|
1
|
Torre LA, Bray F, Siegel RL, Ferlay J,
Lortet-Tieulent J and Jemal A: Global cancer statistics, 2012. CA
Cancer J Clin. 65:87–108. 2015. View Article : Google Scholar : PubMed/NCBI
|
|
2
|
Ziegler RG, Anderson WF and Gail MH:
Increasing breast cancer incidence in China: The numbers add up. J
Natl Cancer Ins. 100:1339–1341. 2008. View Article : Google Scholar
|
|
3
|
de Waard F and Baanders-van Halewijn EA: A
prospective study in general practice on breast-cancer risk in
postmenopausal women. Int J Cancer. 14:153–160. 1974. View Article : Google Scholar : PubMed/NCBI
|
|
4
|
Wiseman M: The second World Cancer
Research Fund/American Institute for Cancer Research expert report.
Food, nutrition, physical activity, and the prevention of cancer: A
global perspective. Proc Nutr Soc. 67:pp. 253–256. 2008, View Article : Google Scholar : PubMed/NCBI
|
|
5
|
Rakha EA, Elsayed ME, Green AR, Lee AH,
Robertson JF and Ellis IO: Prognostic markers in triple-negative
breast cancer. Cancer. 109:25–32. 2007. View Article : Google Scholar : PubMed/NCBI
|
|
6
|
Dent R, Trudeau M, Pritchard KI, Hanna WM,
Kahn HK, Sawka CA, Lickley LA, Rawlinson E, Sun P, Narod SA, et al:
Triple-negative breast cancer: Clinical features and patterns of
recurrence. Clin Cancer Res. 13:4429–4434. 2007. View Article : Google Scholar : PubMed/NCBI
|
|
7
|
Trivers KF, Lund MJ, Porter PL, Liff JM,
Flagg EW, Coates RJ and Eley JW: The epidemiology of
triple-negative breast cancer, including race. Cancer Causes
Control. 20:1071–1082. 2009. View Article : Google Scholar : PubMed/NCBI
|
|
8
|
Vona-Davis L, Rose DP, Hazard H,
Howard-McNatt M, Adkins F, Partin J and Hobbs G: Triple-negative
breast cancer and obesity in a rural Appalachian population. Cancer
Epidemiol Biomarkers Prev. 17:3319–3324. 2008. View Article : Google Scholar : PubMed/NCBI
|
|
9
|
Cakar B, Muslu U, Erdogan AP, Ozisik M,
Ozisik H, Tunakan Dalgic C, Durusoy R, Karaca B, Sezgin C,
Karabulut B and Uslu R: The role of body mass index in triple
negative breast cancer. Oncol Res Treat. 38:518–522. 2015.
View Article : Google Scholar : PubMed/NCBI
|
|
10
|
Mowad R, Chu QD, Li BD, Burton GV, Ampil
FL and Kim RH: Does obesity have an effect on outcomes in
triple-negative breast cancer? J sur Res. 184:253–259. 2013.
View Article : Google Scholar
|
|
11
|
Ademuyiwa FO, Groman A, O'Connor T,
Ambrosone C, Watroba N and Edge SB: Impact of body mass index on
clinical outcomes in triple-negative breast cancer. Cancer.
117:4132–4140. 2011. View Article : Google Scholar : PubMed/NCBI
|
|
12
|
Pierobon M and Frankenfeld CL: Obesity as
a risk factor for triple-negative breast cancers: A systematic
review and meta-analysis. Breast Cancer Res Treat. 137:307–314.
2013. View Article : Google Scholar : PubMed/NCBI
|
|
13
|
Hao S, Liu Y, Yu KD, Chen S, Yang WT and
Shao ZM: Overweight as a prognostic factor for triple-negative
breast Cancers in Chinese Women. PLoS One. 10:e01297412015.
View Article : Google Scholar : PubMed/NCBI
|
|
14
|
Yang XR, Sherman ME, Rimm DL, Lissowska J,
Brinton LA, Peplonska B, Hewitt SM, Anderson WF,
Szeszenia-Dabrowska N, Bardin-Mikolajczak A, et al: Differences in
risk factors for breast cancer molecular subtypes in a
population-based study. Cancer Epidemiol Biomarkers Prev.
