|
1
|
Jemal A, Bray F, Center MM, Ferlay J, Ward
E and Forman D: Global cancer statistics. CA Cancer J Clin.
61:69–90. 2011. View Article : Google Scholar : PubMed/NCBI
|
|
2
|
Hsing AW and Devesa SS: Trends and
patterns of prostate cancer: What do they suggest? Epidemiol Rev.
23:3–13. 2001. View Article : Google Scholar : PubMed/NCBI
|
|
3
|
Huang Q, Whitington T, Gao P, Lindberg JF,
Yang Y, Sun J, Väisänen MR, Szulkin R, Annala M, Yan J, et al: A
prostate cancer susceptibility allele at 6q22 increases RFX6
expression by modulating HOXB13 chromatin binding. Nat Genet.
46:126–135. 2014. View
Article : Google Scholar : PubMed/NCBI
|
|
4
|
Hazelett DJ, Rhie SK, Gaddis M, Yan C,
Lakeland DL and Coetzee SG: Ellipse/GAME-ON consortium; Practical
consortium, Henderson BE, Noushmehr H, et al: Comprehensive
functional annotation of 77 prostate cancer risk loci. PLoS Genet.
10:e10041022014. View Article : Google Scholar : PubMed/NCBI
|
|
5
|
Spisák S, Lawrenson K, Fu Y, Csabai I,
Cottman RT, Seo JH, Haiman C, Han Y, Lenci R, Li Q, et al: CAUSEL:
An epigenome- and genome-editing pipeline for establishing function
of noncoding GWAS variants. Nat Med. 21:1357–1363. 2015. View Article : Google Scholar : PubMed/NCBI
|
|
6
|
Chen H, Yu H, Wang J, Zhang Z, Gao Z, Chen
Z, Lu Y, Liu W, Jiang D, Zheng SL, et al: Systematic enrichment
analysis of potentially functional regions for 103 prostate cancer
risk-associated loci. Prostate. 75:1264–1276. 2015. View Article : Google Scholar : PubMed/NCBI
|
|
7
|
ENCODE Project Consortium, . Birney E,
Stamatoyannopoulos JA, Dutta A, Guigó R, Gingeras TR, Margulies EH,
Weng Z, Snyder M, Dermitzakis ET, et al: Identification and
analysis of functional elements in 1% of the human genome by the
ENCODE pilot project. Nature. 447:799–816. 2007. View Article : Google Scholar : PubMed/NCBI
|
|
8
|
Groß S, Immel UD, Klintschar M and Bartel
F: Germline genetics of the p53 pathway affect longevity in a
gender specific manner. Curr Aging Sci. 7:91–100. 2014. View Article : Google Scholar : PubMed/NCBI
|
|
9
|
Kino T, Hurt DE, Ichijo T, Nader N and
Chrousos GP: Noncoding RNA gas5 is a growth arrest- and
starvation-associated repressor of the glucocorticoid receptor. Sci
Signal. 3:ra82010. View Article : Google Scholar : PubMed/NCBI
|
|
10
|
Brannan CI, Dees EC, Ingram RS and
Tilghman SM: The product of the H19 gene may function as an RNA.
Mol Cell Biol. 10:28–36. 1990. View Article : Google Scholar : PubMed/NCBI
|
|
11
|
Chen B, Yu M, Chang Q, Lu Y, Thakur C, Ma
D, Yi Z and Chen F: Mdig de-represses H19 large intergenic
non-coding RNA (lincRNA) by down-regulating H3K9me3 and
heterochromatin. Oncotarget. 4:1427–1437. 2013. View Article : Google Scholar : PubMed/NCBI
|
|
12
|
Ma L, Bajic VB and Zhang Z: On the
classification of long non-coding RNAs. RNA Biol. 10:925–933. 2013.
View Article : Google Scholar : PubMed/NCBI
|
|
13
|
Fatica A and Bozzoni I: Long non-coding
RNAs: New players in cell differentiation and development. Nat Rev
Genet. 15:7–21. 2014. View
Article : Google Scholar : PubMed/NCBI
|
|
14
|
Grote P and Herrmann BG: The long
non-coding RNA Fendrr links epigenetic control mechanisms to gene
regulatory networks in mammalian embryogenesis. RNA Biol.
10:1579–1585. 2013. View Article : Google Scholar : PubMed/NCBI
|
|
15
|
Li Z and Rana TM: Decoding the noncoding:
Prospective of lncRNA-mediated innate immune regulation. RNA Biol.
