|
1
|
Siegel R, Ma J, Zou Z and Jemal A: Cancer
statistics, 2014. CA Cancer J Clin. 64:9–29. 2014.PubMed/NCBI View Article : Google Scholar
|
|
2
|
Carter HB and Pearson JD: PSA velocity for
the diagnosis of early prostate cancer. A new concept. Urol Clin
North Am. 20:665–670. 1993.PubMed/NCBI
|
|
3
|
Gandellini P, Folini M, Longoni N, Pennati
M, Binda M, Colecchia M, Salvioni R, Supino R, Moretti R, Limonta
P, et al: miR-205 Exerts tumor-suppressive functions in human
prostate through down-regulation of protein kinase Cepsilon. Cancer
Res. 69:2287–2295. 2009.PubMed/NCBI View Article : Google Scholar
|
|
4
|
Tucci P, Agostini M, Grespi F, Markert EK,
Terrinoni A, Vousden KH, Muller PA, Dotsch V, Kehrloesser S, Sayan
BS, et al: Loss of p63 and its microRNA-205 target results in
enhanced cell migration and metastasis in prostate cancer. Proc
Natl Acad Sci USA. 109:15312–15317. 2012.PubMed/NCBI View Article : Google Scholar
|
|
5
|
Gandellini P, Profumo V, Casamichele A,
Fenderico N, Borrelli S, Petrovich G, Santilli G, Callari M,
Colecchia M, Pozzi S, et al: miR-205 regulates basement membrane
deposition in human prostate: Implications for cancer development.
Cell Death Differ. 19:1750–1760. 2012.PubMed/NCBI View Article : Google Scholar
|
|
6
|
Bonci D, Coppola V, Musumeci M, Addario A,
Giuffrida R, Memeo L, D'Urso L, Pagliuca A, Biffoni M, Labbaye C,
et al: The miR-15a-miR-16-1 cluster controls prostate cancer by
targeting multiple oncogenic activities. Nat Med. 14:1271–1277.
2008.PubMed/NCBI View
Article : Google Scholar
|
|
7
|
Park TY, Chae JY, Kim JW, Kim JW, Oh MM,
Yoon CY and Moon du G: Prostate-specific antigen mass and free
prostate-specific antigen mass for predicting the prostate volume
of korean men with biopsy-proven benign prostatic hyperplasia.
Korean J Urol. 54:609–614. 2013.PubMed/NCBI View Article : Google Scholar
|
|
8
|
Wang Y, Hu HL, Liu ZF, Sun WZ, Chen XX and
Wu CL: Diagnosis and treatment of xanthogranulomatous prostatitis:
A case report and review of the literature. Zhonghua Nan Ke Xue.
19:149–152. 2013.PubMed/NCBI(In Chinese).
|
|
9
|
ENCODE Project Consortium. An integrated
encyclopedia of DNA elements in the human genome. Nature.
489:57–74. 2012.PubMed/NCBI View Article : Google Scholar
|
|
10
|
Ma W, Ay F, Lee C, Gulsoy G, Deng X, Cook
S, Hesson J, Cavanaugh C, Ware CB, Krumm A, et al: Fine-scale
chromatin interaction maps reveal the cis-regulatory landscape of
human lincRNA genes. Nat Methods. 12:71–78. 2015.PubMed/NCBI View Article : Google Scholar
|
|
11
|
Ling H, Vincent K, Pichler M, Fodde R,
Berindan-Neagoe I, Slack FJ and Calin GA: Junk DNA and the long
non-coding RNA twist in cancer genetics. Oncogene. 34:5003–5011.
2015.PubMed/NCBI View Article : Google Scholar
|
|
12
|
Kapranov P, Cheng J, Dike S, Nix DA,
Duttagupta R, Willingham AT, Stadler PF, Hertel J, Hackermuller J,
Hofacker IL, et al: RNA maps reveal new RNA classes and a possible
function for pervasive transcription. Science. 316:1484–1488.
