|
1
|
Schulte-Merker S, Sabine A and Petrova TV:
Lymphatic vascular morphogenesis in development, physiology and
disease. J Cell Biol. 193:607–618. 2011. View Article : Google Scholar : PubMed/NCBI
|
|
2
|
Tammela T and Alitalo K:
Lymphangiogenesis: Molecular mechanisms and future promise. Cell.
140:460–476. 2010. View Article : Google Scholar : PubMed/NCBI
|
|
3
|
Kazenwadel J and Harvey NL: Morphogenesis
of the lymphatic vasculature: A focus on new progenitors and
cellular mechanisms important for constructing lymphatic vessels.
Dev Dyn. 245:209–219. 2016. View Article : Google Scholar : PubMed/NCBI
|
|
4
|
Witte MH, Bernas MJ, Martin CP and Witte
CL: Lymphangiogenesis and lymphangiodysplasia: From molecular to
clinical lymphology. Microsc Res Tech. 55:122–145. 2001. View Article : Google Scholar : PubMed/NCBI
|
|
5
|
Cunnick GH, Jiang WG, Douglas-Jones T,
Watkins G, Gomez KF, Morgan MJ, Subramanian A, Mokbel K and Mansel
RE: Lymphangiogenesis and lymph node metastasis in breast cancer.
Mol Cancer. 7:232008. View Article : Google Scholar : PubMed/NCBI
|
|
6
|
Nunomiya K, Shibata Y, Abe S, Inoue S,
Igarashi A, Yamauchi K, Kimura T, Aida Y, Nemoto T, Sato M, et al:
Relationship between serum level of lymphatic vessel endothelial
hyaluronan receptor-1 and prognosis in patients with lung cancer. J
Cancer. 5:242–247. 2014. View
Article : Google Scholar : PubMed/NCBI
|
|
7
|
Ramani P, Dungwa JV and May MT: LYVE-1
upregulation and lymphatic invasion correlate with adverse
prognostic factors and lymph node metastasis in neuroblastoma.
Virchows Arch. 460:183–191. 2012. View Article : Google Scholar : PubMed/NCBI
|
|
8
|
Wigle JT, Harvey N, Detmar M, Lagutina I,
Grosveld G, Gunn MD, Jackson DG and Oliver G: An essential role for
Prox1 in the induction of the lymphatic endothelial cell phenotype.
EMBO J. 21:1505–1513. 2002. View Article : Google Scholar : PubMed/NCBI
|
|
9
|
Wigle JT and Oliver G: Prox1 function is
required for the development of the murine lymphatic system. Cell.
98:769–778. 1999. View Article : Google Scholar : PubMed/NCBI
|
|
10
|
Weninger W, Partanen TA,
Breiteneder-Geleff S, Mayer C, Kowalski H, Mildner M, Pammer J,
Stürzl M, Kerjaschki D, Alitalo K and Tschachler E: Expression of
vascular endothelial growth factor receptor-3 and podoplanin
suggests a lymphatic endothelial cell origin of Kaposi's sarcoma
tumor cells. Lab Invest. 79:243–251. 1999.PubMed/NCBI
|
|
11
|
Breiteneder-Geleff S, Matsui K, Soleiman
A, Meraner P, Poczewski H, Kalt R, Schaffner G and Kerjaschki D:
Podoplanin, novel 43-kd membrane protein of glomerular epithelial
cells, is down-regulated in puromycin nephrosis. Am J Pathol.
151:1141–1152. 1997.PubMed/NCBI
|
|
12
|
Kriehuber E, Breiteneder-Geleff S, Groeger
M, Soleiman A, Schoppmann SF, Stingl G, Kerjaschki D and Maurer D:
Isolation and characterization of dermal lymphatic and blood
endothelial cells reveal stable and functionally specialized cell
lineages. J Exp Med. 194:797–808. 2001. View Article : Google Scholar : PubMed/NCBI
|
|
13
|
Breiteneder-Geleff S, Soleiman A, Kowalski
H, Horvat R, Amann G, Kriehuber E, Diem K, Weninger W, Tschachler
E, Alitalo K and Kerjaschki D: Angiosarcomas express mixed
endothelial phenotypes of blood and lymphatic capillaries:
Podoplanin as a specific marker for lymphatic endothelium. Am J
Pathol. 154:385–394. 1999. View Article : Google Scholar : PubMed/NCBI
|
|
14
|
Schmid H, Henger A, Cohen CD, Frach K,
Gröne HJ, Schlöndorff D and Kretzler M: Gene expression profiles of
podocyte-associated molecules as diagnostic markers in acquired
proteinuric diseases. J Am Soc Nephrol. 14:2958–2966. 2003.
