|
1
|
Sung H, Ferlay J, Siegel RL, Laversanne M,
Soerjomataram I, Jemal A and Bray F: Global cancer statistics 2020:
GLOBOCAN estimates of incidence and mortality worldwide for 36
cancers in 185 countries. CA Cancer J Clin. 71:209–249.
2021.PubMed/NCBI View Article : Google Scholar
|
|
2
|
Park M, Kim D, Ko S, Kim A, Mo K and Yoon
H: Breast cancer metastasis: Mechanisms and therapeutic
implications. Int J Mol Sci. 23(6806)2022.PubMed/NCBI View Article : Google Scholar
|
|
3
|
Giaquinto AN, Sung H, Miller KD, Kramer
JL, Newman LA, Minihan A, Jemal A and Siegel RL: Breast cancer
statistics, 2022. CA Cancer J Clin. 72:524–541. 2022.PubMed/NCBI View Article : Google Scholar
|
|
4
|
Liang Y, Zhang H, Song X and Yang Q:
Metastatic heterogeneity of breast cancer: Molecular mechanism and
potential therapeutic targets. Semin Cancer Biol. 60:14–27.
2020.PubMed/NCBI View Article : Google Scholar
|
|
5
|
Wang H, Zhang C, Zhang J, Kong L, Zhu H
and Yu J: The prognosis analysis of different metastasis pattern in
patients with different breast cancer subtypes: A SEER based study.
Oncotarget. 8:26368–26379. 2017.PubMed/NCBI View Article : Google Scholar
|
|
6
|
Xiong Z, Deng G, Huang X, Li X, Xie X,
Wang J, Shuang Z and Wang X: Bone metastasis pattern in initial
metastatic breast cancer: A population-based study. Cancer Manag
Res. 10:287–295. 2018.PubMed/NCBI View Article : Google Scholar
|
|
7
|
Tulotta C and Ottewell P: The role of
IL-1B in breast cancer bone metastasis. Endocr Relat Cancer.
25:R421–R434. 2018.PubMed/NCBI View Article : Google Scholar
|
|
8
|
Tahara RK, Brewer TM, Theriault RL and
Ueno NT: Bone metastasis of breast cancer. Adv Exp Med Biol.
1152:105–129. 2019.PubMed/NCBI View Article : Google Scholar
|
|
9
|
Pentheroudakis G, Fountzilas G, Bafaloukos
D, Koutsoukou V, Pectasides D, Skarlos D, Samantas E, Kalofonos HP,
Gogas H and Pavlidis N: Metastatic breast cancer with liver
metastases: A registry analysis of clinicopathologic, management
and outcome characteristics of 500 women. Breast Cancer Res Treat.
97:237–244. 2006.PubMed/NCBI View Article : Google Scholar
|
|
10
|
Jin L, Han B, Siegel E, Cui Y, Giuliano A
and Cui X: Breast cancer lung metastasis: Molecular biology and
therapeutic implications. Cancer Biol Ther. 19:858–868.
2018.PubMed/NCBI View Article : Google Scholar
|
|
11
|
Dan Z, Cao H, He X, Zhang Z, Zou L, Zeng
L, Xu Y, Yin Q, Xu M, Zhong D, et al: A pH-Responsive host-guest
nanosystem loading succinobucol suppresses lung metastasis of
breast cancer. Theranostics. 6:435–445. 2016.PubMed/NCBI View Article : Google Scholar
|
|
12
|
Boya M, Chu CH, Liu R, Ozkaya-Ahmadov T
and Sarioglu AF: Circulating tumor cell enrichment technologies.
