Spandidos Publications Logo
  • About
    • About Spandidos
    • Aims and Scopes
    • Abstracting and Indexing
    • Editorial Policies
    • Reprints and Permissions
    • Job Opportunities
    • Terms and Conditions
    • Contact
  • Journals
    • All Journals
    • Oncology Letters
      • Oncology Letters
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Oncology
      • International Journal of Oncology
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Molecular and Clinical Oncology
      • Molecular and Clinical Oncology
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Experimental and Therapeutic Medicine
      • Experimental and Therapeutic Medicine
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Molecular Medicine
      • International Journal of Molecular Medicine
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Biomedical Reports
      • Biomedical Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Oncology Reports
      • Oncology Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Molecular Medicine Reports
      • Molecular Medicine Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • World Academy of Sciences Journal
      • World Academy of Sciences Journal
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Functional Nutrition
      • International Journal of Functional Nutrition
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Epigenetics
      • International Journal of Epigenetics
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Medicine International
      • Medicine International
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
  • Articles
  • Information
    • Information for Authors
    • Information for Reviewers
    • Information for Librarians
    • Information for Advertisers
    • Conferences
  • Language Editing
Spandidos Publications Logo
  • About
    • About Spandidos
    • Aims and Scopes
    • Abstracting and Indexing
    • Editorial Policies
    • Reprints and Permissions
    • Job Opportunities
    • Terms and Conditions
    • Contact
  • Journals
    • All Journals
    • Biomedical Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Experimental and Therapeutic Medicine
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Epigenetics
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Functional Nutrition
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Molecular Medicine
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Oncology
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Medicine International
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Molecular and Clinical Oncology
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Molecular Medicine Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Oncology Letters
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Oncology Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • World Academy of Sciences Journal
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
  • Articles
  • Information
    • For Authors
    • For Reviewers
    • For Librarians
    • For Advertisers
    • Conferences
  • Language Editing
Login Register Submit
  • This site uses cookies
  • You can change your cookie settings at any time by following the instructions in our Cookie Policy. To find out more, you may read our Privacy Policy.

    I agree
Search articles by DOI, keyword, author or affiliation
Search
Advanced Search
presentation
Molecular and Clinical Oncology
Join Editorial Board Propose a Special Issue
Print ISSN: 2049-9450 Online ISSN: 2049-9469
Journal Cover
March-2019 Volume 10 Issue 3

Full Size Image

Sign up for eToc alerts
Recommend to Library

Journals

International Journal of Molecular Medicine

International Journal of Molecular Medicine

International Journal of Molecular Medicine is an international journal devoted to molecular mechanisms of human disease.

International Journal of Oncology

International Journal of Oncology

International Journal of Oncology is an international journal devoted to oncology research and cancer treatment.

Molecular Medicine Reports

Molecular Medicine Reports

Covers molecular medicine topics such as pharmacology, pathology, genetics, neuroscience, infectious diseases, molecular cardiology, and molecular surgery.

Oncology Reports

Oncology Reports

Oncology Reports is an international journal devoted to fundamental and applied research in Oncology.

Experimental and Therapeutic Medicine

Experimental and Therapeutic Medicine

Experimental and Therapeutic Medicine is an international journal devoted to laboratory and clinical medicine.

Oncology Letters

Oncology Letters

Oncology Letters is an international journal devoted to Experimental and Clinical Oncology.

Biomedical Reports

Biomedical Reports

Explores a wide range of biological and medical fields, including pharmacology, genetics, microbiology, neuroscience, and molecular cardiology.

Molecular and Clinical Oncology

Molecular and Clinical Oncology

International journal addressing all aspects of oncology research, from tumorigenesis and oncogenes to chemotherapy and metastasis.

World Academy of Sciences Journal

World Academy of Sciences Journal

Multidisciplinary open-access journal spanning biochemistry, genetics, neuroscience, environmental health, and synthetic biology.

International Journal of Functional Nutrition

International Journal of Functional Nutrition

Open-access journal combining biochemistry, pharmacology, immunology, and genetics to advance health through functional nutrition.

International Journal of Epigenetics

International Journal of Epigenetics

Publishes open-access research on using epigenetics to advance understanding and treatment of human disease.

Medicine International

Medicine International

An International Open Access Journal Devoted to General Medicine.

