|
1
|
Imbesi S, Musolino C, Allegra A, Saija A,
Morabito F, Calapai G and Gangemi S: Oxidative stress in
oncohematologic diseases: An update. Expert Rev Hematol. 6:317–325.
2013. View Article : Google Scholar : PubMed/NCBI
|
|
2
|
Gerschman R, Gilbert D, Nye SW, Dwyer P
and Fenn WO: Oxygen poisoning and X-irradiation: A mechanism in
common. 1954. Nutrition. 17:1622001.PubMed/NCBI
|
|
3
|
Asthana J, Yadav AK, Pant A, Pandey S,
Gupta MM and Pandey R: Specioside ameliorates oxidative stress and
promotes longevity in Caenorhabditis elegans. Comp Biochem Physiol
C Toxicol Pharmacol. 169:25–34. 2015. View Article : Google Scholar : PubMed/NCBI
|
|
4
|
Valko M, Leibfritz D, Moncol J, Cronin MT,
Mazur M and Telser J: Free radicals and antioxidants in normal
physiological functions and human disease. Int J Biochem Cell Biol.
39:44–84. 2007. View Article : Google Scholar : PubMed/NCBI
|
|
5
|
Weyemi U, Caillou B, Talbot M,
Ameziane-El-Hassani R, Lacroix L, Lagent-Chevallier O, Al Ghuzlan
A, Roos D, Bidart JM, Virion A, et al: Intracellular expression of
reactive oxygen species-generating NADPH oxidase NOX4 in normal and
cancer thyroid tissues. Endocr Relat Cancer. 17:27–37. 2010.
View Article : Google Scholar : PubMed/NCBI
|
|
6
|
Khoshtabiat L, Mahdavi M, Dehghan G and
Rashidi MR: Oxidative stress-induced apoptosis in chronic
myelogenous leukemia K562 cells by an active compound from the
dithio-carbamate family. Asian Pac J Cancer Prev. 17:4267–4273.
2016.PubMed/NCBI
|
|
7
|
Cheng D, Zhao L, Xu Y, Ou R, Li G, Yang H
and Li W: K-Ras promotes the non-small lung cancer cells survival
by cooperating with sirtuin 1 and p27 under ROS stimulation. Tumour
Biol. 36:7221–7232. 2015. View Article : Google Scholar : PubMed/NCBI
|
|
8
|
Weyemi U, Lagente-Chevallier O, Boufraqech
M, Prenois F, Courtin F, Caillou B, Talbot M, Dardalhon M, Al
Ghuzlan A, Bidart JM, et al: ROS-generating NADPH oxidase NOX4 is a
critical mediator in oncogenic H-Ras-induced DNA damage and
subsequent senescence. Oncogene. 31:1117–1129. 2012. View Article : Google Scholar : PubMed/NCBI
|
|
9
|
Zhu D, Shen Z, Liu J, Chen J, Liu Y, Hu C,
Li Z and Li Y: The ROS-mediated activation of STAT-3/VEGF signaling
is involved in the 27-hydroxycholesterol-induced angiogenesis in
human breast cancer cells. Toxicol Lett. 264:79–86. 2016.
View Article : Google Scholar : PubMed/NCBI
|
|
10
|
Lina M, Hongfei M, Yunxin X, Dai W and
Xilin Z: The mechanism of ROS regulation of antibiotic resistance
and antimicrobial lethality. Yi Chuan. 38:902–909. 2016.PubMed/NCBI
|
|
11
|
Das DS, Ray A, Das A, Song Y, Tian Z,
Oronsky B, Richardson P, Scicinski J, Chauhan D and Anderson KC: A
novel hypoxia-selective epigenetic agent RRx-001 triggers apoptosis
and overcomes drug resistance in multiple myeloma cells. Leukemia.