View Article : Google Scholar : PubMed/NCBI
|
|
15
|
Levidiotis V and Power DA: New insights
into the molecular biology of the glomerular filtration barrier and
associated disease. Nephrology (Carlton). 10:157–166. 2005.
View Article : Google Scholar : PubMed/NCBI
|
|
16
|
Kanner WA, Galgano MT and Atkins KA:
Podoplanin expression in basal and myoepithelial cells: Utility and
potential pitfalls. Appl Immunohistochem Mol Morphol. 18:226–230.
2010. View Article : Google Scholar : PubMed/NCBI
|
|
17
|
Martín-Villar E, Scholl FG, Gamallo C,
Yurrita MM, Muñoz-Guerra M, Cruces J and Quintanilla M:
Characterization of human PA2.26 antigen (T1alpha-2, podoplanin), a
small membrane mucin induced in oral squamous cell carcinomas. Int
J Cancer. 113:899–910. 2005. View Article : Google Scholar : PubMed/NCBI
|
|
18
|
Kato Y, Kaneko M, Sata M, Fujita N, Tsuruo
T and Osawa M: Enhanced expression of Aggrus (T1alpha/podoplanin),
a platelet-aggregation-inducing factor in lung squamous cell
carcinoma. Tumour Biol. 26:195–200. 2005. View Article : Google Scholar : PubMed/NCBI
|
|
19
|
Schacht V, Dadras SS, Johnson LA, Jackson
DG, Hong YK and Detmar M: Up-regulation of the lymphatic marker
podoplanin, a mucin-type transmembrane glycoprotein, in human
squamous cell carcinomas and germ cell tumors. Am J Pathol.
166:913–921. 2005. View Article : Google Scholar : PubMed/NCBI
|
|
20
|
Zustin J, Scheuer HA and Friedrich RE:
Podoplanin expression in human tooth germ tissues and cystic
odontogenic lesions: An immunohistochemical study. J Oral Pathol
Med. 39:115–120. 2010. View Article : Google Scholar : PubMed/NCBI
|
|
21
|
Kikuchi K, Ito S, Inoue H, González-Alva
P, Miyazaki Y, Sakashita H, Yoshino A, Katayama Y, Terui T, Ide F
and Kusama K: Immunohistochemical expression of podoplanin in
so-called hard α-keratin-expressing tumors, including calcifying
cystic odontogenic tumor, craniopharyngioma and pilomatrixoma. J
Oral Sci. 54:165–175. 2012. View Article : Google Scholar : PubMed/NCBI
|
|
22
|
Tsuneki M, Maruyama S, Yamazaki M, Cheng J
and Saku T: Podoplanin expression profiles characteristic of
odontogenic tumor-specific tissue architectures. Pathol Res Pract.
208:140–146. 2012. View Article : Google Scholar : PubMed/NCBI
|
|
23
|
Moustakas A and Heldin CH: Signaling
networks guiding epithelial-mesenchymal transitions during
embryogenesis and cancer progression. Cancer Sci. 98:1512–1520.
2007. View Article : Google Scholar : PubMed/NCBI
|
|
24
|
Scholl FG, Gamallo C, Vilaró S and
Quintanilla M: Identification of PA2.26 antigen as a novel
cell-surface mucin-type glycoprotein that induces plasma membrane
extensions and increased motility in keratinocytes. J Cell Sci.
112:4601–4613. 1999.PubMed/NCBI
|
|
25
|
Wicki A, Lehembre F, Wick N, Hantusch B,
Kerjaschki D and Christofori G: Tumor invasion in the absence of
epithelial-mesenchymal transition: Podoplanin-mediated remodeling
of the actin cytoskeleton. Cancer cell. 9:261–272. 2006. View Article : Google Scholar : PubMed/NCBI
|
|
26
|
Martín-Villar E, Megías D, Castel S,
Yurrita MM, Vilaró S and Quintanilla M: Podoplanin binds ERM
proteins to activate RhoA and promote epithelial-mesenchymal
transition. J Cell Sci. 119:4541–4553. 2006. View Article : Google Scholar : PubMed/NCBI
|
|
27
|
Marks A, Sutherland DR, Bailey D, Iglesias
J, Law J, Lei M, Yeger H, Banerjee D and Baumal R: Characterization
and distribution of an oncofetal antigen (M2A antigen) expressed on
testicular germ cell tumours. Br J Cancer. 80:569–578. 1999.
