI | |
He Y, Kozaki K, Karpanen T, Koshikawa K, Yla-Herttuala S, Takahashi T and Alitalo K: Suppression of tumor lymphangiogenesis and lymph node metastasis by blocking vascular endothelial growth factor receptor 3 signaling. J Natl Cancer Inst. 94:819–825. 2002. View Article : Google Scholar : PubMed/NCBI | |
Mäkinen T, Jussila L, Veikkola T, Karpanen T, Kettunen MI, Pulkkanen KJ, Kauppinen R, Jackson DG, Kubo H, Nishikawa S, et al: Inhibition of lymphangiogenesis with resulting lymphedema in transgenic mice expressing soluble VEGF receptor-3. Nat Med. 7:199–205. 2001. View Article : Google Scholar : PubMed/NCBI | |
Mandriota SJ, Jussila L, Jeltsch M, Compagni A, Baetens D, Prevo R, Banerji S, Huarte J, Montesano R, Jackson DG, et al: Vascular endothelial growth factor-C-mediated lymphangiogenesis promotes tumour metastasis. EMBO J. 20:672–682. 2001. View Article : Google Scholar : PubMed/NCBI | |
Skobe M, Hawighorst T, Jackson DG, Prevo R, Janes L, Velasco P, Riccardi L, Alitalo K, Claffey K and Detmar M: Induction of tumor lymphangiogenesis by VEGF-C promotes breast cancer metastasis. Nat Med. 7:192–198. 2001. View Article : Google Scholar : PubMed/NCBI | |
Takahashi S: Vascular endothelial growth factor (VEGF), VEGF receptors and their inhibitors for antiangiogenic tumor therapy. Biol Pharm Bull. 34:1785–1788. 2011. View Article : Google Scholar : PubMed/NCBI | |
Beekman KW, Bradley D and Hussain M: New molecular targets and novel agents in the treatment of advanced urothelial cancer. Semin Oncol. 34:154–164. 2007. View Article : Google Scholar : PubMed/NCBI | |
Sonpavde G, Jian W, Liu H, Wu MF, Shen SS and Lerner SP: Sunitinib malate is active against human urothelial carcinoma and enhances the activity of cisplatin in a preclinical model. Urol Oncol. 27:391–399. 2009. View Article : Google Scholar : PubMed/NCBI | |
Rudert M and Tillmann B: Detection of lymph and blood vessels in the human intervertebral disc by histochemical and immunohistochemical methods. Ann Anat. 175:237–242. 1993. View Article : Google Scholar : PubMed/NCBI | |
Kucera R, Topolcan O, Treskova I, Kinkorova J, Windrichova J, Fuchsova R, Svobodova S, Treska V, Babuska V, Novak J and Smejkal J: Evaluation of IL-2, IL-6, IL-8 and IL-10 in Malignant Melanoma Diagnostics. Anticancer Res. 35:3537–3541. 2015.PubMed/NCBI | |
Harada T, Shinohara M, Nakamura S, Shimada M and Oka M: Immunohistochemical detection of desmosomes in oral squamous cell carcinomas: Correlation with differentiation, mode of invasion, and metastatic potential. Int J Oral Maxillofac Surg. 21:346–349. 1992. View Article : Google Scholar : PubMed/NCBI | |
Petrova TV, Mäkinen T, Mäkelä TP, Saarela J, Virtanen I, Ferrell RE, Finegold DN, Kerjaschki D, Ylä-Herttuala S and Alitalo K: Lymphatic endothelial reprogramming of vascular endothelial cells by the Prox-1 homeobox transcription factor. EMBO J. 21:4593–4599. 2002. View Article : Google Scholar : PubMed/NCBI |