30:2187–2197. 2016. View Article : Google Scholar : PubMed/NCBI
|
|
12
|
Udensi UK and Tchounwou PB: Dual effect of
oxidative stress on leukemia cancer induction and treatment. J Exp
Clin Cancer Res. 33:1062014. View Article : Google Scholar : PubMed/NCBI
|
|
13
|
Battisti V, Maders LD, Bagatini MD, Santos
KF, Spanevello RM, Maldonado PA, Brulé AO, Araújo Mdo C, Schetinger
MR and Morsch VM: Measurement of oxidative stress and antioxidant
status in acute lymphoblastic leukemia patients. Clin Biochem.
41:511–518. 2008. View Article : Google Scholar : PubMed/NCBI
|
|
14
|
Chung YJ, Robert C, Gough SM, Rassool FV
and Aplan PD: Oxidative stress leads to increased mutation
frequency in a murine model of myelodysplastic syndrome. Leuk Res.
38:95–102. 2014. View Article : Google Scholar : PubMed/NCBI
|
|
15
|
Pawlowska E and Blasiak J: DNA repair-a
double-edged sword in the genomic stability of cancer cells-the
case of chronic myeloid leukemia. Int J Mol Sci. 16:27535–27549.
2015. View Article : Google Scholar : PubMed/NCBI
|
|
16
|
Testa U, Labbaye C, Castelli G and Pelosi
E: Oxidative stress and hypoxia in normal and leukemic stem cells.
Exp Hematol. 44:540–560. 2016. View Article : Google Scholar : PubMed/NCBI
|
|
17
|
Kudryavtseva AV, Krasnov GS, Dmitriev AA,
Alekseev BY, Kardymon OL, Sadritdinova AF, Fedorova MS, Pokrovsky
AV, Melnikova NV, Kaprin AD, et al: Mitochondrial dysfunction and
oxidative stress in aging and cancer. Oncotarget. 7:44879–44905.
2016. View Article : Google Scholar : PubMed/NCBI
|
|
18
|
Sanganahalli BG, Joshi PG and Joshi NB:
Xanthine oxidase, nitric oxide synthase and phospholipase A(2)
produce reactive oxygen species via mitochondria. Brain Res.
1037:200–203. 2005. View Article : Google Scholar : PubMed/NCBI
|
|
19
|
Aprioku JS: Pharmacology of free radicals
and the impact of reactive oxygen species on the testis. J Reprod
Infertil. 14:158–172. 2013.PubMed/NCBI
|
|
20
|
Murphy MP: How mitochondria produce
reactive oxygen species. Biochem J. 417:1–13. 2009. View Article : Google Scholar : PubMed/NCBI
|
|
21
|
Zhao K, Zeng Q, Bai J, Li J, Xia L, Chen S
and Zhou B: Enhanced organic pollutants degradation and electricity
production simultaneously via strengthening the radicals reaction
in a novel Fenton-photocatalytic fuel cell system. Water Res.
108:293–300. 2017. View Article : Google Scholar : PubMed/NCBI
|
|
22
|
Ayala A, Muñoz MF and Argüelles S: Lipid
peroxidation: Production, metabolism, and signaling mechanisms of
malondialdehyde and 4-hydroxy-2-nonenal. Oxid Med Cell Longev.
2014:3604382014. View Article : Google Scholar : PubMed/NCBI
|
|
23
|
Yin H, Xu L and Porter NA: Free radical
lipid peroxidation: Mechanisms and analysis. Chem Rev.
111:5944–5972. 2011. View Article : Google Scholar : PubMed/NCBI
|
|
24
|
Breitzig M, Bhimineni C, Lockey R and
Kolliputi N: 4-Hydroxy-2-nonenal: A critical target in oxidative
stress? Am J Physiol Cell Physiol. 311:C537–C543. 2016. View Article : Google Scholar : PubMed/NCBI
|
|
25
|
Negre-Salvayre A, Coatrieux C, Ingueneau C
and Salvayre R: Advanced lipid peroxidation end products in
oxidative damage to proteins. Potential role in diseases and
therapeutic prospects for the inhibitors. Br J Pharmacol. 153:6–20.