2007.PubMed/NCBI View Article : Google Scholar
|
|
13
|
Brosnan CA and Voinnet O: The long and the
short of noncoding RNAs. Curr Opin Cell Biol. 21:416–425.
2009.PubMed/NCBI View Article : Google Scholar
|
|
14
|
Gibb EA, Brown CJ and Lam WL: The
functional role of long non-coding RNA in human carcinomas. Mol
Cancer. 10(38)2011.PubMed/NCBI View Article : Google Scholar
|
|
15
|
Mercer TR and Mattick JS: Structure and
function of long noncoding RNAs in epigenetic regulation. Nat
Struct Mol Biol. 20:300–307. 2013.PubMed/NCBI View Article : Google Scholar
|
|
16
|
Derrien T, Johnson R, Bussotti G, Tanzer
A, Djebali S, Tilgner H, Guernec G, Martin D, Merkel A, Knowles DG,
et al: The GENCODE v7 catalog of human long noncoding RNAs:
Analysis of their gene structure, evolution, and expression. Genome
Res. 22:1775–1789. 2012.PubMed/NCBI View Article : Google Scholar
|
|
17
|
Kino T, Hurt DE, Ichijo T, Nader N and
Chrousos GP: Noncoding RNA gas5 is a growth arrest- and
starvation-associated repressor of the glucocorticoid receptor. Sci
Signal. 3(ra8)2010.PubMed/NCBI View Article : Google Scholar
|
|
18
|
Mallory AC and Shkumatava A: lncRNAs in
vertebrates: Advances and challenges. Biochimie. 117:3–14.
2015.PubMed/NCBI View Article : Google Scholar
|
|
19
|
Yeh E, Cunningham M, Arnold H, Chasse D,
Monteith T, Ivaldi G, Hahn WC, Stukenberg PT, Shenolikar S, Uchida
T, et al: A signalling pathway controlling c-Myc degradation that
impacts oncogenic transformation of human cells. Nat Cell Biol.
6:308–318. 2004.PubMed/NCBI View
Article : Google Scholar
|
|
20
|
Seles M, Hutterer GC, Kiesslich T, Pummer
K, Berindan-Neagoe I, Perakis S, Schwarzenbacher D, Stotz M, Gerger
A and Pichler M: Current insights into long non-coding RNAs in
renal cell carcinoma. Int J Mol Sci. 17(573)2016.PubMed/NCBI View Article : Google Scholar
|
|
21
|
Smolle M, Uranitsch S, Gerger A, Pichler M
and Haybaeck J: Current status of long non-coding RNAs in human
cancer with specific focus on colorectal cancer. Int J Mol Sci.
15:13993–14013. 2014.PubMed/NCBI View Article : Google Scholar
|
|
22
|
Smolle MA, Bullock MD, Ling H, Pichler M
and Haybaeck J: Long non-coding RNAs in endometrial carcinoma. Int
J Mol Sci. 16:26463–26472. 2015.PubMed/NCBI View Article : Google Scholar
|
|
23
|
Bezan A, Gerger A and Pichler M: MicroRNAs
in testicular cancer: Implications for pathogenesis, diagnosis,
prognosis and therapy. Anticancer Res. 34:2709–2713.
