|
1
|
DGCG (2016–2017) DGCD årsreport.
http://dgcg.dk/images/Grupper/Databasegruppen/rsrapport_DGCD_2016-17_endelig_anonymiseret.pdf
|
|
2
|
Siegel RL, Miller KD and Jemal A: Cancer
statistics, 2016. CA Cancer J Clin. 66:7–30. 2016. View Article : Google Scholar : PubMed/NCBI
|
|
3
|
Torre LA, Bray F, Siegel RL, Ferlay J,
Lortet-Tieulent J and Jemal A: Global cancer statistics, 2012. CA
Cancer J Clin. 65:87–108. 2015. View Article : Google Scholar : PubMed/NCBI
|
|
4
|
Prat J: Figo Committee on Gynecologic
Oncology: Staging classification for cancer of the ovary, fallopian
tube, and peritoneum. Int J Gynaecol Obstet. 124:1–5. 2014.
View Article : Google Scholar : PubMed/NCBI
|
|
5
|
Hamilton W, Peters TJ, Bankhead C and
Sharp D: Risk of ovarian cancer in women with symptoms in primary
care: Population based case-control study. BMJ. 339:b29982009.
View Article : Google Scholar : PubMed/NCBI
|
|
6
|
DGCG Ovariecancer guidelines. http://www.dgcg.dk/index.php/guidelines/ovariecancer-guidelinesJul
1–2016
|
|
7
|
Jacobs I, Oram D, Fairbanks J, Turner J,
Frost C and Grudzinskas JG: A risk of malignancy index
incorporating CA 125, ultrasound and menopausal status for the
accurate preoperative diagnosis of ovarian cancer. Br J Obstet
Gynaecol. 97:922–929. 1990. View Article : Google Scholar : PubMed/NCBI
|
|
8
|
Nossov V, Amneus M, Su F, Lang J, Janco
JM, Reddy ST and Farias-Eisner R: The early detection of ovarian
cancer: From traditional methods to proteomics. Can we really do
better than serum CA-125? Am J Obstet Gynecol. 199:215–223.
2008.PubMed/NCBI
|
|
9
|
Sundar S, Neal RD and Kehoe S: Diagnosis
of ovarian cancer. BMJ. 351:h44432015. View Article : Google Scholar : PubMed/NCBI
|
|
10
|
Moss EL, Hollingworth J and Reynolds TM:
The role of CA125 in clinical practice. J Clin Pathol. 58:308–312.
2005. View Article : Google Scholar : PubMed/NCBI
|
|
11
|
Meden H and Fattahi-Meibodi A: CA 125 in
benign gynecological conditions. Int J Biol Markers. 13:231–237.
1998. View Article : Google Scholar : PubMed/NCBI
|
|
12
|
Buamah P: Benign conditions associated
with raised serum CA-125 concentration. J Surg Oncol. 75:264–265.
2000. View Article : Google Scholar : PubMed/NCBI
|
|
13
|
Rai N, Nevin J, Downey G, Abedin P,
Balogun M, Kehoe S and Sundar S: Outcomes following implementation
of symptom triggered diagnostic testing for ovarian cancer. Eur J
Obstet Gynecol Reprod Biol. 187:64–69. 2015. View Article : Google Scholar : PubMed/NCBI
|
|
14
|
Jacobs IJ, Menon U, Ryan A, Gentry-Maharaj
A, Burnell M, Kalsi JK, Amso NN, Apostolidou S, Benjamin E,
Cruickshank D, et al: Ovarian cancer screening and mortality in the
UK collaborative trial of ovarian cancer screening (UKCTOCS): A
randomised controlled trial. Lancet. 387:945–956. 2016. View Article : Google Scholar : PubMed/NCBI
|
|
15
|
Martin LP and Schilder RJ: Management of
recurrent ovarian carcinoma: Current status and future directions.
Semin Oncol. 36:112–125. 2009. View Article : Google Scholar : PubMed/NCBI
|
|
16
|
Wolffe AP and Matzke MA: Epigenetics:
Regulation through repression. Science. 286:481–486. 1999.
View Article : Google Scholar : PubMed/NCBI
|
|
17
|
Borgel J, Guibert S, Li Y, Chiba H,
Schübeler D, Sasaki H, Forné T and Weber M: Targets and dynamics of
promoter DNA methylation during early mouse development. Nat Genet.
42:1093–1100. 2010. View
Article : Google Scholar : PubMed/NCBI
|
|
18
|
Mohandas T, Sparkes RS and Shapiro LJ:
Reactivation of an inactive human X chromosome: Evidence for X
inactivation by DNA methylation. Science. 211:393–396. 1981.