11:979–985. 2014. View Article : Google Scholar : PubMed/NCBI
|
|
16
|
Bartel DP: MicroRNAs: Target recognition
and regulatory functions. Cell. 136:215–233. 2009. View Article : Google Scholar : PubMed/NCBI
|
|
17
|
Mattick JS: RNA regulation: A new
genetics? Nat Rev Genet. 5:316–323. 2004. View Article : Google Scholar : PubMed/NCBI
|
|
18
|
Derrien T, Johnson R, Bussotti G, Tanzer
A, Djebali S, Tilgner H, Guernec G, Martin D, Merkel A, Knowles DG,
et al: The GENCODE v7 catalog of human long noncoding RNAs:
Analysis of their gene structure, evolution, and expression. Genome
Res. 22:1775–1789. 2012. View Article : Google Scholar : PubMed/NCBI
|
|
19
|
Ponting CP, Oliver PL and Reik W:
Evolution and functions of long noncoding RNAs. Cell. 136:629–641.
2009. View Article : Google Scholar : PubMed/NCBI
|
|
20
|
Lin R, Maeda S, Liu C, Karin M and
Edgington TS: A large noncoding RNA is a marker for murine
hepatocellular carcinomas and a spectrum of human carcinomas.
Oncogene. 26:851–858. 2007. View Article : Google Scholar : PubMed/NCBI
|
|
21
|
Pei Z, Du X, Song Y, Fan L, Li F, Gao Y,
Wu R, Chen Y, Li W, Zhou H, et al: Down-regulation of lncRNA CASC2
promotes cell proliferation and metastasis of bladder cancer by
activation of the Wnt/β-catenin signaling pathway. Oncotarget.
8:18145–18153. 2017.PubMed/NCBI
|
|
22
|
Li T, Xu C, Cai B, Zhang M, Gao F and Gan
J: Expression and clinicopathological significance of the lncRNA
HOXA11-AS in colorectal cancer. Oncol Lett. 12:4155–4160.
2016.PubMed/NCBI
|
|
23
|
He A, Chen Z, Mei H and Liu Y: Decreased
expression of LncRNA MIR31HG in human bladder cancer. Cancer
Biomark. 17:231–236. 2016. View Article : Google Scholar : PubMed/NCBI
|
|
24
|
Pibouin L, Villaudy J, Ferbus D, Muleris
M, Prospéri MT, Remvikos Y and Goubin G: Cloning of the mRNA of
overexpression in colon carcinoma-1: A sequence overexpressed in a
subset of colon carcinomas. Cancer Genet Cytogenet. 133:55–60.
2002. View Article : Google Scholar : PubMed/NCBI
|
|
25
|
Calin GA, Liu CG, Ferracin M, Hyslop T,
Spizzo R, Sevignani C, Fabbri M, Cimmino A, Lee EJ, Wojcik SE, et
al: Ultraconserved regions encoding ncRNAs are altered in human
leukemias and carcinomas. Cancer Cell. 12:215–229. 2007. View Article : Google Scholar : PubMed/NCBI
|
|
26
|
Chung S, Nakagawa H, Uemura M, Piao L,
Ashikawa K, Hosono N, Takata R, Akamatsu S, Kawaguchi T, Morizono
T, et al: Association of a novel long non-coding RNA in 8q24 with
prostate cancer susceptibility. Cancer Sci. 102:245–252. 2011.