Recent Results Cancer Res. 215:25–55. 2020.PubMed/NCBI View Article : Google Scholar
|
|
13
|
Di Lorenzo G, Zappavigna S, Crocetto F,
Giuliano M, Ribera D, Morra R, Scafuri L, Verde A, Bruzzese D,
Iaccarino S, et al: Assessment of total, PTEN(-), and AR-V7(+)
circulating tumor cell count by flow cytometry in patients with
metastatic castration-resistant prostate cancer receiving
enzalutamide. Clin Genitourin Cancer. 19:e286–e298. 2021.PubMed/NCBI View Article : Google Scholar
|
|
14
|
Ning D, Cui K, Liu M, Ou Y, Wang Z, Zou B,
Shen Y, Lu X, Li S and Li P: Comparison of CellSearch and
Circulating Tumor Cells (CTC)-Biopsy systems in detecting
peripheral blood circulating tumor cells in patients with gastric
cancer. Med Sci Monit. 27(e926565)2021.PubMed/NCBI View Article : Google Scholar
|
|
15
|
Schuster E, Taftaf R, Reduzzi C, Albert
MK, Romero-Calvo I and Liu H: Better together: Circulating tumor
cell clustering in metastatic cancer. Trends Cancer. 7:1020–1032.
2021.PubMed/NCBI View Article : Google Scholar
|
|
16
|
Cristofanilli M, Budd GT, Ellis MJ,
Stopeck A, Matera J, Miller MC, Reuben JM, Doyle GV, Allard WJ,
Terstappen LW and Hayes DF: Circulating tumor cells, disease
progression, and survival in metastatic breast cancer. N Engl J
Med. 351:781–791. 2004.PubMed/NCBI View Article : Google Scholar
|
|
17
|
Andree KC, van Dalum G and Terstappen LW:
Challenges in circulating tumor cell detection by the CellSearch
system. Mol Oncol. 10:395–407. 2016.PubMed/NCBI View Article : Google Scholar
|
|
18
|
Pineiro R: Introduction-Biology of breast
cancer metastasis and importance of the analysis of CTCs. Adv Exp
Med Biol. 1220:1–10. 2020.PubMed/NCBI View Article : Google Scholar
|
|
19
|
Pineiro R, Martinez-Pena I and Lopez-Lopez
R: Relevance of CTC clusters in breast cancer metastasis. Adv Exp
Med Biol. 1220:93–115. 2020.PubMed/NCBI View Article : Google Scholar
|
|
20
|
Aceto N, Bardia A, Miyamoto DT, Donaldson
MC, Wittner BS, Spencer JA, Yu M, Pely A, Engstrom A, Zhu H, et al:
Circulating tumor cell clusters are oligoclonal precursors of
breast cancer metastasis. Cell. 158:1110–1122. 2014.PubMed/NCBI View Article : Google Scholar
|
|
21
|
Alix-Panabieres C and Pantel K: Challenges
in circulating tumour cell research. Nat Rev Cancer. 14:623–631.
2014.PubMed/NCBI View
Article : Google Scholar
|
|
22
|
Yu M, Stott S, Toner M, Maheswaran S and
Haber DA: Circulating tumor cells: Approaches to isolation and
characterization. J Cell Biol. 192:373–382. 2011.PubMed/NCBI View Article : Google Scholar
|
|
23
|
Ahn JC, Teng PC, Chen PJ, Posadas E, Tseng
HR, Lu SC and Yang JD: Detection of circulating tumor cells and
their implications as a biomarker for diagnosis, prognostication,
and therapeutic monitoring in hepatocellular carcinoma. Hepatology.
73:422–436. 2021.PubMed/NCBI View Article : Google Scholar
|
|
24
|
Chemi F, Mohan S and Brady G: Circulating
tumour cells in lung cancer. Recent Results Cancer Res.
215:105–125. 2020.PubMed/NCBI View Article : Google Scholar
|
|
25
|
Hu M, Wang Z, Wu Z, Ding P, Pei R, Wang Q
and Xing C: Circulating tumor cells in colorectal cancer in the era
of precision medicine. J Mol Med (Berl). 100:197–213.
2022.PubMed/NCBI View Article : Google Scholar
|
|
26
|
Cho EH, Wendel M, Luttgen M, Yoshioka C,
Marrinucci D, Lazar D, Schram E, Nieva J, Bazhenova L, Morgan A, et
al: Characterization of circulating tumor cell aggregates
identified in patients with epithelial tumors. Phys Biol.