Journal Cover
March-2019 Volume 10 Issue 3

Full Size Image

Sign up for eToc alerts
Recommend to Library

  • Article
  • Citations
    • Cite This Article
    • Download Citation
    • Create Citation Alert
    • Remove Citation Alert
    • Cited By
  • Similar Articles
    • Related Articles (in Spandidos Publications)
    • Similar Articles (Google Scholar)
    • Similar Articles (PubMed)
  • Download PDF
  • Download XML
  • View XML
Article Open Access

A microRNA profile of pediatric glioblastoma: The role of NUCKS1 upregulation

  • Authors:
    • Laura Giunti
    • Martina Da Ros
    • Veronica De Gregorio
    • Alberto Magi
    • Samuela Landini
    • Benedetta Mazzinghi
    • Anna Maria Buccoliero
    • Lorenzo Genitori
    • Sabrina Giglio
    • Iacopo Sardi
  • View Affiliations / Copyright

    Affiliations: Medical Genetics Unit, Meyer Children's University Hospital, I‑50139 Florence, Italy, Neuro‑Oncology Unit, Department of Pediatric Oncology, Meyer Children's University Hospital, I‑50139 Florence, Italy, Department of Experimental and Clinical Medicine, University of Florence, I‑50139 Florence, Italy, Medical Genetics Unit, Department of Clinical and Experimental Biomedical Sciences ‘Mario Serio’, University of Florence, I‑50139 Florence, Italy, Nephrology and Dialysis Unit, Meyer Children's University Hospital, I‑50139 Florence, Italy, Pathology Unit, Meyer Children's University Hospital, I‑50139 Florence, Italy, Neurosurgery Unit, Meyer Children's University Hospital, I‑50139 Florence, Italy
    Copyright: © Giunti et al. This is an open access article distributed under the terms of Creative Commons Attribution License.
  • Pages: 331-338
    |
    Published online on: January 2, 2019
       https://doi.org/10.3892/mco.2019.1795
  • Expand metrics +
Metrics: Total Views: 0 (Spandidos Publications: | PMC Statistics: )
Metrics: Total PDF Downloads: 0 (Spandidos Publications: | PMC Statistics: )
Cited By (CrossRef): 0 citations Loading Articles...

This article is mentioned in:



Abstract

MicroRNAs (miRNAs/miRs) are a novel class of gene regulators that may be involved in tumor chemoresistance. Recently, specific miRNA expression profiles have been identified in adult glioblastoma (aGBM), but there are only limited data available on the role of miRNAs in pediatric GBM (pGBM). In the present study, the expression profile of miRNAs was examined in seven pGBMs and three human GBM cell lines (U87MG, A172 and T98G), compared with a non‑tumoral pool of pediatric cerebral cortex samples by microarray analysis. A set of differentially expressed miRNAs was identified, including miR‑490, miR‑876‑3p, miR‑876‑5p, miR‑448 and miR‑137 (downregulated), as well as miR‑501‑3p (upregulated). Through bioinformatics analysis, a series of target genes was predicted. In addition, similar gene expression patterns in pGBMs and cell lines was confirmed. Of note, drug resistant T98G cells had upregulated nuclear casein kinase and cyclin‑dependent kinase substrate 1 (NUCKS1) expression, a protein overexpressed in many tumors that serves an important role in cell proliferation and progression. On the basis of the present preliminary report, it could be intriguing to further investigate the relationship between each of the identified differentially expressed miRNAs and NUCKS1, in order to clarify their involvement in the multi‑drug resistance mechanism of pGBMs.
View Figures

Figure 1

Figure 2

View References

1 

Pollack IF, Hamilton RL, James CD, Finkelstein SD, Burnham J, Yates AJ, Holmes EJ, Zhou T and Finlay JL: Children's Oncology Group: Rarity of PTEN deletions and EGFR amplification in malignant gliomas of childhood: Results from the Children's Cancer Group 945 cohort. J Neurosurg. 105 Suppl 5:S418–S424. 2006.

2 

Pollack IF, Finkelstein SD, Woods J, Burnham J, Holmes EJ, Hamilton RL, Yates AJ, Boyett JM, Finlay JL and Sposto R: Children's Cancer Group: Expression of p53 and prognosis in children with malignant gliomas. N Engl J Med. 346:420–427. 2002. View Article : Google Scholar : PubMed/NCBI

3 

Pollack IF, Boyett JM, Yates AJ, Burger PC, Gilles FH, Davis RL and Finlay JL: Children's Cancer Group: The influence of central review on outcome associations in childhood malignant gliomas: Results from the CCG-945 experience. Neuro Oncol. 5:197–207. 2003. View Article : Google Scholar : PubMed/NCBI

4 

Ganigi PM, Santosh V, Anandh B, Chandramouli BA and Sastry Kolluri VR: Expression of p53, EGFR, pRb and bcl-2 proteins in pediatric glioblastoma multiforme: A study of 54 patients. Pediatr Neurosurg. 41:292–299. 2005. View Article : Google Scholar : PubMed/NCBI

5 

Nakamura M, Shimada K, Ishida E, Higuchi T, Nakase H, Sakaki T and Konishi N: Molecular pathogenesis of pediatric astrocytic tumors. Neuro Oncol. 9:113–123. 2007. View Article : Google Scholar : PubMed/NCBI

6 

Ohgaki H, Dessen P, Jourde B, Horstmann S, Nishikawa T, Di Patre PL, Burkhard C, Schüler D, Probst-Hensch NM, Maiorka PC, et al: Genetic pathways to glioblastoma: A population-based study. Cancer Res. 64:6892–6899. 2004. View Article : Google Scholar : PubMed/NCBI