2008. View Article : Google Scholar : PubMed/NCBI
|
|
26
|
Negre-Salvayre A, Auge N, Ayala V, Basaga
H, Boada J, Brenke R, Chapple S, Cohen G, Feher J, Grune T, et al:
Pathological aspects of lipid peroxidation. Free Radic Res.
44:1125–1171. 2010. View Article : Google Scholar : PubMed/NCBI
|
|
27
|
Wang G, Wang J, Fan X, Ansari GA and Khan
MF: Protein adducts of malondialdehyde and 4-hydroxynonenal
contribute to trichloroethene-mediated autoimmunity via activating
Th17 cells: Dose- and time-response studies in female MRL+/+ mice.
Toxicology. 292:113–122. 2012. View Article : Google Scholar : PubMed/NCBI
|
|
28
|
Domingues RM, Domingues P, Melo T,
Pérez-Sala D, Reis A and Spickett CM: Lipoxidation adducts with
peptides and proteins: Deleterious modifications or signaling
mechanisms? J Proteomics. 92:110–131. 2013. View Article : Google Scholar : PubMed/NCBI
|
|
29
|
Stadtman ER and Berlett BS: Reactive
oxygen-mediated protein oxidation in aging and disease. Drug Metab
Rev. 30:225–243. 1998. View Article : Google Scholar : PubMed/NCBI
|
|
30
|
Sharma NK, Sethy NK and Bhargava K:
Comparative proteome analysis reveals differential regulation of
glycolytic and antioxidant enzymes in cortex and hippocampus
exposed to short-term hypobaric hypoxia. J Proteomics. 79:277–298.
2013. View Article : Google Scholar : PubMed/NCBI
|
|
31
|
Chen XL, Zhou L, Yang J, Shen FK, Zhao SP
and Wang YL: Hepatocellular carcinoma-associated protein markers
investigated by MALDI-TOF MS. Mol Med Rep. 3:589–596. 2010.
View Article : Google Scholar : PubMed/NCBI
|
|
32
|
Hu H, Zhu W, Qin J, Chen M, Gong L, Li L,
Liu X, Tao Y, Yin H, Zhou H, et al: Acetylation of PGK1 promotes
liver cancer cell proliferation and tumorigenesis. Hepatology.
65:515–528. 2017. View Article : Google Scholar : PubMed/NCBI
|
|
33
|
Ahmad SS, Glatzle J, Bajaeifer K, Bühler
S, Lehmann T, Königsrainer I, Vollmer JP, Sipos B, Ahmad SS,
Northoff H, et al: Phosphoglycerate kinase 1 as a promoter of
metastasis in colon cancer. Int J Oncol. 43:586–590. 2013.
View Article : Google Scholar : PubMed/NCBI
|
|
34
|
Singh RK, Tripathi AK, Tripathi P, Singh
S, Singh R and Ahmad R: Studies on biomarkers for oxidative stress
in patients with chronic myeloid leukemia. Hematol Oncol Stem Cell
Ther. 2:285–288. 2009. View Article : Google Scholar : PubMed/NCBI
|
|
35
|
Rahal ON, Fatfat M, Hankache C, Osman B,
Khalife H, Machaca K and Muhtasib HG: Chk1 and DNA-PK mediate
TPEN-induced DNA damage in a ROS dependent manner in human colon
cancer cells. Cancer Biol Ther. 17:1139–1148. 2016. View Article : Google Scholar : PubMed/NCBI
|
|
36
|
Chen CY, Yen CY, Wang HR, Yang HP, Tang
JY, Huang HW, Hsu SH and Chang HW: Tenuifolide B from cinnamomum
tenuifolium stem selectively inhibits proliferation of oral cancer
cells via apoptosis, ROS generation, mitochondrial depolarization,
and DNA damage. Toxins (Basel). 8:pii: E3192016. View Article : Google Scholar
|
|
37
|
Kikuchi A, Takeda A, Onodera H, Kimpara T,
Hisanaga K, Sato N, Nunomura A, Castellani RJ, Perry G, Smith MA
and Itoyama Y: Systemic increase of oxidative nucleic acid damage
in Parkinson's disease and multiple system atrophy. Neurobiol Dis.
