|
1
|
Pernar CH, Ebot EM, Wilson KM and Mucci
LA: The epidemiology of prostate cancer. Cold Spring Harb Perspect
Med. 8(pii): a0303612018. View Article : Google Scholar : PubMed/NCBI
|
|
2
|
Mitsuzuka K and Arai Y: Metabolic changes
in patients with prostate cancer during androgen deprivation
therapy. Int J Urol. 25:45–53. 2018. View Article : Google Scholar : PubMed/NCBI
|
|
3
|
Grasso CS, Wu YM, Robinson DR, Cao X,
Dhanasekaran SM, Khan AP, Quist MJ, Jing X, Lonigro RJ, Brenner JC,
et al: The mutational landscape of lethal castration-resistant
prostate cancer. Nature. 487:239–243. 2012. View Article : Google Scholar : PubMed/NCBI
|
|
4
|
Sung B, Prasad S, Yadav VR, Lavasanifar A
and Aggarwal BB: Cancer and diet: How are they related? Free Radic
Res. 45:864–879. 2011. View Article : Google Scholar : PubMed/NCBI
|
|
5
|
Zhang HY, Cui J, Zhang Y, Wang ZL, Chong T
and Wang ZM: Isoflavones and prostate cancer: A review of some
critical issues. Chin Med J (Engl). 129:341–347. 2016. View Article : Google Scholar : PubMed/NCBI
|
|
6
|
Patel RP, Boersma BJ, Crawford JH, Hogg N,
Kirk M, Kalyanaraman B, Parks DA, Barnes S and Darley-Usmar V:
Antioxidant mechanisms of isoflavones in lipid systems: Paradoxical
effects of peroxyl radical scavenging. Free Radic Biol Med.
31:1570–1581. 2001. View Article : Google Scholar : PubMed/NCBI
|
|
7
|
Yen GC and Lai HH: Inhibition of reactive
nitrogen species effects in vitro and in vivo by isoflavones and
soy-based food extracts. J Agric Food Chem. 51:7892–7900. 2003.
View Article : Google Scholar : PubMed/NCBI
|
|
8
|
Braakhuis AJ, Campion P and Bishop KS:
Reducing breast cancer recurrence: The role of dietary
polyphenolics. Nutrients. 8(pii): E5472016. View Article : Google Scholar : PubMed/NCBI
|
|
9
|
Kuiper GG, Carlsson B, Grandien K, Enmark
E, Häggblad J, Nilsson S and Gustafsson JA: Comparison of the
ligand binding specificity and transcript tissue distribution of
estrogen receptors alpha and beta. Endocrinology. 138:863–870.
1997. View Article : Google Scholar : PubMed/NCBI
|
|
10
|
Akiyama T, Ishida J, Nakagawa S, Ogawara
H, Watanabe S, Itoh N, Shibuya M and Fukami Y: Genistein, a
specific inhibitor of tyrosine-specific protein kinases. J Biol
Chem. 262:5592–5595. 1987.PubMed/NCBI
|
|
11
|
Rabiau N, Kossaï M, Braud M, Chalabi N,
Satih S, Bignon YJ and Bernard-Gallon DJ: Genistein and daidzein
act on a panel of genes implicated in cell cycle and angiogenesis
by polymerase chain reaction arrays in human prostate cancer cell
lines. Cancer Epidemiol. 34:200–206. 2010. View Article : Google Scholar : PubMed/NCBI
|
|
12
|
Bektic J, Berger AP, Pfeil K, Dobler G,
Bartsch G and Klocker H: Androgen receptor regulation by
physiological concentrations of the isoflavonoid genistein in
androgen-dependent LNCaP cells is mediated by estrogen receptor
beta. Eur Urol. 45:245–251. 2004. View Article : Google Scholar : PubMed/NCBI
|
|
13
|
Fritz WA, Wang J, Eltoum IE and
Lamartiniere CA: Dietary genistein down-regulates androgen and
estrogen receptor expression in the rat prostate. Mol Cell
Endocrinol. 186:89–99. 2002. View Article : Google Scholar : PubMed/NCBI
|
|
14
|
Mahmoud AM, Yang W and Bosland MC: Soy
isoflavones and prostate cancer: A review of molecular mechanisms.
J Steroid Biochem Mol Biol. 140:161–132. 2014. View Article : Google Scholar
|
|
15
|
Applegate CC, Rowles JL, Ranard KM, Jeon S
and Erdman JW: Soy consumption and the risk of prostate cancer: An
updated systematic review and meta-analysis. Nutrients. 10(pii):
E402018. View Article : Google Scholar : PubMed/NCBI
|
|
16
|
Kumar R: Steroid hormone receptors and
prostate cancer: Role of structural dynamics in therapeutic
targeting. Asian J Androl. 18:682–686. 2016. View Article : Google Scholar : PubMed/NCBI
|
|
17
|
Jenster G, van der Korput HA, Trapman J
and Brinkmann AO: Identification of two transcription activation
units in the N-terminal domain of the human androgen receptor. J
Biol Chem. 270:7341–7346. 1995. View Article : Google Scholar : PubMed/NCBI
|
|
18
|
Kumar R and McEwan IJ: Allosteric
modulators of steroid hormone receptors: Structural dynamics and
gene regulation. Endocr Rev. 33:271–299. 2012. View Article : Google Scholar : PubMed/NCBI
|
|
19
|
Monaghan AE and McEwan IJ: A sting in the
tail: The N-terminal domain of the androgen receptor as a drug
target. Asian J Androl. 18:687–694. 2016. View Article : Google Scholar : PubMed/NCBI
|
|
20
|
Lavery DN and McEwan IJ: Functional
characterization of the native NH2-terminal transactivation domain
of the human androgen receptor: Binding kinetics for interactions
with TFIIF and SRC-1a. Biochemistry. 47:3352–3359. 2008. View Article : Google Scholar : PubMed/NCBI
|
|
21
|
Verrijdt G, Tanner T, Moehren U,
Callewaert L, Haelens A and Claessens F: The androgen receptor
DNA-binding domain determines androgen selectivity of
transcriptional response. Biochem Soc Trans. 34:1089–1094. 2006.