16:439–443. 2007. View Article : Google Scholar : PubMed/NCBI
|
|
15
|
Chen L, Cook LS, Tang MT, Porter PL, Hill
DA, Wiggins CL and Li CI: Body mass index and risk of luminal,
HER2-overexpressing, and triple negative breast cancer. Breast
Cancer Res Treat. 157:545–554. 2016. View Article : Google Scholar : PubMed/NCBI
|
|
16
|
Guh DP, Zhang W, Bansback N, Amarsi Z,
Birmingham CL and Anis AH: The incidence of co-morbidities related
to obesity and overweight: A systematic review and meta-analysis.
BMC Public Health. 9:882009. View Article : Google Scholar : PubMed/NCBI
|
|
17
|
Gillespie EF, Sorbero ME, Hanauer DA,
Sabel MS, Herrmann EJ, Weiser LJ, Jagielski CH and Griggs JJ:
Obesity and angiolymphatic invasion in primary breast cancer. Ann
Surg Oncol. 17:752–759. 2010. View Article : Google Scholar : PubMed/NCBI
|
|
18
|
Papa V, Pezzino V, Costantino A, Belfiore
A, Giuffrida D, Frittitta L, Vannelli GB, Brand R, Goldfine ID and
Vigneri R: Elevated insulin receptor content in human breast
cancer. J Clin Invest. 86:1503–1510. 1990. View Article : Google Scholar : PubMed/NCBI
|
|
19
|
Ng EH, Gao F, Ji CY, Ho GH and Soo KC:
Risk factors for breast carcinoma in Singaporean Chinese women: The
role of central obesity. Cancer. 80:725–731. 1997. View Article : Google Scholar : PubMed/NCBI
|
|
20
|
Sellers TA, Kushi LH, Potter JD, Kaye SA,
Nelson CL, McGovern PG and Folsom AR: Effect of family history,
body-fat distribution, and reproductive factors on the risk of
postmenopausal breast cancer. New Engl J Med. 326:1323–1329. 1992.
View Article : Google Scholar : PubMed/NCBI
|
|
21
|
Sellers TA, Gapstur SM, Potter JD, Kushi
LH, Bostick RM and Folsom AR: Association of body fat distribution
and family histories of breast and ovarian cancer with risk of
postmenopausal breast cancer. Am J Epidemiol. 138:799–803. 1993.
View Article : Google Scholar : PubMed/NCBI
|
|
22
|
Millikan RC, Newman B, Tse CK, Moorman PG,
Conway K, Dressler LG, Smith LV, Labbok MH, Geradts J, Bensen JT,
et al: Epidemiology of basal-like breast cancer. Breast Cancer Res
Treat. 109:123–139. 2008. View Article : Google Scholar : PubMed/NCBI
|
|
23
|
Bao PP, Cai H, Peng P, Gu K, Su Y, Shu XO
and Zheng Y: Body mass index and weight change in relation to
triple-negative breast cancer survival. Cancer Causes Control.
27:229–236. 2016. View Article : Google Scholar : PubMed/NCBI
|
|
24
|
Bauer KR, Brown M, Cress RD, Parise CA and
Caggiano V: Descriptive analysis of estrogen receptor
(ER)-negative, progesterone receptor (PR)-negative, and
HER2-negative invasive breast cancer, the so-called triple-negative
phenotype: A population-based study from the California cancer
Registry. Cancer. 109:1721–1728. 2007. View Article : Google Scholar : PubMed/NCBI
|
|
25
|
Morris GJ, Naidu S, Topham AK, Guiles F,
Xu Y, McCue P, Schwartz GF, Park PK, Rosenberg AL, Brill K and
Mitchell EP: Differences in breast carcinoma characteristics in
newly diagnosed African-American and Caucasian patients: A
single-institution compilation compared with the National Cancer
Institute's Surveillance, Epidemiology, and End Results database.