View Article : Google Scholar : PubMed/NCBI
|
|
28
|
Kahn HJ and Marks A: A new monoclonal
antibody, D2-40, for detection of lymphatic invasion in primary
tumors. Lab Invest. 82:1255–1257. 2002. View Article : Google Scholar : PubMed/NCBI
|
|
29
|
Ren S, Abuel-Haija M, Khurana JS and Zhang
X: D2-40: An additional marker for myoepithelial cells of breast
and the precaution in interpreting tumor lymphovascular invasion.
Int J Clin Exp Pathol. 4:175–182. 2011.PubMed/NCBI
|
|
30
|
Braun M, Flucke U, Debald M,
Walgenbach-Bruenagel G, Walgenbach KJ, Höller T, Pölcher M,
Wolfgarten M, Sauerwald A, Keyver-Paik M, et al: Detection of
lymphovascular invasion in early breast cancer by D2-40
(podoplanin): A clinically useful predictor for axillary lymph node
metastases. Breast Cancer Res Treat. 112:503–511. 2008. View Article : Google Scholar : PubMed/NCBI
|
|
31
|
El-Gendi S and Abdel-Hadi M: Lymphatic
vessel density as prognostic factor in breast carcinoma: Relation
to clinicopathologic parameters. J Egypt Natl Canc Inst.
21:139–149. 2009.PubMed/NCBI
|
|
32
|
Birner P, Schindl M, Obermair A,
Breitenecker G, Kowalski H and Oberhuber G: Lymphatic microvessel
density as a novel prognostic factor in early-stage invasive
cervical cancer. Int J Cancer. 95:29–33. 2001. View Article : Google Scholar : PubMed/NCBI
|
|
33
|
Niemiec JA, Adamczyk A, Ambicka A,
Mucha-Malecka A, Wysocki WM and Ryś J: Distribution of
podoplanin-positive tumor vessels predicts disease-specific
survival of node-positive breast cancer patients treated with
anthracyclines and/or taxanes. Cancer Invest. 32:168–177. 2014.
View Article : Google Scholar : PubMed/NCBI
|
|
34
|
Tezuka K, Onoda N, Takashima T, Takagaki
K, Ishikawa T, Wakasa T, Wakasa K and Hirakawa K: Prognostic
significance of lymphovascular invasion diagnosed by lymphatic
endothelium immunostaining in breast cancer patients. Oncol Rep.
17:997–1003. 2007.PubMed/NCBI
|
|
35
|
Rabban JT and Chen YY: D2-40 expression by
breast myoepithelium: Potential pitfalls in distinguishing
intralymphatic carcinoma from in situ carcinoma. Hum Pathol.
39:175–183. 2008. View Article : Google Scholar : PubMed/NCBI
|
|
36
|
Laurent TC and Fraser JR: Hyaluronan.
FASEB J. 6:2397–2404. 1992.PubMed/NCBI
|
|
37
|
Banerji S, Ni J, Wang SX, Clasper S, Su J,
Tammi R, Jones M and Jackson DG: LYVE-1, a new homologue of the
CD44 glycoprotein, is a lymph-specific receptor for hyaluronan. J
Cell Biol. 144:789–801. 1999. View Article : Google Scholar : PubMed/NCBI
|
|
38
|
Jackson DG, Prevo R, Clasper S and Banerji
S: LYVE-1, the lymphatic system and tumor lymphangiogenesis. Trends
Immunol. 22:317–321. 2001. View Article : Google Scholar : PubMed/NCBI
|
|
39
|
Du Y, Liu Y, Wang Y, He Y, Yang C and Gao
F: LYVE-1 enhances the adhesion of HS-578T cells to COS-7 cells via
hyaluronan. Clin Invest Med. 34:E45–E54. 2011. View Article : Google Scholar : PubMed/NCBI
|
|
40
|
Cunnick GH, Jiang WG, Gomez KF and Mansel
RE: Lymphangiogenesis quantification using quantitative PCR and
breast cancer as a model. Biochem Biophys Res Commun.