9(016001)2012.PubMed/NCBI View Article : Google Scholar
|
|
27
|
Ashworth T: R. A case of cancer in which
cells similar to those in the tumours were seen in the blood after
death. Aust Med J. 14(146)1869.https://cir.nii.ac.jp/crid/1573105974858034560.
|
|
28
|
Nowell PC: The clonal evolution of tumor
cell populations. Science. 194:23–28. 1976.PubMed/NCBI View Article : Google Scholar
|
|
29
|
Cheung KJ, Padmanaban V, Silvestri V,
Schipper K, Cohen JD, Fairchild AN, Gorin MA, Verdone JE, Pienta
KJ, Bader JS and Ewald AJ: Polyclonal breast cancer metastases
arise from collective dissemination of keratin 14-expressing tumor
cell clusters. Proc Natl Acad Sci USA. 113:E854–E863.
2016.PubMed/NCBI View Article : Google Scholar
|
|
30
|
Liu X, Taftaf R, Kawaguchi M, Chang YF,
Chen W, Entenberg D, Zhang Y, Gerratana L, Huang S, Patel DB, et
al: Homophilic CD44 interactions mediate tumor cell aggregation and
polyclonal metastasis in patient-derived breast cancer models.
Cancer Discov. 9:96–113. 2019.PubMed/NCBI View Article : Google Scholar
|
|
31
|
Donato C, Kunz L, Castro-Giner F,
Paasinen-Sohns A, Strittmatter K, Szczerba BM, Scherrer R, Di
Maggio N, Heusermann W, Biehlmaier O, et al: Hypoxia triggers the
intravasation of clustered circulating tumor cells. Cell Rep.
32(108105)2020.PubMed/NCBI View Article : Google Scholar
|
|
32
|
Huang L, Ji H, Yin L, Niu X, Wang Y, Liu
Y, Xuan Q, Li L, Zhang H, Zhou X, et al: High expression of
plakoglobin promotes metastasis in invasive micropapillary
carcinoma of the breast via tumor cluster formation. J Cancer.
10:2800–2810. 2019.PubMed/NCBI View Article : Google Scholar
|
|
33
|
Yin L, Li Q, Mrdenovic S, Chu GC, Wu BJ,
Bu H, Duan P, Kim J, You S, Lewis MS, et al: KRT13 promotes
stemness and drives metastasis in breast cancer through a
plakoglobin/c-Myc signaling pathway. Breast Cancer Res.
24(7)2022.PubMed/NCBI View Article : Google Scholar
|
|
34
|
Xie N, Hu Z, Tian C, Xiao H, Liu L, Yang
X, Li J, Wu H, Lu J, Gao J, et al: In vivo detection of CTC and CTC
plakoglobin status helps predict prognosis in patients with
metastatic breast cancer. Pathol Oncol Res. 26:2435–2442.
2020.PubMed/NCBI View Article : Google Scholar
|
|
35
|
Hassn Mesrati M, Syafruddin SE, Mohtar MA
and Syahir A: CD44: A multifunctional mediator of cancer
progression. Biomolecules. 11(1850)2021.PubMed/NCBI View Article : Google Scholar
|
|
36
|
Hiraga T and Nakamura H: Comparable roles
of CD44v8-10 and CD44s in the development of bone metastases in a
mouse model. Oncol Lett. 12:2962–2969. 2016.PubMed/NCBI View Article : Google Scholar
|
|
37
|
Kolev VN, Tam WF, Wright QG, McDermott SP,
Vidal CM, Shapiro IM, Xu Q, Wicha MS, Pachter JA and Weaver DT:
Inhibition of FAK kinase activity preferentially targets cancer
stem cells. Oncotarget. 8:51733–51747. 2017.PubMed/NCBI View Article : Google Scholar
|
|
38
|
Lev S: Targeted therapy and drug
resistance in triple-negative breast cancer: The EGFR axis. Biochem
Soc Trans. 48:657–665. 2020.PubMed/NCBI View Article : Google Scholar
|
|
39
|
Liu X, Adorno-Cruz V, Chang YF, Jia Y,
Kawaguchi M, Dashzeveg NK, Taftaf R, Ramos EK, Schuster EJ,
El-Shennawy L, et al: EGFR inhibition blocks cancer stem cell
clustering and lung metastasis of triple negative breast cancer.