View Article : Google Scholar : PubMed/NCBI
|
|
19
|
Herman JG, Latif F, Weng Y, Lerman MI,
Zbar B, Liu S, Samid D, Duan DS, Gnarra JR, Linehan WM, et al:
Silencing of the VHL tumor-suppressor gene by DNA methylation in
renal carcinoma. Proc Natl Acad Sci USA. 91:9700–9704. 1994.
View Article : Google Scholar : PubMed/NCBI
|
|
20
|
Jones PA and Baylin SB: The fundamental
role of epigenetic events in cancer. Nat Rev Genet. 3:415–428.
2002. View
Article : Google Scholar : PubMed/NCBI
|
|
21
|
Xiao X, Cai F, Niu X, Shi H and Zhong Y:
Association between P16INK4a promoter methylation and ovarian
cancer: A meta-analysis of 12 published studies. PLoS One.
11:e01632572016. View Article : Google Scholar : PubMed/NCBI
|
|
22
|
Brait M, Ford JG, Papaiahgari S, Garza MA,
Lee JI, Loyo M, Maldonado L, Begum S, McCaffrey L, Howerton M, et
al: Association between lifestyle factors and CpG island
methylation in a cancer-free population. Cancer Epidemiol
Biomarkers Prev. 18:2984–2991. 2009. View Article : Google Scholar : PubMed/NCBI
|
|
23
|
Issa JP, Ahuja N, Toyota M, Bronner MP and
Brentnall TA: Accelerated age-related CpG island methylation in
ulcerative colitis. Cancer Res. 61:3573–3577. 2001.PubMed/NCBI
|
|
24
|
Patra SK, Patra A, Zhao H and Dahiya R:
DNA methyltransferase and demethylase in human prostate cancer. Mol
Carcinog. 33:163–171. 2002. View Article : Google Scholar : PubMed/NCBI
|
|
25
|
Saito Y, Kanai Y, Nakagawa T, Sakamoto M,
Saito H, Ishii H and Hirohashi S: Increased protein expression of
DNA methyltransferase (DNMT) 1 is significantly correlated with the
malignant potential and poor prognosis of human hepatocellular
carcinomas. Int J Cancer. 105:527–532. 2003. View Article : Google Scholar : PubMed/NCBI
|
|
26
|
Feinberg AP and Vogelstein B:
Hypomethylation distinguishes genes of some human cancers from
their normal counterparts. Nature. 301:89–92. 1983. View Article : Google Scholar : PubMed/NCBI
|
|
27
|
Ehrlich M: DNA methylation in cancer: Too
much, but also too little. Oncogene. 21:5400–5413. 2002. View Article : Google Scholar : PubMed/NCBI
|
|
28
|
Xiong Y, Dowdy SC, Xue A, Shujuan J,
Eberhardt NL, Podratz KC and Jiang SW: Opposite alterations of DNA
methyltransferase gene expression in endometrioid and serous
endometrial cancers. Gynecol Oncol. 96:601–609. 2005. View Article : Google Scholar : PubMed/NCBI
|
|
29
|
Eden A, Gaudet F, Waghmare A and Jaenisch
R: Chromosomal instability and tumors promoted by DNA
hypomethylation. Science. 300:4552003. View Article : Google Scholar : PubMed/NCBI
|
|
30
|
Gaudet F, Hodgson JG, Eden A,
Jackson-Grusby L, Dausman J, Gray JW, Leonhardt H and Jaenisch R:
Induction of tumors in mice by genomic hypomethylation. Science.
300:489–492. 2003. View Article : Google Scholar : PubMed/NCBI
|
|
31
|
Esteller M, Sanchez-Cespedes M, Rosell R,
Sidransky D, Baylin SB and Herman JG: Detection of aberrant
promoter hypermethylation of tumor suppressor genes in serum DNA
from non-small cell lung cancer patients. Cancer Res. 59:67–70.
1999.PubMed/NCBI
|
|
32
|
Sanchez-Cespedes M, Esteller M, Wu L,
Nawroz-Danish H, Yoo GH, Koch WM, Jen J, Herman JG and Sidransky D:
Gene promoter hypermethylation in tumors and serum of head and neck
cancer patients. Cancer Res. 60:892–895. 2000.PubMed/NCBI
|
|
33
|
Talens RP, Boomsma DI, Tobi EW, Kremer D,
Jukema JW, Willemsen G, Putter H, Slagboom PE and Heijmans BT:
Variation, patterns, and temporal stability of DNA methylation:
Considerations for epigenetic epidemiology. FASEB J. 24:3135–3144.
2010. View Article : Google Scholar : PubMed/NCBI
|
|
34
|
Teschendorff AE, Menon U, Gentry-Maharaj
A, Ramus SJ, Gayther SA, Apostolidou S, Jones A, Lechner M, Beck S,
Jacobs IJ and Widschwendter M: An epigenetic signature in
peripheral blood predicts active ovarian cancer. PLoS One.