View Article : Google Scholar : PubMed/NCBI
|
|
22
|
Zhou ZX, Wong CI, Sar M and Wilson EM: The
androgen receptor: An overview. Recent Prog Horm Res. 49:249–274.
1994.PubMed/NCBI
|
|
23
|
Matias PM, Donner P, Coelho R, Thomaz M,
Peixoto C, Macedo S, Otto N, Joschko S, Scholz P, Wegg A, et al:
Structural evidence for ligand specificity in the binding domain of
the human androgen receptor. Implications for pathogenic gene
mutations. J Biol Chem. 275:26164–26171. 2000. View Article : Google Scholar : PubMed/NCBI
|
|
24
|
Davey RA and Grossmann M: Androgen
receptor structure, function and biology: From bench to bedside.
Clin Biochem Rev. 37:3–15. 2016.PubMed/NCBI
|
|
25
|
Veldscholte J, Berrevoets CA, Zegers ND,
van der Kwast TH, Grootegoed JA and Mulder E: Hormone-induced
dissociation of the androgen receptor-heat-shock protein complex:
Use of a new monoclonal antibody to distinguish transformed from
nontransformed receptors. Biochemistry. 31:7422–7430. 1992.
View Article : Google Scholar : PubMed/NCBI
|
|
26
|
van der Steen T, Tindall DJ and Huang H:
Posttranslational modification of the androgen receptor in prostate
cancer. Int J Mol Sci. 14:14833–14859. 2013. View Article : Google Scholar : PubMed/NCBI
|
|
27
|
Boam T: Anti-androgenic effects of
flavonols in prostate cancer. Ecancermedicalscience.
9:5852015.PubMed/NCBI
|
|
28
|
D'Archivio M, Filesi C, Di Benedetto R,
Gargiulo R, Giovannini C and Masella R: Polyphenols, dietary
sources and bioavailability. Ann Ist Super Sanita. 43:348–361.
2007.PubMed/NCBI
|
|
29
|
Trebatická J and Ďuračková Z: Psychiatric
disorders and polyphenols: Can they be helpful in therapy? Oxid Med
Cell Longev 2015. 2485292015.
|
|
30
|
Crozier A, Jaganath IB and Clifford MN:
Phenols, polyphenols and tannins: An overview, in plant secondary
metabolites: Occurrence, structure and role in the human diet.
Crozier A, Clifford MN and Ashihara H: Oxford: Blackwell Publishing
Ltd; pp. 1–24. 2006
|
|
31
|
Cassidy A and Minihane AM: The role of
metabolism (and the microbiome) in defining the clinical efficacy
of dietary flavonoids. Am J Clin Nutr. 105:10–22. 2017. View Article : Google Scholar : PubMed/NCBI
|
|
32
|
Adegbola P, Aderibigbe I, Hammed W and
Omotayo T: Antioxidant and anti-inflammatory medicinal plants have
potential role in the treatment of cardiovascular disease: A
review. Am J Cardiovasc Dis. 7:19–32. 2017.PubMed/NCBI
|
|
33
|
Barbieri R, Coppo E, Marchese A, Daglia M,
Sobarzo-Sánchez E, Nabavi SF and Nabavi SM: Phytochemicals for
human disease: An update on plant-derived compounds antibacterial
activity. Microbiol Res. 196:44–68. 2017. View Article : Google Scholar : PubMed/NCBI
|
|
34
|
Crozier A, Jaganath IB and Clifford MN:
Dietary phenolics: Chemistry, bioavailability and effects on
health. Nat Prod Rep. 26:1001–1043. 2009. View Article : Google Scholar : PubMed/NCBI
|
|
35
|
Costa SL, Silva VD, Dos Santos Souza C,
Santos CC, Paris I, Muñoz P and Segura-Aguilar J: Impact of
plant-derived flavonoids on neurodegenerative diseases. Neurotox
Res. 30:41–52. 2016. View Article : Google Scholar : PubMed/NCBI
|
|
36
|
Wang J, Tang L and Wang JS: Biomarkers of
dietary polyphenols in cancer studies: Current evidence and beyond.
Oxid Med Cell Longev. 2015:7323022015. View Article : Google Scholar : PubMed/NCBI
|
|
37
|
Hilakivi-Clarke L, Andrade JE and
Helferich W: Is soy consumption good or bad for the breast? J Nutr.