Theranostics. 11:6632–6643. 2021.PubMed/NCBI View Article : Google Scholar
|
|
40
|
Bockhorn J, Dalton R, Nwachukwu C, Huang
S, Prat A, Yee K, Chang YF, Huo D, Wen Y, Swanson KE, et al:
MicroRNA-30c inhibits human breast tumour chemotherapy resistance
by regulating TWF1 and IL-11. Nat Commun. 4(1393)2013.PubMed/NCBI View Article : Google Scholar
|
|
41
|
Taftaf R, Liu X, Singh S, Jia Y, Dashzeveg
NK, Hoffmann AD, El-Shennawy L, Ramos EK, Adorno-Cruz V, Schuster
EJ, et al: ICAM1 initiates CTC cluster formation and
trans-endothelial migration in lung metastasis of breast cancer.
Nat Commun. 12(4867)2021.PubMed/NCBI View Article : Google Scholar
|
|
42
|
Bui TM, Wiesolek HL and Sumagin R: ICAM-1:
A master regulator of cellular responses in inflammation, injury
resolution, and tumorigenesis. J Leukoc Biol. 108:787–799.
2020.PubMed/NCBI View Article : Google Scholar
|
|
43
|
Wei RR, Sun DN, Yang H, Yan J, Zhang X,
Zheng XL, Fu XH, Geng MY, Huang X and Ding J: CTC clusters induced
by heparanase enhance breast cancer metastasis. Acta Pharmacol Sin.
39:1326–1337. 2018.PubMed/NCBI View Article : Google Scholar
|
|
44
|
Niu Y, Bao L, Chen Y, Wang C, Luo M, Zhang
B, Zhou M, Wang JE, Fang YV, Kumar A, et al: HIF2-Induced Long
Noncoding RNA RAB11B-AS1 Promotes Hypoxia-Mediated angiogenesis and
breast cancer metastasis. Cancer Res. 80:964–975. 2020.PubMed/NCBI View Article : Google Scholar
|
|
45
|
Chang PH, Chen MC, Tsai YP, Tan GYT, Hsu
PH, Jeng YM, Tsai YF, Yang MH and Hwang-Verslues WW: Interplay
between desmoglein2 and hypoxia controls metastasis in breast
cancer. Proc Natl Acad Sci USA. 118(e2014408118)2021.PubMed/NCBI View Article : Google Scholar
|
|
46
|
Tashireva LA, Savelieva OE, Grigoryeva ES,
Nikitin YV, Denisov EV, Vtorushin SV, Zavyalova MV, Cherdyntseva NV
and Perelmuter VM: Heterogeneous manifestations of
epithelial-mesenchymal plasticity of circulating tumor cells in
breast cancer patients. Int J Mol Sci. 22(2504)2021.PubMed/NCBI View Article : Google Scholar
|
|
47
|
Fabisiewicz A and Grzybowska E: CTC
clusters in cancer progression and metastasis. Med Oncol.
34(12)2017.PubMed/NCBI View Article : Google Scholar
|
|
48
|
Gkountela S, Castro-Giner F, Szczerba BM,
Vetter M, Landin J, Scherrer R, Krol I, Scheidmann MC, Beisel C,
Stirnimann CU, et al: Circulating tumor cell clustering shapes DNA
methylation to enable metastasis seeding. Cell. 176:98–112.e14.
2019.PubMed/NCBI View Article : Google Scholar
|
|
49
|
Sheaffer KL, Elliott EN and Kaestner KH:
DNA hypomethylation contributes to genomic instability and
intestinal cancer initiation. Cancer Prev Res (Phila). 9:534–546.
2016.PubMed/NCBI View Article : Google Scholar
|
|
50
|
Zmetakova I, Kalinkova L, Smolkova B,
Horvathova Kajabova V, Cierna Z, Danihel L, Bohac M, Sedlackova T,
Minarik G, Karaba M, et al: A disintegrin and metalloprotease 23
hypermethylation predicts decreased disease-free survival in
low-risk breast cancer patients. Cancer Sci. 110:1695–1704.
2019.PubMed/NCBI View Article : Google Scholar
|
|
51
|
Hapach LA, Carey SP, Schwager SC,
Taufalele PV, Wang W, Mosier JA, Ortiz-Otero N, McArdle TJ,
Goldblatt ZE, Lampi MC, et al: Phenotypic heterogeneity and
metastasis of breast cancer cells. Cancer Res. 81:3649–3663.