4:e82742009. View Article : Google Scholar : PubMed/NCBI
|
|
35
|
Ibanez de Caceres I, Battagli C, Esteller
M, Herman JG, Dulaimi E, Edelson MI, Bergman C, Ehya H, Eisenberg
BL and Cairns P: Tumor cell-specific BRCA1 and RASSF1A
hypermethylation in serum, plasma, and peritoneal fluid from
ovarian cancer patients. Cancer Res. 64:6476–6481. 2004. View Article : Google Scholar : PubMed/NCBI
|
|
36
|
Barton CA, Hacker NF, Clark SJ and O'Brien
PM: DNA methylation changes in ovarian cancer: Implications for
early diagnosis, prognosis and treatment. Gynecol Oncol.
109:129–139. 2008. View Article : Google Scholar : PubMed/NCBI
|
|
37
|
Teschendorff AE, Jones A, Fiegl H, Sargent
A, Zhuang JJ, Kitchener HC and Widschwendter M: Epigenetic
variability in cells of normal cytology is associated with the risk
of future morphological transformation. Genome Med. 4:242012.
View Article : Google Scholar : PubMed/NCBI
|
|
38
|
Teschendorff AE and Widschwendter M:
Differential variability improves the identification of cancer risk
markers in DNA methylation studies profiling precursor cancer
lesions. Bioinformatics. 28:1487–1494. 2012. View Article : Google Scholar : PubMed/NCBI
|
|
39
|
Flanagan JM, Wilson A, Koo C, Masrour N,
Gallon J, Loomis E, Flower K, Wilhelm-Benartzi C, Hergovich A,
Cunnea P, et al: Platinum-based chemotherapy induces methylation
changes in blood DNA associated with overall survival in patients
with ovarian cancer. Clin Cancer Res. 23:2213–2222. 2017.
View Article : Google Scholar : PubMed/NCBI
|
|
40
|
Zhuang J, Jones A, Lee SH, Ng E, Fiegl H,
Zikan M, Cibula D, Sargent A, Salvesen HB, Jacobs IJ, et al: The
dynamics and prognostic potential of DNA methylation changes at
stem cell gene loci in women's cancer. PLoS Genet. 8:e10025172012.
View Article : Google Scholar : PubMed/NCBI
|
|
41
|
Herman JG, Graff JR, Myohanen S, Nelkin BD
and Baylin SB: Methylation-specific PCR: A novel PCR assay for
methylation status of CpG islands. Proc Natl Acad Sci USA.
93:9821–9826. 1996. View Article : Google Scholar : PubMed/NCBI
|
|
42
|
Reyna-López GE, Simpson J and Ruiz-Herrera
J: Differences in DNA methylation patterns are detectable during
the dimorphic transition of fungi by amplification of restriction
polymorphisms. Mol Gen Genet. 253:703–710. 1997. View Article : Google Scholar : PubMed/NCBI
|
|
43
|
Moelans CB, Atanesyan L, Savola SP and van
Diest PJ: Methylation-specific multiplex ligation-dependent probe
amplification (MS-MLPA). Methods Mol Biol. 1708:537–549. 2018.
View Article : Google Scholar : PubMed/NCBI
|
|
44
|
Ehrich M, Nelson MR, Stanssens P, Zabeau
M, Liloglou T, Xinarianos G, Cantor CR, Field JK and van den Boom
D: Quantitative high-throughput analysis of DNA methylation
patterns by base-specific cleavage and mass spectrometry. Proc Natl
Acad Sci USA. 102:15785–15790. 2005. View Article : Google Scholar : PubMed/NCBI
|
|
45
|
Ziller MJ, Gu H, Müller F, Donaghey J,
Tsai LT, Kohlbacher O, De Jager PL, Rosen ED, Bennett DA, Bernstein
BE, et al: Charting a dynamic DNA methylation landscape of the
human genome. Nature. 500:477–481. 2013. View Article : Google Scholar : PubMed/NCBI
|
|
46
|
Baldwin RL, Nemeth E, Tran H, Shvartsman
H, Cass I, Narod S and Karlan BY: BRCA1 promoter region
hypermethylation in ovarian carcinoma: A population-based study.
Cancer Res. 60:5329–5333. 2000.PubMed/NCBI
|
|
47
|
Hilton JL, Geisler JP, Rathe JA,
Hattermann-Zogg MA, DeYoung B and Buller RE: Inactivation of BRCA1
and BRCA2 in ovarian cancer. J Natl Cancer Inst. 94:1396–1406.