Cancer. 110:876–884. 2007. View Article : Google Scholar : PubMed/NCBI
|
|
26
|
Saxena T, Lee E, Henderson KD, Clarke CA,
West D, Marshall SF, Deapen D, Bernstein L and Ursin G: Menopausal
hormone therapy and subsequent risk of specific invasive breast
cancer subtypes in the California Teachers Study. Cancer Epidemiol
Biomarkers Prev. 19:2366–2378. 2010. View Article : Google Scholar : PubMed/NCBI
|
|
27
|
Phipps AI, Malone KE, Porter PL, Daling JR
and Li CI: Body size and risk of luminal, HER2-overexpressing, and
triple-negative breast cancer in postmenopausal women. Cancer
Epidemiol Biomarkers Prev. 17:2078–2086. 2008. View Article : Google Scholar : PubMed/NCBI
|
|
28
|
Systemic treatment of early breast cancer
by hormonal, cytotoxic, or immune therapy. 133 randomised trials
involving 31,000 recurrences and 24,000 deaths among 75,000 women.
Early Breast Cancer Trialists' Collaborative Group. Lancet.
339:71–85. 1992.PubMed/NCBI
|
|
29
|
Rebbeck TR, Lynch HT, Neuhausen SL, Narod
SA, Van't Veer L, Garber JE, Evans G, Isaacs C, Daly MB, Matloff E,
et al: Prophylactic oophorectomy in carriers of BRCA1 or BRCA2
mutations. New Engl J Med. 346:1616–1622. 2002. View Article : Google Scholar : PubMed/NCBI
|
|
30
|
Gupta PB, Proia D, Cingoz O, Weremowicz J,
Naber SP, Weinberg RA and Kuperwasser C: Systemic stromal effects
of estrogen promote the growth of estrogen receptor-negative
cancers. Cancer Res. 67:2062–2071. 2007. View Article : Google Scholar : PubMed/NCBI
|
|
31
|
Black DM and Solomon E: The search for the
familial breast/ovarian cancer gene. Trends Genet. 9:22–26. 1993.
View Article : Google Scholar : PubMed/NCBI
|
|
32
|
Winqvist R, Peltoketo H, Isomaa V,
Grzeschik KH, Mannermaa A and Vihko R: The gene for 17
beta-hydroxysteroid dehydrogenase maps to human chromosome 17,
bands q12-q21, and shows an RFLP with ScaI. Hum Genet. 85:473–476.
1990. View Article : Google Scholar : PubMed/NCBI
|
|
33
|
Foulkes WD, Stefansson IM, Chappuis PO,
Bégin LR, Goffin JR, Wong N, Trudel M and Akslen LA: Germline BRCA1
mutations and a basal epithelial phenotype in breast cancer. J Natl
Cancer Inst. 95:1482–1485. 2003. View Article : Google Scholar : PubMed/NCBI
|
|
34
|
Turner N, Tutt A and Ashworth A: Hallmarks
of ‘BRCAness’ in sporadic cancers. Nat Rev Cancer. 4:814–819. 2004.
View Article : Google Scholar : PubMed/NCBI
|
|
35
|
Sorlie T, Tibshirani R, Parker J, Hastie
T, Marron JS, Nobel A, Deng S, Johnsen H, Pesich R, Geisler S, et
al: Repeated observation of breast tumor subtypes in independent
gene expression data sets. Proc Natl Acad Sci USA. 100:pp.
8418–8423. 2003, View Article : Google Scholar : PubMed/NCBI
|
|
36
|
Fournier S, Brihmat F, Durand JC, Sterkers
N, Martin PM, Kuttenn F and Mauvais-Jarvis P: Estradiol 17
beta-hydroxysteroid dehydrogenase, a marker of breast cancer
hormone dependency. Cancer Res. 45:2895–2899. 1985.PubMed/NCBI
|
|
37
|
Setiawan VW, Hankinson SE, Colditz GA,
Hunter DJ and De Vivo I: HSD17B1 gene polymorphisms and risk of
endometrial and breast cancer. Cancer Epidemiol Biomarkers Prev.
13:213–219. 2004. View Article : Google Scholar : PubMed/NCBI
|
|
38
|
Pisani P: Hyper-insulinaemia and cancer,
meta-analyses of epidemiological studies. Arch Physiol Biochem.
114:63–70. 2008. View Article : Google Scholar : PubMed/NCBI
|
|
39
|
Baserga R, Peruzzi F and Reiss K: The
IGF-1 receptor in cancer biology. Int J Cancer. 107:873–877. 2003.
