|
1
|
Lu KH, Lu EW, Lin CW, Yang JS and Yang SF:
New insights into molecular and cellular mechanisms of zoledronate
in human osteosarcoma. Pharmacol Ther. 214(107611)2020.PubMed/NCBI View Article : Google Scholar
|
|
2
|
Otoukesh B, Abbasi M, Gorgani HO, Farahini
H, Moghtadaei M, Boddouhi B, Kaghazian P, Hosseinzadeh S and Alaee
A: MicroRNAs signatures, bioinformatics analysis of miRNAs, miRNA
mimics and antagonists, and miRNA therapeutics in osteosarcoma.
Cancer Cell Int. 20(254)2020.PubMed/NCBI View Article : Google Scholar
|
|
3
|
Li Z, Xu D, Chen X, Li S, Chan MTV and Wu
WKK: LINC01133: An emerging tumor-associated long non-coding RNA in
tumor and osteosarcoma. Environ Sci Pollut Res Int. 27:32467–32473.
2020.PubMed/NCBI View Article : Google Scholar
|
|
4
|
Mendes AC, Ciccone M, Gazolla B and Bahia
D: Epithelial haven and autophagy breakout in gonococci infection.
Front Cell Dev Biol. 8(439)2020.PubMed/NCBI View Article : Google Scholar
|
|
5
|
Levine B and Kroemer G: Autophagy in the
pathogenesis of disease. Cell. 132:27–42. 2008.PubMed/NCBI View Article : Google Scholar
|
|
6
|
Ma W, Wei S, Zhang B and Li W: Molecular
mechanisms of cardiomyocyte death in drug-induced cardiotoxicity.
Front Cell Dev Biol. 8(434)2020.PubMed/NCBI View Article : Google Scholar
|
|
7
|
Lin Y, Zhao WR, Shi WT, Zhang J, Zhang KY,
Ding Q, Chen XL, Tang JY and Zhou ZY: Pharmacological activity,
pharmacokinetics, and toxicity of timosaponin AIII, a natural
product isolated from anemarrhena asphodeloides bunge: A review.
Front Pharmacol. 11(764)2020.PubMed/NCBI View Article : Google Scholar
|
|
8
|
Liu W, Meng Y, Zong C, Zhang S and Wei L:
Autophagy and tumorigenesis. Adv Exp Med Biol. 1207:275–299.
2020.PubMed/NCBI View Article : Google Scholar
|
|
9
|
Blondy S, David V, Verdier M, Mathonnet M,
Perraud A and Christou N: 5-Fluorouracil resistance mechanisms in
colorectal cancer: From classical pathways to promising processes.
Cancer Sci. 111:3142–3154. 2020.PubMed/NCBI View Article : Google Scholar
|
|
10
|
Condello M, Mancini G and Meschini S: The
exploitation of liposomes in the inhibition of autophagy to defeat
drug resistance. Front Pharmacol. 11(787)2020.PubMed/NCBI View Article : Google Scholar
|
|
11
|
Whelan JS and Davis LE: Osteosarcoma,
chondrosarcoma, and chordoma. J Clin Oncol. 36:188–193.
2018.PubMed/NCBI View Article : Google Scholar
|
|
12
|
Lim J and Murthy A: Targeting autophagy to
treat cancer: Challenges and opportunities. Front Pharmacol.
11(590344)2020.PubMed/NCBI View Article : Google Scholar
|
|
13
|
Mele L, Del Vecchio V, Liccardo D, Prisco
C, Schwerdtfeger M, Robinson N, Desiderio V, Tirino V, Papaccio G
and La Noce M: The role of autophagy in resistance to targeted
therapies. Cancer Treat Rev. 88(102043)2020.PubMed/NCBI View Article : Google Scholar
|
|
14
|
Yang J, Ueharu H and Mishina Y: Energy
metabolism: A newly emerging target of BMP signaling in bone
homeostasis. Bone. 138(115467)2020.PubMed/NCBI View Article : Google Scholar
|
|
15
|
Tian Y, Song W, Xu D, Chen X, Li X and
Zhao Y: Autophagy induced by ROS aggravates testis oxidative damage
in diabetes via breaking the feedforward loop linking p62 and Nrf2.