2002. View Article : Google Scholar : PubMed/NCBI
|
|
48
|
Strathdee G, Appleton K, Illand M, Millan
DW, Sargent J, Paul J and Brown R: Primary ovarian carcinomas
display multiple methylator phenotypes involving known tumor
suppressor genes. Am J Pathol. 158:1121–1127. 2001. View Article : Google Scholar : PubMed/NCBI
|
|
49
|
Wang C, Horiuchi A, Imai T, Ohira S, Itoh
K, Nikaido T, Katsuyama Y and Konishi I: Expression of BRCA1
protein in benign, borderline, and malignant epithelial ovarian
neoplasms and its relationship to methylation and allelic loss of
the BRCA1 gene. J Pathol. 202:215–223. 2004. View Article : Google Scholar : PubMed/NCBI
|
|
50
|
Wu Q, Lothe RA, Ahlquist T, Silins I,
Tropé CG, Micci F, Nesland JM, Suo Z and Lind GE: DNA methylation
profiling of ovarian carcinomas and their in vitro models
identifies HOXA9, HOXB5, SCGB3A1, and CRABP1 as novel targets. Mol
Cancer. 6:452007. View Article : Google Scholar : PubMed/NCBI
|
|
51
|
Agathanggelou A, Honorio S, Macartney DP,
Martinez A, Dallol A, Rader J, Fullwood P, Chauhan A, Walker R,
Shaw JA, et al: Methylation associated inactivation of RASSF1A from
region 3p21.3 in lung, breast and ovarian tumours. Oncogene.
20:1509–1518. 2001. View Article : Google Scholar : PubMed/NCBI
|
|
52
|
Ozdemir F, Altinisik J, Karateke A,
Coksuer H and Buyru N: Methylation of tumor suppressor genes in
ovarian cancer. Exp Ther Med. 4:1092–1096. 2012. View Article : Google Scholar : PubMed/NCBI
|
|
53
|
Teodoridis JM, Hall J, Marsh S, Kannall
HD, Smyth C, Curto J, Siddiqui N, Gabra H, McLeod HL, Strathdee G
and Brown R: CpG island methylation of DNA damage response genes in
advanced ovarian cancer. Cancer Res. 65:8961–8967. 2005. View Article : Google Scholar : PubMed/NCBI
|
|
54
|
Czekierdowski A, Czekierdowska S,
Szymanski M, Wielgos M, Kaminski P and Kotarski J: Opioid-binding
protein/cell adhesion molecule-like (OPCML) gene and promoter
methylation status in women with ovarian cancer. Neuro Endocrinol
Lett. 27:609–613. 2006.PubMed/NCBI
|
|
55
|
Sellar GC, Watt KP, Rabiasz GJ, Stronach
EA, Li L, Miller EP, Massie CE, Miller J, Contreras-Moreira B,
Scott D, et al: OPCML at 11q25 is epigenetically inactivated and
has tumor-suppressor function in epithelial ovarian cancer. Nat
Genet. 34:337–343. 2003. View
Article : Google Scholar : PubMed/NCBI
|
|
56
|
Widschwendter M, Fiegl H, Egle D,
Mueller-Holzner E, Spizzo G, Marth C, Weisenberger DJ, Campan M,
Young J, Jacobs I and Laird PW: Epigenetic stem cell signature in
cancer. Nat Genet. 39:157–158. 2007. View
Article : Google Scholar : PubMed/NCBI
|
|
57
|
Niskakoski A, Kaur S, Staff S,
Renkonen-Sinisalo L, Lassus H, Järvinen HJ, Mecklin JP, Bützow R
and Peltomäki P: Epigenetic analysis of sporadic and
Lynch-associated ovarian cancers reveals histology-specific
patterns of DNA methylation. Epigenetics. 9:1577–1587. 2014.
View Article : Google Scholar : PubMed/NCBI
|
|
58
|
Schmid G, Notaro S, Reimer D, Abdel-Azim
S, Duggan-Peer M, Holly J, Fiegl H, Rössler J, Wiedemair A, Concin
N, et al: Expression and promotor hypermethylation of miR-34a in
the various histological subtypes of ovarian cancer. BMC Cancer.
16:1022016. View Article : Google Scholar : PubMed/NCBI
|
|
59
|
Ye Z, Li J, Han X, Hou H, Chen H, Zheng X,
Lu J, Wang L, Chen W, Li X and Zhao L: TET3 inhibits TGF-β1-induced
epithelial-mesenchymal transition by demethylating miR-30d
precursor gene in ovarian cancer cells. J Exp Clin Cancer Res.
35:722016. View Article : Google Scholar : PubMed/NCBI
|
|
60
|
Wang G, Li X, Tian W, Wang Y, Wu D, Sun Z
and Zhao E: Promoter DNA methylation is associated with KLF11
expression in epithelial ovarian cancer. Genes Chromosomes Cancer.