2014.PubMed/NCBI
|
|
24
|
Ling H, Krassnig L, Bullock MD and Pichler
M: MicroRNAs in testicular cancer diagnosis and prognosis. Urol
Clin North Am. 43:127–134. 2016.PubMed/NCBI View Article : Google Scholar
|
|
25
|
Cerk S, Schwarzenbacher D, Adiprasito JB,
Stotz M, Hutterer GC, Gerger A, Ling H, Calin GA and Pichler M:
Current status of long Non-coding RNAs in human breast cancer. Int
J Mol Sci. 17(1485)2016.PubMed/NCBI View Article : Google Scholar
|
|
26
|
Zebisch A, Hatzl S, Pichler M, Wolfler A
and Sill H: Therapeutic resistance in acute myeloid leukemia: The
role of non-coding RNAs. Int J Mol Sci. 17(2080)2016.PubMed/NCBI View Article : Google Scholar
|
|
27
|
Troppan K, Wenzl K, Deutsch A, Ling H,
Neumeister P and Pichler M: MicroRNAs in diffuse large B-cell
lymphoma: Implications for pathogenesis, diagnosis, prognosis and
therapy. Anticancer Res. 34:557–564. 2014.PubMed/NCBI
|
|
28
|
Bussemakers MJ, van Bokhoven A, Verhaegh
GW, Smit FP, Karthaus HF, Schalken JA, Debruyne FM, Ru N and Isaacs
WB: DD3: A new prostate-specific gene, highly overexpressed in
prostate cancer. Cancer Res. 59:5975–5979. 1999.PubMed/NCBI
|
|
29
|
Gelmann EP: Molecular biology of the
androgen receptor. J Clin Oncol. 20:3001–3015. 2002.PubMed/NCBI View Article : Google Scholar
|
|
30
|
Claessens F, Denayer S, Van Tilborgh N,
Kerkhofs S, Helsen C and Haelens A: Diverse roles of androgen
receptor (AR) domains in AR-mediated signaling. Nucl Recept Signal.
6(e008)2008.PubMed/NCBI View Article : Google Scholar
|
|
31
|
Heemers HV and Tindall DJ: Androgen
receptor (AR) coregulators: A diversity of functions converging on
and regulating the AR transcriptional complex. Endocr Rev.
28:778–808. 2007.PubMed/NCBI View Article : Google Scholar
|
|
32
|
Chang CS, Kokontis J and Liao ST:
Molecular cloning of human and rat complementary DNA encoding
androgen receptors. Science. 240:324–326. 1988.PubMed/NCBI View Article : Google Scholar
|
|
33
|
Heinlein CA and Chang C: Androgen receptor
in prostate cancer. Endocr Rev. 25:276–308. 2004.PubMed/NCBI View Article : Google Scholar
|
|
34
|
Jentzmik F, Azoitei A, Zengerling F,
Damjanoski I and Cronauer MV: Androgen receptor aberrations in the
era of abiraterone and enzalutamide. World J Urol. 34:297–303.
2016.PubMed/NCBI View Article : Google Scholar
|
|
35
|
Mitsiades N: A road map to comprehensive
androgen receptor axis targeting for castration-resistant prostate
cancer. Cancer Res. 73:4599–4605. 2013.PubMed/NCBI View Article : Google Scholar
|
|
36
|
Scher HI and Sawyers CL: Biology of
progressive, castration-resistant prostate cancer: Directed
therapies targeting the androgen-receptor signaling axis. J Clin
Oncol. 23:8253–8261. 2005.PubMed/NCBI View Article : Google Scholar
|
|
37
|
Karantanos T, Corn PG and Thompson TC:
Prostate cancer progression after androgen deprivation therapy:
Mechanisms of castrate resistance and novel therapeutic approaches.
Oncogene. 32:5501–5511. 2013.PubMed/NCBI View Article : Google Scholar
|
|
38
|
Yang L, Lin C, Jin C, Yang JC, Tanasa B,
Li W, Merkurjev D, Ohgi KA, Meng D, Zhang J, et al:
lncRNA-dependent mechanisms of androgen-receptor-regulated gene
activation programs. Nature. 500:598–602. 2013.PubMed/NCBI View Article : Google Scholar
|
|
39
|
Srikantan V, Zou Z, Petrovics G, Xu L,
Augustus M, Davis L, Livezey JR, Connell T, Sesterhenn IA, Yoshino
K, et al: PCGEM1, a prostate-specific gene, is overexpressed in
prostate cancer. Proc Natl Acad Sci USA. 97:12216–12221.