7 

Di Sapio A, Morra I, Pradotto L, Guido M, Schiffer D and Mauro A: Molecular genetic changes in a series of neuroepithelial tumors of childhood. J Neurooncol. 59:117–122. 2002. View Article : Google Scholar : PubMed/NCBI

8 

Bredel M, Pollack IF, Hamilton RL and James CD: Epidermal growth factor receptor expression and gene amplification in high-grade non-brainstem gliomas of childhood. Clin Cancer Res. 5:1786–1792. 1999.PubMed/NCBI

9 

Kraus JA, Felsberg J, Tonn JC, Reifenberger G and Pietsch T: Molecular genetic analysis of the TP53, PTEN, CDKN2A, EGFR, CDK4 and MDM2 tumour-associated genes in supratentorial primitive neuroectodermal tumours and glioblastomas of childhood. Neuropathol Appl Neurobiol. 28:325–333. 2002. View Article : Google Scholar : PubMed/NCBI

10 

He L and Hannon GJ: MicroRNAs: Small RNAs with a big role in gene regulation. Nat Rev Genet. 5:522–531. 2004. View Article : Google Scholar : PubMed/NCBI

11 

Visone R and Croce CM: MiRNAs and cancer. Am J Pathol. 174:1131–1138. 2009. View Article : Google Scholar : PubMed/NCBI

12 

Croce CM: Causes and consequences of microRNA dysregulation in cancer. Nat Rev Genet. 10:704–714. 2009. View Article : Google Scholar : PubMed/NCBI

13 

Munoz JL, Walker ND, Scotto KW and Rameshwar P: Temozolomide competes for P-glycoprotein and contributes to chemoresistance in glioblastoma cells. Cancer Lett. 367:69–75. 2015. View Article : Google Scholar : PubMed/NCBI

14 

Sun C, Li N, Yang Z, Zhou B, He Y, Weng D, Fang Y, Wu P, Chen P, Yang X, et al: miR-9 regulation of BRCA1 and ovarian cancer sensitivity to cisplatin and PARP inhibition. J Natl Cancer Inst. 105:1750–1758. 2013. View Article : Google Scholar : PubMed/NCBI

15 

Shen R, Wang Y, Wang CX, Yin M, Liu HL, Chen JP, Han JQ and Wang WB: MiRNA-155 mediates TAM resistance by modulating SOCS6-STAT3 signalling pathway in breast cancer. Am J Transl Res. 7:2115–2126. 2015.PubMed/NCBI

16 

Dong Z, Ren L, Lin L and Li J, Huang Y and Li J: Effect of microRNA-21 on multidrug resistance reversal in A549/DDP human lung cancer cells. Mol Med Rep. 11:682–690. 2015. View Article : Google Scholar : PubMed/NCBI

17 

Blower PE, Chung JH, Verducci JS, Lin S, Park JK, Dai Z, Liu CG, Schmittgen TD, Reinhold WC, Croce CM, et al: MicroRNAs modulate the chemosensitivity of tumor cells. Mol Cancer Ther. 7:1–9. 2008. View Article : Google Scholar : PubMed/NCBI

18 

Bartel DP: MicroRNAs: Genomics, biogenesis, mechanism, and function. Cell. 116:281–297. 2004. View Article : Google Scholar : PubMed/NCBI

19 

González-Gómez P, Sánchez P and Mira H: MicroRNAs as regulators of neural stem cell-related pathways in glioblastoma multiforme. Mol Neurobiol. 44:235–249. 2011. View Article : Google Scholar : PubMed/NCBI

20 

Berindan-Neagoe I, Monroig Pdel C, Pasculli B and Calin GA: MicroRNAome genome: A treasure for cancer diagnosis and therapy. CA Cancer J Clin. 64:311–336. 2014. View Article : Google Scholar : PubMed/NCBI

21 

Rajewsky N and Socci ND: Computational identification of microRNA targets. Dev Biol. 267:529–535. 2004. View Article : Google Scholar : PubMed/NCBI

22 

Hummel R, Maurer J and Haier J: MicroRNAs in brain tumors: A new diagnostic and therapeutic perspective? Mol Neurobiol. 44:223–234. 2011. View Article : Google Scholar : PubMed/NCBI

23 

Calin GA, Sevignani C, Dumitru CD, Hyslop T, Noch E, Yendamuri S, Shimizu M, Rattan S, Bullrich F, Negrini M and Croce CM: Human microRNA genes are frequently located at fragile sites and genomic regions involved in cancers. Proc Natl Acad Sci USA. 101:2999–3004. 2004. View Article : Google Scholar : PubMed/NCBI

24 

Fabbri M, Ivan M, Cimmino A, Negrini M and Calin GA: Regulatory mechanisms of microRNAs involvement in cancer. Expert Opin Biol Ther. 7:1009–1019. 2007. View Article : Google Scholar : PubMed/NCBI