54:453–462. 2015. View Article : Google Scholar : PubMed/NCBI
|
|
61
|
Zhao L, Yu C, Zhou S, Lau WB, Lau B, Luo
Z, Lin Q, Yang H, Xuan Y, Yi T, et al: Epigenetic repression of
PDZ-LIM domain-containing protein 2 promotes ovarian cancer via
NOS2-derived nitric oxide signaling. Oncotarget. 7:1408–1420.
2016.PubMed/NCBI
|
|
62
|
Fu Y, Chen J, Pang B, Li C, Zhao J and
Shen K: EZH2-induced H3K27me3 is associated with epigenetic
repression of the ARHI tumor-suppressor gene in ovarian cancer.
Cell Biochem Biophys. 71:105–112. 2015. View Article : Google Scholar : PubMed/NCBI
|
|
63
|
Jacob F, Hitchins MP, Fedier A, Brennan K,
Nixdorf S, Hacker NF, Ward R and Heinzelmann-Schwarz VA: Expression
of GBGT1 is epigenetically regulated by DNA methylation in ovarian
cancer cells. BMC Mol Biol. 15:242014. View Article : Google Scholar : PubMed/NCBI
|
|
64
|
Staub J, Chien J, Pan Y, Qian X, Narita K,
Aletti G, Scheerer M, Roberts LR, Molina J and Shridhar V:
Epigenetic silencing of HSulf-1 in ovarian cancer:implications in
chemoresistance. Oncogene. 26:4969–4978. 2007. View Article : Google Scholar : PubMed/NCBI
|
|
65
|
Zhang H, Zhang S, Cui J, Zhang A, Shen L
and Yu H: Expression and promoter methylation status of mismatch
repair gene hMLH1 and hMSH2 in epithelial ovarian cancer. Aust N Z
J Obstet Gynaecol. 48:505–509. 2008. View Article : Google Scholar : PubMed/NCBI
|
|
66
|
Kanwal A, Kaur M, Singh A, Gupta S and
Sachan M: Hypo/unmethylated promoter status of Cdk2 gene correlates
with its over-expression in ovarian cancer in north Indian
population. Cell Mol Biol (Noisy-le-grand). 62:67–72.
2016.PubMed/NCBI
|
|
67
|
Zhang W, Barger CJ, Eng KH, Klinkebiel D,
Link PA, Omilian A, Bshara W, Odunsi K and Karpf AR: PRAME
expression and promoter hypomethylation in epithelial ovarian
cancer. Oncotarget. 7:45352–45369. 2016.PubMed/NCBI
|
|
68
|
Melnikov A, Scholtens D, Godwin A and
Levenson V: Differential methylation profile of ovarian cancer in
tissues and plasma. J Mol Diagn. 11:60–65. 2009. View Article : Google Scholar : PubMed/NCBI
|
|
69
|
Liggett TE, Melnikov A, Yi Q, Replogle C,
Hu W, Rotmensch J, Kamat A, Sood AK and Levenson V: Distinctive DNA
methylation patterns of cell-free plasma DNA in women with
malignant ovarian tumors. Gynecol Oncol. 120:113–120. 2011.
View Article : Google Scholar : PubMed/NCBI
|
|
70
|
Zhang Q, Hu G, Yang Q, Dong R, Xie X, Ma
D, Shen K and Kong B: A multiplex methylation-specific PCR assay
for the detection of early-stage ovarian cancer using cell-free
serum DNA. Gynecol Oncol. 130:132–139. 2013. View Article : Google Scholar : PubMed/NCBI
|
|
71
|
Xing BL, Li T, Tang ZH, Jiao L, Ge SM,
Qiang X and OuYang J: Cumulative methylation alternations of gene
promoters and protein markers for diagnosis of epithelial ovarian
cancer. Genet Mol Res. 14:4532–4540. 2015. View Article : Google Scholar : PubMed/NCBI
|
|
72
|
Wang B, Yu L, Yang GZ, Luo X and Huang L:
Application of multiplex nested methylated specific PCR in early
diagnosis of epithelial ovarian cancer. Asian Pac J Cancer Prev.
16:3003–3007. 2015. View Article : Google Scholar : PubMed/NCBI
|
|
73
|
Wang B, Yu L, Luo X, Huang L, Li QS, Shao
XS, Liu Y, Fan Y and Yang GZ: Detection of OPCML methylation, a
possible epigenetic marker, from free serum circulating DNA to
improve the diagnosis of early-stage ovarian epithelial cancer.