9:244–248. 2002. View Article : Google Scholar : PubMed/NCBI
|
|
38
|
Weidner AM, Bradley MA, Beckett TL,
Niedowicz DM, Dowling AL, Matveev SV, LeVine H III, Lovell MA and
Murphy MP: RNA oxidation adducts 8-OHG and 8-OHA change with Aβ42
levels in late-stage Alzheimer's disease. PLoS One. 6:e249302011.
View Article : Google Scholar : PubMed/NCBI
|
|
39
|
Shibutani S, Takeshita M and Grollman AP:
Insertion of specific bases during DNA synthesis past the
oxidation-damaged base 8-oxodG. Nature. 349:431–434. 1991.
View Article : Google Scholar : PubMed/NCBI
|
|
40
|
Sunaga N, Kohno T, Shinmura K, Saitoh T,
Matsuda T, Saito R and Yokota J: OGG1 protein suppresses
G:C->T:A mutation in a shuttle vector containing
8-hydroxyguanine in human cells. Carcinogenesis. 22:1355–1362.
2001. View Article : Google Scholar : PubMed/NCBI
|
|
41
|
Lovell MA, Soman S and Bradley MA:
Oxidatively modified nucleic acids in preclinical Alzheimer's
disease (PCAD) brain. Mech Ageing Dev. 132:443–448. 2011.
View Article : Google Scholar : PubMed/NCBI
|
|
42
|
Valavanidis A, Vlachogianni T and Fiotakis
C: 8-hydroxy-2′-deoxyguanosine (8-OHdG): A critical biomarker of
oxidative stress and carcinogenesis. J Environ Sci Health C Environ
Carcinog Ecotoxicol Rev. 27:120–139. 2009. View Article : Google Scholar : PubMed/NCBI
|
|
43
|
Moskalev AA, Shaposhnikov MV, Plyusnina
EN, Zhavoronkov A, Budovsky A, Yanai H and Fraifeld VE: The role of
DNA damage and repair in aging through the prism of Koch-like
criteria. Ageing Res Rev. 12:661–684. 2013. View Article : Google Scholar : PubMed/NCBI
|
|
44
|
Fraga CG, Shigenaga MK, Park JW, Degan P
and Ames BN: Oxidative damage to DNA during aging:
8-hydroxy-2′-deoxyguanosine in rat organ DNA and urine. Proc Natl
Acad Sci USA. 87:pp. 4533–4537. 1990; View Article : Google Scholar : PubMed/NCBI
|
|
45
|
Chen Q, Fischer A, Reagan JD, Yan LJ and
Ames BN: Oxidative DNA damage and senescence of human diploid
fibroblast cells. Proc Natl Acad Sci USA. 92:pp. 4337–4341. 1995;
View Article : Google Scholar : PubMed/NCBI
|
|
46
|
Vyas P and Jacobsen SE: Clever leukemic
stem cells branch out. Cell stem cell. 8:242–244. 2011. View Article : Google Scholar : PubMed/NCBI
|
|
47
|
Nombela-Arrieta C and Silberstein LE: The
science behind the hypoxic niche of hematopoietic stem and
progenitors. Hematology Am Soc Hematol Educ Program. 2014:542–547.
2014.PubMed/NCBI
|
|
48
|
Bigarella CL, Liang R and Ghaffari S: Stem
cells and the impact of ROS signaling. Development. 141:4206–4218.
2014. View Article : Google Scholar : PubMed/NCBI
|
|
49
|
Rönn RE, Guibentif C, Saxena S and Woods
NB: Reactive oxygen species impair the function of CD90+
hematopoietic progenitors generated from human pluripotent stem
cells. Stem cells. 35:197–206. 2017. View Article : Google Scholar : PubMed/NCBI
|
|
50
|
Cao Y, Fang Y, Cai J, Li X, Xu F, Yuan N,
Zhang S and Wang J: ROS functions as an upstream trigger for
autophagy to drive hematopoietic stem cell differentiation.