2000.PubMed/NCBI View Article : Google Scholar
|
|
40
|
Parolia A, Crea F, Xue H, Wang Y, Mo F,
Ramnarine VR, Liu HH, Lin D, Saidy NR, Clermont PL, et al: The long
non-coding RNA PCGEM1 is regulated by androgen receptor activity in
vivo. Mol Cancer. 14(46)2015.PubMed/NCBI View Article : Google Scholar
|
|
41
|
Hu R, Dunn TA, Wei S, Isharwal S, Veltri
RW, Humphreys E, Han M, Partin AW, Vessella RL, Isaacs WB, et al:
Ligand-independent androgen receptor variants derived from splicing
of cryptic exons signify hormone-refractory prostate cancer. Cancer
Res. 69:16–22. 2009.PubMed/NCBI View Article : Google Scholar
|
|
42
|
Hu R, Lu C, Mostaghel EA, Yegnasubramanian
S, Gurel M, Tannahill C, Edwards J, Isaacs WB, Nelson PS, Bluemn E,
et al: Distinct transcriptional programs mediated by the
ligand-dependent full-length androgen receptor and its splice
variants in castration-resistant prostate cancer. Cancer Res.
72:3457–3462. 2012.PubMed/NCBI View Article : Google Scholar
|
|
43
|
Khurana N, Kim H, Chandra PK, Talwar S,
Sharma P, Abdel-Mageed AB, Sikka SC and Mondal D: Multimodal
actions of the phytochemical sulforaphane suppress both AR and
AR-V7 in 22Rv1 cells: Advocating a potent pharmaceutical
combination against castration-resistant prostate cancer. Oncol
Rep. 38:2774–2786. 2017.PubMed/NCBI View Article : Google Scholar
|
|
44
|
Zhang Z, Zhou N, Huang J, Ho TT, Zhu Z,
Qiu Z, Zhou X, Bai C, Wu F, Xu M and Mo YY: Regulation of androgen
receptor splice variant AR3 by PCGEM1. Oncotarget. 7:15481–15491.
2016.PubMed/NCBI View Article : Google Scholar
|
|
45
|
Gupta RA, Shah N, Wang KC, Kim J, Horlings
HM, Wong DJ, Tsai MC, Hung T, Argani P, Rinn JL, et al: Long
non-coding RNA HOTAIR reprograms chromatin state to promote cancer
metastasis. Nature. 464:1071–1076. 2010.PubMed/NCBI View Article : Google Scholar
|
|
46
|
Kogo R, Shimamura T, Mimori K, Kawahara K,
Imoto S, Sudo T, Tanaka F, Shibata K, Suzuki A, Komune S, et al:
Long noncoding RNA HOTAIR regulates polycomb-dependent chromatin
modification and is associated with poor prognosis in colorectal
cancers. Cancer Res. 71:6320–6326. 2011.PubMed/NCBI View Article : Google Scholar
|
|
47
|
Nakagawa T, Endo H, Yokoyama M, Abe J,
Tamai K, Tanaka N, Sato I, Takahashi S, Kondo T and Satoh K: Large
noncoding RNA HOTAIR enhances aggressive biological behavior and is
associated with short disease-free survival in human non-small cell
lung cancer. Biochem Biophys Res Commun. 436:319–324.
2013.PubMed/NCBI View Article : Google Scholar
|
|
48
|
Kim K, Jutooru I, Chadalapaka G, Johnson
G, Frank J, Burghardt R, Kim S and Safe S: HOTAIR is a negative
prognostic factor and exhibits pro-oncogenic activity in pancreatic
cancer. Oncogene. 32:1616–1625. 2013.PubMed/NCBI View Article : Google Scholar
|
|
49
|
Zhang A, Zhao JC, Kim J, Fong KW, Yang YA,
Chakravarti D, Mo YY and Yu J: lncRNA HOTAIR Enhances the
Androgen-receptor-mediated transcriptional program and drives
castration-resistant prostate cancer. Cell Rep. 13:209–221.