View Article : Google Scholar : PubMed/NCBI
|
|
40
|
Resnik JL, Reichart DB, Huey K, Webster NJ
and Seely BL: Elevated insulin-like growth factor I receptor
autophosphorylation and kinase activity in human breast cancer.
Cancer Res. 58:1159–1164. 1998.PubMed/NCBI
|
|
41
|
Carboni JM, Lee AV, Hadsell DL, Rowley BR,
Lee FY, Bol DK, Camuso AE, Gottardis M, Greer AF, Ho CP, et al:
Tumor development by transgenic expression of a constitutively
active insulin-like growth factor I receptor. Cancer Res.
65:3781–3787. 2005. View Article : Google Scholar : PubMed/NCBI
|
|
42
|
Jones RA, Campbell CI, Gunther EJ, Chodosh
LA, Petrik JJ, Khokha R and Moorehead RA: Transgenic overexpression
of IGF-IR disrupts mammary ductal morphogenesis and induces tumor
formation. Oncogene. 26:1636–1644. 2007. View Article : Google Scholar : PubMed/NCBI
|
|
43
|
Irie HY, Pearline RV, Grueneberg D, Hsia
M, Ravichandran P, Kothari N, Natesan S and Brugge JS: Distinct
roles of Akt1 and Akt2 in regulating cell migration and
epithelial-mesenchymal transition. J Cell Biol. 171:1023–1034.
2005. View Article : Google Scholar : PubMed/NCBI
|
|
44
|
Kim HJ, Litzenburger BC, Cui X, Delgado
DA, Grabiner BC, Lin X, Lewis MT, Gottardis MM, Wong TW, Attar RM,
et al: Constitutively active type I insulin-like growth factor
receptor causes transformation and xenograft growth of immortalized
mammary epithelial cells and is accompanied by an
epithelial-to-mesenchymal transition mediated by NF-kappaB and
snail. Mol Cell Biol. 27:3165–3175. 2007. View Article : Google Scholar : PubMed/NCBI
|
|
45
|
Yanochko GM and Eckhart W: Type I
insulin-like growth factor receptor over-expression induces
proliferation and anti-apoptotic signaling in a three-dimensional
culture model of breast epithelial cells. Breast Cancer Res.
8:R182006. View Article : Google Scholar : PubMed/NCBI
|
|
46
|
Davison Z, de Blacquiere GE, Westley BR
and May FE: Insulin-like growth factor-dependent proliferation and
survival of triple-negative breast cancer cells: Implications for
therapy. Neoplasia. 13:504–515. 2011. View Article : Google Scholar : PubMed/NCBI
|
|
47
|
Litzenburger BC, Creighton CJ, Tsimelzon
A, Chan BT, Hilsenbeck SG, Wang T, Carboni JM, Gottardis MM, Huang
F, Chang JC, et al: High IGF-IR activity in triple-negative breast
cancer cell lines and tumorgrafts correlates with sensitivity to
anti-IGF-IR therapy. Clin Cancer Res. 17:2314–2327. 2011.
View Article : Google Scholar : PubMed/NCBI
|
|
48
|
Sarfstein R, Maor S, Reizner N,
Abramovitch S and Werner H: Transcriptional regulation of the
insulin-like growth factor-I receptor gene in breast cancer. Mol
Cell Endocrinol. 252:241–246. 2006. View Article : Google Scholar : PubMed/NCBI
|
|
49
|
Yu H, Levesque MA, Khosravi MJ,
Papanastasiou-Diamandi A, Clark GM and Diamandis EP: Associations
between insulin-like growth factors and their binding proteins and
other prognostic indicators in breast cancer. Br J Cancer.
74:1242–1247. 1996. View Article : Google Scholar : PubMed/NCBI
|
|
50
|
Rocha RL, Hilsenbeck SG, Jackson JG, Lee
AV, Figueroa JA and Yee D: Correlation of insulin-like growth
factor-binding protein-3 messenger RNA with protein expression in
primary breast cancer tissues: Detection of higher levels in tumors
with poor prognostic features. J Natl Cancer Inst. 88:601–606.