Oxid Med Cell Longev. 2020(7156579)2020.PubMed/NCBI View Article : Google Scholar
|
|
16
|
Kulka LAM, Fangmann PV, Panfilova D and
Olzscha H: Impact of HDAC inhibitors on protein quality control
systems: Consequences for precision medicine in malignant disease.
Front Cell Dev Biol. 8(425)2020.PubMed/NCBI View Article : Google Scholar
|
|
17
|
Ashrafizadeh M, Tavakol S, Ahmadi Z,
Roomiani S, Mohammadinejad R and Samarghandian S: Therapeutic
effects of kaempferol affecting autophagy and endoplasmic reticulum
stress. Phytother Res. 34:911–923. 2020.PubMed/NCBI View
Article : Google Scholar
|
|
18
|
Liu F, Liu D, Yang Y and Zhao S: Effect of
autophagy inhibition on chemotherapy-induced apoptosis in A549 lung
cancer cells. Oncol Lett. 5:1261–1265. 2013.PubMed/NCBI View Article : Google Scholar
|
|
19
|
Tan Q, Liu Y, Deng X, Chen J, Tsai PJ,
Chen PH, Ye M, Guo J and Su Z: Autophagy: A promising process for
the treatment of acetaminophen-induced liver injury. Arch Toxicol.
94:2925–2938. 2020.PubMed/NCBI View Article : Google Scholar
|
|
20
|
Kim WK, Pyee Y, Chung HJ, Park HJ, Hong
JY, Son KH and Lee SK: Antitumor activity of spicatoside A by
modulation of autophagy and apoptosis in human colorectal cancer
cells. J Nat Prod. 79:1097–1104. 2016.PubMed/NCBI View Article : Google Scholar
|
|
21
|
Yecies JL and Manning BD: mTOR links
oncogenic signaling to tumor cell metabolism. J Mol Med (Berl).
89:221–228. 2011.PubMed/NCBI View Article : Google Scholar
|
|
22
|
Tang D, Loze MT, Zeh HJ and Kang R: The
redox protein HMGB1 regulates cell death and survival in cancer
treatment. Autophagy. 6:1181–1183. 2010.PubMed/NCBI View Article : Google Scholar
|
|
23
|
Niu J, Yan T, Guo W, Wang W and Zhao Z:
Insight into the role of autophagy in osteosarcoma and its
therapeutic implication. Front Oncol. 9(1232)2019.PubMed/NCBI View Article : Google Scholar
|
|
24
|
Zhang J, Kou YB, Zhu JS, Chen WX and Li S:
Knockdown of HMGB1 inhibits growth and invasion of gastric cancer
cells through the NF-κB pathway in vitro and in vivo. Int J Oncol.
44:1268–1276. 2014.PubMed/NCBI View Article : Google Scholar
|
|
25
|
Berindan-Neagoe I, Monroig Pdel C,
Pasculli B and Calin GA: MicroRNAome genome: A treasure for cancer
diagnosis and therapy. CA Cancer J Clin. 64:311–336.
2014.PubMed/NCBI View Article : Google Scholar
|
|
26
|
Gulino R, Forte S, Parenti R, Memeo L and
Gulisano M: MicroRNA and pediatric tumors: Future perspectives.
Acta Histochem. 117:339–354. 2015.PubMed/NCBI View Article : Google Scholar
|
|
27
|
Llobat L and Gourbault O: Role of
MicroRNAs in human osteosarcoma: Future perspectives. Biomedicines.
9(463)2021.PubMed/NCBI View Article : Google Scholar
|
|
28
|
Mutlu H, Mutlu S and Bostancıklıoğlu M:
Profiling of autophagy-associated microRNAs in the osteosarcoma
cell line of U2OS. Anticancer Agents Med Chem. 21:1732–1737.