288:1043–1046. 2001. View Article : Google Scholar : PubMed/NCBI
|
|
41
|
Tsujii M, Kawano S, Tsuji S, Sawaoka H,
Hori M and DuBois RN: Cyclooxygenase regulates angiogenesis induced
by colon cancer cells. Cell. 93:705–716. 1998. View Article : Google Scholar : PubMed/NCBI
|
|
42
|
Timoshenko AV, Chakraborty C, Wagner GF
and Lala PK: COX-2-mediated stimulation of the lymphangiogenic
factor VEGF-C in human breast cancer. Br J Cancer. 94:1154–1163.
2006. View Article : Google Scholar : PubMed/NCBI
|
|
43
|
Wong HL, Jin G, Cao R, Zhang S, Cao Y and
Zhou Z: MT1-MMP sheds LYVE-1 on lymphatic endothelial cells and
suppresses VEGF-C production to inhibit lymphangiogenesis. Nat
Commun. 7:108242016. View Article : Google Scholar : PubMed/NCBI
|
|
44
|
Gale NW, Prevo R, Espinosa J, Ferguson DJ,
Dominguez MG, Yancopoulos GD, Thurston G and Jackson DG: Normal
lymphatic development and function in mice deficient for the
lymphatic hyaluronan receptor LYVE-1. Mol Cell Biol. 27:595–604.
2007. View Article : Google Scholar : PubMed/NCBI
|
|
45
|
Schledzewski K, Falkowski M, Moldenhauer
G, Metharom P, Kzhyshkowska J, Ganss R, Demory A, Falkowska-Hansen
B, Kurzen H, Ugurel S, et al: Lymphatic endothelium-specific
hyaluronan receptor LYVE-1 is expressed by stabilin-1+, F4/80+,
CD11b+ macrophages in malignant tumours and wound healing tissue in
vivo and in bone marrow cultures in vitro: Implications for the
assessment of lymphangiogenesis. J Pathol. 209:67–77. 2006.
View Article : Google Scholar : PubMed/NCBI
|
|
46
|
Oliver G, Sosa-Pineda B, Geisendorf S,
Spana EP, Doe CQ and Gruss P: Prox 1, a prospero-related homeobox
gene expressed during mouse development. Mech Dev. 44:3–16. 1993.
View Article : Google Scholar : PubMed/NCBI
|
|
47
|
Wigle JT, Chowdhury K, Gruss P and Oliver
G: Prox1 function is crucial for mouse lens-fibre elongation. Nat
Genet. 21:318–322. 1999. View
Article : Google Scholar : PubMed/NCBI
|
|
48
|
Hong YK, Harvey N, Noh YH, Schacht V,
Hirakawa S, Detmar M and Oliver G: Prox1 is a master control gene
in the program specifying lymphatic endothelial cell fate. Dev Dyn.
225:351–357. 2002. View Article : Google Scholar : PubMed/NCBI
|
|
49
|
Baxter SA, Cheung DY, Bocangel P, Kim HK,
Herbert K, Douville JM, Jangamreddy JR, Zhang S, Eisenstat DD and
Wigle JT: Regulation of the lymphatic endothelial cell cycle by the
PROX1 homeodomain protein. Biochim Biophys Acta. 1813:201–212.
2011. View Article : Google Scholar : PubMed/NCBI
|
|
50
|
Dadras SS, Skrzypek A, Nguyen L, Shin JW,
Schulz MM, Arbiser J, Mihm MC and Detmar M: Prox-1 promotes
invasion of kaposiform hemangioendotheliomas. J Invest Dermatol.
128:2798–2806. 2008. View Article : Google Scholar : PubMed/NCBI
|
|
51
|
de Andrade BA Benevenuto, Ramírez-Amador
V, Anaya-Saavedra G, Martínez-Mata G, Fonseca FP, Graner E and de
Almeida O Paes: Expression of PROX-1 in oral Kaposi's sarcoma
spindle cells. J Oral Pathol Med. 43:132–136. 2014. View Article : Google Scholar : PubMed/NCBI
|
|
52
|
Pajusola K, Aprelikova O, Armstrong E,
Morris S and Alitalo K: Two human FLT4 receptor tyrosine kinase
isoforms with distinct carboxy terminal tails are produced by
alternative processing of primary transcripts. Oncogene.