1996. View Article : Google Scholar : PubMed/NCBI
|
|
51
|
Probst-Hensch NM, Steiner JH, Schraml P,
Varga Z, Zürrer-Härdi U, Storz M, Korol D, Fehr MK, Fink D,
Pestalozzi BC, et al: IGFBP2 and IGFBP3 protein expressions in
human breast cancer: Association with hormonal factors and obesity.
Clin Cancer Res. 16:1025–1032. 2010. View Article : Google Scholar : PubMed/NCBI
|
|
52
|
Neve RM, Chin K, Fridlyand J, Yeh J,
Baehner FL, Fevr T, Clark L, Bayani N, Coppe JP, Tong F, et al: A
collection of breast cancer cell lines for the study of
functionally distinct cancer subtypes. Cancer Cell. 10:515–527.
2006. View Article : Google Scholar : PubMed/NCBI
|
|
53
|
Martin JL and Baxter RC: Expression of
insulin-like growth factor binding protein-2 by MCF-7 breast cancer
cells is regulated through the phosphatidylinositol
3-kinase/AKT/mammalian target of rapamycin pathway. Endocrinology.
148:2532–2541. 2007. View Article : Google Scholar : PubMed/NCBI
|
|
54
|
Martin JL, de Silva HC, Lin MZ, Scott CD
and Baxter RC: Inhibition of insulin-like growth factor-binding
protein-3 signaling through sphingosine kinase-1 sensitizes
triple-negative breast cancer cells to EGF receptor blockade. Mol
Cancer Ther. 13:316–328. 2014. View Article : Google Scholar : PubMed/NCBI
|
|
55
|
Zhang Y, Proenca R, Maffei M, Barone M,
Leopold L and Friedman JM: Positional cloning of the mouse obese
gene and its human homologue. Nature. 372:425–432. 1994. View Article : Google Scholar : PubMed/NCBI
|
|
56
|
Garofalo C, Koda M, Cascio S, Sulkowska M,
Kanczuga-Koda L, Golaszewska J, Russo A, Sulkowski S and Surmacz E:
Increased expression of leptin and the leptin receptor as a marker
of breast cancer progression: Possible role of obesity-related
stimuli. Clin Cancer Res. 12:1447–1453. 2006. View Article : Google Scholar : PubMed/NCBI
|
|
57
|
Losso JN and Bawadi HA: Hypoxia inducible
factor pathways as targets for functional foods. J Agric Food Chem.
53:3751–3768. 2005. View Article : Google Scholar : PubMed/NCBI
|
|
58
|
Frankenberry KA, Skinner H, Somasundar P,
McFadden DW and Vona-Davis LC: Leptin receptor expression and cell
signaling in breast cancer. Int J Oncol. 28:985–993.
2006.PubMed/NCBI
|
|
59
|
Saxena NK, Taliaferro-Smith L, Knight BB,
Merlin D, Anania FA, O'Regan RM and Sharma D: Bidirectional
crosstalk between leptin and insulin-like growth factor-I signaling
promotes invasion and migration of breast cancer cells via
transactivation of epidermal growth factor receptor. Cancer Res.
68:9712–9722. 2008. View Article : Google Scholar : PubMed/NCBI
|
|
60
|
Tsao TS, Lodish HF and Fruebis J: ACRP30,
a new hormone controlling fat and glucose metabolism. Eur J
Pharmacol. 440:213–221. 2002. View Article : Google Scholar : PubMed/NCBI
|
|
61
|
Arita Y, Kihara S, Ouchi N, Takahashi M,
Maeda K, Miyagawa J, Hotta K, Shimomura I, Nakamura T, Miyaoka K,
et al: Paradoxical decrease of an adipose-specific protein,
adiponectin, in obesity. Biochem Biophys Res Commun. 257:79–83.
1999. View Article : Google Scholar : PubMed/NCBI
|
|
62
|
Weyer C, Funahashi T, Tanaka S, Hotta K,
Matsuzawa Y, Pratley RE and Tataranni PA: Hypoadiponectinemia in
obesity and type 2 diabetes: Close association with insulin
resistance and hyperinsulinemia. J Clin Endocrinol Metab.