Oncol Lett. 14:217–223. 2017. View Article : Google Scholar : PubMed/NCBI
|
|
74
|
Koestler DC, Chalise P, Cicek MS,
Cunningham JM, Armasu S, Larson MC, Chien J, Block M, Kalli KR,
Sellers TA, et al: Integrative genomic analysis identifies
epigenetic marks that mediate genetic risk for epithelial ovarian
cancer. BMC Med Genomics. 7:82014. View Article : Google Scholar : PubMed/NCBI
|
|
75
|
Winham SJ, Armasu SM, Cicek MS, Larson MC,
Cunningham JM, Kalli KR, Fridley BL and Goode EL: Genome-wide
investigation of regional blood-based DNA methylation adjusted for
complete blood counts implicates BNC2 in ovarian cancer. Genet
Epidemiol. 38:457–466. 2014. View Article : Google Scholar : PubMed/NCBI
|
|
76
|
Li L, Zheng H, Huang Y, Huang C, Zhang S,
Tian J, Li P, Sood AK, Zhang W and Chen K: DNA methylation
signatures and coagulation factors in the peripheral blood
leucocytes of epithelial ovarian cancer. Carcinogenesis.
38:797–805. 2017. View Article : Google Scholar : PubMed/NCBI
|
|
77
|
Fiegl H, Windbichler G, Mueller-Holzner E,
Goebel G, Lechner M, Jacobs IJ and Widschwendter M: HOXA11 DNA
methylation-a novel prognostic biomarker in ovarian cancer. Int J
Cancer. 123:725–729. 2008. View Article : Google Scholar : PubMed/NCBI
|
|
78
|
Montavon C, Gloss BS, Warton K, Barton CA,
Statham AL, Scurry JP, Tabor B, Nguyen TV, Qu W, Samimi G, et al:
Prognostic and diagnostic significance of DNA methylation patterns
in high grade serous ovarian cancer. Gynecol Oncol. 124:582–588.
2012. View Article : Google Scholar : PubMed/NCBI
|
|
79
|
Widschwendter M, Apostolidou S, Jones AA,
Fourkala EO, Arora R, Pearce CL, Frasco MA, Ayhan A, Zikan M,
Cibula D, et al: HOXA methylation in normal endometrium from
premenopausal women is associated with the presence of ovarian
cancer: A proof of principle study. Int J Cancer. 125:2214–2218.
2009. View Article : Google Scholar : PubMed/NCBI
|
|
80
|
Häfner N, Steinbach D, Jansen L, Diebolder
H, Dürst M and Runnebaum IB: RUNX3 and CAMK2N1 hypermethylation as
prognostic marker for epithelial ovarian cancer. Int J Cancer.
138:217–228. 2016. View Article : Google Scholar : PubMed/NCBI
|
|
81
|
Deng Z, Wang L, Hou H, Zhou J and Li X:
Epigenetic regulation of IQGAP2 promotes ovarian cancer progression
via activating Wnt/β-catenin signaling. Int J Oncol. 48:153–160.
2016. View Article : Google Scholar : PubMed/NCBI
|
|
82
|
Prahm KP, Høgdall C, Karlsen MA,
Christensen IJ, Novotny GW, Knudsen S, Hansen A, Jensen PB, Jensen
T, Mirza MR, et al: Clinical validation of chemotherapy predictors
developed on global microRNA expression in the NCI60 cell line
panel tested in ovarian cancer. PLoS One. 12:e01743002017.
View Article : Google Scholar : PubMed/NCBI
|
|
83
|
Ferrandina G, Fagotti A, Salerno MG,
Natali PG, Mottolese M, Maneschi F, De Pasqua A, Benedetti-Panici
P, Mancuso S and Scambia G: p53 overexpression is associated with
cytoreduction and response to chemotherapy in ovarian cancer. Br J
Cancer. 81:733–740. 1999. View Article : Google Scholar : PubMed/NCBI
|
|
84
|
Reles A, Wen WH, Schmider A, Gee C,
Runnebaum IB, Kilian U, Jones LA, El-Naggar A, Minguillon C,
Schönborn I, et al: Correlation of p53 mutations with resistance to
platinum-based chemotherapy and shortened survival in ovarian
cancer. Clin Cancer Res. 7:2984–2997. 2001.PubMed/NCBI
|
|
85
|
Sung HY, Yang SD, Ju W and Ahn JH:
Aberrant epigenetic regulation of GABRP associates with aggressive
phenotype of ovarian cancer. Exp Mol Med. 49:e3352017. View Article : Google Scholar : PubMed/NCBI
|
|
86
|
Sung HY, Yang SD, Park AK, Ju W and Ahn
JH: Aberrant hypomethylation of solute carrier family 6 member 12
promoter induces metastasis of ovarian cancer. Yonsei Med J.
58:27–34. 2017. View Article : Google Scholar : PubMed/NCBI
|
|
87
|
Sung HY, Choi EN, Lyu D, Park AK, Ju W and
Ahn JH: Aberrant hypomethylation-mediated AGR2 overexpression
induces an aggressive phenotype in ovarian cancer cells. Oncol Rep.