Hematology. 21:613–618. 2016. View Article : Google Scholar : PubMed/NCBI
|
|
51
|
Kaur A, Jankowska K, Pilgrim C, Fraser ST
and New EJ: Studies of hematopoietic cell differentiation with a
ratiometric and reversible sensor of mitochondrial reactive oxygen
species. Antioxid Redox Signal. 24:667–679. 2016. View Article : Google Scholar : PubMed/NCBI
|
|
52
|
Hole PS, Darley RL and Tonks A: Do
reactive oxygen species play a role in myeloid leukemias? Blood.
117:5816–5826. 2011. View Article : Google Scholar : PubMed/NCBI
|
|
53
|
Sattler M, Verma S, Shrikhande G, Byrne
CH, Pride YB, Winkler T, Greenfield EA, Salgia R and Griffin JD:
The BCR/ABL tyrosine kinase induces production of reactive oxygen
species in hematopoietic cells. J Biol Chem. 275:24273–24278. 2000.
View Article : Google Scholar : PubMed/NCBI
|
|
54
|
Kim JH, Chu SC, Gramlich JL, Pride YB,
Babendreier E, Chauhan D, Salgia R, Podar K, Griffin JD and Sattler
M: Activation of the PI3K/mTOR pathway by BCR-ABL contributes to
increased production of reactive oxygen species. Blood.
105:1717–1723. 2005. View Article : Google Scholar : PubMed/NCBI
|
|
55
|
Koptyra M, Falinski R, Nowicki MO,
Stoklosa T, Majsterek I, Nieborowska-Skorska M, Blasiak J and
Skorski T: BCR/ABL kinase induces self-mutagenesis via reactive
oxygen species to encode imatinib resistance. Blood. 108:319–327.
2006. View Article : Google Scholar : PubMed/NCBI
|
|
56
|
Sallmyr A, Fan J, Datta K, Kim KT, Grosu
D, Shapiro P, Small D and Rassool F: Internal tandem duplication of
FLT3 (FLT3/ITD) induces increased ROS production, DNA damage, and
misrepair: Implications for poor prognosis in AML. Blood.
111:3173–3182. 2008. View Article : Google Scholar : PubMed/NCBI
|
|
57
|
Hole PS, Pearn L, Tonks AJ, James PE,
Burnett AK, Darley RL and Tonks A: Ras-induced reactive oxygen
species promote growth factor-independent proliferation in human
CD34+ hematopoietic progenitor cells. Blood. 115:1238–1246. 2010.
View Article : Google Scholar : PubMed/NCBI
|
|
58
|
Kagan VE, Tyurin VA, Jiang J, Tyurina YY,
Ritov VB, Amoscato AA, Osipov AN, Belikova NA, Kapralov AA, Kini V,
et al: Cytochrome c acts as a cardiolipin oxygenase required for
release of proapoptotic factors. Nat Chem Biol. 1:223–232. 2005.
View Article : Google Scholar : PubMed/NCBI
|
|
59
|
Liu Z, Lin H, Ye S, Liu QY, Meng Z, Zhang
CM, Xia Y, Margoliash E, Rao Z and Liu XJ: Remarkably high
activities of testicular cytochrome c in destroying reactive oxygen
species and in triggering apoptosis. Proc Natl Acad Sci USA.
103:pp. 8965–8970. 2006; View Article : Google Scholar : PubMed/NCBI
|
|
60
|
Zhong H and Yin H: Role of lipid
peroxidation derived 4-hydroxynonenal (4-HNE) in cancer: Focusing
on mitochondria. Redox Biol. 4:193–199. 2015. View Article : Google Scholar : PubMed/NCBI
|
|
61
|
Roychoudhury J, Clark JP, Gracia-Maldonado
G, Unnisa Z, Wunderlich M, Link KA, Dasgupta N, Aronow B, Huang G,
Mulloy JC and Kumar AR: MEIS1 regulates an HLF-oxidative stress
axis in MLL-fusion gene leukemia. Blood. 125:2544–2552. 2015.
