|
1
|
Moore RY: The suprachiasmatic nucleus and
the circadian timing system. Prog Mol Biol Transl Sci. 119:1–28.
2013. View Article : Google Scholar : PubMed/NCBI
|
|
2
|
Soták M, Sumová A and Pácha J: Cross-talk
between the circadian clock and the cell cycle in cancer. Ann Med.
46:221–232. 2014. View Article : Google Scholar : PubMed/NCBI
|
|
3
|
Fu L, Pelicano H, Liu J, Huang P and Lee
C: The circadian gene Period2 plays an important role in tumor
suppression and DNA damage response in vivo. Cell. 111:41–50. 2002.
View Article : Google Scholar : PubMed/NCBI
|
|
4
|
Hunt T and Sassone-Corsi P: Riding tandem:
Circadian clocks and the cell cycle. Cell. 129:461–464. 2007.
View Article : Google Scholar : PubMed/NCBI
|
|
5
|
Hrushesky WJ, Grutsch J, Wood P, Yang X,
Oh EY, Ansell C, Kidder S, Ferrans C, Quiton DF, Reynolds J, et al:
Circadian clock manipulation for cancer prevention and control and
the relief of cancer symptoms. Integr Cancer Ther. 8:387–397. 2009.
View Article : Google Scholar : PubMed/NCBI
|
|
6
|
Gery S and Koeffler HP: Circadian rhythms
and cancer. Cell Cycle. 9:1097–1103. 2010. View Article : Google Scholar : PubMed/NCBI
|
|
7
|
Roenneberg T and Merrow M: Circadian
clocks-the fall and rise of physiology. Nat Rev Mol Cell Biol.
6:965–971. 2005. View
Article : Google Scholar : PubMed/NCBI
|
|
8
|
Grimaldi B, Nakahata Y, Kaluzova M,
Masubuchi S and Sassone-Corsi P: Chromatin remodeling, metabolism
and circadian clocks: The interplay of CLOCK and SIRT1. Int J
Biochem Cell Biol. 41:81–86. 2009. View Article : Google Scholar : PubMed/NCBI
|
|
9
|
Aschoff J, Fatranská M, Giedke H, Doerr P,
Stamm D and Wisser H: Human circadian rhythms in continuous
darkness: Entrainment by social cues. Science. 171:213–215. 1971.
View Article : Google Scholar : PubMed/NCBI
|
|
10
|
Rosato E and Kyriacou CP: Origins of
circadian rhythmicity. J Biol Rhythms. 17:506–511. 2002. View Article : Google Scholar : PubMed/NCBI
|
|
11
|
Schibler U and Sassone-Corsi P: A web of
circadian pacemakers. Cell. 111:919–922. 2002. View Article : Google Scholar : PubMed/NCBI
|
|
12
|
Whitmore D, Foulkes NS and Sassone-Corsi
P: Light acts directly on organs and cells in culture to set the
vertebrate circadian clock. Nature. 404:87–91. 2000. View Article : Google Scholar : PubMed/NCBI
|
|
13
|
Reppert SM and Weaver DR: Coordination of
circadian timing in mammals. Nature. 418:935–941. 2002. View Article : Google Scholar : PubMed/NCBI
|
|
14
|
Golombek DA and Rosenstein RE: Physiology
of circadian entrainment. Physiol Rev. 90:1063–1102. 2010.
View Article : Google Scholar : PubMed/NCBI
|
|
15
|
Shearman LP, Sriram S, Weaver DR, Maywood
ES, Chaves I, Zheng B, Kume K, Lee CC, van der Horst GT, Hastings
MH, et al: Interacting molecular loops in the mammalian circadian
clock. Science. 288:1013–1019. 2000. View Article : Google Scholar : PubMed/NCBI
|
|
16
|
Giebultowicz JM: Peripheral clocks and
their role in circadian timing: Insights from insects. Philos Trans
R Soc Lond B Biol Sci. 356:1791–1799. 2001. View Article : Google Scholar : PubMed/NCBI
|
|
17
|
Preitner N, Damiola F, Lopez-Molina L,
Zakany J, Duboule D, Albrecht U and Schibler U: The orphan nuclear
receptor REV-ERBalpha controls circadian transcription within the
positive limb of the mammalian circadian oscillator. Cell.