140:2326S–2334S. 2010. View Article : Google Scholar : PubMed/NCBI
|
|
38
|
Setchell KD, Brown NM, Desai PB,
Zimmer-Nechimias L, Wolfe B, Jakate AS, Creutzinger V and Heubi JE:
Bioavailability, disposition, and dose-response effects of soy
isoflavones when consumed by healthy women at physiologically
typical dietary intakes. J Nutr. 133:1027–1035. 2003. View Article : Google Scholar : PubMed/NCBI
|
|
39
|
Mondot S and Lepage P: The human gut
microbiome and its dysfunctions through the meta-omics prism. Ann N
Y Acad Sci. 1372:9–19. 2016. View Article : Google Scholar : PubMed/NCBI
|
|
40
|
Landete JM, Arqués J, Medina M, Gaya P, de
Las Rivas B and Muñoz R: Bioactivation of phytoestrogens:
Intestinal bacteria and health. Crit Rev Food Sci Nutr.
56:1826–1843. 2016. View Article : Google Scholar : PubMed/NCBI
|
|
41
|
Rafii F: The role of colonic bacteria in
the metabolism of the natural isoflavone daidzin to equol.
Metabolites. 5:56–73. 2015. View Article : Google Scholar : PubMed/NCBI
|
|
42
|
Heinonen SM, Hoikkala A, Wähälä K and
Adlercreutz H: Metabolism of the soy isoflavones daidzein,
genistein and glycitein in human subjects. Identification of new
metabolites having an intact isoflavonoid skeleton. J Steroid
Biochem Mol Biol. 87:285–299. 2003. View Article : Google Scholar : PubMed/NCBI
|
|
43
|
Pilšáková L, Riečanský I and Jagla F: The
physiological actions of isoflavone phytoestrogens. Physiol Res.
59:651–664. 2010.PubMed/NCBI
|
|
44
|
Manach C, Williamson G, Morand C, Scalbert
A and Rémésy C: Bioavailability and bioefficacy of polyphenols in
humans. I. Review of 97 bioavailability studies. Am J Clin Nutr. 81
Suppl 1:230S–242S. 2005. View Article : Google Scholar : PubMed/NCBI
|
|
45
|
Barnes S: The biochemistry, chemistry and
physiology of the isoflavones in soybeans and their food products.
Lymphat Res Biol. 8:89–98. 2010. View Article : Google Scholar : PubMed/NCBI
|
|
46
|
Murphy PA, Barua K and Hauck CC: Solvent
extraction selection in the determination of isoflavones in soy
foods. J Chromatogr B. 777:129–138. 2002. View Article : Google Scholar
|
|
47
|
Bai W, Wang C and Ren C: Intakes of total
and individual flavonoids by US adults. Int J Food Sci Nutr.
65:9–20. 2014. View Article : Google Scholar : PubMed/NCBI
|
|
48
|
Van E, rp-Baart MA, Brants HA, Kiely M,
Mulligan A, Turrini A, Sermoneta C, Kilkkinen A and Valsta LM:
Isoflavone intake in four different European countries: The VENUS
approach. Br J Nutr. 89 Suppl 1:S25–S30. 2003.PubMed/NCBI
|
|
49
|
Sureda A, Sanches Silva A, Sánchez-Machado
DI, López-Cervantes J, Daglia M, Nabavi SF and Nabavi SM:
Hypotensive effects of genistein: From chemistry to medicine. Chem
Biol Interact. 268:37–46. 2017. View Article : Google Scholar : PubMed/NCBI
|
|
50
|
Rahman Mazumder MA and Hongsprabhas P:
Genistein as antioxidant and antibrowning agents in in vivo and in
vitro: A review. Biomed Pharmacother. 82:379–392. 2016. View Article : Google Scholar : PubMed/NCBI
|
|
51
|
Messina MJ, Persky V, Setchell KD and
Barnes S: Soy intake and cancer risk: A review of the in vitro and
in vivo data. Nutr Cancer. 21:113–131. 1994. View Article : Google Scholar : PubMed/NCBI
|
|
52
|
Baxa DM, Luo X and Yoshimura FK: Genistein
induces apoptosis in T lymphoma cells via mitochondrial damage.
Nutr Cancer. 51:93–101. 2005. View Article : Google Scholar : PubMed/NCBI
|
|
53
|
Baxa DM and Yoshimura FK: Genistein
reduces NF-kappa B in T lymphoma cells via a caspase-mediated
cleavage of I kappa B alpha. Biochem Pharmacol. 66:1009–1018. 2003.
View Article : Google Scholar : PubMed/NCBI
|
|
54
|
Seo YJ, Kim BS, Chun SY, Park YK, Kang KS
and Kwon TG: Apoptotic effects of genistein, biochanin-A and
apigenin on LNCaP and PC-3 cells by p21 through transcriptional
inhibition of polo-like kinase-1. J Korean Med Sci. 26:1489–1494.
2011. View Article : Google Scholar : PubMed/NCBI
|
|
55
|
Shen JC, Klein RD, Wei Q, Guan Y, Contois
JH, Wang TT, Chang S and Hursting SD: Low-dose genistein induces
cyclin-dependent kinase inhibitors and G(1) cell-cycle arrest in
human prostate cancer cells. Mol Carcinog. 29:92–102. 2000.
View Article : Google Scholar : PubMed/NCBI
|
|
56
|
Majid S, Kikuno N, Nelles J, Noonan E,
Tanaka Y, Kawamoto K, Hirata H, Li LC, Zhao H, Okino ST, et al:
Genistein induces the p21WAF1/CIP1 and p16INK4a tumor suppressor
genes in prostate cancer cells by epigenetic mechanisms involving
active chromatin modification. Cancer Res. 68:2736–2744. 2008.
