|
1
|
Torre LA, Bray F, Siegel RL, Ferlay J,
Lortet-Tieulent J and Jemal A: Global cancer statistics, 2012. CA
Cancer J Clin. 65:87–108. 2015.PubMed/NCBI View Article : Google Scholar
|
|
2
|
Chen W, Zheng R, Baade PD, Zhang S, Zeng
H, Bray F, Jemal A, Yu Qx and He J: Cancer statistics in China,
2015. CA Cancer J Clin. 66:115–132. 2016.PubMed/NCBI View Article : Google Scholar
|
|
3
|
Choi IJ, Kook MC, Kim YI, Cho JS, Lee JY,
Kim CG, Park B and Nam BH: Helicobacter pylori therapy for
the prevention of metachronous gastric cancer. New Engl J Med.
378:1085–1095. 2018.PubMed/NCBI View Article : Google Scholar
|
|
4
|
Sitarz R, Skierucha M, Mielko J, Offerhaus
GJA, Maciejewski R and Polkowski WP: Gastric cancer: Epidemiology,
prevention, classification, and treatment. Cancer Manag Res.
10:239–248. 2018.PubMed/NCBI View Article : Google Scholar
|
|
5
|
Zhou M, Wang H, Zhu J, Chen W, Wang L, Liu
S, Li Y, Wang L, Liu Y, Yin P, et al: Cause-specific mortality for
240 causes in China during 1990-2013: A systematic subnational
analysis for the Global Burden of disease study 2013. Lancet.
387:251–272. 2016.PubMed/NCBI View Article : Google Scholar
|
|
6
|
Johnstone RM, Adam M, Hammond JR, Orr L
and Turbide C: Vesicle formation during reticulocyte maturation.
Association of plasma membrane activities with released vesicles
(exosomes). J Biol Chem. 262:9412–9420. 1987.PubMed/NCBI
|
|
7
|
Record M, Carayon K, Poirot M and
Silvente-Poirot S: Exosomes as new vesicular lipid transporters
involved in cell-cell communication and various pathophysiologies.
Biochim Biophys Acta. 1841:108–120. 2014.PubMed/NCBI View Article : Google Scholar
|
|
8
|
Subra C, Grand D, Laulagnier K, Stella A,
Lambeau G, Paillasse M, Medina PD, Monsarrat B, Perret B, Poirot
SS, et al: Exosomes account for vesicle-mediated transcellular
transport of activatable phospholipases and prostaglandins. J Lipid
Res. 51:2105–2120. 2010.PubMed/NCBI View Article : Google Scholar
|
|
9
|
Valadi H, Ekström K, Bossios A, Sjöstrand
M, Lee JJ and Lötvall JO: Exosome-mediated transfer of mRNAs and
microRNAs is a novel mechanism of genetic exchange between cells.
Nat Cell Biol. 9:654–659. 2007.PubMed/NCBI View
Article : Google Scholar
|
|
10
|
Gezer U, Özgur E, Cetinkaya M, Isin M and
Dalay N: Long non-coding RNAs with low expression levels in cells
are enriched in secreted exosomes. Cell Biol Int. 38:1076–1079.
2014.PubMed/NCBI View Article : Google Scholar
|
|
11
|
Fanale D, Taverna S, Russo A and Bazan V:
Circular RNA in exosomes. Adv Exp Med Biol. 1087:109–117.
2018.PubMed/NCBI View Article : Google Scholar
|
|
12
|
Taylor DD and Gercel-Taylor C: MicroRNA
signatures of tumor-derived exosomes as diagnostic biomarkers of
ovarian cancer. Gynecol Oncol. 110:13–21. 2008.PubMed/NCBI View Article : Google Scholar
|
|
13
|
Simpson RJ, Lim JWE, Moritz RL and
Mathivanan S: Exosomes: Proteomic insights and diagnostic
potential. Expert Rev Proteomics. 6:267–283. 2009.PubMed/NCBI View Article : Google Scholar
|
|
14
|
Gallo A, Tandon M, Alevizos I and Illei
GG: The majority of MicroRNAs detectable in serum and saliva is
concentrated in exosomes. PLoS One. 7(e30679)2012.PubMed/NCBI View Article : Google Scholar
|
|
15
|
Johnstone RM: The Jeanne Manery-fisher
memorial lecture 1991. Maturation of reticulocytes: Formation of
exosomes as a mechanism for shedding membrane proteins. Biochem
Cell Biol. 70:179–190. 1992.PubMed/NCBI View
Article : Google Scholar
|
|
16
|
Bang C and Thum T: Exosomes: New players
in cell-cell communication. Int J Biochem Cell Biol. 44:2060–2064.