110:251–260. 2002. View Article : Google Scholar : PubMed/NCBI
|
|
18
|
Cho H, Zhao X, Hatori M, Yu RT, Barish GD,
Lam MT, Chong LW, DiTacchio L, Atkins AR, Glass CK, et al:
Regulation of circadian behaviour and metabolism by REV-ERB-α and
REV-ERB-β. Nature. 485:123–127. 2012. View Article : Google Scholar : PubMed/NCBI
|
|
19
|
Sato TK, Panda S, Miraglia LJ, Reyes TM,
Rudic RD, McNamara P, Naik KA, FitzGerald GA, Kay SA and Hogenesch
JB: A functional genomics strategy reveals Rora as a component of
the mammalian circadian clock. Neuron. 43:527–537. 2004. View Article : Google Scholar : PubMed/NCBI
|
|
20
|
Padmanabhan K, Robles MS, Westerling T and
Weitz CJ: Feedback regulation of transcriptional termination by the
mammalian circadian clock PERIOD complex. Science. 337:599–602.
2012. View Article : Google Scholar : PubMed/NCBI
|
|
21
|
Duong HA, Robles MS, Knutti D and Weitz
CJ: A molecular mechanism for circadian clock negative feedback.
Science. 332:1436–1439. 2011. View Article : Google Scholar : PubMed/NCBI
|
|
22
|
Novák B and Tyson JJ: Design principles of
biochemical oscillators. Nat Rev Mol Cell Biol. 9:981–991. 2008.
View Article : Google Scholar : PubMed/NCBI
|
|
23
|
Nishide SY, Honma S, Nakajima Y, Ikeda M,
Baba K, Ohmiya Y and Honma K: New reporter system for Per1 and
Bmal1 expressions revealed self-sustained circadian rhythms in
peripheral tissues. Genes Cells. 11:1173–1182. 2006. View Article : Google Scholar : PubMed/NCBI
|
|
24
|
Yoo SH, Yamazaki S, Lowrey PL, Shimomura
K, Ko CH, Buhr ED, Siepka SM, Hong HK, Oh WJ, Yoo OJ, et al:
PERIOD2: LUCIFERASE real-time reporting of circadian dynamics
reveals persistent circadian oscillations in mouse peripheral
tissues. Proc Natl Acad Sci USA. 101:pp. 5339–5346. 2004;
View Article : Google Scholar : PubMed/NCBI
|
|
25
|
Akhtar RA, Reddy AB, Maywood ES, Clayton
JD, King VM, Smith AG, Gant TW, Hastings MH and Kyriacou CP:
Circadian cycling of the mouse liver transcriptome, as revealed by
cDNA microarray, is driven by the suprachiasmatic nucleus. Curr
Biol. 12:540–550. 2002. View Article : Google Scholar : PubMed/NCBI
|
|
26
|
Duffield GE, Best JD, Meurers BH, Bittner
A, Loros JJ and Dunlap JC: Circadian programs of transcriptional
activation, signaling, and protein turnover revealed by microarray
analysis of mammalian cells. Curr Biol. 12:551–557. 2002.
View Article : Google Scholar : PubMed/NCBI
|
|
27
|
Ceriani MF, Hogenesch JB, Yanovsky M,
Panda S, Straume M and Kay SA: Genome-wide expression analysis in
Drosophila reveals genes controlling circadian behavior. J
Neurosci. 22:9305–9319. 2002.PubMed/NCBI
|
|
28
|
Unsal-Kaçmaz K, Mullen TE, Kaufmann WK and
Sancar A: Coupling of human circadian and cell cycles by the
timeless protein. Mol Cell Biol. 25:3109–3116. 2005. View Article : Google Scholar : PubMed/NCBI
|
|
29
|
Lee HM, Chen R, Kim H, Etchegaray JP,
Weaver DR and Lee C: The period of the circadian oscillator is
primarily determined by the balance between casein kinase 1 and
protein phosphatase 1. Proc Natl Acad Sci USA. 108:pp. 16451–16456.