View Article : Google Scholar : PubMed/NCBI
|
|
57
|
Agarwal R: Cell signaling and regulators
of cell cycle as molecular targets for prostate cancer prevention
by dietary agents. Biochem Pharmacol. 60:1051–1059. 2000.
View Article : Google Scholar : PubMed/NCBI
|
|
58
|
Wang BF, Wang JS, Lu JF, Kao TH and Chen
BH: Antiproliferation effect and mechanism of prostate cancer cell
lines as affected by isoflavones from soybean cake. J Agric Food
Chem. 57:2221–2232. 2009. View Article : Google Scholar : PubMed/NCBI
|
|
59
|
Li W, Frame LT, Hoo KA, Li Y, D'Cunha N
and Cobos E: Genistein inhibited proliferation and induced
apoptosis in acute lymphoblastic leukemia, lymphoma and multiple
myeloma cells in vitro. Leuk Lymphoma. 52:2380–2390. 2011.
View Article : Google Scholar : PubMed/NCBI
|
|
60
|
Guo Y, Wang S, Hoot DR and Clinton SK:
Suppression of VEGF-mediated autocrine and paracrine interactions
between prostate cancer cells and vascular endothelial cells by soy
isoflavones. J Nutr Biochem. 18:408–417. 2007. View Article : Google Scholar : PubMed/NCBI
|
|
61
|
Li Y, Che M, Bhagat S, Ellis KL, Kucuk O,
Doerge DR, Abrams J, Cher ML and Sarkar FH: Regulation of gene
expression and inhibition of experimental prostate cancer bone
metastasis by dietary genistein. Neoplasia. 6:354–363. 2004.
View Article : Google Scholar : PubMed/NCBI
|
|
62
|
Li Y and Sarkar FH: Down-regulation of
invasion and angiogenesis-related genes identified by cDNA
microarray analysis of PC3 prostate cancer cells treated with
genistein. Cancer Lett. 186:157–164. 2002. View Article : Google Scholar : PubMed/NCBI
|
|
63
|
Sargeant P, Farndale RW and Sage SO: The
tyrosine kinase inhibitors methyl 2,5-dihydroxycinnamate and
genistein reduce thrombin-evoked tyrosine phosphorylation and Ca2+
entry in human platelets. FEBS Lett. 315:242–246. 1993. View Article : Google Scholar : PubMed/NCBI
|
|
64
|
Sathyamoorthy N and Wang TT: Differential
effects of dietary phyto-oestrogens daidzein and equol on human
breast cancer MCF-7 cells. Eur J Cancer. 33:2384–2389. 1997.
View Article : Google Scholar : PubMed/NCBI
|
|
65
|
Gętek M, Czech N, Muc-Wierzgoń M,
Grochowska-Niedworok E, Kokot T and Nowakowska-Zajdel E: The active
role of leguminous plant components in type 2 diabetes. Evid Based
Complement Alternat Med. 2014:2939612014. View Article : Google Scholar : PubMed/NCBI
|
|
66
|
Mitchell JH, Gardner PT, McPhail DB,
Morrice PC, Collins AR and Duthie GG: Antioxidant efficacy of
phytoestrogens in chemical and biological model systems. Arch
Biochem Biophys. 360:142–148. 1998. View Article : Google Scholar : PubMed/NCBI
|
|
67
|
Kang KA, Zhang R, Piao MJ, Lee KH, Kim BJ,
Kim SY, Kim HS, Kim DH, You HJ and Hyun JW: Inhibitory effects of
glycitein on hydrogen peroxide induced cell damage by scavenging
reactive oxygen species and inhibiting c-Jun N-terminal kinase.
Free Radic Res. 41:720–729. 2007. View Article : Google Scholar : PubMed/NCBI
|
|
68
|
Ziaei S and Halaby R: Dietary isoflavones
and breast cancer risk. Medicines (Basel). 4(pii): E182017.
View Article : Google Scholar : PubMed/NCBI
|
|
69
|
Vitale DC, Piazza C, Melilli B, Drago F
and Salomone S: Isoflavones: Estrogenic activity, biological effect
and bioavailability. Eur J Drug Metab Pharmacokinet. 38:15–25.
2013. View Article : Google Scholar : PubMed/NCBI
|
|
70
|
Couse JF, Lindzey J, Grandien K,
Gustafsson JA and Korach KS: Tissue distribution and quantitative
analysis of estrogen receptor-alpha (ERalpha) and estrogen
receptor-beta (ERbeta) messenger ribonucleic acid in the wild-type
and ERalpha-knockout mouse. Endocrinology. 138:4613–4621. 1997.
View Article : Google Scholar : PubMed/NCBI
|
|
71
|
Lee JY, Kim HS and Song YS: Genistein as a
potential anticancer agent against ovarian cancer. J Tradit
Complement Med. 2:96–104. 2012. View Article : Google Scholar : PubMed/NCBI
|
|
72
|
Mahmoud AM, Al-Alem U, Ali MM and Bosland
MC: Genistein increases estrogen receptor beta expression in
prostate cancer via reducing its promoter methylation. J Steroid
Biochem Mol Biol. 152:62–75. 2015. View Article : Google Scholar : PubMed/NCBI
|
|
73
|
Fixemer T, Remberger K and Bonkhoff H:
Differential expression of the estrogen receptor beta (ERbeta) in
human prostate tissue, premalignant changes, and in primary,
metastatic, and recurrent prostatic adenocarcinoma. Prostate.