2015.PubMed/NCBI View Article : Google Scholar
|
|
50
|
Takayama K, Tsutsumi S, Katayama S,
Okayama T, Horie-Inoue K, Ikeda K, Urano T, Kawazu C, Hasegawa A,
Ikeo K, et al: Integration of cap analysis of gene expression and
chromatin immunoprecipitation analysis on array reveals genome-wide
androgen receptor signaling in prostate cancer cells. Oncogene.
30:619–630. 2011.PubMed/NCBI View Article : Google Scholar
|
|
51
|
Takayama K, Horie-Inoue K, Katayama S,
Suzuki T, Tsutsumi S, Ikeda K, Urano T, Fujimura T, Takagi K,
Takahashi S, et al: Androgen-responsive long noncoding RNA CTBP1-AS
promotes prostate cancer. EMBO J. 32:1665–1680. 2013.PubMed/NCBI View Article : Google Scholar
|
|
52
|
Clarke RA, Zhao Z, Guo AY, Roper K, Teng
L, Fang ZM, Samaratunga H, Lavin MF and Gardiner RA: New genomic
structure for prostate cancer specific gene PCA3 within BMCC1:
Implications for prostate cancer detection and progression. PLoS
One. 4(e4995)2009.PubMed/NCBI View Article : Google Scholar
|
|
53
|
de Kok JB, Verhaegh GW, Roelofs RW,
Hessels D, Kiemeney LA, Aalders TW, Swinkels DW and Schalken JA:
DD3(PCA3), a very sensitive and specific marker to detect prostate
tumors. Cancer Res. 62:2695–2698. 2002.PubMed/NCBI
|
|
54
|
van Bokhoven A, Varella-Garcia M, Korch C,
Johannes WU, Smith EE, Miller HL, Nordeen SK, Miller GJ and Lucia
MS: Molecular characterization of human prostate carcinoma cell
lines. Prostate. 57:205–225. 2003.PubMed/NCBI View Article : Google Scholar
|
|
55
|
Yang Z, Yu L and Wang Z: PCA3 and
TMPRSS2-ERG gene fusions as diagnostic biomarkers for prostate
cancer. Chin J Cancer Res. 28:65–71. 2016.PubMed/NCBI View Article : Google Scholar
|
|
56
|
Lemos AE, Ferreira LB, Batoreu NM, de
Freitas PP, Bonamino MH and Gimba ER: PCA3 long noncoding RNA
modulates the expression of key cancer-related genes in LNCaP
prostate cancer cells. Tumour Biol. 37:11339–11348. 2016.PubMed/NCBI View Article : Google Scholar
|
|
57
|
Sung YY and Cheung E: Androgen receptor
co-regulatory networks in castration-resistant prostate cancer.
Endocr Relat Cancer. 21:R1–R11. 2013.PubMed/NCBI View Article : Google Scholar
|
|
58
|
Lui GY, Kovacevic Z, Richardson V, Merlot
AM, Kalinowski DS and Richardson DR: Targeting cancer by binding
iron: Dissecting cellular signaling pathways. Oncotarget.
6:18748–18779. 2015.PubMed/NCBI View Article : Google Scholar
|
|
59
|
Chen H, Zhou L, Wu X, Li R, Wen J, Sha J
and Wen X: The PI3K/AKT pathway in the pathogenesis of prostate
cancer. Front Biosci (Landmark Ed). 21:1084–1091. 2016.PubMed/NCBI View Article : Google Scholar
|
|
60
|
Morgan TM, Koreckij TD and Corey E:
Targeted therapy for advanced prostate cancer: Inhibition of the
PI3K/Akt/mTOR pathway. Curr Cancer Drug Targets. 9:237–249.
2009.PubMed/NCBI View Article : Google Scholar
|
|
61
|
Gao N, Zhang Z, Jiang BH and Shi X: Role
of PI3K/AKT/mTOR signaling in the cell cycle progression of human
prostate cancer. Biochem Biophys Res Commun. 310:1124–1132.