2011; View Article : Google Scholar : PubMed/NCBI
|
|
30
|
Costa G, Haus E and Stevens R: Shift work
and cancer-considerations on rationale, mechanisms and
epidemiology. Scand J Work Environ Health. 36:163–179. 2010.
View Article : Google Scholar : PubMed/NCBI
|
|
31
|
Schernhammer ES, Laden F, Speizer FE,
Willett WC, Hunter DJ, Kawachi I, Fuchs CS and Colditz GA:
Night-shift work and risk of colorectal cancer in the nurses'
health study. J Natl Cancer Inst. 95:825–828. 2003. View Article : Google Scholar : PubMed/NCBI
|
|
32
|
Kubo T, Ozasa K, Mikami K, Wakai K, Fujino
Y, Watanabe Y, Miki T, Nakao M, Hayashi K, Suzuki K, et al:
Prospective cohort study of the risk of prostate cancer among
rotating-shift workers: Findings from the Japan collaborative
cohort study. Am J Epidemiol. 164:549–555. 2006. View Article : Google Scholar : PubMed/NCBI
|
|
33
|
Viswanathan AN, Hankinson SE and
Schernhammer ES: Night shift work and the risk of endometrial
cancer. Cancer Res. 67:10618–10622. 2007. View Article : Google Scholar : PubMed/NCBI
|
|
34
|
Lahti TA, Partonen T, Kyyrönen P,
Kauppinen T and Pukkala E: Night-time work predisposes to
non-Hodgkin lymphoma. Int J Cancer. 123:2148–2151. 2008. View Article : Google Scholar : PubMed/NCBI
|
|
35
|
Stevens RG: Artificial lighting in the
industrialized world: Circadian disruption and breast cancer.
Cancer Causes Control. 17:501–507. 2006. View Article : Google Scholar : PubMed/NCBI
|
|
36
|
Touitou Y, Bogdan A, Lévi F, Benavides M
and Auzéby A: Disruption of the circadian patterns of serum
cortisol in breast and ovarian cancer patients: Relationships with
tumour marker antigens. Br J Cancer. 74:1248–1252. 1996. View Article : Google Scholar : PubMed/NCBI
|
|
37
|
Panzer A: Melatonin in osteosarcoma: An
effective drug? Med Hypotheses. 48:523–525. 1997. View Article : Google Scholar : PubMed/NCBI
|
|
38
|
Skibola CF, Holly EA, Forrest MS, Hubbard
A, Bracci PM, Skibola DR, Hegedus C and Smith MT: Body mass index,
leptin and leptin receptor polymorphisms, and non-hodgkin lymphoma.
Cancer Epidemiol Biomarkers Prev. 13:779–786. 2004.PubMed/NCBI
|
|
39
|
Kloog I, Haim A, Stevens RG and Portnov
BA: Global co-distribution of light at night (LAN) and cancers of
prostate, colon, and lung in men. Chronobiol Int. 26:108–125. 2009.
View Article : Google Scholar : PubMed/NCBI
|
|
40
|
Bhatti P, Mirick DK and Davis S: Invited
commentary: Shift work and cancer. Am J Epidemiol. 176:760–765.
2012. View Article : Google Scholar : PubMed/NCBI
|
|
41
|
Buzzelli G, Dattolo P, Pinzani M, Brocchi
A, Romano S and Gentilini P: Circulating growth hormone and
insulin-like growth factor-I in nonalcoholic liver cirrhosis with
or without superimposed hepatocarcinoma: Evidence of an altered
circadian rhythm. Am J Gastroenterol. 88:1744–1748. 1993.PubMed/NCBI
|
|
42
|
Rafnsson V, Tulinius H, Jónasson JG and
Hrafnkelsson J: Risk of breast cancer in female flight attendants:
A population-based study (Iceland). Cancer Causes Control.
12:95–101. 2001. View Article : Google Scholar : PubMed/NCBI
|
|
43
|
Scheer FA, Hilton MF, Mantzoros CS and
Shea SA: Adverse metabolic and cardiovascular consequences of
circadian misalignment. Proc Natl Acad Sci USA. 106:pp. 4453–4458.