54:79–87. 2003. View Article : Google Scholar : PubMed/NCBI
|
|
74
|
Kuiper GG, Lemmen JG, Carlsson B, Corton
JC, Safe SH, van der Saag PT, van der Burg B and Gustafsson JA:
Interaction of estrogenic chemicals and phytoestrogens with
estrogen receptor beta. Endocrinology. 139:4252–4263. 1998.
View Article : Google Scholar : PubMed/NCBI
|
|
75
|
Banerjee S, Li Y, Wang Z and Sarkar FH:
Multi-targeted therapy of cancer by genistein. Cancer Lett.
269:226–242. 2008. View Article : Google Scholar : PubMed/NCBI
|
|
76
|
An J, Tzagarakis-Foster C, Scharschmidt
TC, Lomri N and Leitman DC: Estrogen receptor beta-selective
transcriptional activity and recruitment of coregulators by
phytoestrogens. J Biol Chem. 276:17808–17814. 2001. View Article : Google Scholar : PubMed/NCBI
|
|
77
|
Muthyala RS, Ju YH, Sheng S, Williams LD,
Doerge DR, Katzenellenbogen BS, Helferich WG and Katzenellenbogen
JA: Equol, a natural estrogenic metabolite from soy isoflavones:
Convenient preparation and resolution of R- and S-equols and their
differing binding and biological activity through estrogen
receptors alpha and beta. Bioorg Med Chem. 12:1559–1567. 2004.
View Article : Google Scholar : PubMed/NCBI
|
|
78
|
Setchell KD, Clerici C, Lephart ED, Cole
SJ, Heenan C, Castellani D, Wolfe BE, Nechemias-Zimmer L, Brown NM,
Lund TD, et al: S-equol, a potent ligand for estrogen receptor
beta, is the exclusive enantiomeric form of the soy isoflavone
metabolite produced by human intestinal bacterial flora. Am J Clin
Nutr. 81:1072–1079. 2005. View Article : Google Scholar : PubMed/NCBI
|
|
79
|
Song TT, Hendrich S and Murphy PA:
Estrogenic activity of glycitein, a soy isoflavone. J Agric Food
Chem. 47:1607–1610. 1999. View Article : Google Scholar : PubMed/NCBI
|
|
80
|
Wang H, Li J, Gao Y, Xu Y, Pan Y, Tsuji I,
Sun ZJ and Li XM: Xeno-oestrogens and phyto-oestrogens are
alternative ligands for the androgen receptor. Asian JAndrol.
12:535–547. 2010. View Article : Google Scholar
|
|
81
|
Lund TD, Munson DJ, Haldy ME, Setchell KD,
Lephart ED and Handa RJ: Equol is a novel anti-androgen that
inhibits prostate growth and hormone feedback. Biol Reprod.
70:1188–1195. 2004. View Article : Google Scholar : PubMed/NCBI
|
|
82
|
Itsumi M, Shiota M, Takeuchi A, Kashiwagi
E, Inokuchi J, Tatsugami K, Kajioka S, Uchiumi T, Naito S, Eto M
and Yokomizo A: Equol inhibits prostate cancer growth through
degradation of androgen receptor by S-phase kinase-associated
protein 2. Cancer Sci. 107:1022–1028. 2016. View Article : Google Scholar : PubMed/NCBI
|
|
83
|
Pratt WB and Toft DO: Steroid receptor
interactions with heat shock protein and immunophilin chaperones.
Endocr Rev. 18:306–360. 1997. View Article : Google Scholar : PubMed/NCBI
|
|
84
|
Basak S, Pookot D, Noonan EJ and Dahiya R:
Genistein down-regulates androgen receptor by modulating
HDAC6-Hsp90 chaperone function. Mol Cancer Ther. 7:3195–3202. 2008.
View Article : Google Scholar : PubMed/NCBI
|
|
85
|
Chen L, Meng S, Wang H, Bali P, Bai W, Li
B, Atadja P, Bhalla KN and Wu J: Chemical ablation of androgen
receptor in prostate cancer cells by the histone deacetylase
inhibitor LAQ824. Mol Cancer Ther. 4:1311–1319. 2005. View Article : Google Scholar : PubMed/NCBI
|
|
86
|
Li Y, Wang Z, Kong D, Li R, Sarkar SH and
Sarkar FH: Regulation of Akt/FOXO3a/GSK-3beta/AR signaling network
by isoflavone in prostate cancer cells. J Biol Chem.
283:27707–27716. 2008. View Article : Google Scholar : PubMed/NCBI
|
|
87
|
Lazarevic B, Karlsen SJ and Saatcioglu F:
Genistein differentially modulates androgen-responsive gene
expression and activates JNK in LNCaP cells. Oncol Rep.
19:1231–1235. 2008.PubMed/NCBI
|
|
88
|
Maggiolini M, Vivacqua A, Carpino A,
Bonofiglio D, Fasanella G, Salerno M, Picard D and Andó S: The
mutant androgen receptor T877A mediates the proliferative but not
the cytotoxic dose-dependent effects of genistein and quercetin on
human LNCaP prostate cancer cells. Mol Pharmacol. 62:1027–1035.