25 

Møller HG, Rasmussen AP, Andersen HH, Johnsen KB, Henriksen M and Duroux M: A systematic review of microRNA in glioblastoma multiforme: Micro-modulators in the mesenchymal mode of migration and invasion. Mol Neurobiol. 47:131–144. 2013. View Article : Google Scholar : PubMed/NCBI

26 

Shea A, Harish V, Afzal Z, Chijioke J, Kedir H, Dusmatova S, Roy A, Ramalinga M, Harris B, Blancato J, et al: MicroRNAs in glioblastoma multiforme pathogenesis and therapeutics. Cancer Med. 5:1917–1946. 2016. View Article : Google Scholar : PubMed/NCBI

27 

Ahir BK, Ozer H, Engelhard HH and Lakka SS: MicroRNAs in glioblastoma pathogenesis and therapy: A comprehensive review. Crit Rev Oncol Hematol. 120:22–33. 2017. View Article : Google Scholar : PubMed/NCBI

28 

Ciafrè SA, Galardi S, Mangiola A, Ferracin M, Liu CG, Sabatino G, Negrini M, Maira G, Croce CM and Farace MG: Extensive modulation of a set of microRNAs in primary glioblastoma. Biochem Biophys Res Commun. 334:1351–1358. 2005. View Article : Google Scholar : PubMed/NCBI

29 

Chan JA, Krichevsky AM and Kosik KS: MicroRNA-21 is an antiapoptotic factor in human glioblastoma cells. Cancer Res. 65:6029–6033. 2005. View Article : Google Scholar : PubMed/NCBI

30 

Silber J, Lim DA, Petritsch C, Persson AI, Maunakea AK, Yu M, Vandenberg SR, Ginzinger DG, James CD, Costello JF, et al: miR-124 and miR-137 inhibit proliferation of glioblastoma multiforme cells and induce differentiation of brain tumor stem cells. BMC Med. 6:142008. View Article : Google Scholar : PubMed/NCBI

31 

Godlewski J, Nowicki MO, Bronisz A, Williams S, Otsuki A, Nuovo G, Raychaudhury A, Newton HB, Chiocca EA and Lawler S: Targeting of the Bmi-1 oncogene/stem cell renewal factor by microRNA-128 inhibits glioma proliferation and self-renewal. Cancer Res. 68:9125–9130. 2008. View Article : Google Scholar : PubMed/NCBI

32 

Lawler S and Chiocca EA: Emerging functions of microRNAs in glioblastoma. J Neurooncol. 92:297–306. 2009. View Article : Google Scholar : PubMed/NCBI

33 

Birks DK, Barton VN, Donson AM, Handler MH, Vibhakar R and Foreman NK: Survey of MicroRNA expression in pediatric brain tumors. Pediatr Blood Cancer. 56:211–216. 2011. View Article : Google Scholar : PubMed/NCBI

34 

Miele E, Buttarelli FR, Arcella A, Begalli F, Garg N, Silvano M, Po A, Baldi C, Carissimo G, Antonelli M, et al: High-throughput microRNA profiling of pediatric high-grade gliomas. Neuro Oncol. 16:228–240. 2014. View Article : Google Scholar : PubMed/NCBI

35 

Braunstein S, Raleigh D, Bindra R, Mueller S and Haas-Kogan D: Pediatric high-grade glioma: Current molecular landscape and therapeutic approaches. J Neurooncol. 134:541–549. 2017. View Article : Google Scholar : PubMed/NCBI

36 

Louis DN, Ohgaki H, Wiestler OD, Cavenee WK, Burger PC, Jouvet A, Scheithauer BW and Kleihues P: The 2007 WHO classification of tumours of the central nervous system. Acta Neuropathol. 114:97–109. 2007. View Article : Google Scholar : PubMed/NCBI

37 

Stupp R, Mason WP, van den Bent MJ, Weller M, Fisher B, Taphoorn MJ, Belanger K, Brandes AA, Marosi C, Bogdahn U, et al: Radiotherapy plus concomitant and adjuvant temozolomide for glioblastoma. N Engl J Med. 352:987–996. 2005. View Article : Google Scholar : PubMed/NCBI

38 

Massimino M, Gandola L, Luksch R, Spreafico F, Riva D, Solero C, Giangaspero F, Locatelli F, Podda M, Bozzi F, et al: Sequential chemotherapy, high-dose thiotepa, circulating progenitor cell rescue and radiotherapy for childhood high-grade glioma. Neuro Oncol. 7:41–48. 2005. View Article : Google Scholar : PubMed/NCBI

39 

Biassoni V, Casanova M, Spreafico F, Gandola L and Massimino M: A case of relapsing glioblastoma multiforme responding to vinorelbine. J Neurooncol. 80:195–201. 2006. View Article : Google Scholar : PubMed/NCBI

40 

Dvinge H and Bertone P: HTqPCR: High-throughput analysis and visualization of quantitative real-time PCR data in R. Bioinformatics. 25:3325–3326. 2009. View Article : Google Scholar : PubMed/NCBI