32:815–820. 2014. View Article : Google Scholar : PubMed/NCBI
|
|
88
|
Sung HY, Park AK, Ju W and Ahn JH:
Overexpression of mucin 13 due to promoter methylation promotes
aggressive behavior in ovarian cancer cells. Yonsei Med J.
55:1206–1213. 2014. View Article : Google Scholar : PubMed/NCBI
|
|
89
|
Sung HY, Ju W and Ahn JH: DNA
hypomethylation-mediated overexpression of carbonic anhydrase 9
induces an aggressive phenotype in ovarian cancer cells. Yonsei Med
J. 55:1656–1663. 2014. View Article : Google Scholar : PubMed/NCBI
|
|
90
|
Zhang W, Barger CJ, Link PA,
Mhawech-Fauceglia P, Miller A, Akers SN, Odunsi K and Karpf AR: DNA
hypomethylation-mediated activation of Cancer/Testis Antigen 45
(CT45) genes is associated with disease progression and reduced
survival in epithelial ovarian cancer. Epigenetics. 10:736–748.
2015. View Article : Google Scholar : PubMed/NCBI
|
|
91
|
Kohler RS, Anugraham M, López MN, Xiao C,
Schoetzau A, Hettich T, Schlotterbeck G, Fedier A, Jacob F and
Heinzelmann-Schwarz V: Epigenetic activation of MGAT3 and
corresponding bisecting GlcNAc shortens the survival of cancer
patients. Oncotarget. 7:51674–51686. 2016. View Article : Google Scholar : PubMed/NCBI
|
|
92
|
Cardenas H, Vieth E, Lee J, Segar M, Liu
Y, Nephew KP and Matei D: TGF-β induces global changes in DNA
methylation during the epithelial-to-mesenchymal transition in
ovarian cancer cells. Epigenetics. 9:1461–1472. 2014. View Article : Google Scholar : PubMed/NCBI
|
|
93
|
Menon U, Gentry-Maharaj A, Ryan A, Sharma
A, Burnell M, Hallett R, Lewis S, Lopez A, Godfrey K, Oram D, et
al: Recruitment to multicentre trials-lessons from UKCTOCS:
Descriptive study. BMJ. 337:a20792008. View Article : Google Scholar : PubMed/NCBI
|
|
94
|
Piek JM, van Diest PJ, Zweemer RP, Jansen
JW, Poort-Keesom RJ, Menko FH, Gille JJ, Jongsma AP, Pals G,
Kenemans P and Verheijen RH: Dysplastic changes in prophylactically
removed fallopian tubes of women predisposed to developing ovarian
cancer. J Pathol. 195:451–456. 2001. View Article : Google Scholar : PubMed/NCBI
|
|
95
|
Finch A, Shaw P, Rosen B, Murphy J, Narod
SA and Colgan TJ: Clinical and pathologic findings of prophylactic
salpingo-oophorectomies in 159 BRCA1 and BRCA2 carriers. Gynecol
Oncol. 100:58–64. 2006. View Article : Google Scholar : PubMed/NCBI
|
|
96
|
Kindelberger DW, Lee Y, Miron A, Hirsch
MS, Feltmate C, Medeiros F, Callahan MJ, Garner EO, Gordon RW,
Birch C, et al: Intraepithelial carcinoma of the fimbria and pelvic
serous carcinoma: Evidence for a causal relationship. Am J Surg
Pathol. 31:161–169. 2007. View Article : Google Scholar : PubMed/NCBI
|
|
97
|
Przybycin CG, Kurman RJ, Ronnett BM, Shih
IeM and Vang R: Are all pelvic (nonuterine) serous carcinomas of
tubal origin? Am J Surg Pathol. 34:1407–1416. 2010. View Article : Google Scholar : PubMed/NCBI
|
|
98
|
Kuhn E, Kurman RJ, Vang R, Sehdev AS, Han
G, Soslow R, Wang TL and Shih IeM: TP53 mutations in serous tubal
intraepithelial carcinoma and concurrent pelvic high-grade serous
carcinoma-evidence supporting the clonal relationship of the two
lesions. J Pathol. 226:421–426. 2012. View Article : Google Scholar : PubMed/NCBI
|
|
99
|
Perets R, Wyant GA, Muto KW, Bijron JG,
Poole BB, Chin KT, Chen JY, Ohman AW, Stepule CD, Kwak S, et al:
Transformation of the fallopian tube secretory epithelium leads to
high-grade serous ovarian cancer in Brca;Tp53;Pten models. Cancer
Cell. 24:751–765. 2013. View Article : Google Scholar : PubMed/NCBI
|
|
100
|
Callahan MJ, Crum CP, Medeiros F,
Kindelberger DW, Elvin JA, Garber JE, Feltmate CM, Berkowitz RS and
Muto MG: Primary fallopian tube malignancies in BRCA-positive women
undergoing surgery for ovarian cancer risk reduction. J Clin Oncol.