2003.PubMed/NCBI View Article : Google Scholar
|
|
62
|
Kim SM, Park JH, Kim KD, Nam D, Shim BS,
Kim SH and Ahn KS, Choi SH and Ahn KS: Brassinin induces apoptosis
in PC-3 human prostate cancer cells through the suppression of
PI3K/Akt/mTOR/S6K1 signaling cascades. Phytother Res. 28:423–431.
2014.PubMed/NCBI View Article : Google Scholar
|
|
63
|
Vo BT, Morton D Jr, Komaragiri S, Millena
AC, Leath C and Khan SA: TGF-β effects on prostate cancer cell
migration and invasion are mediated by PGE2 through activation of
PI3K/AKT/mTOR pathway. Endocrinology. 154:1768–1779.
2013.PubMed/NCBI View Article : Google Scholar
|
|
64
|
Yuan JH, Yang F, Wang F, Ma JZ, Guo YJ,
Tao QF, Liu F, Pan W, Wang TT, Zhou CC, et al: A long noncoding RNA
activated by TGF-β promotes the invasion-metastasis cascade in
hepatocellular carcinoma. Cancer Cell. 25:666–681. 2014.PubMed/NCBI View Article : Google Scholar
|
|
65
|
Xu S, Yi XM, Tang CP, Ge JP, Zhang ZY and
Zhou WQ: Long non-coding RNA ATB promotes growth and
epithelial-mesenchymal transition and predicts poor prognosis in
human prostate carcinoma. Oncol Rep. 36:10–22. 2016.PubMed/NCBI View Article : Google Scholar
|
|
66
|
Xue M, Chen W and Li X: Urothelial cancer
associated 1: A long noncoding RNA with a crucial role in cancer. J
Cancer Res Clin Oncol. 142:1407–1419. 2016.PubMed/NCBI View Article : Google Scholar
|
|
67
|
Ghiam AF, Taeb S, Huang X, Huang V, Ray J,
Scarcello S, Hoey C, Jahangiri S, Fokas E, Loblaw A, et al: Long
non-coding RNA urothelial carcinoma associated 1 (UCA1) mediates
radiation response in prostate cancer. Oncotarget. 8:4668–4689.
2017.PubMed/NCBI View Article : Google Scholar
|
|
68
|
Wu J, Cheng G, Zhang C, Zheng Y, Xu H,
Yang H and Hua L: Long noncoding RNA LINC01296 is associated with
poor prognosis in prostate cancer and promotes cancer-cell
proliferation and metastasis. Onco Targets Ther. 10:1843–1852.
2017.PubMed/NCBI View Article : Google Scholar
|
|
69
|
Wang J, Cheng G, Li X, Pan Y, Qin C, Yang
H, Hua L and Wang Z: Overexpression of long non-coding RNA
LOC400891 promotes tumor progression and poor prognosis in prostate
cancer. Tumour Biol. 37:9603–9613. 2016.PubMed/NCBI View Article : Google Scholar
|
|
70
|
Thorne H, Mitchell G and Fox S: kConFab: A
familial breast cancer consortium facilitating research and
translational oncology. J Natl Cancer Inst Monogr. 2011:79–81.
2011.PubMed/NCBI View Article : Google Scholar
|
|
71
|
Du Z, Fei T, Verhaak RG, Su Z, Zhang Y,
Brown M, Chen Y and Liu XS: Integrative genomic analyses reveal
clinically relevant long noncoding RNAs in human cancer. Nat Struct
Mol Biol. 20:908–913. 2013.PubMed/NCBI View Article : Google Scholar
|
|
72
|
Prensner JR, Chen W, Han S, Iyer MK, Cao
Q, Kothari V, Evans JR, Knudsen KE, Paulsen MT, Ljungman M, et al:
The long non-coding RNA PCAT-1 promotes prostate cancer cell
proliferation through cMyc. Neoplasia. 16:900–908. 2014.PubMed/NCBI View Article : Google Scholar
|
|
73
|
Prensner JR, Zhao S, Erho N, Schipper M,
Iyer MK, Dhanasekaran SM, Magi-Galluzzi C, Mehra R, Sahu A,
Siddiqui J, et al: RNA biomarkers associated with metastatic
progression in prostate cancer: A multi-institutional
high-throughput analysis of SChLAP1. Lancet Oncol. 15:1469–1480.