41 

R Development Core Team R: A language and environment for statistical computing. R Foundation for Statistical Computing; Vienna, Austria: ISBN 3-900051-07-0. http://www.R-project.org2008

42 

Enright AJ, John B, Gaul U, Tuschl T, Sander C and Marks DS: MicroRNA targets in drosophila. Genome Biol. 5:R12003. View Article : Google Scholar : PubMed/NCBI

43 

Ashburner M, Ball CA, Blake JA, Botstein D, Butler H, Cherry JM, Davis AP, Dolinski K, Dwight SS, Eppig JT, et al: Gene ontology: Tool for the unification of biology. The Gene Ontology Consortium. Nat Genet. 25:25–29. 2000. View Article : Google Scholar : PubMed/NCBI

44 

The Gene Ontology Consortium: Expansion of the gene ontology knowledgebase and resources. Nucleic Acids Res. 45:D331–D338. 2017. View Article : Google Scholar : PubMed/NCBI

45 

Kanehisa M, Furumichi M, Tanabe M, Sato Y and Morishima K: KEGG: New perspectives on genomes, pathways, diseases and drugs. Nucleic Acids Res. 45:D353–D361. 2017. View Article : Google Scholar : PubMed/NCBI

46 

Kanehisa M, Sato Y, Kawashima M, Furumichi M and Tanabe M: KEGG as a reference resource for gene and protein annotation. Nucleic Acids Res. 44:D457–D462. 2016. View Article : Google Scholar : PubMed/NCBI

47 

Kanehisa M and Goto S: KEGG: Kyoto encyclopedia of genes and genomes. Nucleic Acids Res. 28:27–30. 2000. View Article : Google Scholar : PubMed/NCBI

48 

Livak KJ and Schmittgen TD: Analysis of relative gene expression data using real-time quantitative PCR and the 2(-Delta Delta C(T)) method. Methods. 25:402–408. 2001. View Article : Google Scholar : PubMed/NCBI

49 

Whitfield ML, Sherlock G, Saldanha AJ, Murray JI, Ball CA, Alexander KE, Matese JC, Perou CM, Hurt MM, Brown PO and Botstein D: Identification of genes periodically expressed in the human cell cycle and their expression in tumors. Mol Biol Cell. 13:1977–2000. 2002. View Article : Google Scholar : PubMed/NCBI

50 

Drosos Y, Kouloukoussa M, Østvold AC, Grundt K, Goutas N, Vlachodimitropoulos D, Havaki S, Kollia P, Kittas C, Marinos E and Aleporou-Marinou V: NUCKS overexpression in breast cancer. Cancer Cell Int. 9:192009. View Article : Google Scholar : PubMed/NCBI

51 

Walaas SI, Ostvold AC and Laland SG: Phosphorylation of P1, a high mobility group-like protein, catalyzed by casein kinase II protein kinase C, cyclic AMP-dependent protein kinase and calcium/calmodulin-dependent protein kinase II. FEBS Lett. 258:106–108. 1989. View Article : Google Scholar : PubMed/NCBI

52 

Ostvold AC, Norum JH, Mathiesen S, Wanvik B, Sefland I and Grundt K: Molecular cloning of a mammalian nuclear phosphoprotein NUCKS, which serves as a substrate for Cdk1 in vivo. Eur J Biochem. 268:2430–2440. 2001. View Article : Google Scholar : PubMed/NCBI

53 

Meijer L, Ostvold AC, Walass SI, Lund T and Laland SG: High-mobility-group proteins P1, I and Y as substrates of the M-phase-specific p34cdc2/cyclincdc13 kinase. Eur J Biochem. 196:557–567. 1991. View Article : Google Scholar : PubMed/NCBI

54 

Parplys AC, Zhao W, Sharma N, Groesser T, Liang F, Maranon DG, Leung SG, Grundt K, Dray E, Idate R, et al: NUCKS1 is a novel RAD51AP1 paralog important for homologous recombination and genome stability. Nucleic Acids Res. 43:9817–9834. 2015.PubMed/NCBI

55 

Kikuchi A, Ishikawa T, Mogushi K, Ishiguro M, Iida S, Mizushima H, Uetake H, Tanaka H and Sugihara K: Identification of NUCKS1 as a colorectal cancer prognostic marker through integrated expression and copy number analysis. Int J Cancer. 132:2295–2302. 2013. View Article : Google Scholar : PubMed/NCBI

56 

Gu L, Xia B, Zhong L, Ma Y, Liu L, Yang L and Lou G: NUCKS1 overexpression is a novel biomarker for recurrence-free survival in cervical squamous cell carcinoma. Tumour Biol. 35:7831–7836. 2014. View Article : Google Scholar : PubMed/NCBI

57 

Cheong JY, Kim YB, Woo JH, Kim DK, Yeo M, Yang SJ, Yang KS, Soon SK, Wang HJ, Kim BW, et al: Identification of NUCKS1 as a putative oncogene and immunodiagnostic marker of hepatocellular carcinoma. Gene. 584:47–53. 2016. View Article : Google Scholar : PubMed/NCBI