View Article : Google Scholar : PubMed/NCBI
|
|
27
|
Yang L, Lin C, Jin C, Yang JC, Tanasa B,
Li W, Merkurjev D, Ohgi KA, Meng D, Zhang J, et al:
lncRNA-dependent mechanisms of androgen-receptor-regulated gene
activation programs. Nature. 500:598–602. 2013. View Article : Google Scholar : PubMed/NCBI
|
|
28
|
Hui J, Xu Y, Yang K, Liu M, Wei D, Wei D,
Zhang Y, Shi XH, Yang F, Wang N, et al: Study of genetic variants
of 8q21 and 8q24 associated with prostate cancer in Jing-Jin
residents in northern China. Clin Lab. 60:645–652. 2014. View Article : Google Scholar : PubMed/NCBI
|
|
29
|
Zheng SL, Hsing AW, Sun J, Chu LW, Yu K,
Li G, Gao Z, Kim ST, Isaacs WB, Shen MC, et al: Association of 17
prostate cancer susceptibility loci with prostate cancer risk in
Chinese men. Prostate. 70:425–432. 2010.PubMed/NCBI
|
|
30
|
Salinas CA, Kwon E, Carlson CS,
Koopmeiners JS, Feng Z, Karyadi DM, Ostrander EA and Stanford JL:
Multiple independent genetic variants in the 8q24 region are
associated with prostate cancer risk. Cancer Epidemiol Biomarkers
Prev. 17:1203–1213. 2008. View Article : Google Scholar : PubMed/NCBI
|
|
31
|
Li L, Jia F, Bai P, Liang Y, Sun R, Yuan
F, Zhang L and Gao L: Association between polymorphisms in long
non-coding RNA PRNCR1 in 8q24 and risk of gastric cancer. Tumour
Biol. 37:299–303. 2016. View Article : Google Scholar : PubMed/NCBI
|
|
32
|
He BS, Sun HL, Xu T, Pan YQ, Lin K, Gao
TY, Zhang ZY and Wang SK: Association of genetic polymorphisms in
the LncRNAs with gastric cancer risk in a Chinese population. J
Cancer. 8:531–536. 2017. View Article : Google Scholar : PubMed/NCBI
|
|
33
|
Li L, Sun R, Liang Y, Pan X, Li Z, Bai P,
Zeng X, Zhang D, Zhang L and Gao L: Association between
polymorphisms in long non-coding RNA PRNCR1 in 8q24 and risk of
colorectal cancer. J Exp Clin Cancer Res. 32:1042013. View Article : Google Scholar : PubMed/NCBI
|
|
34
|
Chu H, Chen Y, Yuan Q, Hua Q, Zhang X,
Wang M, Tong N, Zhang W, Chen J and Zhang Z: The HOTAIR, PRNCR1 and
POLR2E polymorphisms are associated with cancer risk: A
meta-analysis. Oncotarget. 8:43271–43283. 2017.PubMed/NCBI
|
|
35
|
Lv Z, Xu Q and Yuan Y: A systematic review
and meta-analysis of the association between long non-coding RNA
polymorphisms and cancer risk. Mutat Res. 771:1–14. 2017.
View Article : Google Scholar : PubMed/NCBI
|
|
36
|
Hashemi M, Shahkar G, Simforoosh N, Basiri
A, Ziaee SA, Narouie B and Taheri M: Association of polymorphisms
in PRKCI gene and risk of prostate cancer in a sample of Iranian
Population. Cell Mol Biol (Noisy-le-grand). 61:16–21.
2015.PubMed/NCBI
|
|
37
|
Hashemi M, Moradi N, Ziaee SA, Narouie B,
Soltani MH, Rezaei M, Shahkar G and Taheri M: Association between
single nucleotide polymorphism in miR-499, miR-196a2, miR-146a and
miR-149 and prostate cancer risk in a sample of Iranian population.
J Adv Res. 7:491–498. 2016. View Article : Google Scholar : PubMed/NCBI
|
|
38
|
Hashemi M, Danesh H, Bizhani F, Narouie B,
Sotoudeh M, Nouralizadeh A, Sharifiaghdas F, Bahari G and Taheri M:
Pri-miR-34b/c rs4938723 polymorphism increased the risk of prostate
cancer. Cancer Biomark. 18:155–159. 2017. View Article : Google Scholar : PubMed/NCBI
|
|
39
|
Hashemi M, Bahari G, Sattarifard H and
Narouie B: Evaluation of a 3-base pair indel polymorphism within
pre-microRNA-3131 in patients with prostate cancer using mismatch
polymerase chain reaction-restriction fragment length polymorphism.
Mol Clin Oncol. 7:696–700. 2017.PubMed/NCBI
|
|
40
|
Solé X, Guinó E, Valls J, Iniesta R and
Moreno V: SNPStats: A web tool for the analysis of association
studies. Bioinformatics. 22:1928–1929. 2006. View Article : Google Scholar : PubMed/NCBI
|
|
41
|
Li L, Feng T, Lian Y, Zhang G, Garen A and
Song X: Role of human noncoding RNAs in the control of
tumorigenesis. Proc Natl Acad Sci USA. 106:pp. 12956–12961. 2009,
View Article : Google Scholar : PubMed/NCBI
|
|
42
|
Zhang X, Rice K, Wang Y, Chen W, Zhong Y,
Nakayama Y, Zhou Y and Klibanski A: Maternally expressed gene 3
(MEG3) noncoding ribonucleic acid: Isoform structure, expression,
and functions. Endocrinology. 151:939–947. 2010. View Article : Google Scholar : PubMed/NCBI
|
|
43
|
Heemers HV and Tindall DJ: Androgen
receptor (AR) coregulators: A diversity of functions converging on
and regulating the AR transcriptional complex. Endocr Rev.