2014.PubMed/NCBI View Article : Google Scholar
|
|
74
|
Mehra R, Udager AM, Ahearn TU, Cao X, Feng
FY, Loda M, Petimar JS, Kantoff P, Mucci LA and Chinnaiyan AM:
Overexpression of the long Non-coding RNA SChLAP1 independently
predicts lethal prostate cancer. Eur Urol. 70:549–552.
2016.PubMed/NCBI View Article : Google Scholar
|
|
75
|
Mehra R, Shi Y, Udager AM, Prensner JR,
Sahu A, Iyer MK, Siddiqui J, Cao X, Wei J, Jiang H, et al: A novel
RNA in situ hybridization assay for the long noncoding RNA SChLAP1
predicts poor clinical outcome after radical prostatectomy in
clinically localized prostate cancer. Neoplasia. 16:1121–1127.
2014.PubMed/NCBI View Article : Google Scholar
|
|
76
|
Prensner JR, Iyer MK, Sahu A, Asangani IA,
Cao Q, Patel L, Vergara IA, Davicioni E, Erho N, Ghadessi M, et al:
The long noncoding RNA SChLAP1 promotes aggressive prostate cancer
and antagonizes the SWI/SNF complex. Nat Genet. 45:1392–1398.
2013.PubMed/NCBI View Article : Google Scholar
|
|
77
|
Ren S, Liu Y, Xu W, Sun Y, Lu J, Wang F,
Wei M, Shen J, Hou J, Gao X, et al: Long noncoding RNA MALAT-1 is a
new potential therapeutic target for castration resistant prostate
cancer. J Urol. 190:2278–2287. 2013.PubMed/NCBI View Article : Google Scholar
|
|
78
|
Viazzi F, Bonino B, Ratto E, Desideri G
and Pontremoli R: Hyperuricemia, diabetes and hypertension. G Ital
Nefrol. 32 (Suppl 62)(gin/32.S62.10)2015.PubMed/NCBI(In Italian).
|
|
79
|
Mei YH, Yu JP and Li G: An extramedullary
plasmacytoma in the kidney of a 14-year-old girl: Case report and
review of the literature. Medicine (Baltimore).
96(e6092)2017.PubMed/NCBI View Article : Google Scholar
|
|
80
|
Zhao Z, Chen C, Liu Y and Wu C:
17β-Estradiol treatment inhibits breast cell proliferation,
migration and invasion by decreasing MALAT-1 RNA level. Biochem
Biophys Res Commun. 445:388–393. 2014.PubMed/NCBI View Article : Google Scholar
|
|
81
|
Ying L, Chen Q, Wang Y, Zhou Z, Huang Y
and Qiu F: Upregulated MALAT-1 contributes to bladder cancer cell
migration by inducing epithelial-to-mesenchymal transition. Mol
Biosyst. 8:2289–2294. 2012.PubMed/NCBI View Article : Google Scholar
|
|
82
|
Hu L, Wu Y, Tan D, Meng H, Wang K, Bai Y
and Yang K: Up-regulation of long noncoding RNA MALAT1 contributes
to proliferation and metastasis in esophageal squamous cell
carcinoma. J Exp Clin Cancer Res. 34(7)2015.PubMed/NCBI View Article : Google Scholar
|
|
83
|
Wang X, Li M, Wang Z, Han S, Tang X, Ge Y,
Zhou L, Zhou C, Yuan Q and Yang M: Silencing of long noncoding RNA
MALAT1 by miR-101 and miR-217 inhibits proliferation, migration,
and invasion of esophageal squamous cell carcinoma cells. J Biol
Chem. 290:3925–3935. 2015.PubMed/NCBI View Article : Google Scholar
|
|
84
|
Hirata H, Hinoda Y, Shahryari V, Deng G,
Nakajima K, Tabatabai ZL, Ishii N and Dahiya R: Long noncoding RNA
MALAT1 promotes aggressive renal cell carcinoma through Ezh2 and
interacts with miR-205. Cancer Res. 75:1322–1331. 2015.PubMed/NCBI View Article : Google Scholar
|
|
85
|
Joaquin M and Watson RJ: Cell cycle
regulation by the B-Myb transcription factor. Cell Mol Life Sci.