2002. View Article : Google Scholar : PubMed/NCBI
|
|
89
|
Gao S, Liu GZ and Wang Z: Modulation of
androgen receptor-dependent transcription by resveratrol and
genistein in prostate cancer cells. Prostate. 59:214–225. 2004.
View Article : Google Scholar : PubMed/NCBI
|
|
90
|
Mahmoud AM, Zhu T, Parray A, Siddique HR,
Yang W, Saleem M and Bosland MC: Differential effects of genistein
on prostate cancer cells depend on mutational status of the
androgen receptor. PLoS One. 8:e784792013. View Article : Google Scholar : PubMed/NCBI
|
|
91
|
Veldscholte J, Ris-Stalpers C, Kuiper GG,
Jenster G, Berrevoets C, Claassen E, van Rooij HC, Trapman J,
Brinkmann AO and Mulder E: A mutation in the ligand binding domain
of the androgen receptor of human LNCaP cells affects steroid
binding characteristics and response to anti-androgens. Biochem
Biophys Res Commun. 173:534–540. 1990. View Article : Google Scholar : PubMed/NCBI
|
|
92
|
Weng C, Cai J, Wen J, Yuan H, Yang K,
Imperato-McGinley J and Zhu YS: Differential effects of estrogen
receptor ligands on regulation of dihydrotestosterone-induced cell
proliferation in endothelial and prostate cancer cells. Int J
Oncol. 42:327–337. 2013. View Article : Google Scholar : PubMed/NCBI
|
|
93
|
Takahashi Y, Hursting SD, Perkins SN, Wang
TC and Wang TT: Genistein affects androgen-responsive genes through
both androgen- and estrogen-induced signaling pathways. Mol
Carcinog. 45:18–25. 2006. View Article : Google Scholar : PubMed/NCBI
|
|
94
|
Wang J, Eltoum IE and Lamartiniere CA:
Genistein alters growth factor signalling in transgenic prostate
model (TRAMP). Mol Cell Endocrinol. 219:171–180. 2004. View Article : Google Scholar : PubMed/NCBI
|
|
95
|
Lateef A, Khan AQ, Tahir M, Khan R, Rehman
MU, Ali F, Hamiza OO and Sultana S: Androgen deprivation by
flutamide modulates uPAR, MMP-9 expressions, lipid profile, and
oxidative stress: Amelioration by daidzein. Mol Cell Biochem.
374:49–59. 2013. View Article : Google Scholar : PubMed/NCBI
|
|
96
|
Loutchanwoot P, Srivilai P and Jarry H:
Lack of anti-androgenic effects of equol on reproductive
neuroendocrine function in the adult male rat. Horm Behav.
65:22–31. 2014. View Article : Google Scholar : PubMed/NCBI
|
|
97
|
Legg RL, Tolman JR, Lovinger CT, Lephart
ED, Setchell KD and Christensen MJ: Diets high in selenium and
isoflavones decrease androgen-regulated gene expression in healthy
rat dorsolateral prostate. Reprod Biol Endocrinol. 6:572008.
View Article : Google Scholar : PubMed/NCBI
|
|
98
|
Onozawa M, Fukuda K, Ohtani M, Akaza H,
Sugimura T and Wakabayashi K: Effects of soybean isoflavones on
cell growth and apoptosis of the human prostatic cancer cell line
LNCaP. Jpn J Clin Oncol. 28:360–363. 1998. View Article : Google Scholar : PubMed/NCBI
|
|
99
|
Davis JN, Muqim N, Bhuiyan M, Kucuk O,
Pienta KJ and Sarkar FH: Inhibition of prostate specific antigen
expression by genistein in prostate cancer cells. Int J Oncol.
16:1091–1097. 2000.PubMed/NCBI
|
|
100
|
Peternac D, Klima I, Cecchini MG,
Schwaninger R, Studer UE and Thalmann GN: Agents used for
chemoprevention of prostate cancer may influence PSA secretion
independently of cell growth in the LNCaP model of human prostate
cancer progression. Prostate. 68:1307–1318. 2008. View Article : Google Scholar : PubMed/NCBI
|
|
101
|
Hussain M, Banerjee M, Sarkar FH, Djuric
Z, Pollak MN, Doerge D, Fontana J, Chinni S, Davis J, Forman J, et
al: Soy isoflavones in the treatment of prostate cancer. Nutr
Cancer. 47:111–117. 2003. View Article : Google Scholar : PubMed/NCBI
|
|
102
|
Kumar NB, Cantor A, Allen K, Riccardi D,
Besterman-Dahan K, Seigne J, Helal M, Salup R and Pow-Sang J: The
specific role of isoflavones in reducing prostate cancer risk.
Prostate. 59:141–147. 2004. View Article : Google Scholar : PubMed/NCBI
|
|
103
|
Dalais FS, Meliala A, Wattanapenpaiboon N,
Frydenberg M, Suter DA, Thomson WK and Wahlqvist ML: Effects of a
diet rich in phytoestrogens on prostate-specific antigen and sex
hormones in men diagnosed with prostate cancer. Urology.