8:2931–2937. 1993.PubMed/NCBI
|
|
53
|
Valtola R, Salven P, Heikkilä P, Taipale
J, Joensuu H, Rehn M, Pihlajaniemi T, Weich H, deWaal R and Alitalo
K: VEGFR-3 and its ligand VEGF-C are associated with angiogenesis
in breast cancer. Am J Pathol. 154:1381–1390. 1999. View Article : Google Scholar : PubMed/NCBI
|
|
54
|
Joukov V, Sorsa T, Kumar V, Jeltsch M,
Claesson-Welsh L, Cao Y, Saksela O, Kalkkinen N and Alitalo K:
Proteolytic processing regulates receptor specificity and activity
of VEGF-C. EMBO J. 16:3898–3911. 1997. View Article : Google Scholar : PubMed/NCBI
|
|
55
|
Stacker SA, Stenvers K, Caesar C, Vitali
A, Domagala T, Nice E, Roufail S, Simpson RJ, Moritz R, Karpanen T,
et al: Biosynthesis of vascular endothelial growth factor-D
involves proteolytic processing which generates non-covalent
homodimers. J Biol Chem. 274:32127–32136. 1999. View Article : Google Scholar : PubMed/NCBI
|
|
56
|
Mäkinen T, Veikkola T, Mustjoki S,
Karpanen T, Catimel B, Nice EC, Wise L, Mercer A, Kowalski H,
Kerjaschki D, et al: Isolated lymphatic endothelial cells transduce
growth, survival and migratory signals via the VEGF-C/D receptor
VEGFR-3. EMBO J. 20:4762–4773. 2001. View Article : Google Scholar : PubMed/NCBI
|
|
57
|
Jeltsch M, Karpanen T, Strandin T, Aho K,
Lankinen H and Alitalo K: Vascular endothelial growth factor
(VEGF)/VEGF-C mosaic molecules reveal specificity determinants and
feature novel receptor binding patterns. J Biol Chem.
281:12187–12195. 2006. View Article : Google Scholar : PubMed/NCBI
|
|
58
|
Leppänen VM, Prota AE, Jeltsch M, Anisimov
A, Kalkkinen N, Strandin T, Lankinen H, Goldman A, Ballmer-Hofer K
and Alitalo K: Structural determinants of growth factor binding and
specificity by VEGF receptor 2. Proc Natl Acad Sci USA.
107:2425–2430. 2010. View Article : Google Scholar : PubMed/NCBI
|
|
59
|
Baldwin ME, Catimel B, Nice EC, Roufail S,
Hall NE, Stenvers KL, Karkkainen MJ, Alitalo K, Stacker SA and
Achen MG: The specificity of receptor binding by vascular
endothelial growth factor-d is different in mouse and man. J Biol
Chem. 276:19166–19171. 2001. View Article : Google Scholar : PubMed/NCBI
|
|
60
|
Leppänen VM, Jeltsch M, Anisimov A,
Tvorogov D, Aho K, Kalkkinen N, Toivanen P, Ylä-Herttuala S,
Ballmer-Hofer K and Alitalo K: Structural determinants of vascular
endothelial growth factor-D receptor binding and specificity.
Blood. 117:1507–1515. 2011. View Article : Google Scholar : PubMed/NCBI
|
|
61
|
Kaipainen A, Korhonen J, Mustonen T, van
Hinsbergh VW, Fang GH, Dumont D, Breitman M and Alitalo K:
Expression of the fms-like tyrosine kinase 4 gene becomes
restricted to lymphatic endothelium during development. Proc Natl
Acad Sci USA. 92:3566–3570. 1995. View Article : Google Scholar : PubMed/NCBI
|
|
62
|
Pajusola K, Aprelikova O, Korhonen J,
Kaipainen A, Pertovaara L, Alitalo R and Alitalo K: FLT4 receptor
tyrosine kinase contains seven immunoglobulin-like loops and is
expressed in multiple human tissues and cell lines. Cancer Res.