2021.PubMed/NCBI View Article : Google Scholar
|
|
29
|
Chen R, Wang G, Zheng Y, Hua Y and Cai Z:
Drug resistance-related microRNAs in osteosarcoma: Translating
basic evidence into therapeutic strategies. J Cell Mol Med.
23:2280–2292. 2019.PubMed/NCBI View Article : Google Scholar
|
|
30
|
Jamali Z, Taheri-Anganeh M, Shabaninejad
Z, Keshavarzi A, Taghizadeh H, Razavi ZS, Mottaghi R, Abolhassan M,
Movahedpour A and Mirzaei H: Autophagy regulation by microRNAs:
Novel insights into osteosarcoma therapy. IUBMB Life. 72:1306–1321.
2020.PubMed/NCBI View
Article : Google Scholar
|
|
31
|
Xia H and Hui KM: Mechanism of cancer drug
resistance and the involvement of noncoding RNAs. Curr Med Chem.
21:3029–3041. 2014.PubMed/NCBI View Article : Google Scholar
|
|
32
|
Wang G, Shen N, Cheng L, Lin J and Li K:
Downregulation of miR-22 acts as an unfavorable prognostic
biomarker in osteosarcoma. Tumour Biol. 36:7891–7895.
2015.PubMed/NCBI View Article : Google Scholar
|
|
33
|
Li X, Wang S, Chen Y, Liu G and Yang X:
miR-22 targets the 3' UTR of HMGB1 and inhibits the
HMGB1-associated autophagy in osteosarcoma cells during
chemotherapy. Tumour Biol. 35:6021–6028. 2014.PubMed/NCBI View Article : Google Scholar
|
|
34
|
Xu S, Gong Y, Yin Y, Xing H and Zhang N:
The multiple function of long noncoding RNAs in osteosarcoma
progression, drug resistance and prognosis. Biomed Pharmacother.
127(110141)2020.PubMed/NCBI View Article : Google Scholar
|
|
35
|
Pitolli C, Wang Y, Candi E, Shi Y, Melino
G and Amelio I: p53-Mediated tumor suppression: DNA-damage response
and alternative mechanisms. Cancers (Basel).
11(1983)2019.PubMed/NCBI View Article : Google Scholar
|
|
36
|
Zhang W, Li Q, Song C and Lao L: Knockdown
of autophagy-related protein 6, Beclin-1, decreases cell growth,
invasion, and metastasis and has a positive effect on
chemotherapy-induced cytotoxicity in osteosarcoma cells. Tumour
Biol. 36:2531–2539. 2015.PubMed/NCBI View Article : Google Scholar
|
|
37
|
Xu R, Liu S, Chen H and Lao L:
MicroRNA-30a downregulation contributes to chemoresistance of
osteosarcoma cells through activating Beclin-1-mediated autophagy.
Oncol Rep. 35:1757–1763. 2016.PubMed/NCBI View Article : Google Scholar
|
|
38
|
Heras-Sandoval D, Pérez-Rojas JM,
Hernández-Damián J and Pedraza-Chaverri J: The role of
PI3K/AKT/mTOR pathway in the modulation of autophagy and the
clearance of protein aggregates in neurodegeneration. Cell Signal.
26:2694–2701. 2014.PubMed/NCBI View Article : Google Scholar
|
|
39
|
Li M, Hou Y, Wang J, Chen X, Shao ZM and
Yin XM: Kinetics comparisons of mammalian Atg4 homologues indicate
selective preferences toward diverse Atg8 substrates. J Biol Chem.
286:7327–7338. 2011.PubMed/NCBI View Article : Google Scholar
|
|
40
|
Shi M, Zhang T, Sun L, Luo Y, Liu DH, Xie
ST, Song XY, Wang GF, Chen XL, Zhou BC and Zhang YZ: Calpain, Atg5
and Bak play important roles in the crosstalk between apoptosis and
autophagy induced by influx of extracellular calcium. Apoptosis.