2012.PubMed/NCBI View Article : Google Scholar
|
|
17
|
Tang MK and Wong AS: Exosomes: Emerging
biomarkers and targets for ovarian cancer. Cancer Lett. 367:26–33.
2015.PubMed/NCBI View Article : Google Scholar
|
|
18
|
Simhadri VR, Reiners KS, Hansen HP,
Topolar D, Simhadri VL, Nohroudi K, Kufer TA, Engert A and von
Strandmann EP: Dendritic cells release HLA-B-associated
Transcript-3 positive exosomes to regulate natural Killer function.
PLoS One. 3(e3377)2008.PubMed/NCBI View Article : Google Scholar
|
|
19
|
Admyre C, Johansson SM, Qazi KR, Filén JJ,
Lahesmaa R, Norman M, Neve EPA, Scheynius A and Gabrielsson S:
Exosomes with immune modulatory features are present in human
breast milk. J Immunol. 179:1969–1978. 2007.PubMed/NCBI View Article : Google Scholar
|
|
20
|
Gu Y, Li M, Wang T, Liang Y, Zhong Z, Wang
X, Zhou Q, Chen L, Lang Q, He Z, et al: Lactation-related MicroRNA
expression profiles of porcine breast milk exosomes. PLoS One.
7(e43691)2012.PubMed/NCBI View Article : Google Scholar
|
|
21
|
Pontes Azevedo LC, Janiszewski M, Pontieri
V, Pedro MDA, Bassi E, Tucci PJF and Laurindo FRM: Platelet-derived
exosomes from septic shock patients induce myocardial dysfunction.
Crit Care. 11(R120)2007.PubMed/NCBI View
Article : Google Scholar
|
|
22
|
Masyuk AI, Masyuk TV and LaRusso NF:
Exosomes in the pathogenesis, diagnostics and therapeutics of liver
diseases. J Hepatol. 59:621–625. 2013.PubMed/NCBI View Article : Google Scholar
|
|
23
|
Vella LJ, Sharples RA, Nisbet RM, Cappai R
and Hill AF: The role of exosomes in the processing of proteins
associated with neurodegenerative diseases. Eur Biophys J.
37:323–332. 2008.PubMed/NCBI View Article : Google Scholar
|
|
24
|
Rak J and Guha A: Extracellular
vesicles-vehicles that spread cancer genes. Bioessays. 34:489–497.
2012.PubMed/NCBI View Article : Google Scholar
|
|
25
|
Sund M and Kalluri R: Tumor stroma derived
biomarkers in cancer. Cancer Metastasis Rev. 28:177–183.
2009.PubMed/NCBI View Article : Google Scholar
|
|
26
|
Kalluri R and Zeisberg M: Fibroblasts in
cancer. Nat Rev Cancer. 6:392–401. 2006.PubMed/NCBI View
Article : Google Scholar
|
|
27
|
Skog J, Wuerdinger T, van Rijn S, Meijer
DH, Gainche L, Esteves MS, Curry WT Jr, Carter BS, Krichevsky AM
and Breakefield XO: Glioblastoma microvesicles transport RNA and
proteins that promote tumour growth and provide diagnostic
biomarkers. Nat Cell Biol. 10:1470–1476. 2008.PubMed/NCBI View
Article : Google Scholar
|
|
28
|
Kogure T, Lin WL, Yan IK, Braconi C and
Patel T: Intercellular Nanovesicle-mediated microRNA transfer: A
mechanism of environmental modulation of hepatocellular cancer cell
growth. Hepatology. 54:1237–1248. 2011.PubMed/NCBI View Article : Google Scholar
|
|
29
|
Ohshima K, Inoue K, Fujiwara A, Hatakeyama
K, Kanto K, Watanabe Y, Muramatsu K, Fukuda Y, Ogura SI, Yamaguchi
K and Mochizuki T: Let-7 MicroRNA family is selectively secreted
into the extracellular environment via exosomes in a metastatic
gastric cancer cell line. PLoS One. 5(e13247)2010.PubMed/NCBI View Article : Google Scholar
|
|
30
|
Pan L, Liang W, Fu M, Huang ZH, Li X,
Zhang W, Zhang P, Qian H, Jiang PC, Xu WR and Zhang X:
Exosomes-mediated transfer of long noncoding RNA ZFAS1 promotes
gastric cancer progression. J Cancer Res Clini Oncol. 143:991–1004.