86:1930–1935. 2001. View Article : Google Scholar : PubMed/NCBI
|
|
63
|
Hotta K, Funahashi T, Arita Y, Takahashi
M, Matsuda M, Okamoto Y, Iwahashi H, Kuriyama H, Ouchi N, Maeda K,
et al: Plasma concentrations of a novel, adipose-specific protein,
adiponectin, in type 2 diabetic patients. Arterioscler Thromb Vasc
Biol. 20:1595–1599. 2000. View Article : Google Scholar : PubMed/NCBI
|
|
64
|
Okumura M, Yamamoto M, Sakuma H, Kojima T,
Maruyama T, Jamali M, Cooper DR and Yasuda K: Leptin and high
glucose stimulate cell proliferation in MCF-7 human breast cancer
cells: Reciprocal involvement of PKC-alpha and PPAR expression.
Biochim Biophys Acta. 1592:107–116. 2002. View Article : Google Scholar : PubMed/NCBI
|
|
65
|
Yokota T, Oritani K, Takahashi I, Ishikawa
J, Matsuyama A, Ouchi N, Kihara S, Funahashi T, Tenner AJ, Tomiyama
Y and Matsuzawa Y: Adiponectin, a new member of the family of
soluble defense collagens, negatively regulates the growth of
myelomonocytic progenitors and the functions of macrophages. Blood.
96:1723–1732. 2000.PubMed/NCBI
|
|
66
|
Oh SW, Park CY, Lee ES, Yoon YS, Lee ES,
Park SS, Kim Y, Sung NJ, Yun YH, Lee KS, et al: Adipokines, insulin
resistance, metabolic syndrome, and breast cancer recurrence: A
cohort study. Breast Cancer Res. 13:R342011. View Article : Google Scholar : PubMed/NCBI
|
|
67
|
Kang JH, Lee YY, Yu BY, Yang BS, Cho KH,
Yoon DK and Roh YK: Adiponectin induces growth arrest and apoptosis
of MDA-MB-231 breast cancer cell. Arch Pharm Res. 28:1263–1269.
2005. View Article : Google Scholar : PubMed/NCBI
|
|
68
|
Dos Santos E, Benaitreau D, Dieudonne MN,
Leneveu MC, Serazin V, Giudicelli Y and Pecquery R: Adiponectin
mediates an antiproliferative response in human MDA-MB 231 breast
cancer cells. Onco Rep. 20:971–977. 2008.
|
|
69
|
Liu B, Fan Z, Edgerton SM, Deng XS,
Alimova IN, Lind SE and Thor AD: Metformin induces unique
biological and molecular responses in triple negative breast cancer
cells. Cell Cycle. 8:2031–2040. 2009. View Article : Google Scholar : PubMed/NCBI
|
|
70
|
Alimova IN, Liu B, Fan Z, Edgerton SM,
Dillon T, Lind SE and Thor AD: Metformin inhibits breast cancer
cell growth, colony formation and induces cell cycle arrest in
vitro. Cell Cycle. 8:909–915. 2009. View Article : Google Scholar : PubMed/NCBI
|
|
71
|
Staels B, Dallongeville J, Auwerx J,
Schoonjans K, Leitersdorf E and Fruchart JC: Mechanism of action of
fibrates on lipid and lipoprotein metabolism. Circulation.
98:2088–2093. 1998. View Article : Google Scholar : PubMed/NCBI
|
|
72
|
Li T, Zhang Q, Zhang J, Yang G, Shao Z,
Luo J, Fan M, Ni C, Wu Z and Hu X: Fenofibrate induces apoptosis of
triple-negative breast cancer cells via activation of NF-κB
pathway. BMC Cancer. 14:962014. View Article : Google Scholar : PubMed/NCBI
|
|
73
|
Green MR: Targeting targeted therapy. New
Engl J Med. 350:2191–2193. 2004. View Article : Google Scholar : PubMed/NCBI
|
|
74
|
Pao W and Miller VA: Epidermal growth
factor receptor mutations, small-molecule kinase inhibitors and
non-small-cell lung cancer: Current knowledge and future
directions. J Clin Oncol. 23:2556–2568. 2005. View Article : Google Scholar : PubMed/NCBI
|
|
75
|
Krause DS and Van Etten RA: Tyrosine
kinases as targets for cancer therapy. New Engl J Med. 353:172–187.