2021.PubMed/NCBI View Article : Google Scholar
|
|
52
|
Han HJ, Sung JY, Kim SH, Yun UJ, Kim H,
Jang EJ, Yoo HE, Hong EK, Goh SH, Moon A, et al: Fibronectin
regulates anoikis resistance via cell aggregate formation. Cancer
Lett. 508:59–72. 2021.PubMed/NCBI View Article : Google Scholar
|
|
53
|
Mutlu BR, Dubash T, Dietsche C, Mishra A,
Ozbey A, Keim K, Edd JF, Haber DA, Maheswaran S and Toner M:
In-flow measurement of cell-cell adhesion using oscillatory
inertial microfluidics. Lab Chip. 20:1612–1620. 2020.PubMed/NCBI View Article : Google Scholar
|
|
54
|
Neophytou CM, Trougakos IP, Erin N and
Papageorgis P: Apoptosis deregulation and the development of cancer
multi-drug resistance. Cancers (Basel). 13(4363)2021.PubMed/NCBI View Article : Google Scholar
|
|
55
|
Kim H, Sung JY, Park EK, Kho S, Koo KH,
Park SY, Goh SH, Jeon YK, Oh S, Park BK, et al: Regulation of
anoikis resistance by NADPH oxidase 4 and epidermal growth factor
receptor. Br J Cancer. 116:370–381. 2017.PubMed/NCBI View Article : Google Scholar
|
|
56
|
Thangavel H, De Angelis C, Vasaikar S,
Bhat R, Jolly MK, Nagi C, Creighton CJ, Chen F, Dobrolecki LE,
George JT, et al: A CTC-cluster-specific signature derived from
OMICS analysis of patient-derived xenograft tumors predicts
outcomes in basal-like breast cancer. J Clin Med.
8(1772)2019.PubMed/NCBI View Article : Google Scholar
|
|
57
|
Yu M: Metastasis stemming from circulating
tumor cell clusters. Trends Cell Biol. 29:275–276. 2019.PubMed/NCBI View Article : Google Scholar
|
|
58
|
Babaei G, Aziz SG and Jaghi NZZ: EMT,
cancer stem cells and autophagy; The three main axes of metastasis.
Biomed Pharmacother. 133(110909)2021.PubMed/NCBI View Article : Google Scholar
|
|
59
|
Kapeleris J, Zou H, Qi Y, Gu Y, Li J,
Schoning J, Monteiro MJ and Gu W: Cancer stemness contributes to
cluster formation of colon cancer cells and high metastatic
potentials. Clin Exp Pharmacol Physiol. 47:838–847. 2020.PubMed/NCBI View Article : Google Scholar
|
|
60
|
Martinez-Pena I, Hurtado P, Carmona-Ule N,
Abuin C, Davila-Ibanez AB, Sanchez L, Abal M, Chaachou A,
Hernández-Losa J, Cajal SRY, et al: Dissecting breast cancer
circulating tumor cells competence via modelling metastasis in
zebrafish. Int J Mol Sci. 22(9279)2022.PubMed/NCBI View Article : Google Scholar
|
|
61
|
Kawaguchi M, Dashzeveg N, Cao Y, Jia Y,
Liu X, Shen Y and Liu H: Extracellular Domains I and II of
cell-surface glycoprotein CD44 mediate its trans-homophilic
dimerization and tumor cluster aggregation. J Biol Chem.
295:2640–2649. 2020.PubMed/NCBI View Article : Google Scholar
|
|
62
|
Manupati K, Yeeravalli R, Kaushik K, Singh
D, Mehra B, Gangane N, Gupta A, Goswami K and Das A: Activation of
CD44-Lipoprotein lipase axis in breast cancer stem cells promotes
tumorigenesis. Biochim Biophys Acta Mol Basis Dis.
1867(166228)2021.PubMed/NCBI View Article : Google Scholar
|
|
63
|
Wang X, Sun Q, Liu Q, Wang C, Yao R and
Wang Y: CTC immune escape mediated by PD-L1. Med Hypotheses.