2017.PubMed/NCBI View Article : Google Scholar
|
|
31
|
Melo SA, Sugimoto H, O'Connell JT, Kato N,
Villanueva A, Vidal A, Qiu L, Vitkin E, Perelman LT, Melo CA, et
al: Cancer exosomes perform cell-independent microRNA biogenesis
and promote tumorigenesis. Cancer Cell. 26:707–721. 2014.PubMed/NCBI View Article : Google Scholar
|
|
32
|
Zhang X, Guo H, Bao Y, Yu H, Xie D and
Wang X: Exosomal long non-coding RNA DLX6-AS1 as a potential
diagnostic biomarker for non-small cell lung cancer. Oncol Lett.
18:5197–5204. 2019.PubMed/NCBI View Article : Google Scholar
|
|
33
|
Zhang H, Xu S and Liu X: MicroRNA
profiling of plasma exosomes from patients with ovarian cancer
using high-throughput sequencing. Oncol Lett. 17:5601–5607.
2019.PubMed/NCBI View Article : Google Scholar
|
|
34
|
Crentsil VC, Liu H and Sellitti DF:
Comparison of exosomal microRNAs secreted by 786-O clear cell renal
carcinoma cells and HK-2 proximal tubule-derived cells in culture
identifies microRNA-205 as a potential biomarker of clear cell
renal carcinoma. Oncol Lett. 16:1285–1290. 2018.PubMed/NCBI View Article : Google Scholar
|
|
35
|
Yoshikawa M, Iinuma H, Umemoto Y,
Yanagisawa T, Matsumoto A and Jinno H: Exosome-encapsulated
microRNA-223-3p as a minimally invasive biomarker for the early
detection of invasive breast cancer. Oncol Lett. 15:9584–9592.
2018.PubMed/NCBI View Article : Google Scholar
|
|
36
|
Lee RC, Feinbaum RL and Ambros V: The C.
elegans heterochronic gene lin-4 encodes small RNAs with antisense
complementarity to lin-14. Cell. 75:843–854. 1993.PubMed/NCBI View Article : Google Scholar
|
|
37
|
Reinhart BJ, Slack FJ, Basson M,
Pasquinelli AE, Bettinger JC, Rougvie AE, Horvitz HR and Ruvkun G:
The 21-nucleotide let-7 RNA regulates developmental timing in
Caenorhabditis elegans. Nature. 403:901–906. 2000.PubMed/NCBI View Article : Google Scholar
|
|
38
|
Shukla GC, Singh J and Barik S: MicroRNAs:
Processing, maturation, target recognition and regulatory
functions. Mol Cell Pharmacol. 3:83–92. 2011.PubMed/NCBI
|
|
39
|
Wang N, Wang L, Yang Y, Gong L, Xiao B and
Liu X: A serum exosomal microRNA panel as a potential biomarker
test for gastric cancer. Biochem Biophys Res Commun. 493:1322–1328.
2017.PubMed/NCBI View Article : Google Scholar
|
|
40
|
Li W and Gao YQ: MiR-217 is involved in
the carcinogenesis of gastric cancer by down-regulating CDH1
expression. Kaohsiung J Med Sci. 34:377–384. 2018.PubMed/NCBI View Article : Google Scholar
|
|
41
|
Wang J, Guan X, Zhang Y, Ge S, Zhang L, Li
H, Wang X, Liu R, Ning T, Deng T, et al: Exosomal miR-27a derived
from gastric cancer cells regulates the transformation of
fibroblasts into cancer-associated fibroblasts. Cell Physiol
Biochem. 49:869–883. 2018.PubMed/NCBI View Article : Google Scholar
|
|
42
|
Jiying H, Manru S, Meizhu Y, Ying C,
Zhenjun G and Xin M: Exosome-mediated transfer of miR-1290 promotes
cell proliferation and invasion in gastric cancer via NKD1. Acta
Biochim Biophys Sin (Shanghai). 51:900–907. 2019.PubMed/NCBI View Article : Google Scholar
|
|
43
|
Wang M, Zhao C, Shi H, Zhang B, Zhang L,
Zhang X, Wang S, Wu X, Yang T, Huang F, et al: Deregulated
microRNAs in gastric cancer tissue-derived mesenchymal stem cells:
Novel biomarkers and a mechanism for gastric cancer. Br J Cancer.