25:3985–3990. 2007. View Article : Google Scholar : PubMed/NCBI
|
|
101
|
Medeiros F, Muto MG, Lee Y, Elvin JA,
Callahan MJ, Feltmate C, Garber JE, Cramer DW and Crum CP: The
tubal fimbria is a preferred site for early adenocarcinoma in women
with familial ovarian cancer syndrome. Am J Surg Pathol.
30:230–236. 2006. View Article : Google Scholar : PubMed/NCBI
|
|
102
|
Bartlett TE, Chindera K, McDermott J,
Breeze CE, Cooke WR, Jones A, Reisel D, Karegodar ST, Arora R, Beck
S, et al: Epigenetic reprogramming of fallopian tube fimbriae in
BRCA mutation carriers defines early ovarian cancer evolution. Nat
Commun. 7:116202016. View Article : Google Scholar : PubMed/NCBI
|
|
103
|
Doufekas K, Zheng SC, Ghazali S, Wong M,
Mohamed Y, Jones A, Reisel D, Mould T, Olaitan A, Macdonald N, et
al: DNA methylation signatures in vaginal fluid samples for
detection of cervical and endometrial cancer. Int J Gynecol Cancer.
Jun 2–2016.(Epub ahead of print). View Article : Google Scholar : PubMed/NCBI
|
|
104
|
Wang Y, Cardenas H, Fang F, Condello S,
Taverna P, Segar M, Liu Y, Nephew KP and Matei D: Epigenetic
targeting of ovarian cancer stem cells. Cancer Res. 74:4922–4936.
2014. View Article : Google Scholar : PubMed/NCBI
|
|
105
|
Cacan E: Epigenetic-mediated immune
suppression of positive co-stimulatory molecules in chemoresistant
ovarian cancer cells. Cell Biol Int. 41:328–339. 2017. View Article : Google Scholar : PubMed/NCBI
|
|
106
|
Yan B, Yin F, Wang QI, Zhang W and Li LI:
Integration and bioinformatics analysis of DNA-methylated genes
associated with drug resistance in ovarian cancer. Oncol Lett.
12:157–166. 2016. View Article : Google Scholar : PubMed/NCBI
|
|
107
|
Cacan E: Epigenetic regulation of RGS2
(Regulator of G-protein signaling 2) in chemoresistant ovarian
cancer cells. J Chemother. 29:173–178. 2017. View Article : Google Scholar : PubMed/NCBI
|
|
108
|
Tomar T, Alkema NG, Schreuder L, Meersma
GJ, de Meyer T, van Criekinge W, Klip HG, Fiegl H, van
Nieuwenhuysen E, Vergote I, et al: Methylome analysis of extreme
chemoresponsive patients identifies novel markers of platinum
sensitivity in high-grade serous ovarian cancer. BMC Med.
15:1162017. View Article : Google Scholar : PubMed/NCBI
|
|
109
|
Lund RJ, Huhtinen K, Salmi J, Rantala J,
Nguyen EV, Moulder R, Goodlett DR, Lahesmaa R and Carpén O: DNA
methylation and transcriptome changes associated with cisplatin
resistance in ovarian cancer. Sci Rep. 7:14692017. View Article : Google Scholar : PubMed/NCBI
|
|
110
|
Bonito NA, Borley J, Wilhelm-Benartzi CS,
Ghaem-Maghami S and Brown R: Epigenetic regulation of the homeobox
gene MSX1 associates with platinum-resistant disease in high-grade
serous epithelial ovarian cancer. Clin Cancer Res. 22:3097–3104.
2016. View Article : Google Scholar : PubMed/NCBI
|
|
111
|
de Leon M, Cardenas H, Vieth E, Emerson R,
Segar M, Liu Y, Nephew K and Matei D: Transmembrane protein 88
(TMEM88) promoter hypomethylation is associated with platinum
resistance in ovarian cancer. Gynecol Oncol. 142:539–547. 2016.
View Article : Google Scholar : PubMed/NCBI
|
|
112
|
Teschendorff AE, Lee SH, Jones A, Fiegl H,
Kalwa M, Wagner W, Chindera K, Evans I, Dubeau L, Orjalo A, et al:
HOTAIR and its surrogate DNA methylation signature indicate
carboplatin resistance in ovarian cancer. Genome Med. 7:1082015.
View Article : Google Scholar : PubMed/NCBI
|
|
113
|
Han X, Zhou Y, You Y, Lu J, Wang L, Hou H,
Li J, Chen W, Zhao L and Li X: TET1 promotes cisplatin-resistance
via demethylating the vimentin promoter in ovarian cancer. Cell
Biol Int. 41:405–414. 2017. View Article : Google Scholar : PubMed/NCBI
|