93:138–139. 2016.PubMed/NCBI View Article : Google Scholar
|
|
64
|
Liu Q, Liao Q and Zhao Y: Myeloid-derived
suppressor cells (MDSC) facilitate distant metastasis of
malignancies by shielding circulating tumor cells (CTC) from immune
surveillance. Med Hypotheses. 87:34–39. 2016.PubMed/NCBI View Article : Google Scholar
|
|
65
|
Lo HC, Xu Z, Kim IS, Pingel B, Aguirre S,
Kodali S, Liu J, Zhang W, Muscarella AM, Hein SM, et al: Resistance
to natural killer cell immunosurveillance confers a selective
advantage to polyclonal metastasis. Nat Cancer. 1:709–722.
2020.PubMed/NCBI View Article : Google Scholar
|
|
66
|
Szczerba BM, Castro-Giner F, Vetter M,
Krol I, Gkountela S, Landin J, Scheidmann MC, Donato C, Scherrer R,
Singer J, et al: Neutrophils escort circulating tumour cells to
enable cell cycle progression. Nature. 566:553–557. 2019.PubMed/NCBI View Article : Google Scholar
|
|
67
|
Luo L and He Y: Magnetically driven
microfluidics for isolation of circulating tumor cells. Cancer Med.
9:4207–4231. 2020.PubMed/NCBI View Article : Google Scholar
|
|
68
|
Sierra-Agudelo J, Rodriguez-Trujillo R and
Samitier J: Microfluidics for the isolation and detection of
circulating tumor cells. Adv Exp Med Biol. 1379:389–412.
2022.PubMed/NCBI View Article : Google Scholar
|
|
69
|
Khetani S, Mohammadi M and Nezhad AS:
Filter-based isolation, enrichment, and characterization of
circulating tumor cells. Biotechnol Bioeng. 115:2504–2529.
2018.PubMed/NCBI View Article : Google Scholar
|
|
70
|
Riethdorf S, O'Flaherty L, Hille C and
Pantel K: Clinical applications of the CellSearch platform in
cancer patients. Adv Drug Deliv Rev. 125:102–121. 2018.PubMed/NCBI View Article : Google Scholar
|
|
71
|
Ramos-Medina R, Lopez-Tarruella S, Del
Monte-Millan M, Massarrah T and Martin M: Technical challenges for
CTC implementation in breast cancer. Cancers (Basel).
13(4619)2021.PubMed/NCBI View Article : Google Scholar
|
|
72
|
Deng Z, Wu S, Wang Y and Shi D:
Circulating tumor cell isolation for cancer diagnosis and
prognosis. EBioMedicine. 83(104237)2022.PubMed/NCBI View Article : Google Scholar
|
|
73
|
Menyailo ME, Bokova UA, Ivanyuk EE,
Khozyainova AA and Denisov EV: Metastasis prevention: Focus on
metastatic circulating tumor cells. Mol Diagn Ther. 25:549–562.
2021.PubMed/NCBI View Article : Google Scholar
|
|
74
|
Krol I, Schwab FD, Carbone R, Ritter M,
Picocci S, De Marni ML, Stepien G, Franchi GM, Zanardi A, Rissoglio
MD, et al: Detection of clustered circulating tumour cells in early
breast cancer. Br J Cancer. 125:23–27. 2021.PubMed/NCBI View Article : Google Scholar
|
|
75
|
Deutsch TM, Riethdorf S, Fremd C, Feisst
M, Nees J, Fischer C, Hartkopf AD, Pantel K, Trumpp A, Schütz F, et
al: HER2-targeted therapy influences CTC status in metastatic
breast cancer. Breast Cancer Res Treat. 182:127–136.
2020.PubMed/NCBI View Article : Google Scholar
|
|
76
|
Goodman CR, Seagle BL, Friedl TWP, Rack B,
Lato K, Fink V, Cristofanilli M, Donnelly ED, Janni W, Shahabi S
and Strauss JB: Association of circulating tumor cell status with
benefit of radiotherapy and survival in early-stage breast cancer.