2005. View Article : Google Scholar : PubMed/NCBI
|
|
76
|
Flynn JF, Wong C and Wu JM: Anti-EGFR
Therapy: Mechanism and advances in clinical efficacy in breast
cancer. J Oncol. 2009:5269632009. View Article : Google Scholar : PubMed/NCBI
|
|
77
|
Agrawal A, Gutteridge E, Gee JM, Nicholson
RI and Robertson JF: Overview of tyrosine kinase inhibitors in
clinical breast cancer. Endocr Relat Cancer. 12 Suppl 1:S135–S144.
2005. View Article : Google Scholar : PubMed/NCBI
|
|
78
|
Burness ML, Grushko TA and Olopade OI:
Epidermal growth factor receptor in triple-negative and basal-like
breast cancer: Promising clinical target or only a marker? Cancer
J. 16:23–32. 2010. View Article : Google Scholar : PubMed/NCBI
|
|
79
|
Nielsen TO, Hsu FD, Jensen K, Cheang M,
Karaca G, Hu Z, Hernandez-Boussard T, Livasy C, Cowan D, Dressler
L, et al: Immunohistochemical and clinical characterization of the
basal-like subtype of invasive breast carcinoma. Clin Cancer Res.
10:5367–5374. 2004. View Article : Google Scholar : PubMed/NCBI
|
|
80
|
Nahta R, Yuan LX, Zhang B, Kobayashi R and
Esteva FJ: Insulin-like growth factor-I receptor/human epidermal
growth factor receptor 2 heterodimerization contributes to
trastuzumab resistance of breast cancer cells. Cancer Res.
65:11118–11128. 2005. View Article : Google Scholar : PubMed/NCBI
|
|
81
|
Shida D, Kitayama J, Mori K, Watanabe T
and Nagawa H: Transactivation of epidermal growth factor receptor
is involved in leptin-induced activation of janus-activated kinase
2 and extracellular signal-regulated kinase 1/2 in human gastric
cancer cells. Cancer Res. 65:9159–9163. 2005. View Article : Google Scholar : PubMed/NCBI
|
|
82
|
Siziopikou KP and Cobleigh M: The basal
subtype of breast carcinomas may represent the group of breast
tumors that could benefit from EGFR-targeted therapies. Breast.
16:104–107. 2007. View Article : Google Scholar : PubMed/NCBI
|
|
83
|
Siziopikou KP, Ariga R, Proussaloglou KE,
Gattuso P and Cobleigh M: The challenging estrogen
receptor-negative/progesterone receptor-negative/HER-2-negative
patient: A promising candidate for epidermal growth factor
receptor-targeted therapy? Breast J. 12:360–362. 2006. View Article : Google Scholar : PubMed/NCBI
|
|
84
|
Ishikawa M, Kitayama J and Nagawa H:
Enhanced expression of leptin and leptin receptor (OB-R) in human
breast cancer. Clin Cancer Res. 10:4325–4331. 2004. View Article : Google Scholar : PubMed/NCBI
|
|
85
|
Otvos L Jr, Kovalszky I, Riolfi M, Ferla
R, Olah J, Sztodola A, Nama K, Molino A, Piubello Q, Wade JD and
Surmacz E: Efficacy of a leptin receptor antagonist peptide in a
mouse model of triple-negative breast cancer. Eur J Cancer.
47:1578–1584. 2011. View Article : Google Scholar : PubMed/NCBI
|
|
86
|
Lethaby AE, Mason BH, Harvey VJ and
Holdaway IM: Survival of women with node negative breast cancer in
the Auckland region. N Z Med J. 109:330–333. 1996.PubMed/NCBI
|
|
87
|
Berclaz G, Li S, Price KN, Coates AS,
Castiglione-Gertsch M, Rudenstam CM, Holmberg SB, Lindtner J, Erien
D, Collins J, et al: Body mass index as a prognostic feature in
operable breast cancer: The International Breast Cancer Study Group
experience. Ann Oncol. 15:875–884. 2004. View Article : Google Scholar : PubMed/NCBI
|
|
88
|
Calle EE, Rodriguez C, Walker-Thurmond K
and Thun MJ: Overweight, obesity, and mortality from cancer in a
prospectively studied cohort of U.S. Adults. N Engl J Med.