60:2389–2401. 2003.PubMed/NCBI View Article : Google Scholar
|
|
86
|
Zhu M, Chen Q, Liu X, Sun Q, Zhao X, Deng
R, Wang Y, Huang J, Xu M, Yan J and Yu J: lncRNA H19/miR-675 axis
represses prostate cancer metastasis by targeting TGFBI. FEBS J.
281:3766–3775. 2014.PubMed/NCBI View Article : Google Scholar
|
|
87
|
Prensner JR, Chen W, Iyer MK, Cao Q, Ma T,
Han S, Sahu A, Malik R, Wilder-Romans K, Navone N, et al: PCAT-1, a
long noncoding RNA, regulates BRCA2 and controls homologous
recombination in cancer. Cancer Res. 74:1651–1660. 2014.PubMed/NCBI View Article : Google Scholar
|
|
88
|
Gazy I, Zeevi DA, Renbaum P, Zeligson S,
Eini L, Bashari D, Smith Y, Lahad A, Goldberg M, Ginsberg D and
Levy-Lahad E: TODRA, a lncRNA at the RAD51 locus, is oppositely
regulated to RAD51, and enhances RAD51-dependent DSB (Double Strand
Break) repair. PLoS One. 10(e0134120)2015.PubMed/NCBI View Article : Google Scholar
|
|
89
|
Tay Y, Rinn J and Pandolfi PP: The
multilayered complexity of ceRNA crosstalk and competition. Nature.
505:344–352. 2014.PubMed/NCBI View Article : Google Scholar
|
|
90
|
Jalali S, Bhartiya D, Lalwani MK,
Sivasubbu S and Scaria V: Systematic transcriptome wide analysis of
lncRNA-miRNA interactions. PLoS One. 8(e53823)2013.PubMed/NCBI View Article : Google Scholar
|
|
91
|
Chiyomaru T, Yamamura S, Fukuhara S,
Yoshino H, Kinoshita T, Majid S, Saini S, Chang I, Tanaka Y,
Enokida H, et al: Genistein inhibits prostate cancer cell growth by
targeting miR-34a and oncogenic HOTAIR. PLoS One.
8(e70372)2013.PubMed/NCBI View Article : Google Scholar
|
|
92
|
Salehi S, Taheri MN, Azarpira N, Zare A
and Behzad-Behbahani A: State of the art technologies to explore
long non-coding RNAs in cancer. J Cell Mol Med. 21:3120–3140.
2017.PubMed/NCBI View Article : Google Scholar
|
|
93
|
Tsai MC, Spitale RC and Chang HY: Long
intergenic noncoding RNAs: New links in cancer progression. Cancer
Res. 71:3–7. 2011.PubMed/NCBI View Article : Google Scholar
|
|
94
|
Shechner DM, Hacisuleyman E, Younger ST
and Rinn JL: Multiplexable, locus-specific targeting of long RNAs
with CRISPR-display. Nat Methods. 12:664–670. 2015.PubMed/NCBI View Article : Google Scholar
|
|
95
|
St Laurent G, Wahlestedt C and Kapranov P:
The Landscape of long noncoding RNA classification. Trends Genet.
31:239–251. 2015.PubMed/NCBI View Article : Google Scholar
|