2009; View Article : Google Scholar : PubMed/NCBI
|
|
44
|
Straif K, Baan R, Grosse Y, Secretan B,
Ghissassi FE, Bouvard V, Altieri A, Benbrahim-Tallaa L and Cogliano
V; WHO, ; International Agency for Research on Cancer Monograph
Working Group, : Carcinogenicity of shift-work, painting and
fire-fighting. Lancet Oncol. 8:1065–1066. 2007. View Article : Google Scholar : PubMed/NCBI
|
|
45
|
Hsu CM, Lin SF, Lu CT, Lin PM and Yang MY:
Altered expression of circadian clock genes in head and neck
squamous cell carcinoma. Tumour Biol. 33:149–155. 2012. View Article : Google Scholar : PubMed/NCBI
|
|
46
|
Haus EL and Smolensky MH: Shift work and
cancer risk: Potential mechanistic roles of circadian disruption,
light at night and sleep deprivation. Sleep Med Rev. 17:273–284.
2013. View Article : Google Scholar : PubMed/NCBI
|
|
47
|
Schernhammer ES, Laden F, Speizer FE,
Willett WC, Hunter DJ, Kawachi I and Colditz GA: Rotating night
shifts and risk of breast cancer in women participating in the
nurses' health study. J Natl Cancer Inst. 93:1563–1568. 2001.
View Article : Google Scholar : PubMed/NCBI
|
|
48
|
Stevens RG, Hansen J, Costa G, Haus E,
Kauppinen T, Aronson KJ, Castaño-Vinyals G, Davis S, Frings-Dresen
MH, Fritschi L, et al: Considerations of circadian impact for
defining ‘shift work’ in cancer studies: IARC Working Group Report.
Occup Environ Med. 68:154–162. 2011. View Article : Google Scholar : PubMed/NCBI
|
|
49
|
Pukkala E, Aspholm R, Auvinen A, Eliasch
H, Gundestrup M, Haldorsen T, Hammar N, Hrafnkelsson J, Kyyrönen P,
Linnersjö A, et al: Incidence of cancer among Nordic airline pilots
over five decades: Occupational cohort study. BMJ. 325:5672002.
View Article : Google Scholar : PubMed/NCBI
|
|
50
|
Feychting M, Osterlund B and Ahlbom A:
Reduced cancer incidence among the blind. Epidemiology. 9:490–494.
1998. View Article : Google Scholar : PubMed/NCBI
|
|
51
|
Kliukiene J, Tynes T and Andersen A: Risk
of breast cancer among Norwegian women with visual impairment. Br J
Cancer. 84:397–399. 2001. View Article : Google Scholar : PubMed/NCBI
|
|
52
|
Verkasalo PK, Pukkala E, Stevens RG, Ojamo
M and Rudanko SL: Inverse association between breast cancer
incidence and degree of visual impairment in Finland. Br J Cancer.
80:1459–1460. 1999. View Article : Google Scholar : PubMed/NCBI
|
|
53
|
Rich T, Innominato PF, Boerner J, Mormont
MC, Iacobelli S, Baron B, Jasmin C and Lévi F: Elevated serum
cytokines correlated with altered behavior, serum cortisol rhythm,
and dampened 24-hour rest-activity patterns in patients with
metastatic colorectal cancer. Clin Cancer Res. 11:1757–1764. 2005.
View Article : Google Scholar : PubMed/NCBI
|
|
54
|
Sephton SE, Sapolsky RM, Kraemer HC and
Spiegel D: Diurnal cortisol rhythm as a predictor of breast cancer
survival. J Natl Cancer Inst. 92:994–1000. 2000. View Article : Google Scholar : PubMed/NCBI
|
|
55
|
Kim KS, Kim YC, Oh IJ, Kim SS, Choi JY and
Ahn RS: Association of worse prognosis with an aberrant diurnal
cortisol rhythm in patients with advanced lung cancer. Chronobiol
Int. 29:1109–1120. 2012. View Article : Google Scholar : PubMed/NCBI
|
|
56
|
Sephton SE, Lush E, Dedert EA, Floyd AR,
Rebholz WN, Dhabhar FS, Spiegel D and Salmon P: Diurnal cortisol
rhythm as a predictor of lung cancer survival. Brain Behav Immun.