View Article : Google Scholar : PubMed/NCBI
|
|
62
|
Zhou W, Zhu W, Ma L, Xiao F and Qian W:
Proteasome inhibitor MG-132 enhances histone deacetylase inhibitor
SAHA-induced cell death of chronic myeloid leukemia cells by an
ROS-mediated mechanism and downregulation of the Bcr-Abl fusion
protein. Oncol Lett. 10:2899–2904. 2015. View Article : Google Scholar : PubMed/NCBI
|
|
63
|
Zhang J, Wang X, Vikash V, Ye Q, Wu D, Liu
Y and Dong W: ROS and ROS-mediated cellular signaling. Oxid Med
Cell Longev. 2016:43509652016. View Article : Google Scholar : PubMed/NCBI
|
|
64
|
Junttila MR, Li SP and Westermarck J:
Phosphatase-mediated crosstalk between MAPK signaling pathways in
the regulation of cell survival. FASEB J. 22:954–965. 2008.
View Article : Google Scholar : PubMed/NCBI
|
|
65
|
Pimienta G and Pascual J: Canonical and
alternative MAPK signaling. Cell cycle. 6:2628–2632. 2007.
View Article : Google Scholar : PubMed/NCBI
|
|
66
|
Kyriakis JM and Avruch J: Mammalian
mitogen-activated protein kinase signal transduction pathways
activated by stress and inflammation. Physiol Rev. 81:807–869.
2001. View Article : Google Scholar : PubMed/NCBI
|
|
67
|
Chen Z, Gibson TB, Robinson F, Silvestro
L, Pearson G, Xu B, Wright A, Vanderbilt C and Cobb MH: MAP
kinases. Chem Rev. 101:2449–2476. 2001. View Article : Google Scholar : PubMed/NCBI
|
|
68
|
León-Buitimea A, Rodríguez-Fragoso L,
Lauer FT, Bowles H, Thompson TA and Burchiel SW: Ethanol-induced
oxidative stress is associated with EGF receptor phosphorylation in
MCF-10A cells overexpressing CYP2E1. Toxicol Lett. 209:161–165.
2012. View Article : Google Scholar : PubMed/NCBI
|
|
69
|
Lei H and Kazlauskas A: Growth factors
outside of the platelet-derived growth factor (PDGF) family employ
reactive oxygen species/Src family kinases to activate PDGF
receptor alpha and thereby promote proliferation and survival of
cells. J Biol Chem. 284:6329–6336. 2009. View Article : Google Scholar : PubMed/NCBI
|
|
70
|
Franklin RA, Atherfold PA and McCubrey JA:
Calcium-induced ERK activation in human T lymphocytes occurs via
p56(Lck) and CaM-kinase. Mol Immunol. 37:675–683. 2000. View Article : Google Scholar : PubMed/NCBI
|
|
71
|
Dann SG, Golas J, Miranda M, Shi C, Wu J,
Jin G, Rosfjord E, Upeslacis E and Klippel A: p120 catenin is a key
effector of a Ras-PKCε oncogenic signaling axis. Oncogene.
33:1385–1394. 2014. View Article : Google Scholar : PubMed/NCBI
|
|
72
|
Leslie NR and Downes CP: PTEN: The down
side of PI 3-kinase signalling. Cell Signal. 14:285–295. 2002.
View Article : Google Scholar : PubMed/NCBI
|
|
73
|
Lee SR, Yang KS, Kwon J, Lee C, Jeong W
and Rhee SG: Reversible inactivation of the tumor suppressor PTEN
by H2O2. J Biol Chem. 277:20336–20342. 2002. View Article : Google Scholar : PubMed/NCBI
|
|
74
|
Reynaert NL, van der Vliet A, Guala AS,
McGovern T, Hristova M, Pantano C, Heintz NH, Heim J, Ho YS,
Matthews DE, et al: Dynamic redox control of NF-kappaB through
glutaredoxin-regulated S-glutathionylation of inhibitory kappaB
kinase beta. Proc Natl Acad Sci USA. 103:pp. 13086–13091. 2006;
View Article : Google Scholar : PubMed/NCBI
|
|
75
|
Angsutararux P, Luanpitpong S and
Issaragrisil S: Chemotherapy-induced cardiotoxicity: Overview of
the roles of oxidative stress. Oxid Med Cell Longev.