28:778–808. 2007. View Article : Google Scholar : PubMed/NCBI
|
|
44
|
Bahari G, Hashemi M, Naderi M and Taheri
M: IKZF1 gene polymorphisms increased the risk of childhood acute
lymphoblastic leukemia in an Iranian population. Tumour Biol.
37:9579–9586. 2016. View Article : Google Scholar : PubMed/NCBI
|
|
45
|
Hashemi M, Amininia S, Ebrahimi M,
Simforoosh N, Basiri A, Ziaee SAM, Narouie B, Sotoudeh M,
Mollakouchekian MJ, Rezghi Maleki E, et al: Association between
polymorphisms in TP53 and MDM2 genes and susceptibility to prostate
cancer. Oncol Lett. 13:2483–2489. 2017.PubMed/NCBI
|
|
46
|
Bao BY, Lin VC, Yu CC, Yin HL, Chang TY,
Lu TL, Lee HZ, Pao JB, Huang CY, Huang SP, et al: Genetic variants
in ultraconserved regions associate with prostate cancer recurrence
and survival. Sci Rep. 6:221242016. View Article : Google Scholar : PubMed/NCBI
|
|
47
|
Murali A, Varghese BT, Kumar RR and Kannan
S: Combination of genetic variants in cyclin D1 and retinoblastoma
genes predict clinical outcome in oral cancer patients. Tumour
Biol. 37:3609–3617. 2016. View Article : Google Scholar : PubMed/NCBI
|
|
48
|
Kapranov P, Willingham AT and Gingeras TR:
Genome-wide transcription and the implications for genomic
organization. Nat Rev Genet. 8:413–423. 2007. View Article : Google Scholar : PubMed/NCBI
|
|
49
|
Kapranov P, Cheng J, Dike S, Nix DA,
Duttagupta R, Willingham AT, Stadler PF, Hertel J, Hackermüller J,
Hofacker IL, et al: RNA maps reveal new RNA classes and a possible
function for pervasive transcription. Science. 316:1484–1488. 2007.
View Article : Google Scholar : PubMed/NCBI
|
|
50
|
Wu SW, Hao YP, Qiu JH, Zhang DB, Yu CG and
Li WH: High expression of long non-coding RNA CCAT2 indicates poor
prognosis of gastric cancer and promotes cell proliferation and
invasion. Minerva Med. 108:317–323. 2017.PubMed/NCBI
|
|
51
|
Guo J, Ma J, Zhao G, Li G, Fu Y, Luo Y and
Gui R: Long noncoding RNA LINC0086 functions as a tumor suppressor
in nasopharyngeal carcinoma by targeting miR-214. Oncol Res.
25:1189–1197. 2017. View Article : Google Scholar : PubMed/NCBI
|
|
52
|
Liu JN and Shangguan YM: Long non-coding
RNA CARLo-5 upregulation associates with poor prognosis in patients
suffering gastric cancer. Eur Rev Med Pharmacol Sci. 21:530–534.
2017. View Article : Google Scholar : PubMed/NCBI
|
|
53
|
Yeager M, Chatterjee N, Ciampa J, Jacobs
KB, Gonzalez-Bosquet J, Hayes RB, Kraft P, Wacholder S, Orr N,
Berndt S, et al: Identification of a new prostate cancer
susceptibility locus on chromosome 8q24. Nat Genet. 41:1055–1057.
2009. View
Article : Google Scholar : PubMed/NCBI
|
|
54
|
Amundadottir LT, Sulem P, Gudmundsson J,
Helgason A, Baker A, Agnarsson BA, Sigurdsson A, Benediktsdottir
KR, Cazier JB, Sainz J, et al: A common variant associated with
prostate cancer in European and African populations. Nat Genet.
38:652–658. 2006. View
Article : Google Scholar : PubMed/NCBI
|
|
55
|
Gudmundsson J, Sulem P, Manolescu A,
Amundadottir LT, Gudbjartsson D, Helgason A, Rafnar T, Bergthorsson
JT, Agnarsson BA, Baker A, et al: Genome-wide association study
identifies a second prostate cancer susceptibility variant at 8q24.