30 Suppl:S163–S170. 2013. View Article : Google Scholar : PubMed/NCBI
|
|
57
|
Innominato PF, Giacchetti S, Bjarnason GA,
Focan C, Garufi C, Coudert B, Iacobelli S, Tampellini M, Durando X,
Mormont MC, et al: Prediction of overall survival through circadian
rest-activity monitoring during chemotherapy for metastatic
colorectal cancer. Int J Cancer. 131:2684–2692. 2012. View Article : Google Scholar : PubMed/NCBI
|
|
58
|
Wu HS, Davis JE and Natavio T: Fatigue and
disrupted sleep-wake patterns in patients with cancer: A shared
mechanism. Clin J Oncol Nurs. 16:E56–E68. 2012. View Article : Google Scholar : PubMed/NCBI
|
|
59
|
Innominato PF, Focan C, Gorlia T, Moreau
T, Garufi C, Waterhouse J, Giacchetti S, Coudert B, Iacobelli S,
Genet D, et al: Circadian rhythm in rest and activity: A biological
correlate of quality of life and a predictor of survival in
patients with metastatic colorectal cancer. Cancer Res.
69:4700–4707. 2009. View Article : Google Scholar : PubMed/NCBI
|
|
60
|
Yi C, Mu L, de la Longrais IA, Sochirca O,
Arisio R, Yu H, Hoffman AE, Zhu Y and Katsaro D: The circadian gene
NPAS2 is a novel prognostic biomarker for breast cancer. Breast
Cancer Res Treat. 120:663–669. 2010. View Article : Google Scholar : PubMed/NCBI
|
|
61
|
Cadenas C, van de Sandt L, Edlund K, Lohr
M, Hellwig B, Marchan R, Schmidt M, Rahnenführer J, Oster H and
Hengstler JG: Loss of circadian clock gene expression is associated
with tumor progression in breast cancer. Cell Cycle. 13:3282–3291.
2014. View Article : Google Scholar : PubMed/NCBI
|
|
62
|
Zhu Y, Stevens RG, Leaderer D, Hoffman A,
Holford T, Zhang Y, Brown HN and Zheng T: Non-synonymous
polymorphisms in the circadian gene NPAS2 and breast cancer risk.
Breast Cancer Res Treat. 107:421–425. 2008. View Article : Google Scholar : PubMed/NCBI
|
|
63
|
Xue X, Liu F, Han Y, Li P, Yuan B, Wang X,
Chen Y, Kuang Y, Zhi Q and Zhao H: Silencing NPAS2 promotes cell
growth and invasion in DLD-1 cells and correlated with poor
prognosis of colorectal cancer. Biochem Biophys Res Commun.
450:1058–1062. 2014. View Article : Google Scholar : PubMed/NCBI
|
|
64
|
Xiao L, Chang AK, Zang MX, Bi H, Li S,
Wang M, Xing X and Wu H: Induction of the CLOCK gene by E2-ERα
signaling promotes the proliferation of breast cancer cells. PLoS
One. 9:e958782014. View Article : Google Scholar : PubMed/NCBI
|
|
65
|
Oshima T, Takenoshita S, Akaike M,
Kunisaki C, Fujii S, Nozaki A, Numata K, Shiozawa M, Rino Y, Tanaka
K, et al: Expression of circadian genes correlates with liver
metastasis and outcomes in colorectal cancer. Oncol Rep.
25:1439–1446. 2011. View Article : Google Scholar : PubMed/NCBI
|
|
66
|
Mazzoccoli G, Panza A, Valvano MR, Palumbo
O, Carella M, Pazienza V, Biscaglia G, Tavano F, Di Sebastiano P,
Andriulli A and Piepoli A: Clock gene expression levels and
relationship with clinical and pathological features in colorectal
cancer patients. Chronobiol Int. 28:841–851. 2011. View Article : Google Scholar : PubMed/NCBI
|
|
67
|
Relles D, Sendecki J, Chipitsyna G, Hyslop
T, Yeo CJ and Arafat HA: Circadian gene expression and
clinicopathologic correlates in pancreatic cancer. J Gastrointest
Surg. 17:443–450. 2013. View Article : Google Scholar : PubMed/NCBI
|
|
68
|
Hu ML, Yeh KT, Lin PM, Hsu CM, Hsiao HH,
Liu YC, Lin HY, Lin SF and Yang MY: Deregulated expression of
circadian clock genes in gastric cancer. BMC Gastroenterol.