58 

Balcárková J, Urbánková H, Scudla V, Holzerová M, Bacovský J, Indrák K and Jarosová M: Gain of chromosome arm 1q in patients in relapse and progression of multiple myeloma. Cancer Genet Cytogenet. 192:68–72. 2009. View Article : Google Scholar : PubMed/NCBI

59 

Szponar A, Zubakov D, Pawlak J, Jauch A and Kovacs G: Three genetic developmental stages of papillary renal cell tumors: Duplication of chromosome 1q marks fatal progression. Int J Cancer. 124:2071–2076. 2009. View Article : Google Scholar : PubMed/NCBI

60 

Giunti L, Pantaleo M, Sardi I, Provenzano A, Magi A, Cardellicchio S, Castiglione F, Tattini L, Novara F, Buccoliero AM, et al: Genome-wide copy number analysis in pediatric glioblastoma multiforme. Am J Cancer Res. 4:293–303. 2014.PubMed/NCBI

61 

Faria C, Miguéns J, Antunes JL, Salgado D, Nunes S, Barroso C, Martins Mdo C, Nunes VM and Roque L: Pediatric brain tumors: Genetics and clinical outcome. J Neurosurg Pediatr. 5:263–270. 2010. View Article : Google Scholar : PubMed/NCBI

62 

Hirose Y, Aldape K, Bollen A, James CD, Brat D, Lamborn K, Berger M and Feuerstein BG: Chromosomal abnormalities subdivide ependymal tumors into clinically relevant groups. Am J Pathol. 158:1137–1143. 2001. View Article : Google Scholar : PubMed/NCBI

63 

Lo KC, Ma C, Bundy BN, Pomeroy SL, Eberhart CG and Cowell JK: Gain of 1q is a potential univariate negative prognostic marker for survival in medulloblastoma. Clin Cancer Res. 13:7022–7028. 2007. View Article : Google Scholar : PubMed/NCBI

64 

Shen H, Wang L, Ge X, Jiang CF, Shi ZM, Li DM, Liu WT, Yu X and Shu YQ: MicroRNA-137 inhibits tumor growth and sensitizes chemosensitivity to paclitaxel and cisplatin in lung cancer. Oncotarget. 7:20728–20742. 2016.PubMed/NCBI

65 

Yang Y, Li F, Saha MN, Abdi J, Qiu L and Chang H: miR-137 and miR-197 induce apoptosis and suppress tumorigenicity by targeting MCL-1 in multiple myeloma. Clin Cancer Res. 21:2399–2411. 2015. View Article : Google Scholar : PubMed/NCBI

66 

Liu LL, Lu SX, Li M, Li LZ, Fu J, Hu W, Yang YZ, Luo RZ, Zhang CZ and Yun JP: FoxD3-regulated microRNA-137 suppresses tumour growth and metastasis in human hepatocellular carcinoma by targeting AKT2. Oncotarget. 5:5113–5124. 2014. View Article : Google Scholar : PubMed/NCBI

67 

Chen DL, Wang DS, Wu WJ, Zeng ZL, Luo HY, Qiu MZ, Ren C, Zhang DS, Wang ZQ, Wang FH, et al: Overexpression of paxillin induced by miR-137 suppression promotes tumor progression and metastasis in colorectal cancer. Carcinogenesis. 34:803–811. 2013. View Article : Google Scholar : PubMed/NCBI

68 

Zhu X, Li Y, Shen H, Li H, Long L, Hui L and Xu W: miR-137 inhibits the proliferation of lung cancer cells by targeting Cdc42 and Cdk6. FEBS Lett. 587:73–81. 2013. View Article : Google Scholar : PubMed/NCBI

69 

Chen L, Wang X, Wang H, Li Y, Yan W, Han L, Zhang K, Zhang J, Wang Y, Feng Y, et al: miR-137 is frequently down-regulated in glioblastoma and is a negative regulator of Cox-2. Eur J Cancer. 48:3104–3111. 2012. View Article : Google Scholar : PubMed/NCBI

70 

Bier A, Giladi N, Kronfeld N, Lee HK, Cazacu S, Finniss S, Xiang C, Poisson L, deCarvalho AC, Slavin S, et al: MicroRNA-137 is downregulated in glioblastoma and inhibits the stemness of glioma stem cells by targeting RTVP-1. Oncotarget. 4:665–676. 2013. View Article : Google Scholar : PubMed/NCBI

71 

Giunti L, da Ros M, Vinci S, Gelmini S, Iorio AL, Buccoliero AM, Cardellicchio S, Castiglione F, Genitori L, de Martino M, et al: Anti-miR21 oligonucleotide enhances chemosensitivity of T98G cell line to doxorubicin by inducing apoptosis. Am J Cancer Res. 5:231–242. 2014.PubMed/NCBI

72 

Li D, Shan W, Fang Y, Wang P and Li J: miR-137 acts as a tumor suppressor via inhibiting CXCL12 in human glioblastoma. Oncotarget. 8:101262–101270. 2017.PubMed/NCBI

73 

Chen W, Ye L, Wen D and Chen F: miR-490-5p inhibits hepatocellular carcinoma cell proliferation, migration and invasion by directly regulating ROBO1. Pathol Oncol Res. Sep 19–2017.(Epub ahead of print).