18:435–451. 2013.PubMed/NCBI View Article : Google Scholar
|
|
41
|
Guo Y, Huang C, Li G, Chen T, Li J and
Huang Z: Paxilitaxel induces apoptosis accompanied by protective
autophagy in osteosarcoma cells through hypoxia-inducible factor-1α
pathway. Mol Med Rep. 12:3681–3687. 2015.PubMed/NCBI View Article : Google Scholar
|
|
42
|
Peng B, Xu L, Cao F, Wei T, Yang C, Uzan G
and Zhang D: HSP90 inhibitor, celastrol, arrests human monocytic
leukemia cell U937 at G0/G1 in thiol-containing agents reversible
way. Mol Cancer. 9(79)2010.PubMed/NCBI View Article : Google Scholar
|
|
43
|
Kannaiyan R, Manu KA, Chen L, Li F,
Rajendran P, Subramaniam A, Lam P, Kumar AP and Sethi G: Celastrol
inhibits tumor cell proliferation and promotes apoptosis through
the activation of c-Jun N-terminal kinase and suppression of PI3
K/Akt signaling pathways. Apoptosis. 16:1028–1041. 2011.PubMed/NCBI View Article : Google Scholar
|
|
44
|
Sethi G, Ahn KS, Pandey MK and Aggarwal
BB: Celastrol, a novel triterpene, potentiates TNF-induced
apoptosis and suppresses invasion of tumor cells by inhibiting
NF-kappaB-regulated gene products and TAK1-mediated NF-kappaB
activation. Blood. 109:2727–2735. 2007.PubMed/NCBI View Article : Google Scholar
|
|
45
|
Yang H, Chen D, Cui QC, Yuan X and Dou QP:
Celastrol, a triterpene extracted from the Chinese ‘Thunder of God
Vine,’ is a potent proteasome inhibitor and suppresses human
prostate cancer growth in nude mice. Cancer Res. 66:4758–4765.
2006.PubMed/NCBI View Article : Google Scholar
|
|
46
|
Hou W, Liu B and Xu H: Celastrol:
Progresses in structure-modifications, structure-activity
relationships, pharmacology and toxicology. Eur J Med Chem.
189(112081)2020.PubMed/NCBI View Article : Google Scholar
|
|
47
|
Beauchamp EM and Uren A: A new era for an
ancient drug: Arsenic trioxide and Hedgehog signaling. Vitam Horm.
88:333–354. 2012.PubMed/NCBI View Article : Google Scholar
|
|
48
|
Hashmi H and Nishihori T: Role of
hematopoietic cell transplantation in relapsed acute promyelocytic
leukemia. Clin Transplant. 34(e14009)2020.PubMed/NCBI View Article : Google Scholar
|
|
49
|
Zhang G, Liu J, Zhang Y, Qu J, Xu L, Zheng
H, Liu Y and Qu X: Cbl-b-dependent degradation of FLIP(L) is
involved in ATO-induced autophagy in leukemic K562 and gastric
cancer cells. FEBS Lett. 586:3104–3110. 2012.PubMed/NCBI View Article : Google Scholar
|
|
50
|
Jóźwiak S, Sadowski K, Kotulska K and
Schwartz RA: Topical use of mammalian target of rapamycin (mTOR)
inhibitors in tuberous sclerosis complex-A comprehensive review of
the literature. Pediatr Neurol. 61:21–27. 2016.PubMed/NCBI View Article : Google Scholar
|
|
51
|
Garza-Lombó C and Gonsebatt ME: Mammalian
target of rapamycin: Its role in early neural development and in
adult and aged brain function. Front Cell Neurosci.