14:672014. View Article : Google Scholar : PubMed/NCBI
|
|
69
|
Mazzoccoli G, Piepoli A, Carella M, Panza
A, Pazienza V, Benegiamo G, Palumbo O and Ranieri E: Altered
expression of the clock gene machinery in kidney cancer patients.
Biomed Pharmacother. 66:175–179. 2012. View Article : Google Scholar : PubMed/NCBI
|
|
70
|
Liu B, Xu K, Jiang Y and Li X: Aberrant
expression of Per1, Per2 and Per3 and their prognostic relevance in
non-small cell lung cancer. Int J Clin Exp Pathol. 7:7863–7871.
2014.PubMed/NCBI
|
|
71
|
Cao Q, Gery S, Dashti A, Yin D, Zhou Y, Gu
J and Koeffler HP: A role for the clock gene per1 in prostate
cancer. Cancer Res. 69:7619–7625. 2009. View Article : Google Scholar : PubMed/NCBI
|
|
72
|
Yang X, Wood PA, Oh EY, Du-Quiton J,
Ansell CM and Hrushesky WJ: Down regulation of circadian clock gene
Period 2 accelerates breast cancer growth by altering its daily
growth rhythm. Breast Cancer Res Treat. 117:423–431. 2009.
View Article : Google Scholar : PubMed/NCBI
|
|
73
|
Mao Y, Fu A, Hoffman AE, Jacobs DI, Jin M,
Chen K and Zhu Y: The circadian gene CRY2 is associated with breast
cancer aggressiveness possibly via epigenomic modifications. Tumour
Biol. 36:3533–3539. 2015. View Article : Google Scholar : PubMed/NCBI
|
|
74
|
Markt SC, Valdimarsdottir UA, Shui IM,
Sigurdardottir LG, Rider JR, Tamimi RM, Batista JL, Haneuse S,
Flynn-Evans E, Lockley SW, et al: Circadian clock genes and risk of
fatal prostate cancer. Cancer Causes Control. 26:25–33. 2015.
View Article : Google Scholar : PubMed/NCBI
|
|
75
|
Bunger MK, Wilsbacher LD, Moran SM,
Clendenin C, Radcliffe LA, Hogenesch JB, Simon MC, Takahashi JS and
Bradfield CA: Mop3 is an essential component of the master
circadian pacemaker in mammals. Cell. 103:1009–1017. 2000.
View Article : Google Scholar : PubMed/NCBI
|
|
76
|
Zeng ZL, Luo HY, Yang J, Wu WJ, Chen DL,
Huang P and Xu RH: Overexpression of the circadian clock gene Bmal1
increases sensitivity to oxaliplatin in colorectal cancer. Clin
Cancer Res. 20:1042–1052. 2014. View Article : Google Scholar : PubMed/NCBI
|
|
77
|
Jiang W, Zhao S, Jiang X, Zhang E, Hu G,
Hu B, Zheng P, Xiao J, Lu Z, Lu Y, et al: The circadian clock gene
Bmal1 acts as a potential anti-oncogene in pancreatic cancer by
activating the p53 tumor suppressor pathway. Cancer Lett.
371:314–325. 2016. View Article : Google Scholar : PubMed/NCBI
|
|
78
|
Jemal A, Bray F, Center MM, Ferlay J, Ward
E and Forman D: Global cancer statistics. CA Cancer J Clin.
61:69–90. 2011. View Article : Google Scholar : PubMed/NCBI
|
|
79
|
Warnakulasuriya S: Global epidemiology of
oral and oropharyngeal cancer. Oral Oncol. 45:309–316. 2009.