110:1199–1210. 2014.PubMed/NCBI View Article : Google Scholar
|
|
44
|
Yang H, Zhang H, Ge S, Ning T, Bai M, Li
J, Li S, Sun W, Deng T, Zhang L, et al: Exosome-derived miR-130a
activates angiogenesis in gastric cancer by targeting C-MYB in
vascular endothelial cells. Mol Ther. 26:2466–2475. 2018.PubMed/NCBI View Article : Google Scholar
|
|
45
|
Imamura T, Komatsu S, Ichikawa D, Miyamae
M, Okajima W, Ohashi T, Kiuchi J, Nishibeppu K, Kosuga T, Konishi
H, et al: Low plasma levels of miR-101 are associated with tumor
progression in gastric cancer. Oncotarget. 8:106538–106550.
2017.PubMed/NCBI View Article : Google Scholar
|
|
46
|
Kessenbrock K, Plaks V and Werb Z: Matrix
Metalloproteinases: Regulators of the tumor microenvironment. Cell.
141:52–67. 2010.PubMed/NCBI View Article : Google Scholar
|
|
47
|
Hwang RF, Moore T, Arumugam T,
Ramachandran V, Amos KD, Rivera A, Ji B, Evans DB and Logsdon CD:
Cancer-associated stroma fibroblasts promote pancreatic tumor
progression. Cancer Res. 68:918–926. 2008.PubMed/NCBI View Article : Google Scholar
|
|
48
|
Albini A, Tosetti F, Li VW, Noonan DM and
Li WW: Cancer prevention by targeting angiogenesis. Nat Rev Clin
Oncol. 9:498–509. 2012.PubMed/NCBI View Article : Google Scholar
|
|
49
|
Bergers G and Benjamin LE: Tumorigenesis
and the angiogenic switch. Nat Rev Cancer. 3:401–410.
2003.PubMed/NCBI View Article : Google Scholar
|
|
50
|
Talasila KM, Soentgerath A, Euskirchen P,
Rosland GV, Wang J, Huszthy PC, Prestegarden L, Skaftnesmo KO,
Sakariassen PQ, Eskilsson E, et al: EGFR wild-type amplification
and activation promote invasion and development of glioblastoma
independent of angiogenesis. Acta Neuropathol. 125:683–698.
2013.PubMed/NCBI View Article : Google Scholar
|
|
51
|
Cully M: Tumour vessel normalization takes
centre stage. Nat Rev Drug Discovery. 16:87. 2017.PubMed/NCBI View Article : Google Scholar
|
|
52
|
Viallard C and Larrivee B: Tumor
angiogenesis and vascular normalization: Alternative therapeutic
targets. Angiogenesis. 20:409–426. 2017.PubMed/NCBI View Article : Google Scholar
|
|
53
|
Ramsay RG, Barton AL and Gonda TJ:
Targeting c-Myb expression in human disease. Expert Opin Ther
Targets. 7:235–248. 2003.PubMed/NCBI View Article : Google Scholar
|
|
54
|
Wang L, Liu Q, Zhou W, Shao H, Li F and Li
X: Prognostic role of myeloid cell Leukemia-1 protein (Mcl-1)
expression in human gastric cancer. J Surg Oncol. 100:396–400.
2009.PubMed/NCBI View Article : Google Scholar
|
|
55
|
Ke X, Yan R, Sun Z, Cheng Y, Meltzer A, Lu
N, Shu X, Wang Z, Huang B, Liu X, et al: Esophageal
adenocarcinoma-derived extracellular vesicle MicroRNAs induce a
neoplastic phenotype in gastric organoids. Neoplasia. 19:941–949.
2017.PubMed/NCBI View Article : Google Scholar
|
|
56
|
Roush S and Slack FJ: The let-7 family of
microRNAs. Trends Cell Biol. 18:505–516. 2008.PubMed/NCBI View Article : Google Scholar
|
|
57
|
Boyerinas B, Park SM, Hau A, Murmann AE
and Peter ME: The role of let-7 in cell differentiation and cancer.