2015:7956022015. View Article : Google Scholar : PubMed/NCBI
|
|
76
|
Petrola MJ, de Castro AJ, Pitombeira MH,
Barbosa MC, Quixadá AT, Duarte FB and Gonçalves RP: Serum
concentrations of nitrite and malondialdehyde as markers of
oxidative stress in chronic myeloid leukemia patients treated with
tyrosine kinase inhibitors. Rev Bras Hematol Hemoter. 34:352–355.
2012. View Article : Google Scholar : PubMed/NCBI
|
|
77
|
Cheuk DK, Sieswerda E, van Dalen EC,
Postma A and Kremer LC: Medical interventions for treating
anthracycline-induced symptomatic and asymptomatic cardiotoxicity
during and after treatment for childhood cancer. Cochrane Database
Syst Rev: CD008011. 2016. View Article : Google Scholar
|
|
78
|
Bartlett JJ, Trivedi PC, Yeung P,
Kienesberger PC and Pulinilkunnil T: Doxorubicin impairs
cardiomyocyte viability by suppressing transcription factor EB
expression and disrupting autophagy. Biochem J. 473:3769–3789.
2016. View Article : Google Scholar : PubMed/NCBI
|
|
79
|
Piegari E, Russo R, Cappetta D, Esposito
G, Urbanek K, Dell'Aversana C, Altucci L, Berrino L, Rossi F and De
Angelis A: MicroRNA-34a regulates doxorubicin-induced
cardiotoxicity in rat. Oncotarget. 7:62312–62326. 2016. View Article : Google Scholar : PubMed/NCBI
|
|
80
|
Sabnis HS, Bradley HL, Tripathi S, Yu WM,
Tse W, Qu CK and Bunting KD: Synergistic cell death in FLT3-ITD
positive acute myeloid leukemia by combined treatment with
metformin and 6-benzylthioinosine. Leuk Res. 50:132–140. 2016.
View Article : Google Scholar : PubMed/NCBI
|
|
81
|
Sun X, Zhou Z and Kang YJ: Attenuation of
doxorubicin chronic toxicity in metallothionein-overexpressing
transgenic mouse heart. Cancer Res. 61:3382–3387. 2001.PubMed/NCBI
|
|
82
|
Nakayama A, Alladin KP, Igbokwe O and
White JD: Systematic review: Generating evidence-based guidelines
on the concurrent use of dietary antioxidants and chemotherapy or
radiotherapy. Cancer Invest. 29:655–667. 2011. View Article : Google Scholar : PubMed/NCBI
|
|
83
|
Meyskens FL Jr, Kopecky KJ, Appelbaum FR,
Balcerzak SP, Samlowski W and Hynes H: Effects of vitamin A on
survival in patients with chronic myelogenous leukemia: A SWOG
randomized trial. Leuk Res. 19:605–612. 1995. View Article : Google Scholar : PubMed/NCBI
|
|
84
|
Hewish M, Martin SA, Elliott R, Cunningham
D, Lord CJ and Ashworth A: Cytosine-based nucleoside analogs are
selectively lethal to DNA mismatch repair-deficient tumour cells by
enhancing levels of intracellular oxidative stress. Br J Cancer.
108:983–992. 2013. View Article : Google Scholar : PubMed/NCBI
|
|
85
|
Kennedy JA and Barabé F: Investigating
human leukemogenesis: From cell lines to in vivo models of human
leukemia. Leukemia. 22:2029–2040. 2008. View Article : Google Scholar : PubMed/NCBI
|