View Article : Google Scholar : PubMed/NCBI
|
|
80
|
Sanderson RJ, de Boer MF, Damhuis RA,
Meeuwis CA and Knegt PP: The influence of alcohol and smoking on
the incidence of oral and oropharyngeal cancer in women. Clin
Otolaryngol Allied Sci. 22:444–448. 1997. View Article : Google Scholar : PubMed/NCBI
|
|
81
|
Scully C and Field J: Genetic aberrations
in squamous cell carcinoma of the head and neck (SCCHN), with
reference to oral carcinoma (review). Int J Oncol. 10:5–21.
1997.PubMed/NCBI
|
|
82
|
Yuan H, Li H, Ma H, Niu Y, Wu Y, Zhang S,
Hu Z, Shen H and Chen N: Genetic polymorphisms in key DNA repair
genes and risk of head and neck cancer in a Chinese population. Exp
Ther Med. 3:719–724. 2012. View Article : Google Scholar : PubMed/NCBI
|
|
83
|
Zhang J, Gao F, Yang AK, Chen WK, Chen SW,
Li H, Zhang X, Yang ZY, Chen XL and Song M: Epidemiologic
characteristics of oral cancer: Single-center analysis of 4097
patients from the Sun Yat-sen University Cancer Center. Chin J
Cancer. 35:242016. View Article : Google Scholar : PubMed/NCBI
|
|
84
|
Amit M, Yen TC, Liao CT, Chaturvedi P,
Agarwal JP, Kowalski LP, Ebrahimi A, Clark JR, Kreppel M, Zöller J,
et al: Improvement in survival of patients with oral cavity
squamous cell carcinoma: An international collaborative study.
Cancer. 119:4242–4248. 2013. View Article : Google Scholar : PubMed/NCBI
|
|
85
|
Siegel R, Ward E, Brawley O and Jemal A:
Cancer statistics, 2011: The impact of eliminating socioeconomic
and racial disparities on premature cancer deaths. CA Cancer J
Clin. 61:212–236. 2011. View Article : Google Scholar : PubMed/NCBI
|
|
86
|
Sand L, Wallström M and Hirsch JM:
Smokeless tobacco, viruses and oral cancer. Oral Health Dent Manag.
13:372–378. 2014.PubMed/NCBI
|
|
87
|
Listl S, Jansen L, Stenzinger A, Freier K,
Emrich K, Holleczek B, Katalinic A, Gondos A and Brenner H; GEKID
Cancer Survival Working Group, : Survival of patients with oral
cavity cancer in Germany. PLoS One. 8:e534152013. View Article : Google Scholar : PubMed/NCBI
|
|
88
|
Engholm G, Ferlay J, Christensen N, Bray
F, Gjerstorff ML, Klint A, Køtlum JE, Olafsdóttir E, Pukkala E and
Storm HH: NORDCAN-a Nordic tool for cancer information, planning,
quality control and research. Acta Oncol. 49:725–736. 2010.
View Article : Google Scholar : PubMed/NCBI
|
|
89
|
Zieker D, Jenne I, Koenigsrainer I,
Zdichavsky M, Nieselt K, Buck K, Zieker J, Beckert S, Glatzle J,
Spanagel R, et al: Circadian expression of clock- and tumor
suppressor genes in human oral mucosa. Cell Physiol Biochem.
26:155–166. 2010. View Article : Google Scholar : PubMed/NCBI
|
|
90
|
Bjarnason GA, Jordan RC, Wood PA, Li Q,
Lincoln DW, Sothern RB, Hrushesky WJ and Ben-David Y: Circadian
expression of clock genes in human oral mucosa and skin:
Association with specific cell-cycle phases. Am J Pathol.
158:1793–1801. 2001. View Article : Google Scholar : PubMed/NCBI
|
|
91
|
Mullenders J, Fabius AW, Madiredjo M,
Bernards R and Beijersbergen RL: A large scale shRNA barcode screen
identifies the circadian clock component ARNTL as putative
regulator of the p53 tumor suppressor pathway. PLoS One.