Endocrine Related Cancer. 17:F19–F36. 2010.PubMed/NCBI View Article : Google Scholar
|
|
58
|
Kolat D, Hammouz R, Bednarek AK and
Pluciennik E: Exosomes as carriers transporting long noncoding
RNAs: Molecular characteristics and their function in cancer
(Review). Mol Med Rep. 20:851–862. 2019.PubMed/NCBI View Article : Google Scholar
|
|
59
|
Lin LY, Yang L, Zeng Q, Wang L, Chen ML,
Zhao ZH, Ye GD, Luo QC, Lv PY, Guo QW, et al: Tumor-originated
exosomal lncUEGC1 as a circulating biomarker for early-stage
gastric cancer. Mol Cancer. 17(84)2018.PubMed/NCBI View Article : Google Scholar
|
|
60
|
Yang L, Lei P, Wei L, Peng Z, Hui Q,
Wenrong X, Zhijian Z, Pengcheng J and Xu Z: Detection and clinical
value of serum exosomal DANCR in gastric cancer patients. Chin J
Clin Lab Sci. 35:171–174. 2017.(In Chinese).
|
|
61
|
Hao YP, Qiu JH, Zhang DB and Yu CG: Long
non-coding RNA DANCR, a prognostic indicator, promotes cell growth
and tumorigenicity in gastric cancer. Tumour Biol.
39(1010428317699798)2017.PubMed/NCBI View Article : Google Scholar
|
|
62
|
Zhao R and Zhang Y, Zhang X, Yang Y, Zheng
X, Li X, Liu Y and Zhang Y: Exosomal long noncoding RNA HOTTIP as
potential novel diagnostic and prognostic biomarker test for
gastric cancer. Mol Cancer. 17(68)2018.PubMed/NCBI View Article : Google Scholar
|
|
63
|
Yuan SX, Wang J, Yang F, Tao QF, Zhang J,
Wang LL, Yang Y, Liu H, Wang ZG, Xu QG, et al: Long noncoding RNA
DANCR increases stemness features of hepatocellular carcinoma by
derepression of CTNNB1. Hepatology. 63:499–511. 2016.PubMed/NCBI View Article : Google Scholar
|
|
64
|
Pan L, Liang W, Gu J, Zang X, Huang Z, Shi
H, Chen J, Fu M, Zhang P, Xiao X, et al: Long noncoding RNA DANCR
is activated by SALL4 and promotes the proliferation and invasion
of gastric cancer cells. Oncotarget. 9:1915–1930. 2017.PubMed/NCBI View Article : Google Scholar
|
|
65
|
Mao Z, Li H, Du B, Cui K, Xing Y, Zhao X
and Zai S: LncRNA DANCR promotes migration and invasion through
suppression of lncRNA-LET in gastric cancer cells. Biosci Rep.
37(BSR20171070)2017.PubMed/NCBI View Article : Google Scholar
|
|
66
|
Zhang X, Liang W, Liu J, Zang X, Gu J, Pan
L, Shi H, Fu M, Huang Z, Zhang Y, et al: Long non-coding RNA UFC1
promotes gastric cancer progression by regulating miR-498/Lin28b. J
Exp Clin Cancer Res. 37(134)2018.PubMed/NCBI View Article : Google Scholar
|
|
67
|
Sanger HL, Klotz G, Riesner D, Gross HJ
and Kleinschmidt AK: Viroids are single-stranded covalently closed
circular RNA molecules existing as highly base-paired rod-like
structures. Proc Natl Acad Sci USA. 73:3852–3856. 1976.PubMed/NCBI View Article : Google Scholar
|
|
68
|
Cocquerelle C, Mascrez B, Hetuin D and
Bailleul B: Mis-splicing yields circular RNA molecules. FASEB J.
7:155–160. 1993.PubMed/NCBI View Article : Google Scholar
|
|
69
|
Pasman Z, Been MD and Garcia-Blanco MA:
Exon circularization in mammalian nuclear extracts. RNA. 2:603–610.