74 

Xu B, Xu T, Liu H, Min Q, Wang S and Song Q: miR-490-5p suppresses cell proliferation and invasion by targeting BUB1 in hepatocellular carcinoma cells. Pharmacology. 100:269–282. 2017. View Article : Google Scholar : PubMed/NCBI

75 

Tang B, Liu C, Zhang QM and Ni M: Decreased expression of miR-490-3p in osteosarcoma and its clinical significance. Eur Rev Med Pharmacol Sci. 21:246–251. 2017.PubMed/NCBI

76 

Li J, Feng Q, Wei X and Yu Y: MicroRNA-490 regulates lung cancer metastasis by targeting poly r(C)-binding protein 1. Tumour Biol. 37:15221–15228. 2016. View Article : Google Scholar : PubMed/NCBI

77 

Tian J, Xu YY, Li L and Hao Q: miR-490-3p sensitizes ovarian cancer cells to cisplatin by directly targeting ABCC2. Am J Transl Res. 9:1127–1138. 2017.PubMed/NCBI

78 

Wu X, Yan L, Liu Y, Xian W, Wang L and Ding X: MicroRNA-448 suppresses osteosarcoma cell proliferation and invasion through targeting EPHA7. PLoS One. 12:e01755532017. View Article : Google Scholar : PubMed/NCBI

79 

Zhu H, Zhou X, Ma C, Chang H, Li H, Liu F and Lu J: Low expression of miR-448 induces EMT and promotes invasion by regulating ROCK2 in hepatocellular carcinoma. Cell Physiol Biochem. 36:487–498. 2015. View Article : Google Scholar : PubMed/NCBI

80 

Lv Y, Lei Y, Hu Y, Ding W, Zhang C and Fang C: miR-448 negatively regulates ovarian cancer cell growth and metastasis by targeting CXCL12. Clin Transl Oncol. 17:903–909. 2015. View Article : Google Scholar : PubMed/NCBI

81 

Bamodu OA, Huang WC, Lee WH, Wu A, Wang LS, Hsiao M, Yeh CT and Chao TY: Aberrant KDM5B expression promotes aggressive breast cancer through MALAT1 overexpression and downregulation of hsa-miR-448. BMC Cancer. 16:1602016. View Article : Google Scholar : PubMed/NCBI

82 

Correia NC, Melão A, Póvoa V, Sarmento L, Gómez de Cedrón M, Malumbres M, Enguita FJ and Barata JT: microRNAs regulate TAL1 expression in T-cell acute lymphoblastic leukemia. Oncotarget. 7:8268–8281. 2016. View Article : Google Scholar : PubMed/NCBI

83 

Powrózek T, Krawczyk P, Kowalski DM, Kuźnar-Kamińska B, Winiarczyk K, Olszyna-Serementa M, Batura-Gabryel H and Milanowski J: Application of plasma circulating microRNA-448, 506, 4316, and 4478 analysis for non-invasive diagnosis of lung cancer. Tumour Biol. 37:2049–2055. 2016. View Article : Google Scholar : PubMed/NCBI

84 

Hara N, Kikuchi M, Miyashita A, Hatsuta H, Saito Y, Kasuga K, Murayama S, Ikeuchi T and Kuwano R: Serum microRNA miR-501-3p as a potential biomarker related to the progression of Alzheimer's disease. Acta Neuropathol Commun. 5:102017. View Article : Google Scholar : PubMed/NCBI

85 

Ling Q, Xu X, Ye P, Xie H, Gao F, Hu Q, Liu Z, Wei X, Röder C, Trauzold A, et al: The prognostic relevance of primary tumor location in patients undergoing resection for pancreatic ductal adenocarcinoma. Oncotarget. 8:15159–15167. 2017. View Article : Google Scholar : PubMed/NCBI

86 

Jiang X, Wang W, Yang Y, Du L, Yang X, Wang L, Zheng G, Duan W, Wang R, Zhang X, et al: Identification of circulating microRNA signatures as potential noninvasive biomarkers for prediction and prognosis of lymph node metastasis in gastric cancer. Oncotarget. 8:65132–65142. 2017.PubMed/NCBI

87 

Huang Y, Liao D, Pan L, Ye R, Li X, Wang S, Ye C and Chen L: Expressions of miRNAs in papillary thyroid carcinoma and their associations with the BRAFV600E mutation. Eur J Endocrinol. 168:675–681. 2013. View Article : Google Scholar : PubMed/NCBI