10(157)2016.PubMed/NCBI View Article : Google Scholar
|
|
52
|
Pulakat L and Chen HH: Pro-senescence and
anti-senescence mechanisms of cardiovascular aging: Cardiac
MicroRNA regulation of longevity drug-induced autophagy. Front
Pharmacol. 11(774)2020.PubMed/NCBI View Article : Google Scholar
|
|
53
|
Wang J, Li X, Zhong M, Wang Y, Zou L, Wang
M, Gong X, Wang X, Zhou C, Ma X and Liu M: miR-301a suppression
within fibroblasts limits the progression of fibrosis through the
TSC1/mTOR pathway. Mol Ther Nucleic Acids. 21:217–228.
2020.PubMed/NCBI View Article : Google Scholar
|
|
54
|
Cao L and Niu Y: Triple negative breast
cancer: special histological types and emerging therapeutic
methods. Cancer Biol Med. 17:293–306. 2020.PubMed/NCBI View Article : Google Scholar
|
|
55
|
Saraf AJ, Fenger JM and Roberts RD:
Osteosarcoma: Accelerating progress makes for a hopeful future.
Front Oncol. 8(4)2018.PubMed/NCBI View Article : Google Scholar
|
|
56
|
Kocaturk NM, Akkoc Y, Kig C, Bayraktar O,
Gozuacik D and Kutlu O: Autophagy as a molecular target for cancer
treatment. Eur J Pharm Sci. 134:116–137. 2019.PubMed/NCBI View Article : Google Scholar
|
|
57
|
Ebrahimi S, Hosseini M, Shahidsales S,
Maftouh M, Ferns GA, Ghayour-Mobarhan M, Hassanian SM and Avan A:
Targeting the Akt/PI3K signaling pathway as a potential therapeutic
strategy for the treatment of pancreatic cancer. Curr Med Chem.
24:1321–1331. 2017.PubMed/NCBI View Article : Google Scholar
|
|
58
|
Bernardo PS, Lemos LGT, de Moraes GN and
Maia RC: Unraveling survivin expression in chronic myeloid
leukemia: Molecular interactions and clinical implications. Blood
Rev. 43(100671)2020.PubMed/NCBI View Article : Google Scholar
|
|
59
|
Waligórska-Stachura J, Jankowska A, Waśko
R, Liebert W, Biczysko M, Czarnywojtek A, Baszko-Błaszyk D, Shimek
V and Ruchała M: Survivin-prognostic tumor biomarker in human
neoplasms-review. Ginekol Pol. 83:537–540. 2012.PubMed/NCBI
|
|
60
|
Khan Z, Khan AA, Yadav H, Prasad GBKS and
Bisen PS: Survivin, a molecular target for therapeutic
interventions in squamous cell carcinoma. Cell Mol Biol Lett.
22(8)2017.PubMed/NCBI View Article : Google Scholar
|
|
61
|
Coumar MS, Tsai FY, Kanwar JR, Sarvagalla
S and Cheung CH: Treat cancers by targeting survivin: Just a dream
or future reality? Cancer Treat Rev. 39:802–811. 2013.PubMed/NCBI View Article : Google Scholar
|
|
62
|
Church DN and Talbot DC: Survivin in solid
tumors: Rationale for development of inhibitors. Curr Oncol Rep.
14:120–128. 2012.PubMed/NCBI View Article : Google Scholar
|
|
63
|
Agostinis P, Berg K, Cengel KA, Foster TH,
Girotti AW, Gollnick SO, Hahn SM, Hamblin MR, Juzeniene A, Kessel
D, et al: Photodynamic therapy of cancer: An update. CA Cancer J
Clin. 61:250–281. 2011.PubMed/NCBI View Article : Google Scholar
|
|
64
|
Calabrò G, Patalano A, Lo Conte V and
Chianese C: Photodynamic chemotherapy in the treatment of
superficial mycoses: An evidence-based evaluation. G Ital Dermatol
Venereol. 148:639–648. 2013.PubMed/NCBI
|
|
65
|
Carina V, Costa V, Sartori M, Bellavia D,
De Luca A, Raimondi L, Fini M and Giavaresi G: Adjuvant biophysical
therapies in osteosarcoma. Cancers (Basel). 11(348)2019.PubMed/NCBI View Article : Google Scholar
|