Nat Genet. 39:631–637. 2007. View
Article : Google Scholar : PubMed/NCBI
|
|
56
|
Haiman CA, Patterson N, Freedman ML, Myers
SR, Pike MC, Waliszewska A, Neubauer J, Tandon A, Schirmer C,
McDonald GJ, et al: Multiple regions within 8q24 independently
affect risk for prostate cancer. Nat Genet. 39:638–644. 2007.
View Article : Google Scholar : PubMed/NCBI
|
|
57
|
Eeles RA, Kote-Jarai Z, Giles GG, Olama
AA, Guy M, Jugurnauth SK, Mulholland S, Leongamornlert DA, Edwards
SM, Morrison J, et al: Multiple newly identified loci associated
with prostate cancer susceptibility. Nat Genet. 40:316–321. 2008.
View Article : Google Scholar : PubMed/NCBI
|
|
58
|
Al Olama AA, Kote-Jarai Z, Giles GG, Guy
M, Morrison J, Severi G, Leongamornlert DA, Tymrakiewicz M, Jhavar
S, Saunders E, et al: Multiple loci on 8q24 associated with
prostate cancer susceptibility. Nat Genet. 41:1058–1060. 2009.
View Article : Google Scholar : PubMed/NCBI
|
|
59
|
Keller C and Bühler M:
Chromatin-associated ncRNA activities. Chromosome Res. 21:627–641.
2013. View Article : Google Scholar : PubMed/NCBI
|
|
60
|
Luco RF and Misteli T: More than a
splicing code: Integrating the role of RNA, chromatin and
non-coding RNA in alternative splicing regulation. Curr Opin Genet
Dev. 21:366–372. 2011. View Article : Google Scholar : PubMed/NCBI
|
|
61
|
Pircher A, Gebetsberger J and Polacek N:
Ribosome-associated ncRNAs: An emerging class of translation
regulators. RNA Biol. 11:1335–1339. 2014. View Article : Google Scholar : PubMed/NCBI
|
|
62
|
Hannon GJ: RNA interference. Nature.
418:244–251. 2002. View Article : Google Scholar : PubMed/NCBI
|
|
63
|
Lee JT: Epigenetic regulation by long
noncoding RNAs. Science. 338:1435–1439. 2012. View Article : Google Scholar : PubMed/NCBI
|
|
64
|
Khalil AM, Guttman M, Huarte M, Garber M,
Raj A, Rivea Morales D, Thomas K, Presser A, Bernstein BE, van
Oudenaarden A, et al: Many human large intergenic noncoding RNAs
associate with chromatin-modifying complexes and affect gene
expression. Proc Natl Acad Sci USA. 106:pp. 11667–11672. 2009,
View Article : Google Scholar : PubMed/NCBI
|
|
65
|
Mercer TR, Dinger ME, Sunkin SM, Mehler MF
and Mattick JS: Specific expression of long noncoding RNAs in the
mouse brain. Proc Natl Acad Sci USA. 105:pp. 716–721. 2008,
View Article : Google Scholar : PubMed/NCBI
|
|
66
|
Geisler S and Coller J: RNA in unexpected
places: Long non-coding RNA functions in diverse cellular contexts.
Nat Rev Mol Cell Biol. 14:699–712. 2013. View Article : Google Scholar : PubMed/NCBI
|
|
67
|
Spizzo R, Almeida MI, Colombatti A and
Calin GA: Long non-coding RNAs and cancer: A new frontier of
translational research? Oncogene. 31:4577–4587. 2012. View Article : Google Scholar : PubMed/NCBI
|
|
68
|
Tsai MC, Spitale RC and Chang HY: Long
intergenic noncoding RNAs: New links in cancer progression. Cancer
Res. 71:3–7. 2011. View Article : Google Scholar : PubMed/NCBI
|
|
69
|
Heemers H, Maes B, Foufelle F, Heyns W,
Verhoeven G and Swinnen JV: Androgens stimulate lipogenic gene
expression in prostate cancer cells by activation of the sterol
regulatory element-binding protein cleavage activating
protein/sterol regulatory element-binding protein pathway. Mol
Endocrinol. 15:1817–1828. 2001. View Article : Google Scholar : PubMed/NCBI
|
|
70
|
Yang L, Qiu M, Xu Y, Wang J, Zheng Y, Li
M, Xu L and Yin R: Upregulation of long non-coding RNA PRNCR1 in
colorectal cancer promotes cell proliferation and cell cycle
progression. Oncol Rep. 35:318–324. 2016. View Article : Google Scholar : PubMed/NCBI
|