52:5738–5743. 1992.PubMed/NCBI
|
|
63
|
Dumont DJ, Jussila L, Taipale J,
Lymboussaki A, Mustonen T, Pajusola K, Breitman M and Alitalo K:
Cardiovascular failure in mouse embryos deficient in VEGF
receptor-3. Science. 282:946–949. 1998. View Article : Google Scholar : PubMed/NCBI
|
|
64
|
Stacker SA, Caesar C, Baldwin ME, Thornton
GE, Williams RA, Prevo R, Jackson DG, Nishikawa S, Kubo H and Achen
MG: VEGF-D promotes the metastatic spread of tumor cells via the
lymphatics. Nat Med. 7:186–191. 2001. View
Article : Google Scholar : PubMed/NCBI
|
|
65
|
Jain RK and Padera TP: Prevention and
treatment of lymphatic metastasis by antilymphangiogenic therapy. J
Natl Cancer Inst. 94:785–787. 2002. View Article : Google Scholar : PubMed/NCBI
|
|
66
|
He Y, Kozaki K, Karpanen T, Koshikawa K,
Yla-Herttuala S, Takahashi T and Alitalo K: Suppression of tumor
lymphangiogenesis and lymph node metastasis by blocking vascular
endothelial growth factor receptor 3 signaling. J Natl Cancer Inst.
94:819–825. 2002. View Article : Google Scholar : PubMed/NCBI
|
|
67
|
Mäkinen T, Jussila L, Veikkola T, Karpanen
T, Kettunen MI, Pulkkanen KJ, Kauppinen R, Jackson DG, Kubo H,
Nishikawa S, et al: Inhibition of lymphangiogenesis with resulting
lymphedema in transgenic mice expressing soluble VEGF receptor-3.
Nat Med. 7:199–205. 2001. View
Article : Google Scholar : PubMed/NCBI
|
|
68
|
Mandriota SJ, Jussila L, Jeltsch M,
Compagni A, Baetens D, Prevo R, Banerji S, Huarte J, Montesano R,
Jackson DG, et al: Vascular endothelial growth factor-C-mediated
lymphangiogenesis promotes tumour metastasis. EMBO J. 20:672–682.
2001. View Article : Google Scholar : PubMed/NCBI
|
|
69
|
Skobe M, Hawighorst T, Jackson DG, Prevo
R, Janes L, Velasco P, Riccardi L, Alitalo K, Claffey K and Detmar
M: Induction of tumor lymphangiogenesis by VEGF-C promotes breast
cancer metastasis. Nat Med. 7:192–198. 2001. View Article : Google Scholar : PubMed/NCBI
|
|
70
|
Takahashi S: Vascular endothelial growth
factor (VEGF), VEGF receptors and their inhibitors for
antiangiogenic tumor therapy. Biol Pharm Bull. 34:1785–1788. 2011.
View Article : Google Scholar : PubMed/NCBI
|
|
71
|
Beekman KW, Bradley D and Hussain M: New
molecular targets and novel agents in the treatment of advanced
urothelial cancer. Semin Oncol. 34:154–164. 2007. View Article : Google Scholar : PubMed/NCBI
|
|
72
|
Sonpavde G, Jian W, Liu H, Wu MF, Shen SS
and Lerner SP: Sunitinib malate is active against human urothelial
carcinoma and enhances the activity of cisplatin in a preclinical
model. Urol Oncol. 27:391–399. 2009. View Article : Google Scholar : PubMed/NCBI
|
|
73
|
Rudert M and Tillmann B: Detection of
lymph and blood vessels in the human intervertebral disc by
histochemical and immunohistochemical methods. Ann Anat.
175:237–242. 1993. View Article : Google Scholar : PubMed/NCBI
|
|
74
|
Kucera R, Topolcan O, Treskova I,
Kinkorova J, Windrichova J, Fuchsova R, Svobodova S, Treska V,
Babuska V, Novak J and Smejkal J: Evaluation of IL-2, IL-6, IL-8
and IL-10 in Malignant Melanoma Diagnostics. Anticancer Res.
35:3537–3541. 2015.PubMed/NCBI
|
|
75
|
Harada T, Shinohara M, Nakamura S, Shimada
M and Oka M: Immunohistochemical detection of desmosomes in oral
squamous cell carcinomas: Correlation with differentiation, mode of
invasion, and metastatic potential. Int J Oral Maxillofac Surg.
21:346–349. 1992. View Article : Google Scholar : PubMed/NCBI
|
|
76
|
Petrova TV, Mäkinen T, Mäkelä TP, Saarela
J, Virtanen I, Ferrell RE, Finegold DN, Kerjaschki D, Ylä-Herttuala
S and Alitalo K: Lymphatic endothelial reprogramming of vascular
endothelial cells by the Prox-1 homeobox transcription factor. EMBO
J. 21:4593–4599. 2002. View Article : Google Scholar : PubMed/NCBI
|