JAMA Oncol. 4(e180163)2018.PubMed/NCBI View Article : Google Scholar
|
|
77
|
Mostert B, Sieuwerts AM, Kraan J, Bolt-de
Vries J, van der Spoel P, van Galen A, Peeters DJ, Dirix LY,
Seynaeve CM, Jager A, et al: Gene expression profiles in
circulating tumor cells to predict prognosis in metastatic breast
cancer patients. Ann Oncol. 26:510–516. 2015.PubMed/NCBI View Article : Google Scholar
|
|
78
|
Bidard FC, Jacot W, Kiavue N, Dureau S,
Kadi A, Brain E, Bachelot T, Bourgeois H, Gonçalves A, Ladoire S,
et al: Efficacy of circulating tumor cell count-driven vs
clinician-driven first-line therapy choice in hormone
receptor-positive, ERBB2-Negative metastatic breast cancer: The
STIC CTC randomized clinical trial. JAMA Oncol. 7:34–41.
2021.PubMed/NCBI View Article : Google Scholar
|
|
79
|
Radovich M, Jiang G, Hancock BA, Chitambar
C, Nanda R, Falkson C, Lynce FC, Gallagher C, Isaacs C, Blaya M, et
al: Association of circulating tumor DNA and circulating tumor
cells after neoadjuvant chemotherapy with disease recurrence in
patients with triple-negative breast cancer: Preplanned secondary
analysis of the BRE12-158 randomized clinical trial. JAMA Oncol.
6:1410–1415. 2020.PubMed/NCBI View Article : Google Scholar
|
|
80
|
Zhang Y, Lv Y, Niu Y, Su H and Feng A:
Role of circulating tumor cell (CTC) monitoring in evaluating
prognosis of triple-negative breast cancer patients in China. Med
Sci Monit. 23:3071–3079. 2017.PubMed/NCBI View Article : Google Scholar
|
|
81
|
Ramirez JM, Fehm T, Orsini M, Cayrefourcq
L, Maudelonde T, Pantel K and Alix-Panabières C: Prognostic
relevance of viable circulating tumor cells detected by EPISPOT in
metastatic breast cancer patients. Clin Chem. 60:214–221.
2014.PubMed/NCBI View Article : Google Scholar
|
|
82
|
Bidard FC, Peeters DJ, Fehm T, Nole F,
Gisbert-Criado R, Mavroudis D, Grisanti S, Generali D, Garcia-Saenz
JA, Stebbing J, et al: Clinical validity of circulating tumour
cells in patients with metastatic breast cancer: A pooled analysis
of individual patient data. Lancet Oncol. 15:406–414.
2014.PubMed/NCBI View Article : Google Scholar
|
|
83
|
Guan X, Ma F, Li C, Wu S, Hu S, Huang J,
Sun X, Wang J, Luo Y, Cai R, et al: The prognostic and therapeutic
implications of circulating tumor cell phenotype detection based on
epithelial-mesenchymal transition markers in the first-line
chemotherapy of HER2-negative metastatic breast cancer. Cancer
Commun (Lond). 39(1)2019.PubMed/NCBI View Article : Google Scholar
|
|
84
|
Larsson AM, Jansson S, Bendahl PO, Levin
Tykjaer Jorgensen C, Loman N, Graffman C, Lundgren L, Aaltonen K
and Rydén L: Longitudinal enumeration and cluster evaluation of
circulating tumor cells improve prognostication for patients with
newly diagnosed metastatic breast cancer in a prospective
observational trial. Breast Cancer Res. 20(48)2018.PubMed/NCBI View Article : Google Scholar
|
|
85
|
Pang S, Li H, Xu S, Feng L, Ma X, Chu Y,
Zou B, Wang S and Zhou G: Circulating tumour cells at baseline and
late phase of treatment provide prognostic value in breast cancer.
Sci Rep. 11(13441)2021.PubMed/NCBI View Article : Google Scholar
|
|
86
|
Pierga JY, Bidard FC, Autret A, Petit T,
Andre F, Dalenc F, Levy C, Ferrero JM, Romieu G, Bonneterre J, et
al: Circulating tumour cells and pathological complete response:
independent prognostic factors in inflammatory breast cancer in a
pooled analysis of two multicentre phase II trials (BEVERLY-1 and
-2) of neoadjuvant chemotherapy combined with bevacizumab. Ann
Oncol. 28:103–109. 2017.PubMed/NCBI View Article : Google Scholar
|