64:510–515. 2004. View Article : Google Scholar : PubMed/NCBI
|
|
104
|
Schröder FH, Roobol MJ, Boevé ER, de
Mutsert R, Zuijdgeest-van Leeuwen SD, Kersten I, Wildhagen MF and
van Helvoort A: Randomized, double-blind, placebo-controlled
crossover study in men with prostate cancer and rising PSA:
Effectiveness of a dietary supplement. Eur Urol. 48:922–931. 2005.
View Article : Google Scholar : PubMed/NCBI
|
|
105
|
Kranse R, Dagnelie PC, van Kemenade MC, de
Jong FH, Blom JH, Tijburg LB, Weststrate JA and Schröder FH:
Dietary intervention in prostate cancer patients: PSA response in a
randomized double-blind placebo-controlled study. Int J Cancer.
113:835–840. 2005. View Article : Google Scholar : PubMed/NCBI
|
|
106
|
Vaishampayan U, Hussain M, Banerjee M,
Seren S, Sarkar FH, Fontana J, Forman JD, Cher ML, Powell I, Pontes
JE and Kucuk O: Lycopene and soy isoflavones in the treatment of
prostate cancer. Nutr Cancer. 59:1–7. 2007. View Article : Google Scholar : PubMed/NCBI
|
|
107
|
Grainger EM, Schwartz SJ, Wang S, Unlu NZ,
Boileau TW, Ferketich AK, Monk JP, Gong MC, Bahnson RR, DeGroff VL
and Clinton SK: A combination of tomato and soy products for men
with recurring prostate cancer and rising prostate specific
antigen. Nutr Cancer. 60:145–154. 2008. View Article : Google Scholar : PubMed/NCBI
|
|
108
|
Hamilton-Reeves JM, Rebello SA, Thomas W,
Kurzer MS and Slaton JW: Effects of soy protein isolate consumption
on prostate cancer biomarkers in men with HGPIN, ASAP, and
low-grade prostate cancer. Nutr Cancer. 60:7–13. 2008. View Article : Google Scholar : PubMed/NCBI
|
|
109
|
Pendleton JM, Tan WW, Anai S, Chang M, Hou
W, Shiverick KT and Rosser CJ: Phase II trial of isoflavone in
prostate-specific antigen recurrent prostate cancer after previous
local therapy. BMC Cancer. 8:1322008. View Article : Google Scholar : PubMed/NCBI
|
|
110
|
Kumar NB, Kang L, Pow-Sang J, Xu P, Allen
K, Riccardi D, Besterman-Dahan K and Krischer JP: Results of a
randomized phase I dose-finding trial of several doses of
isoflavones in men with localized prostate cancer: Administration
prior to radical prostatectomy. J Soc Integr Oncol. 8:3–13.
2010.PubMed/NCBI
|
|
111
|
deVere White RW, Tsodikov A, Stapp EC,
Soares SE, Fujii H and Hackman RM: Effects of a high dose,
aglycone-rich soy extract on prostate-specific antigen and serum
isoflavone concentrations in men with localized prostate cancer.
Nutr Cancer. 62:1036–1043. 2010. View Article : Google Scholar : PubMed/NCBI
|
|
112
|
Kwan W, Duncan G, Van Patten C, Liu M and
Lim J: A phase II trial of a soy beverage for subjects without
clinical disease with rising prostate-specific antigen after
radical radiation for prostate cancer. Nutr Cancer. 62:198–207.
2010. View Article : Google Scholar : PubMed/NCBI
|
|
113
|
Lazarevic B, Boezelijn G, Diep LM,
Kvernrod K, Ogren O, Ramberg H, Moen A, Wessel N, Berg RE,
Egge-Jacobsen W, et al: Efficacy and safety of short-term genistein
intervention in patients with localized prostate cancer prior to
radical prostatectomy: A randomized, placebo-controlled,
double-blind Phase 2 clinical trial. Nutr Cancer. 63:889–898. 2011.
View Article : Google Scholar : PubMed/NCBI
|
|
114
|
Hamilton-Reeves JM, Banerjee S, Banerjee
SK, Holzbeierlein JM, Thrasher JB, Kambhampati S, Keighley J and
Van Veldhuizen P: Short-term soy isoflavone intervention in
patients with localized prostate cancer: A randomized,
double-blind, placebo-controlled trial. PLoS One. 8:e683312013.
View Article : Google Scholar : PubMed/NCBI
|
|
115
|
van Die MD, Bone KM, Emery J, Williams SG,
Pirotta MV and Paller CJ: Phytotherapeutic interventions in the
management of biochemically recurrent prostate cancer: A systematic
review of randomised trials. BJU Int. 117 Suppl 4:S17–S34. 2016.
View Article : Google Scholar
|
|
116
|
van Die MD, Bone KM, Williams SG and
Pirotta MV: Soy and soy isoflavones in prostate cancer: A
systematic review and meta-analysis of randomized controlled
trials. BJU Int. 113:E119–E130. 2014. View Article : Google Scholar : PubMed/NCBI
|
|
117
|
Posadzki P, Lee MS, Onakpoya I, Lee HW, Ko
BS and Ernst E: Dietary supplements and prostate cancer: A
systematic review of double-blind, placebo-controlled randomised
clinical trials. Maturitas. 75:125–130. 2013. View Article : Google Scholar : PubMed/NCBI
|
|
118
|
Zhu Y, Xu H, Li M, Gao Z, Huang J, Liu L,
Huang X and Li Y: Daidzein impairs Leydig cell testosterone
production and Sertoli cell function in neonatal mouse testes: An
in vitro study. Mol Med Rep. 14:5325–5333. 2016. View Article : Google Scholar : PubMed/NCBI
|
|
119
|
Lehraiki A, Messiaen S, Berges R,
Canivenc-Lavier MC, Auger J, Habert R and Levacher C: Antagonistic
effects of gestational dietary exposure to low-dose vinclozolin and
genistein on rat fetal germ cell development. Reprod Toxicol.