88 

Paydas S, Acikalin A, Ergin M, Celik H, Yavuz B and Tanriverdi K: Micro-RNA (miRNA) profile in Hodgkin lymphoma: Association between clinical and pathological variables. Med Oncol. 33:342016. View Article : Google Scholar : PubMed/NCBI

89 

Bao L, Lv L, Feng J, Chen Y, Wang X, Han S and Zhao H: miR-876-5p suppresses epithelial-mesenchymal transition of lung cancer by directly down-regulating bone morphogenetic protein 4. J Biosci. 42:671–681. 2017. View Article : Google Scholar : PubMed/NCBI

90 

Riemenschneider MJ, Jeuken JW, Wesseling P and Reifenberger G: Molecular diagnostics of gliomas: State of the art. Acta Neuropathol. 120:567–584. 2010. View Article : Google Scholar : PubMed/NCBI

91 

Conway C, Beswick S, Elliott F, Chang YM, Randerson-Moor J, Harland M, Affleck P, Marsden J, Sanders DS, Boon A, et al: Deletion at chromosome arm 9p in relation to BRAF/NRAS mutations and prognostic significance for primary melanoma. Genes Chromosomes Cancer. 49:425–438. 2010. View Article : Google Scholar : PubMed/NCBI

92 

Giunti L, da Ros M, Vinci S, Gelmini S, Iorio AL, Buccoliero AM, Cardellicchio S, Castiglione F, Genitori L, de Martino M, et al: Anti-miR21 oligonucleotide enhances chemosensitivity of T98G cell line to doxorubicin by inducing apoptosis. Am J Cancer Res. 5:231–242. 2014.PubMed/NCBI

Related Articles

  • Abstract
  • View
  • Download
  • Twitter
Copy and paste a formatted citation
Spandidos Publications style
Giunti L, Da Ros M, De Gregorio V, Magi A, Landini S, Mazzinghi B, Buccoliero AM, Genitori L, Giglio S, Sardi I, Sardi I, et al: A microRNA profile of pediatric glioblastoma: The role of NUCKS1 upregulation. Mol Clin Oncol 10: 331-338, 2019.
APA
Giunti, L., Da Ros, M., De Gregorio, V., Magi, A., Landini, S., Mazzinghi, B. ... Sardi, I. (2019). A microRNA profile of pediatric glioblastoma: The role of NUCKS1 upregulation. Molecular and Clinical Oncology, 10, 331-338. https://doi.org/10.3892/mco.2019.1795
MLA
Giunti, L., Da Ros, M., De Gregorio, V., Magi, A., Landini, S., Mazzinghi, B., Buccoliero, A. M., Genitori, L., Giglio, S., Sardi, I."A microRNA profile of pediatric glioblastoma: The role of NUCKS1 upregulation". Molecular and Clinical Oncology 10.3 (2019): 331-338.
Chicago
Giunti, L., Da Ros, M., De Gregorio, V., Magi, A., Landini, S., Mazzinghi, B., Buccoliero, A. M., Genitori, L., Giglio, S., Sardi, I."A microRNA profile of pediatric glioblastoma: The role of NUCKS1 upregulation". Molecular and Clinical Oncology 10, no. 3 (2019): 331-338. https://doi.org/10.3892/mco.2019.1795
Copy and paste a formatted citation
x
Spandidos Publications style
Giunti L, Da Ros M, De Gregorio V, Magi A, Landini S, Mazzinghi B, Buccoliero AM, Genitori L, Giglio S, Sardi I, Sardi I, et al: A microRNA profile of pediatric glioblastoma: The role of NUCKS1 upregulation. Mol Clin Oncol 10: 331-338, 2019.
APA
Giunti, L., Da Ros, M., De Gregorio, V., Magi, A., Landini, S., Mazzinghi, B. ... Sardi, I. (2019). A microRNA profile of pediatric glioblastoma: The role of NUCKS1 upregulation. Molecular and Clinical Oncology, 10, 331-338. https://doi.org/10.3892/mco.2019.1795
MLA
Giunti, L., Da Ros, M., De Gregorio, V., Magi, A., Landini, S., Mazzinghi, B., Buccoliero, A. M., Genitori, L., Giglio, S., Sardi, I."A microRNA profile of pediatric glioblastoma: The role of NUCKS1 upregulation". Molecular and Clinical Oncology 10.3 (2019): 331-338.
Chicago
Giunti, L., Da Ros, M., De Gregorio, V., Magi, A., Landini, S., Mazzinghi, B., Buccoliero, A. M., Genitori, L., Giglio, S., Sardi, I."A microRNA profile of pediatric glioblastoma: The role of NUCKS1 upregulation". Molecular and Clinical Oncology 10, no. 3 (2019): 331-338. https://doi.org/10.3892/mco.2019.1795
Follow us
  • Twitter
  • LinkedIn
  • Facebook
About
  • Spandidos Publications
  • Careers
  • Cookie Policy
  • Privacy Policy
How can we help?
  • Help
  • Live Chat
  • Contact
  • Email to our Support Team