1996.PubMed/NCBI
|
|
70
|
Hansen TB, Jensen TI, Clausen BH, Bramsen
JB, Finsen B, Damgaard CK and Kjems J: Natural RNA circles function
as efficient microRNA sponges. Nature. 495:384–388. 2013.PubMed/NCBI View Article : Google Scholar
|
|
71
|
Shao Y, Tao X, Lu R, Zhang H, Ge J, Xiao
B, Ye G and Guo J: Hsa_circ_0065149 is an indicator for Early
Gastric cancer screening and prognosis prediction. Pathol Oncol
Res: Aug 20, 2019 (Epub ahead of print).
|
|
72
|
Hong Y, Qin H, Li Y, Zhang Y, Zhuang X,
Liu L, Lu K, Li L, Deng X, Liu F, Shi S and Liu G: FNDC3B circular
RNA promotes the migration and invasion of gastric cancer cells via
the regulation of E-cadherin and CD44 expression. J Cell Physiol.
234:19895–19910. 2019.PubMed/NCBI View Article : Google Scholar
|
|
73
|
Wei J, Wang J, Gao X and Qi F:
Identification of differentially expressed circRNAs and a novel
hsa_circ_0000144 that promote tumor growth in gastric cancer.
Cancer Cell Int. 19(268)2019.PubMed/NCBI View Article : Google Scholar
|
|
74
|
Wang Y, Xu S, Chen Y, Zheng X, Li T and
Guo J: Identification of hsa_circ_0005654 as a new early biomarker
of gastric cancer. Cancer Biomark. 26:403–410. 2019.PubMed/NCBI View Article : Google Scholar
|
|
75
|
Mosca E, Barcella M, Alfieri R, Bevilacqua
A, Canti G and Milanesi L: Systems biology of the metabolic network
regulated by the Akt pathway. Biotechnol Adv. 30:131–141.
2012.PubMed/NCBI View Article : Google Scholar
|
|
76
|
Giguere V: Canonical signaling and nuclear
activity of mTORa teamwork effort to regulate metabolism and cell
growth. FEBS J. 285:1572–1588. 2018.PubMed/NCBI View Article : Google Scholar
|
|
77
|
Heras-Sandoval D, Perez-Rojas JM,
Hernandez-Damian J and Pedraza-Chaverri J: The role of
PI3K/AKT/mTOR pathway in the modulation of autophagy and the
clearance of protein aggregates in neurodegeneration. Cell Signal.
26:2694–2701. 2014.PubMed/NCBI View Article : Google Scholar
|
|
78
|
Yang Y, Gao M, Lin Z, Chen L, Jin Y, Zhu
G, Wang Y and Jin T: DEK promoted EMT and angiogenesis through
regulating PI3K/AKT/mTOR pathway in triple-negative breast cancer.
Oncotarget. 8:98708–98722. 2017.PubMed/NCBI View Article : Google Scholar
|
|
79
|
Wu ZH, Lin C, Liu CC, Jiang WW, Huang MZ,
Liu X and Guo WJ: MiR-616-3p promotes angiogenesis and EMT in
gastric cancer via the PTEN/AKT/mTOR pathway. Biochem Biophys Res
Commun. 501:1068–1073. 2018.PubMed/NCBI View Article : Google Scholar
|
|
80
|
Zhang X, Wang S, Wang H, Cao J, Huang X,
Chen Z, Xu P, Sun G, Xu J, Lv J and Xu Z: Circular RNA circNRIP1
acts as a microRNA-149-5p sponge to promote gastric cancer
progression via the AKT1/mTOR pathway. Mol Cancer.
18(20)2019.PubMed/NCBI View Article : Google Scholar
|
|
81
|
Allemani C, Weir HK, Carreira H, Harewood
R, Spika D, Wang XS, Bannon F, Ahn JV, Johnson CJ, Bonaventure A,
et al: Global surveillance of cancer survival 1995-2009: Analysis
of individual data for 25 676 887 patients from 279
population-based registries in 67 countries (CONCORD-2). Lancet.
385:977–1010. 2015.PubMed/NCBI View Article : Google Scholar
|
|
82
|
Ren J, Zhou Q, Li H, Li J, Pang L, Su L,
Gu Q, Zhu Z and Liu B: Characterization of exosomal RNAs derived
from human gastric cancer cells by deep sequencing. Tumor Biol.
39(1010428317695012)2017.PubMed/NCBI View Article : Google Scholar
|