348:1625–1638. 2003. View Article : Google Scholar : PubMed/NCBI
|
|
89
|
Holmberg L, Lund E, Bergstrom R, Adami HO
and Meirik O: Oral contraceptives and prognosis in breast cancer:
Effects of duration, latency, recency, age at first use and
relation to parity and body mass index in young women with breast
cancer. Eur J Cancer. 30:351–354. 1994. View Article : Google Scholar
|
|
90
|
Coates RJ, Clark WS, Eley JW, Greenberg
RS, Huguley CM Jr and Brown RL: Race, nutritional status, and
survival from breast cancer. J Natl Cancer Inst. 82:1684–1692.
1990. View Article : Google Scholar : PubMed/NCBI
|
|
91
|
Donegan WL, Hartz AJ and Rimm AA: The
association of body weight with recurrent cancer of the breast.
Cancer. 41:1590–1594. 1978. View Article : Google Scholar : PubMed/NCBI
|
|
92
|
den Tonkelaar I, de Waard F, Seidell JC
and Fracheboud J: Obesity and subcutaneous fat patterning in
relation to survival of postmenopausal breast cancer patients
participating in the DOM-project. Breast Cancer Res Treat.
34:129–137. 1995. View Article : Google Scholar : PubMed/NCBI
|
|
93
|
Boyd NF, Campbell JE, Germanson T, Thomson
DB, Sutherland DJ and Meakin JW: Body weight and prognosis in
breast cancer. J Natl Cancer Ins. 67:785–789. 1981.
|
|
94
|
Williams G, Howell A and Jones M: The
relationship of body weight to response to endocrine therapy,
steroid hormone receptors and survival of patients with advanced
cancer of the breast. Br J Cancer. 58:631–634. 1988. View Article : Google Scholar : PubMed/NCBI
|
|
95
|
Niraula S, Ocana A, Ennis M and Goodwin
PJ: Body size and breast cancer prognosis in relation to hormone
receptor and menopausal status: A meta-analysis. Breast Cancer Res
Treat. 134:769–781. 2012. View Article : Google Scholar : PubMed/NCBI
|
|
96
|
Sparano JA, Wang M, Zhao F, Stearns V,
Martino S, Ligibel JA, Perez EA, Saphner T, Wolff AC, Sledge GW Jr,
et al: Obesity at diagnosis is associated with inferior outcomes in
hormone receptor-positive operable breast cancer. Cancer.
118:5937–5946. 2012. View Article : Google Scholar : PubMed/NCBI
|
|
97
|
Chen HL, Ding A and Wang ML: Impact of
central obesity on prognostic outcome of triple negative breast
cancer in Chinese women. Springerplus. 5:5942016. View Article : Google Scholar : PubMed/NCBI
|
|
98
|
Fontanella C, Lederer B, Gade S, Vanoppen
M, Blohmer JU, Costa SD, Denkert C, Eidtmann H, Gerber B, Hanusch
C, et al: Impact of body mass index on neoadjuvant treatment
outcome: A pooled analysis of eight prospective neoadjuvant breast
cancer trials. Breast Cancer Res Treat. 150:127–139. 2015.
View Article : Google Scholar : PubMed/NCBI
|
|
99
|
Chen X, Lu W, Zheng W, Gu K, Chen Z, Zheng
Y and Shu XO: Obesity and weight change in relation to breast
cancer survival. Breast Cancer Res Treat. 122:823–833. 2010.
View Article : Google Scholar : PubMed/NCBI
|
|
100
|
Berclaz G, Li S, Price KN, Coates AS,
Castiglione-Gertsch M, Rudenstam CM, Holmberg SB, Lindtner J, Erien
D, Collins J, et al: Body mass index as a prognostic feature in
operable breast cancer: The International Breast Cancer Study Group
experience. Ann Oncol. 15:875–884. 2004. View Article : Google Scholar : PubMed/NCBI
|