31:424–430. 2011. View Article : Google Scholar : PubMed/NCBI
|
|
120
|
Caceres S, Silvan G, Martinez-Fernandez L,
Illera MJ, Millan P, Monsalve B, Peña L and Illera JC: The effects
of isoflavones on androgens and glucocorticoids during puberty on
male Wistar rats. Reprod Domest Anim. 49:611–617. 2014. View Article : Google Scholar : PubMed/NCBI
|
|
121
|
Yi MA, Son HM, Lee JS, Kwon CS, Lim JK,
Yeo YK, Park YS and Kim JS: Regulation of male sex hormone levels
by soy isoflavones in rats. Nutr Cancer. 42:206–210. 2002.
View Article : Google Scholar : PubMed/NCBI
|
|
122
|
Weber KS, Setchell KD, Stocco DM and
Lephart ED: Dietary soy-phytoestrogens decrease testosterone levels
and prostate weight without altering LH, prostate 5alpha-reductase
or testicular steroidogenic acute regulatory peptide levels in
adult male Sprague-Dawley rats. J Endocrinol. 170:591–599. 2001.
View Article : Google Scholar : PubMed/NCBI
|
|
123
|
Kumar NB, Krischer JP, Allen K, Riccardi
D, Besterman-Dahan K, Salup R, Kang L, Xu P and Pow-Sang J: A Phase
II randomized, placebo-controlled clinical trial of purified
isoflavones in modulating steroid hormones in men diagnosed with
localized prostate cancer. Nutr Cancer. 59:163–168. 2007.
View Article : Google Scholar : PubMed/NCBI
|
|
124
|
Hamilton-Reeves JM, Vazquez G, Duval SJ,
Phipps WR, Kurzer MS and Messina MJ: Clinical studies show no
effects of soy protein or isoflavones on reproductive hormones in
men: Results of a meta-analysis. Fertil Steril. 94:997–1007. 2010.
View Article : Google Scholar : PubMed/NCBI
|
|
125
|
Adlercreutz H, Höckerstedt K, Bannwart C,
Bloigu S, Hämäläinen E, Fotsis T and Ollus A: Effect of dietary
components, including lignans and phytoestrogens, on enterohepatic
circulation and liver metabolism of estrogens and on sex hormone
binding globulin (SHBG). J Steroid Biochem. 27:1135–1144. 1987.
View Article : Google Scholar : PubMed/NCBI
|
|
126
|
Berrino F, Bellati C, Secreto G, Camerini
E, Pala V, Panico S, Allegro G and Kaaks R: Reducing bioavailable
sex hormones through a comprehensive change in diet: The diet and
androgens (DIANA) randomized trial. Cancer Epidemiol Biomarkers
Prev. 10:25–33. 2001.PubMed/NCBI
|
|
127
|
Sawada N, Iwasaki M, Inoue M, Sasazuki S,
Yamaji T, Shimazu T and Tsugane S: Japan Public Health Center-based
Prospective Study Group: Plasma testosterone and sex
hormone-binding globulin concentrations and the risk of prostate
cancer among Japanese men: A nested case-control study. Cancer Sci.
101:2652–2657. 2010. View Article : Google Scholar : PubMed/NCBI
|
|
128
|
Tanaka M, Fujimoto K, Chihara Y, Torimoto
K, Yoneda T, Tanaka N, Hirayama A, Miyanaga N, Akaza H and Hirao Y:
Isoflavone supplements stimulated the production of serum equol and
decreased the serum dihydrotestosterone levels in healthy male
volunteers. Prostate Cancer Prostatic Dis. 12:247–252. 2009.
View Article : Google Scholar : PubMed/NCBI
|
|
129
|
Bae M, Woo M, Kusuma IW, Arung ET, Yang CH
and Kim YU: Inhibitory effects of isoflavonoids on rat prostate
testosterone 5α-reductase. J Acupunct Meridian Stud. 5:319–322.
2012. View Article : Google Scholar : PubMed/NCBI
|
|
130
|
Hu GX, Zhao BH, Chu YH, Zhou HY, Akingbemi
BT, Zheng ZQ and Ge RS: Effects of genistein and equol on human and
rat testicular 3beta-hydroxysteroid dehydrogenase and
17beta-hydroxysteroid dehydrogenase 3 activities. Asian J Androl.
12:519–526. 2010. View Article : Google Scholar : PubMed/NCBI
|
|
131
|
McVey MJ, Cooke GM and Curran IH: Altered
testicular microsomal steroidogenic enzyme activities in rats with
lifetime exposure to soy isoflavones. J Steroid Biochem Mol Biol.
92:435–446. 2004. View Article : Google Scholar : PubMed/NCBI
|
|
132
|
Ohno S, Nakajima Y, Inoue K, Nakazawa H
and Nakajin S: Genistein administration decreases serum
corticosterone and testosterone levels in rats. Life Sci.
74:733–742. 2003. View Article : Google Scholar : PubMed/NCBI
|