4:e47982009. View Article : Google Scholar : PubMed/NCBI
|
|
92
|
Miki T, Matsumoto T, Zhao Z and Lee CC:
p53 regulates Period2 expression and the circadian clock. Nat
Commun. 4:24442013. View Article : Google Scholar : PubMed/NCBI
|
|
93
|
Zeng ZL, Wu MW, Sun J, Sun YL, Cai YC,
Huang YJ and Xian LJ: Effects of the biological clock gene Bmal1 on
tumour growth and anti-cancer drug activity. J Biochem.
148:319–326. 2010. View Article : Google Scholar : PubMed/NCBI
|
|
94
|
Chen R, Yang K, Zhao NB, Zhao D, Chen D,
Zhao CR and Tang H: Abnormal expression of PER1 circadian-clock
gene in oral squamous cell carcinoma. Onco Targets Ther. 5:403–407.
2012.PubMed/NCBI
|
|
95
|
Li HX, Fu XJ, Yang K, Chen D, Tang H and
Zhao Q: The clock gene PER1 suppresses expression of tumor-related
genes in human oral squamous cell carcinoma. Oncotarget.
7:20574–20583. 2016. View Article : Google Scholar : PubMed/NCBI
|
|
96
|
Zhao Q, Zheng G, Yang K, Ao YR, Su XL, Li
Y and Lv XQ: The clock gene PER1 plays an important role in
regulating the clock gene network in human oral squamous cell
carcinoma cells. Oncotarget. 7:70290–70302. 2016.PubMed/NCBI
|
|
97
|
Zhao N, Tang H, Yang K and Chen D:
Circadian rhythm characteristics of oral squamous cell carcinoma
growth in an orthotopic xenograft model. Onco Targets Ther.
6:41–46. 2013. View Article : Google Scholar : PubMed/NCBI
|
|
98
|
Ye H, Yang K, Tan XM, Fu XJ and Li HX:
Daily rhythm variations of the clock gene PER1 and cancer-related
genes during various stages of carcinogenesis in a golden hamster
model of buccal mucosa carcinoma. Onco Targets Ther. 8:1419–1426.
2015.PubMed/NCBI
|
|
99
|
Gery S, Komatsu N, Baldjyan L, Yu A, Koo D
and Koeffler HP: The circadian gene per1 plays an important role in
cell growth and DNA damage control in human cancer cells. Mol Cell.
22:375–382. 2006. View Article : Google Scholar : PubMed/NCBI
|
|
100
|
Fu XJ, Li HX, Yang K, Chen D and Tang H:
The important tumor suppressor role of PER1 in regulating the
cyclin-CDK-CKI network in SCC15 human oral squamous cell carcinoma
cells. Onco Targets Ther. 9:2237–2245. 2016.PubMed/NCBI
|
|
101
|
Wang Q, Ao Y, Yang K, Tang H and Chen D:
Circadian clock gene Per2 plays an important role in cell
proliferation, apoptosis and cell cycle progression in human oral
squamous cell carcinoma. Oncol Rep. 35:3387–3394. 2016. View Article : Google Scholar : PubMed/NCBI
|
|
102
|
Tan XM, Ye H, Yang K, Chen D, Wang QQ,
Tang H and Zhao NB: Circadian variations of clock gene Per2 and
cell cycle genes in different stages of carcinogenesis in golden
hamster buccal mucosa. Sci Rep. 5:99972015. View Article : Google Scholar : PubMed/NCBI
|
|
103
|
Sato F, Nagata C, Liu Y, Suzuki T, Kondo
J, Morohashi S, Imaizumi T, Kato Y and Kijima H: PERIOD1 is an
anti-apoptotic factor in human pancreatic and hepatic cancer cells.
J Biochem. 146:833–838. 2009. View Article : Google Scholar : PubMed/NCBI
|
|
104
|
Sato F, Wu Y, Bhawal UK, Liu Y, Imaizumi
T, Morohashi S, Kato Y and Kijima H: PERIOD1 (PER1) has
anti-apoptotic effects, and PER3 has pro-apoptotic effects during
cisplatin (CDDP) treatment in human gingival cancer CA9-22 cells.
Eur J Cancer. 47:1747–1758. 2011. View Article : Google Scholar : PubMed/NCBI
|